专题训练12分式方程中的参数问题
2023八年级数学上册第十二章分式和分式方程12
10
= -1的解为x=4.
+1 +1
(1)⑤
6
12
⑥+1=+1-1的解为x=5.
2
(2)第n个方程:+1=+1-1的解为x=n-1.
验证:方程两边同乘x+1,得n=2n-(x+1),
解得x=n-1.
经检验,x=n-1是原分式方程的解.
一题练透
分式方程的解与字母参数
−3
1
已知关于x的分式方程 −2 +1=2−.
答案
4.a≥1且a≠2
方程两边同乘x-1,得a-2=x-1,解得x=a-1,由方程的解为非负数,得a-1≥0,
解得a≥1,因为x≠1,所以a-1≠1,所以a≠2,所以a的取值范围是a≥1且a≠2.
2−
−2+
5. [2021达州中考]若分式方程 −1 -4= +1 的解为整数,则整数a=
−2 16
依题意,令+2- 2 −4=1,
方程两边同乘(x+2)(x-2),
得(x-2)2-16=(x+2)(x-2),
解得x=-2.
检验:当x=-2时,(x+2)(x-2)=0.
所以x=-2不是原分式方程的解,
所以原分式方程无解,
−2 16
所以不存在数x,使得式子+2- 2 −4的值等于1.
答案
7.解:(1)方程两边同乘(x+2)(x+1),
得x(x+1)-(x+2)=(x+2)(x+1),
化简,得x2-2=x2+3x+2,
4
解得x=-3.
初中数学分式方程的增根、无解问题解答题基础训练(附答案详解)
17.若关于x的方程 的解是正数,求k值.
18.当k为何值时,分式方程 有增根?
19.已知关于x的方程 的根是x=1,求 的值.
参考答案
1.m<5且m≠2
【解析】
【分析】
先解分式方程,然后根据分式方程解的取值范围和增根的定义列出不等式即可求出结论.
【详解】
解:
解得:
∵关于x的分式方程 的解为正数,
∴
即
解得:m<5且m≠2.
【点睛】
此题考查的是根据分式方程解的情况,求参数的取值范围,掌握分式方程的解法和增根的定义是解决此题的关键.
2.(1) ;(2) ,数轴上表示见解析.
【解析】
【分析】
(1)将y=-1代入原方程解出a即可.
(2)根据不等式的解法解出解集即可.
【详解】
(2)将新方程的x表示出来,令方程小于零,解出即可.
【详解】
由上得:2x=(m-2)x-6,整理得:(4-m)x=-6.
(1)①当4-m=0即m=4时,原方程无解;
②当分母x+3=0即x=-3时,方程无解;
故2×(-3)=(m-2)×(-3)-6,
解得m=2,
综上所述,m=4或m=2.
(2)
当m≠4时, ,
∵方程的解是负数,
∴a-4<0,
∴a<4,
又∵x+2≠0,
∴x≠-2,
∴a≠2
那么a的取值范围是:a<4且a≠2.
【点睛】
本题考查解分式方程,解题的关键是掌握分式方程的求解,注意x+2≠0.
9. 且
【解析】
【分析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.
参数问题
2012中考数学专题复习12参数问题 一、知识要点参数,也叫参变量,是一个变量。
我们在研究当前问题的时候,关心某几个变量的变化以及它们之间的相互关系,其中有一个或一些叫自变量,另一个或另一些叫因变量。
如果我们引入一个或一些另外的变量来描述自变量与因变量的变化,引入的变量本来并不是当前问题必须研究的变量,我们把这样的变量叫做参变量或参数。
二、例题精选例1、两个不相等的正数满足a+b=2,ab=t-1,设S=(a-b)2 ,则S 关于t 的函数图像是( )A .射线(不含端点) B.线段(不含端点)C.直线 D. 抛物线的一部分 例2、若抛物线23y ax bx =++与232y x x =-++的两交点关于原点对称,则a b 、分别为 .例3、如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2a c +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .例4、已知抛物线c bx ax y ++=232,(1)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(2)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.例5、设函数1)12(2+++=x k kx y (k 为实数)(1)写出其中的两个特殊函数,使它们的图像不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图像;(2)根据所画图像,猜想出:对任意实数k ,函数的图像都具有的特征,并给予证明;(3)对任意负.实数k ,当m x <时,y 随着x 的增大而增大,试求出m 的一个值三、能力训练1、若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-22、已知(19x -31)(13x -17)-(13x -17)(11x -23)可因式分解成(ax +b )(8x +c ),其中a 、b 、c 均为整数,则a +b +c =( )A .-12B .-32C .38D .72 。
方程应用--分式方程(解析版)-中考数学重难点题型专题汇总
方程应用-中考数学重难点题型专题汇总分式方程(专题训练)1.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵.则下列方程正确的是()A.40030050x x=-B.30040050x x=-C.40030050x x=+D.30040050x x=+【答案】B【分析】设实际平均每天植树x棵,则原计划每天植树(x-50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【详解】解:设现在平均每天植树x棵,则原计划每天植树(x-50)棵,根据题意,可列方程:30040050x x=-,故选:B.【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.2.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x天,下面所列方程中错误的是()A.2x1x x3+=+B.23x x3=+C.11x221x x3x3-⎛⎫+⨯+=⎪++⎝⎭D.1x1x x3+=+【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x天,由题意可得,11x221 x x3x3-⎛⎫+⨯+=++⎝⎭,整理得2x1x x3+=+,或2x1x x3=-+或23x x3=+.则ABC选项均正确,故选:D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示()A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义.【详解】解:由50004000302x x=-可得:由50002x 表示的是足球的单价,而4000x表示的是篮球的单价,x \表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键.4.(2021·内蒙古鄂尔多斯市·中考真题)2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x 元,可列方程为()A .1600010010x x +=-B .10000600010010x x -=+C .10000600010010x x =--D .10000600010010x x -=-【答案】C 【分析】根据题中等量关系“2021年购买的口罩数量比2020年购买的口罩数量多100包”即可列出方程.【详解】解:设2020年每包口罩x 元,则2021年每包口罩(x -10)元.根据题意,得,60001000010010x x-=-.即:100006000=10010x x --.故选:C【点睛】本题考查了列分式方程的知识点,寻找已知量和未知量之间的等量关系是列出方程的关键.5.(山东省淄博市2021年中考数学试题)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为km/hx,则下列方程中正确的是()A.1010121.2x x-=B.10100.21.2x x-=C.1010121.2x x-=D.10100.21.2x x-=【答案】D【分析】根据题意可直接进行求解.【详解】解:由题意得:10100.21.2x x-=;故选D.【点睛】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.6.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.400K30=500B.400=500r30C.400=500K30D.400r30=500【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程,此题得解.【解析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:400=500r30.故选:B.7.(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210B.6210K1=3C.3x﹣1=6210D.6210=3【分析】根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【解析】依题意,得:3(x﹣1)=6210.故选:A.8.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000=4200K80B.3000+80=4200 C.4200=3000−80D.3000=4200r80x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.【解析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:3000=4200r80.故选:D.9.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.80(1+35%)−80=40B.80(1+35%)−80=40 C.80−80(1+35%)=40D.80−80(1+35%)=40【分析】设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为1+35%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前40天完成了这一任务,即可得出关于x 的分式方程,此题得解.【解析】设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为1+35%万平方米,依题意,得:801+35%−80=40,即80(1+35%)−80=40.故选:A .10.(2020•襄阳)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?【分析】设原来每天用水量是x 吨,则现在每天用水量是45吨,根据现在120吨水比以前可多用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】设原来每天用水量是x 吨,则现在每天用水量是45x 吨,依题意,得:12045−120=3,解得:x =10,经检验,x =10∴45x =8.答:现在每天用水量是8吨.11.(2021·山东东营市·中考真题)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x 万平方米,则所列方程为________.【答案】()909030125%x x-=+【分析】原计划每天绿化的面积为x 万平方米,则实际每天绿化的面积为()125%x +万平方米,根据工作时间=工作总量÷工作效率,结合实际比原计划提前30天完成了这一任务,即可列出关于x 的分式方程.【详解】设原计划每天绿化的面积为x 万平方米,则实际每天绿化的面积为()125%x +万平方米,依据题意:()909030125%x x-=+故答案为:()909030125%x x-=+【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.12.(2021·辽宁本溪市·中考真题)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A 种奖品的单价比B 种奖品的单价多10元,用300元购买A 种奖品的数量与用240元购买B 种奖品的数量相同.设B 种奖品的单价是x 元,则可列分式方程为________.【答案】30024010x x=+【分析】设B 种奖品的单价为x 元,则A 种奖品的单价为(x+10)元,利用数量=总价÷单价,结合用300元购买A 种奖品的件数与用240元购买B 种奖品的件数相同,即可得出关于x 的分式方程.【详解】解:设B 种奖品的单价为x 元,则A 种奖品的单价为(x+10)元,依题意得:30024010x x =+,故答案为:30024010x x=+【点睛】本题考查了根据实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.13.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.【答案】16014010 x x=-【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得16014010x x=-.故答案为:16014010x x=-.【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.14.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,依题意,得:2020101.560x x-=,解得:x=40,经检验,x=40是所列方程的根,且符合题意,答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,根据甲、乙恰好同时到达B 地列方程求解即可.(1)解:设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,由题意得:0.5 1.20.52x x ⨯=+,解得:20x =,则1.224x =(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,由题意得:301303 1.2x x-=,解得15x =,经检验15x =是分式方程的解,则1.218x =(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.16.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x 千米/小时,则汽车速度是3x 千米/小时,根据题意得:454523x x=+,解之得15x =,经检验15x =是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.17.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,根据题意,得3603603 34-=x x,解这个方程,得x=10,经检验,x=10是原方程的根,∴每个小组有学生10名.【点睛】此题考查了分式方程的应用,弄清题意是解本题的关键.18.(2021·辽宁丹东市·中考真题)为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?【答案】甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.【分析】根据题意列出方程求解即可.【详解】解:设甲工程队每天改造的道路长度是x米,列方程得:40030020 x x=-,解得:x=80.80-20=60.答:甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.【点睛】此题考查了分式方程应用题的解法,解题的关键是根据题意找到等量关系并列出方程.19.(2021·江苏徐州市·中考真题)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?【答案】50【分析】该商品打折卖出x件,找到等量关系即可.【详解】解:该商品打折卖出x件4008400102x x ⋅=+解得x =8经检验:8x =是原方程的解,且符合题意∴商品打折前每件400=508元答:该商品打折前每件50元.【点睛】此题考查分式方程实际问题中的销售问题,找到等量关系是解题的关键.20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.【分析】设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,由题意得:202052x x-=,解得:x =2,经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出方程,是解题的关键.21.(2021·吉林长春市·中考真题)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同,求每千克有机大米的售价为多少元?【答案】每千克有机大米的售价为7元.【分析】设每千克有机大米的售价为x 元,则每千克普通大米的售价为(x -2)元,根据“用420元购买的有机大米与用300元购买的普通大米的重量相同”,列出分式方程,即可求解.【详解】解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x-2)元,根据题意得:4203002x x=-,解得:x=7,经检验:x=7是方程的解,且符合题意,答:每千克有机大米的售价为7元.【点睛】本题主要考查分式方程的实际应用,找准等量关系,列出分式方程,是解题的关键.22.(2021·辽宁营口市·中考真题)为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.(1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【答案】(1)“文学类”图书的单价为15元,则“科普类”图书的单价为18元;(2)最多能购买“科普类”图书33本.【分析】(1)设“文学类”图书的单价为x元,则“科普类”图书的单价为1.2x元,根据数量=总价÷单价,结合购买“科普类”“文学类”图书的数量多20本,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设能购买“科普类”图书m本,根据总价=单价×数量,列出不等式,即可求解.【详解】解:(1)设“文学类”图书的单价为x元,则“科普类”图书的单价为1.2x元,依题意,得:3600270020 1.2x x-=,解得:x=15,经检验,x=15是所列分式方程的解,且符合题意,∴1.2x=18.答:“文学类”图书的单价为15元,则“科普类”图书的单价为18元;(2)设能购买“科普类”图书m本,根据题意得:18m+15(100-m)≤1600,解得:1003m≤,∵m为整数,∴最多能购买“科普类”图书33本.【点睛】本题考查了分式方程的应用以及不等式的应用,找准数量关系,正确列出分式方程和一元一次不等式是解题的关键.23.(2021·山东济宁市·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?【答案】(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.【详解】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得:9004001005x x+=-,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,∴x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,∵a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元.【点睛】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式.24.(2021·内蒙古中考真题)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.【答案】(1)小刚跑步的平均速度为150米/分;(2)小刚不能在上课前赶回学校,见解析【分析】(1)根据题意,列出分式方程即可求得小刚的跑步平均速度;(2)先求出小刚跑步和骑自行车的时间,加上取作业本和取自行车的时间,与上课时间20分钟作比较即可.【详解】解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,根据题意,得180018004.51.6x x+=,解这个方程,得150x=,经检验,150x=是所列方程的根,所以小刚跑步的平均速度为150米/分.(2)由(1)得小刚跑步的平均速度为150米/分,则小刚跑步所用时间为180012150=(分),骑自行车所用时间为12 4.57.5-=(分),在家取作业本和取自行车共用了3分,++=(分).所以小刚从开始跑步回家到赶回学校需要127.5322.5>,因为22.520所以小刚不能在上课前赶回学校.【点睛】本题考查路程问题的分式方程,解题关键是明确题意,列出分式方程求解.25.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60r2=60⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.26.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?【分析】(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,根据数量=总价÷单价结合用700元购进A种书包的个数是用450元购进B种书包个数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设该商场购进m个A种书包,则购进(2m+5)个B种书包,根据购进A,B两种书包的总费用不超过5450元且A种书包不少于18个,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各进货方案;(3)设销售利润为w元,根据总利润=销售每个书包的利润×销售数量,即可得出w关于m的函数关系式,利用一次函数的性质可得出获得利润最大的进货方案,设赠送的书包中B 种书包有a个,样品中B种书包有b个,则赠送的书包中A种书包有(5﹣a)个,样品中A 种书包有(4﹣b)个,根据利润=销售收入﹣成本,即可得出关于a,b的二元一次方程,结合a,b,(5﹣a),(4﹣b)均为正整数,即可求出结论.【解析】(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,依题意,得:700=2×450r20,。
中考:参数问题专题训练
中考专题:参数问题一、参数问题:参数,也叫参变量,是一个变量,我们在研究此问题的时候,关心某几个变量的变化和它们之间的关系,其中一个量叫做自变量,另一个或另一些叫因变量,我们引入一个或另外的一些量来描述自变量或因变量的变化,引入的变量本来问题必须研究的变量,我们把这样的变量叫做参变量或参数。
二、例题解析:例题1、两个不相等的正数满足2=+b a ,1-=t ab ,,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分例题2、抛物线32++=bx ax y 与232++-=x x y 的两个交点关于原点对称,则a= , b= . 例题3、如果a ,b ,c 是三个任意的整数,那么在2,2,2ac c b b a +++这三个数中,至少会有几个整数?请利用整数的奇偶性简单说明理由。
例题4、已知函数223y x x =-+)0(m x ≤≤上有最大值3,最小值2,则m 的取值范围是 。
例题5、抛物线|32|2--=x x y 与直线k y =有四个交点,求K 的取值范围。
例题6、若关于x 的方程01)5(2=-+-+m x m x ,一个根小于0,一个根大于3,求m 的取值范围。
例题7、已知:抛物线2(1)y x b x c =+-+经过点(12)P b --,. (1)求b c +的值;(2)若3b =,求这条抛物线的顶点坐标;(3)若3b >,过点P 作直线PA y ⊥轴,交y 轴于点A ,交抛物线于另一点B ,且2BP PA =,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)例题8、设函数1)12(2+++=x k kx y (k 为实数)(1)写出其中的两个特殊函数,使它们的图像不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图像;(2)根据所画图像,猜想出:对任意实数k ,函数的图像都具有的特征,并给予证明; (3)对任意负.实数k ,当m x <时,y 随着x 的增大而增大,试求出m 的一个值.三、能力训练1、已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .a bC .a b +D .a b -2、已知(19x-31)(13x-17)-(13x-17)(11x-23)可因式分解成(ax+b )(8x+c ),其中a ,b ,c 均为整数,则a+b+c=( )A .-12B .-32C .38D .722.如图1,把一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长(用含m ,n 的式子表示)为 .3、已知整数x 满足-5≤x ≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是( ) A.1 B.2 C.24 D.-94、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( ).A. 2个B. 3个C. 4个D. 5个5、若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l6、已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为_____________.7、a 为____________时,方程)2(423-+=-x x x a x 会产生增根?6、若关于的分式方程 无解,则为____________。
分式方程题型集锦
分式方程题型集锦一、增根产生的原因及去除方法(一):定义:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.增根不是原分式方程的根(一元方程的“解”也叫“根”),但它是去分母后所得的整式方程的根。
增根是不适合原方程的根,它不能作为方程的根,是需要排除掉的根。
(二)去除增根方法:要去除因为化解分式方程产生的增根,办法是可以把解方程的结果(即x等于什么具体数),一一代入最简公分母检验,如果使最简公分母为零,那么这个根就是原要去掉的原来方程的增根。
二、有增根与无解是两个不同的概念分式方程的增根与无解是分式方程中常见的两个不同概念,学习分式方程时,常常容易会对这两个概念混淆不清。
(一)、分式方程有增根,是指解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围,因而得出的根只符合新的整式方程,而并不符合原来的分式方程。
(二)、分式方程无解,是指不论未知数取何值,使分式、整式方程两边的值都不相等。
把分式方程化为整式方程,若整式方程无解,则分式方程一定无解;若整式方程有解,但要使分式方程无解,则该解必必须是能使最简公分母为0时对应的未知数的数值,此时相应的参数(字母系数值)使分式方程无解。
分式方程无解包含两种情形:1、把分式方程化为整式方程,若整式方程无解,则分式方程一定无解(方程得出的解若能使新的化简式无解,自然代入原分式方程也会无解)。
2、若整式方程有解,但要使分式方程无解,则该解必为是能使最简公分母为0时对应的未知数的数值,此时相应的参数(字母系数)使分式方程无解。
(方程得出的解若能使新的化简式有解,但却要想使原分式方程无解,那就要取出增根。
“增根代入化简式,直接求系数”)。
方程无解的条件,关键是看转化后的整式方程解的情况.既要考虑整式方程无解的条件,又要考虑整式方程有解,但它是分式方程增根的可能性.考虑问题要全面、周到。
含参数分式方程问题详解
分式方程参数问题求分式方程中参数(字母系数)的取值范围的问题是一类非常重要的题目,在各类试题中出现频率较高,和解分式方程的题目相比,它更能考差学生思维的全面性和敏捷程度。
在此类题目中往往首先给出分式方程解的情况,让解题者作出逆向判断,从而确定参数的取值范围。
由于分式方程是先化成整式方程求解的,并且在去分母化简的过程中容易扩大未知数的范围,所以求出的参数的取值范围也就不准确了。
例1. 已知关于x 的分式方程132323-=--+--xmxx x 无解,求m 的值。
正解:将原方程化为整式方程,得:()21-=-x m , 因为原分式方程无解,所以()01=-m 或312=--m所以m=1或 m=35.辨析:产生错误的原因是只从字面意思来理解“无解”,认为“无解”就单单是解不出数来。
实际上,导致分式方程无解的原因有两个:①解不出数来,也就是整式方程无解;②解出的数不符合原方程,也就是整式方程虽然有解,但这个解能使最简公分母为零. 例2. 已知关于x 的分式方程323-=--x mx x 有一个正解,求m 的取值范围。
正解:将原方程化为整式方程,得:()m x x =--32∴m x -=6,∵原方程有解且是一个正解 ∴06>-m 且36≠-m ∴m 的取值范围是:m <6且m ≠3辨析:产生错误的原因是忽视了分式方程的解必须满足的条件:最简公分母不等于零。
误认为分式方程有一个正解就是整式方程有一个正解,从而简单处理了事。
实际上,题目隐含着一个重要的条件:x ≠3, 有一个正解并不表示所有的正数都是它的解,而表示它有一个解并且这个解是一个正数两层含义。
例3:已知关于x 的分式方程42212-=-+x m x x 的解也是不等式组()⎪⎩⎪⎨⎧-≤-->-832221x x x x的一个解,求m 的取值范围。
正解:解不等式组()⎪⎩⎪⎨⎧-≤-->-832221x x x x得:x ≤-2 将分式方程42212-=-+x m x x 化为整式方程,得:m x x x 2)2(42=+--解这个整式方程得:2--=m x ∴分式方程42212-=-+x mx x 的解为:2--=m x (其中m ≠0和-4) 由题意得:22-≤--m ,解得:0≥m ∴m 的取值范围是:m >0.辨析:产生错误的原因是忽视了分式方程的解必须满足的条件:最简公分母不等于零。
分式方程中的参数大揭秘
x
ax +
1
=
3
-
x
3 +
1 只有一解?
解 原方程可化为整式方程
( a + 3)x2 - 2x - 2 = 0.
¹
( 1 ) 当 a + 3 = 0, 即 a = - 3时,
- 2x - 2 = 0, x = - 1, 这使原方程分母为 0,
_ a X - 3.
( 2 ) 当 a + 3 X 0, 即 a X - 3时, 方程 ¹ 为 关于 x 的一元二次方程.
解 原方程去分母整理得
2x2 = m + 1.
¹
因为原方程的增根可能是 x = 0或 x = 1,
把 x = 0 代入方程 ¹ 得 m = - 1,
# 27#
初中数学教与学
把 x = 1代入方程 ¹ 中得 m = 1, 所以 m = ? 1.
三、参数使方程只有一解
例 4 a 为 何 值 时, 关 于 x 的 方 程 2 x
x=
1 2
,
这不是原方程的增根,
_ k = 0符合题意;
( 2 ) 当 k X 0时, 方程 ¹ 为关于 x 的一元
二次方程.
( i) 如果方程 ¹ 没有实数根, 也就不会使
原 方程产生增根, 由 $ = ( 3k - 2) 2 + 4k < 0得
k无实数值.
( ii) 如果方程 ¹ 有实数 根, 就 得舍去 使
¹ 得 a = - 1, 这满足 ¾. 再把 a = - 1代入方
程 ¹ 中得 x = - 1 或 x = - 2.
这时 x = - 1为原方程增根; x = - 2为原
方程的解, 且在 - 3与 3之间.
【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版) 分式方程增根和无解问题(解析版)
分式方程增根和无解问题1.关于未知数x的分式方程:13-22-a xx x++=无解求a的值.2.当k为何值时方程23xx--+3kx-=2有增根?3.当k为何值时关于x的方程1111kx x+=++产生增根?【答案】k=1【分析】分式方程去分母转化为整式方程由分式方程有增根求出x的值代入整式方程计算即可求出k的值.【详解】最简公分母x+1=0 即x=-1;将分式化为整式方程得:k+x+1=1将x=-1代入得k=1.【点睛】解此类题目的步骤是:(1)判断增根的值;(2)将分式方程化为整式方程;(3)将增根代入整式方程求解.4.已知关于x的方程4433x mmx x---=--无解求m的值.5.解关于x的方程12xx++﹣1xx-=(1)(2)x x-+时产生了增根请求出所有满足条件的k的值.6.当a 为何值时 关于x 的方程311x a x x--=-无解? 【答案】2a =-或1. 【分析】先把分式方程化成整式方程得出(a+2)x=3 根据等式得出a=-2 原方程无解 再根据当x=1或x=0时 分式方程的分母等于0 即整式方程的解释分式方程的增根 代入求出a 即可.【详解】把分式方程化成整式方程得出(2)3a x += 根据等式性质得出2a =- 原方程无解.再根据当1x =或0x =时 分式方程的分母等于0 即整式方程的解是分式方程的增根 代入求得1a =.【点睛】本题考查分式方程 解题的关键是熟练掌握分式方程的求解方法.7.已知方程22611--1k x x x -=+有增根x=1,求k 的值. 【答案】3【详解】试题分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值 让最简公分母(x+1)(x -1)=0 得到x=1或-1 然后代入化为整式方程的方程算出k 的值. 试题解析:方程两边都乘(x+1)(x -1)得2(x -1)+k (x+1)=6∵原方程有增根x=1∵当x=1时 k=3故k 的值是3.8.若关于x 的分式方程221933k x x x +=-+-无解 求k 的值. 【答案】6k =或12【分析】分式方程去分母转化为整式方程 根据分式方程无解得到30x ±= 求出3x =± 代入整式方程即可求出k 的值.【详解】解:分式方程两边同乘()(33)x x +- 去分母得:2(3)3k x x +-=+由分式方程无解得到30x -= 或30x += 即3x =或3-代入整式方程得:6k =或12.【点睛】此题考查了分式方程的无解问题 解决本题的关键是将分式方程去分母转化为整式方程. 9.若关于x 的分式方程221242mx x x x +=--+无解 求m 的值. 【答案】m =-4或2或-1【分析】去分母 整理得(m +1)x =-6 根据分式方程无解可知增根分别为x =2或x =-2或m +1=0 分别求解即可.【详解】解:去分母 得2(x +2)+mx =x -210.1x x +1x x ++=(1)x t x x ++有增根 求所有可能的t 之和.11.若关于x 的分式方程21x a x -=-有增根 求a 的值.所以a 的值是1.【点睛】本题考查分式方程的解 熟练掌握分式方程的解法 理解方程增根的定义是解题的关键. 12.若关于x 的方程21+m x ﹣21m x x ++=1x无解 求实数m 的值. 方程无解13.若关于x 的分式方程213224x m x x x -++=-+无解但有增根 求m 的值. 【答案】m 的值为6-或10-.【分析】将分式方程变为整式方程 然后根据增根的定义将分式方程的增根代入求值即可.【详解】解:方程同乘以()()22x x +-约去分母 得()232x x m x +++=-2236x m x ++=-8m x +=∵原分式方程无解但有增根.∵(2)(2)0x x +-= 即20x +=或20x -=.解得2x =或2x =-.当2x =时 6m =-;当2x =-时 10m =-.∵m 的值为6-或10-.【点睛】此题考查的是根据分式方程有增根 求参数的值 掌握增根的定义和分式方程的解法是解决此题的关键.14.如果解关于x 的方程222k x x x +=--会产生增根 求k 的值. 【答案】k=2【分析】首先根据分式方程的解法求出方程的解 然后根据增根求出k 的值.【详解】两边同时乘以(x -2)可得:x=2(x -2)+k 解得:x=4-k∵方程有增根 ∵x=2 即4-k=2 解得:k=2.【点睛】本题主要考查的是分式方程有增根的情况 属于基础题型.解决这种问题时 首先我们将k 看作已知数 求出方程的解 然后根据解为增根得出答案.15.若关于x 的分式方程(1)5321m x m x +-=-+无解 求m 的值. 【详解】试题分析:先把分式方程(1)5321m x m x +-=-+去分母得 再根据方程无解可得最后把代入方程求解即可. 方程(1)5321m x m x +-=-+去分母得 由分式方程(1)5321m x m x +-=-+无解可得所以解得.16.若关于x 的方程2134416x m m x x ++=-+-无解 求m 的值.17.方程233x m x x -=--会产生增根;求m 的值. 【答案】3m =【分析】原分式方程化为整式方程 根据方程有增根 得到3x = 将其代入整式方程即可求解.【详解】解:去分母 得:()23--=x x m去括号 得:26x x m -+=移项合并 得6x m -+=∵原方程有增根∵30x -= 即3x =把3x =代入整式方程6x m -+=解得3m =∵原方程有增根时 3m =.【点睛】本题考查了分式方程的增根 步骤如下:①分式方程化为整式;②最简公分母为0确定增根;③将增根代入整式方程求解 熟练掌握步骤是解题关键.18.已知关于x 的分式方程211122mx x x x x +=--++()() (1)若解得方程有增根 且增根为x =-2 求m 的值(2)若方程无解 求m 的值19.若分式方程2221151k k x x x x x---=---有增根=1x - 求k 的值. 【答案】=1k【分析】分式两边同乘以最简公分母可得:()()()()1115x k x x k --+=+- 再将增根代入式子即可求出k 的值.【详解】解:∵分式方程的最简公分母为()()11x x x +- 分式两边同乘以最简公分母可得: ()()()()1115x k x x k --+=+-∵分式方程有增根=1x -将其代入上式可得:()1=0k -- 解之得:=1k .【点睛】本题考查分式方程根的情况 利用分式方程有增根求参数值 解题的关键是将增根代入去分母之后的式子进行求解.20.已知关于x 的分式方程512x a x x+-=-. (1)若分式方程的根是5x = 求a 的值;(2)若分式方程有增根 求a 的值;(3)若分式方程无解;求a 的值的. 【答案】(1)1(2)-2(3)3或-2【分析】分式方程去分母转化为整式方程(1)把x =5代入整式方程求出a 的值即可;(2)由分式方程有增根 得到最简公分母为0求出x 的值 代入整式方程求出a 的值即可;(3)分a -3=0与a -3≠0两种情况 根据分式方程无解 求出m 的值即可.(1)去分母得 x (x +a )-5(x -2)=x (x -2)整理得:(3)100a x -+=把x =5代入(3)100a x -+=得5(3)100a -+=∵a =1;(2)由分式方程有增根 得到x (x -2)=0解得:x =2或x =0把x =2代入整式方程(3)100a x -+=得:a =-2;把x =0代入整式方程(3)100a x -+=得:a 的值不存在∵分式方程有增根 a =-2 (3)化简整式方程得:(a -3)x =-10当a -3=0时 该方程无解 此时a =3;当a -3≠0时 要使原方程无解 必须为分式方程增根 由(2)得:a =-2综上 a 的值为3或-2.【点睛】此题考查了分式方程的解和增根 增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.21.(1)若分式方程223242mx x x x +=--+有增根 求m 值; (2)若分式方程2221151k k x x x x x---=---有增根=1x - 求k 的值.22.已知关于x 的分式方程2133m x x +=--无解 关于y 的不等式组213()2y y m n -≥⎧⎨-+<⎩的整数解有且仅有3个 求n 的取值范围.23.已知关于x 的分式方程222242mx x x x +=--+. (1)若方程的增根为2x = 求m 的值;(2)若方程有增根 求m 的值;(3)若方程无解 求m 的值.【答案】(1)-4;(2)4m =±;(3)4m =±或0m =.【分析】(1)先去分母 然后根据方程的增根进行求解即可;(2)若原分式方程有增根 则(2)(2)0x x +-= 然后代入求解即可;(3)由(2)及题意可直接进行求解.【详解】解:(1)去分母得:2(2)2(2)x mx x ++=-整理 得8mx =-.若增根为2x = 则28m =-.得4m =-;(2)若原分式方程有增根 则(2)(2)0x x +-=.所以2x =-或2x =.当2x =-时 28m -=-得4m =.当2x =时 28m =-得4m =-.所以若原分式方程有增根 则4m =±.(3)由(2)知 当4m =±时 原分式方程有增根 即无解;当0m =时 方程8mx =-无解.综上知 若原分式方程无解 则4m =±或0m =.【点睛】本题主要考查分式方程的增根及无解 熟练掌握分式方程增根及无解的问题是解题的关键. 24. 关于x 的方程213224k x x x +=-+-有增根 求k 的值.25.若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解 求a 的值?26.已知关于x 的方程361(1)x m x x x x ++=--有增根 求m 的值. 【答案】m =-3或5时.【分析】根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根 那么最简公分母x (x -1)=0 所以增根是x =0或1 把增根代入化为整式方程的方程即可求出m 的值.【详解】解:方程两边都乘x (x -1)得3(x -1)+6x =x +m∵原方程有增根 ∵最简公分母x (x -1)=0解得x =0或1 当x =0时 m =-3;当x =1时 m =5.故当m =-3或5时 原方程有增根. 【点睛】本题考查的是分式方程 熟练掌握分式方程是解题的关键.27.阅读下列材料:在学习“分式方程及其解法”的过程中 老师提出一个问题:若关于x 的分式方程14a x =-的解为正数 求a 的取值范围.经过独立思考与分析后 小明和小聪开始交流解题思路 小明说:解这个关于x 的方程 得到方程的解为4x a =+ 由题目可得40a +> 所以4a >- 问题解决.小聪说:你考虑的不全面 还必须保证0a ≠才行.(1)请回答: 的说法是正确的 正确的理由是 .完成下列问题:(2)已知关于x 的方程233m x x x -=--的解为非负数 求m 的取值范围; (3)若关于x 的方程322133x nx x x --+=---无解 求n 的值.28.增根是在分式方程转化为整式方程的过程中产生的分式方程的增根不是分式方程的根而是该分式方程化成的整式方程的根所以涉及分式方程的增根问题的解题步骤通常为:①去分母化分式方程为整式方程;②将增根代入整式方程中 求出方程中字母系数的值.阅读以上材料后 完成下列探究:探究1:m 为何值时 方程3533x m x x +=--有增根. 探究2:m 为何值时 方程3533x m x x+=--的根是1-. 探究3:任意写出三个m 的值 使对应的方程3533x m x x +=--的三个根中两个根之和等于第三个根; 探究4:你发现满足“探究3”条件的123m m m 、、的关系是______. :a b c +=158m -+整理得31215m m m =+-故答案为31215m m m =+-.【点睛】本题考查了分式方程的解法 分式方程的增根 熟练掌握解分式方程 准确判定方程的增根是解题的关键.。
中考数学分式方程专题训练有答案解析
分式方程一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+27.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m= .13.若方程有增根x=5,则m= .14.如果分式方程无解,则m= .15.当m= 时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值= .18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程1;2.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.考点分式方程的定义.分析根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.点评本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣3考点分式方程的解.专题计算题.分析根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解答解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.点评解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣2考点解分式方程.专题计算题.分析本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.点评1解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.2解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根考点分式方程的增根.分析分式方程的增根是最简公分母为零时,未知数的值.解答解:分式方程的增根是使最简公分母的值为零的解.故选D.点评本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或2考点分式方程的增根.专题计算题.分析本题由增根的定义可知分式分母为0,即x﹣1=0或x﹣2=0,解出即可.解答解:∵方程+=0有增根,∴x﹣1=0或x﹣2=0,解得x=1或2,点评本题主要考查增根的定义,解题的关键是使最简公分母x﹣1x﹣2=0.6.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+2考点解分式方程.专题计算题.分析找出各分母的最小公分母,同乘以最小公分母即可.解答解:左右同乘以最简公分母x﹣2,得x=2x﹣2+3,故选B.点评本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣4考点解分式方程.专题计算题.分析把分式方程化为整式方程,乘以最简公分母2xx﹣2即可.解答解:∵方程的最简公分母2xx﹣2,∴方程的两边同乘2xx﹣2即可.故选A.点评本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时考点列代数式分式.分析往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.解答解:根据题意可知需要的时间为: +点评本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣1考点分式方程的增根.专题计算题.分析有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.解答解:方程两边都乘x﹣1,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =考点由实际问题抽象出分式方程.专题应用题.分析关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.点评列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.考点解分式方程.专题计算题.分析本题考查解分式方程的能力,观察可得方程最简公分母为:xx+1,方程两边去分母后化为整式方程求解.解答解:方程两边同乘以xx+1,得x2+x+1x﹣1=2xx+1,解得:x=﹣.经检验:x=﹣是原方程的解.点评1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.3方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+x+1x﹣1=2的情况出现.12.若关于x的方程的解是x=1,则m= 2 .考点分式方程的解.分析根据分式方程的解的定义,把x=1代入原方程求解可得m的值.解答解:把x=1代入方程,得,解得m=2.故应填:2.点评本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m= 5 .考点分式方程的增根.专题计算题.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣5化为整式方程,再把增根x=5代入求解即可.解答解:方程两边都乘x﹣5,得x=2x﹣5+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m= ﹣1 .考点分式方程的解.专题计算题.分析分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评本题考查了分式方程无解的条件,是需要识记的内容.15.当m= 3 时,关于x的方程=2+有增根.考点分式方程的增根.专题方程思想.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣3化为整式方程,再把增根x=3代入求解即可.解答解:方程两边都乘x﹣3,得x=2x﹣3+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,3=0+m,解得m=3.故答案为:3.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.2006 南通用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0 .考点换元法解分式方程.专题压轴题;换元法.分析本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.解答解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.点评用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值= ﹣3 .考点分式方程的解.分析根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k 的值.解答解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8 .考点由实际问题抽象出分式方程.分析求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.解答解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程1;2.考点解分式方程.分析1首先乘以最简公分母x﹣3x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.2首先乘以最简公分母x﹣1x+1去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.解答解:1去分母得:2x=3x﹣3,去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,xx﹣3=54≠0.∴原方程的解为:x=9.2去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,x﹣1x+1=0,所以x=1是增根,故原方程无解.点评此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具考点分式方程的应用.专题应用题.分析求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.解答解:设甲每天加工x个玩具,那么乙每天加工35﹣x个玩具.由题意得:.5分解得:x=15.7分经检验:x=15是原方程的根.8分∴35﹣x=209分答:甲每天加工15个玩具,乙每天加工20个玩具.10分点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服考点分式方程的应用.专题应用题.分析关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.解答解:设服装厂原来每天加工x套演出服.根据题意,得:.3分解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.6分点评分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学考点分式方程的应用.分析设一班有x人,则二班有人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,可列方程求解.解答解:设一班有x人,则二班有人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.=×50=60.答:一班有50人,二班有60人.点评本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.考点分式方程的应用.分析本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.解答解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个点评此题考查分式方程的应用,为开放性试题,答案不唯一.。
(完整版)含有参数的分式方程
含有参数的分式方程【问题一】解含有参数的分式方程例如:解关于x 的方程11(1)1a a x +=≠- 分析:解分式方程的一般是方法将分式方程转化为整式方程,通过在等式两边乘以最简公分母达到去分母的效果。
在解决含有参数的分式方程时,将参数看作一个常数进行运算,用含有参数的代数式表示方程的解。
解:去分母,方程两边同时乘以1x -得:1(1)1a x x +-=-整理方程得:(1)2a x a -=-∵1a ≠,∴10a -≠, ∴21a x a -=- 检验,当21a x a -=-时,10x -≠ ∴原分式方程的解为21a x a -=- 小结:将等式中的参数看作常数,用含有参数的代数式表示一个未知数的值,是解决含参问题的基本方法。
练习:解关于x 的方程10(0,1)1m m m x x -=≠≠+且 (1m x m=-) 【问题二】已知含有参数的分式方程有特殊解,求参数的值例如:当a 为何值时,关于x 的方程12325x a x a +-=-+的解为0. 分析:将方程的解代入原方程建立关于参数的方程。
解:当x =0是方程的解时有0123025a a +-=-+,解得 15a = 当15a =时,50a +≠ 所以15a =是方程23152a a -=-+的解. 所以当15a =时,原方程的解为0 . 小结:方程的解是指使得等式两边相等的未知数的值,所以将方程的解代入原式,等式依然成立。
练习:当a 为何值时,关于x 的方程2334ax a x +=-的解为1. (3a =)【问题三】已知含有参数的分式方程解的范围,求参数的值例如:已知关于x 的方程233x m x x -=--的解为正数,试求m 的取值范围. 分析:将m 看作常数,表示出方程的解,根据方程的解的范围建立关于m 的关系式,注意方程有意义这个前提条件.解:去分母得:2(3)x x m --=解得6x m =-∵原方程的解为正数,∴0x >,即60m ->……………①又∵原方程要有意义 ∴30x -≠,即63m -≠……………②由①②可得6m <且3m ≠所以,当6m <且3m ≠时,方程的解为正数.小结:用含有参数的代数式将方程的解表示出来,进而根据原方程解的范围,建立与参数有关的关系式子。
分式方程及应用压轴(解析版)
分式方程及应用压轴考点一:解分式方程考点二:已知分式方程的解,求字母参数的值考点三:分式方程的特殊解问题考点四:分式方程的无解(增根)问题考点五:分式方程的应用问题【考点一:解分式方程】【典例1】(2023春•万源市校级期末)解方程:(1)1﹣=(2)﹣=.【答案】见试题解答内容【解答】解:(1)去分母得:x2﹣25﹣x﹣5=x2﹣5x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3x+3﹣2x+2=1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【变式1-1】(2023•青秀区校级模拟)解方程:+=.【答案】见试题解答内容【解答】解:去分母得:2(x+1)+2x=5x,去括号得:2x+2+2x=5x,解得:x=2,经检验x=2是分式方程的解.【变式1-2】(2023秋•高邮市期末)解方程:(1)(2)﹣=1.【答案】见试题解答内容【解答】解:(1)去分母得:x﹣5=2x﹣5,移项合并得:x=0,经检验x=0是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【变式1-3】(2023秋•石河子校级期末)解方程:(1);(2).【答案】(1)x=2;(2)无解.【解答】解:(1)去分母得:2=5x﹣5,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:16+x2﹣4=x2+4x+4,解得:x=2,经检验x=2是增根,分式方程无解.【变式1-4】(2023秋•铁岭县期末)解方程:(1)(2).【答案】见试题解答内容【解答】解:(1)去分母得:15x﹣12+x﹣3=6x+5,移项合并得:10x=20,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.【考点二:已知分式方程的解,求字母参数的值】(2023秋•绥中县期末)已知关于x的方程的解是x=1,则a的值为()【典例2】A.2B.1C.﹣1D.﹣2【答案】C【解答】解:∵关于x的方程的解是x=1,∴=,解得a=﹣1,经检验a=﹣1是方程的解.故选:C.【变式2-1】(2023秋•常德期末)已知关于x的分式方程的解为x=4,则a的值为()A.4B.3C.0D.﹣6【答案】D【解答】解:将x=4代入方程,得:,解得a=﹣6,故选:D.(2023•武侯区校级模拟)已知x=1是分式方程的解,则a的值为()【变式2-2】A.﹣1B.1C.3D.﹣3【答案】D【解答】解:把x=1代入分式方程得:=,去分母得:8a+12=3a﹣3,解得:a=﹣3,∵a﹣1=﹣4≠0,∴a的值为﹣3.故选:D.【变式2-3】(2023秋•平舆县期末)若分式方程的解为x=2,则a的值是()A.1B.2C.﹣1D.﹣2【答案】C【解答】解:∵分式方程的解为x=2,∴=,即=1,解得a=﹣1,经检验a=﹣1是方程的解,所以原方程的解为a=﹣1,故选:C.【变式2-4】(2023秋•绵阳期末)已知x=2是关于x的分式方程的解,则a =.【答案】.【解答】解:把x=2代入关于x的分式方程得:,,4a=1,,检验:当时,2a≠0,∴是分式方程的解,故答案为:【考点三:分式方程的特殊解问题】【典例3】(2023秋•南陵县期末)若关于x的分式方程的解是正数,则m的取值范围是()A.m<4且m≠3B.m<4C.m≠3D.m>4且m≠3【答案】A【解答】解:方程两边同时乘以x﹣1得,1﹣m﹣(x﹣1)+2=0,解得x=4﹣m.∵x为正数,∴4﹣m>0,解得m<4.∵x≠1,∴4﹣m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选:A.【变式3-1】(2023秋•陵城区期末)若关于x的分式方程的解为非负数,则a的取值范围是()A.a>1且a≠2B.a<1C.a≥1且a≠2D.a≤1且a≠﹣2【答案】C【解答】解:,方程两边同时乘2(x﹣2)得:2(x﹣a)=x﹣2,2x﹣2a=x﹣2,2x﹣x=2a﹣2,x=2a﹣2,∵关于x的分式方程的解为非负数,∴2a﹣2≥0,2a≥2,a≥1,∵分式的分母x﹣2≠0,∴x≠2,即2a﹣2≠2,解得:a≠2,∴a≥1且a≠2,故选:C.【变式3-2】(2023秋•重庆期末)若关于x的不等式组的解集为x≥3,且关于y的分式方程有非负数解,则满足条件的所有整数a的和为.【答案】5.【解答】解:,解不等式①,得x≥3,解不等式②,得x>a﹣2,∵原不等式组的解集为x≥3,∴a﹣2<3,∴a<5;解分式方程,得y=,∵y=1是原分式方程的增根,∴a≠4,∵≥0,∴a≥2;综上,2≤a<5,且a≠4,∴满足条件的整数a为2或3,2+3=5,故答案为:5.【考点四:分式方程的无解(增根)问题】(2023秋•滨州期末)若关于x的分式方程=1无解,则a的值为()【典例4】A.0B.1C.1或5D.5【答案】B【解答】解:+=1,方程两边同时乘以x﹣5得:2﹣(a+1)=x﹣5,去括号得,2﹣a﹣1=x﹣5,解得x=6﹣a,∵原分式方程无解,∴x=5,∴m=1,故选:B.【变式4-1】(2023秋•安顺期末)若关于x的分式方程无解,则k的取值是()A.﹣3B.﹣3或﹣5C.1D.1或﹣5【答案】B【解答】解:,去分母,得6x=x+3﹣k(x﹣1),∴(5+k)x=3+k,∵关于x的分式方程无解,∴分两种情况:当5+k=0时,k=﹣5,当x(x﹣1)=0时,x=0或1,当x=0时,0=3+k,∴k=﹣3,当x=1时,5+k=3+k,∴k不存在,故不符合题意,综上所述:k的值为:﹣3或﹣5.故选:B.【变式4-2】(2023秋•凉州区期末)若分式方程无解,则k的值为()A.±1B.2C.1或2D.﹣1或2【答案】C【解答】解:,去分母得:2(x﹣2)+1﹣kx=﹣1,2x﹣4+1﹣kx=﹣1,2x﹣kx=2,(2﹣k)x=2,∵分式方程无解,∴x﹣2=0,x=2,2﹣k=0,k=2,当k=1时,原方程为:,2(x﹣2)+1﹣x=﹣1,2x﹣4+1﹣x+1=0,x=2,检验:当x=2时,x﹣2=0,∴k=1时,原方程无解;综上可知:分式方程无解时,k的值为1或2,故选:C.【变式4-3】(2023秋•江汉区期末)若关于x的分式方程﹣=1无解,则m的值为.【答案】见试题解答内容【解答】解:去分母得:x2﹣mx﹣3x+3=x2﹣x,解得:(2+m)x=3,由分式方程无解,得到2+m=0,即m=﹣2或x==1,即m=1,综上,m的值为﹣2或1.故答案为:﹣2或1【考点五:分式方程的应用问题】【典例5】(2023秋•信州区期末)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【答案】见试题解答内容【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.【变式5-1】(2023秋•藁城区期末)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家里出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)300米/分钟;(2)600米.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.【变式5-2】(2023秋•商丘期末)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【答案】见试题解答内容【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得=﹣2.5,解得:x=100,经检验,x=100是原方程的解,且符合题意,则2x=2×100=200.答:第二次购进200件文具;(2)第一次购进100件文具,利润为:(15﹣10)×100﹣30=470(元);第二次购进200件文具,利润为:(15﹣12.5)×200﹣125=375(元),两笔生意是盈利:利润为470+375=845元.【变式5-3】(2023秋•恩施市期末)某单位为美化环境,计划对面积为1200平方米的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360平方米区域的绿化时,甲队比乙队少用3天.(1)甲、乙两工程队每天能绿化的面积分别是多少平方米?(2)若该单位每天需付给甲队的绿化费用为700元,付给乙队的费用为500元,要使这次的绿化总费用不超过14500元,至少安排甲队工作多少天?【答案】见试题解答内容【解答】解:(1)设乙工程队每天能完成绿化的面积是x平方米,则甲工程队每天能完成绿化的面积是1.5x平方米,依题意,得:﹣=3,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能完成绿化的面积是60平方米,乙工程队每天能完成绿化的面积是40平方米.(2)设安排甲队工作m天,则需安排乙队工作天,依题意,得:700m+500×≤14500,解得:m≥10.所以m最小值是10.答:至少应安排甲队工作10天.1.(2023秋•交口县期末)解方程,去分母后正确的是()A.3(x+1)=1﹣x(x﹣1)B.3(x+1)=(x+1)(x﹣1)﹣x(x﹣1)C.3(x+1)=(x+1)(x﹣1)﹣x(x+1)D.3(x﹣1)=1﹣x(x+1)【答案】B【解答】解:去分母得:3(x+1)=(x+1)(x﹣1)﹣x(x﹣1).故选:B.2.(2023秋•阳新县期末)已知一艘轮船顺水航行46千米和逆水航行34千米共用的时间,正好等于船在静水中航行80千米所用的时间,并且水流的速度是2千米/小时,求设轮船在静水中的速度为x千米/小时,是下列方程正确的是()A.B.C.D.【答案】B【解答】解:设船在静水中航行的速度为x千米/时(1分)则+=故选:B.3.(2023秋•广平县期末)甲、乙两人分别从相距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地,设甲的速度为3x km/h.依题意,下面所列方程正确的是()A.B.C.D.【答案】D【解答】解:设甲的速度为3x/时,则乙的速度为4x千米/时.根据题意,得﹣=.故选:D.4.(2023秋•秦皇岛期末)已知关于x的分式方程的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【答案】C【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由分式方程的解是非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3,故选:C.5.(2023秋•冠县期末)若解分式方程=﹣3产生增根,则k的值为()A.2B.1C.0D.任何数【答案】B【解答】解:=﹣3,去分母,得k=x﹣k﹣3(x﹣2).去括号,得k=x﹣k﹣3x+6.移项,得﹣x+3x=﹣k+6﹣k.合并同类项,得2x=6﹣2k.x的系数化为1,得x=3﹣k.∵分式方程=﹣3产生增根,∴3﹣k=2.∴k=1.故选:B.6.(2023秋•宜春期末)现定义一种新的运算:,例如:,若关于x的方程x⊕(2x﹣m)=3的解为非负数,则m的取值范围为()A.m≤8B.m≤8且m≠7C.m≥﹣2且m≠7D.m≥﹣2【答案】B【解答】解:∵x⊕(2x﹣m)=3,∴,解方程得:x=8﹣m;由于方程有解,则8﹣m≠1,即m≠7;由题意得:8﹣m≥0,解得:m≤8;综合起来,m的取值范围为m≤8且m≠7;故选:B.7.(2023秋•兰陵县期末)对于两个不相等的实数a,b,我们规定符号min{a,b}表示a,b 中较小的值,如min{2,4}=2,按照这个规定,方程min{,﹣}=的解为()A.﹣1或2B.2C.﹣1D.无解【答案】D【解答】解:①当x>0时,有>﹣,∴min{,﹣}=﹣,即﹣=,解得x=﹣1(不合题意舍去);②当x<0时,有<﹣,∴min{,﹣}=,即=,解得x=2(不合题意舍去);综上所述,方程min{,﹣}=无解,故选:D.8.(2023秋•崆峒区期末)分式与互为相反数,则x的值为()A.1B.﹣1C.﹣2D.﹣3【答案】C【解答】解:由题意得,去分母3x+2(1﹣x)=0,解得x=﹣2.经检验得x=﹣2是原方程的解.故选:C.9.(2023秋•罗山县期末)定义运算“※”:a※b=,若5※x=2,则x的值为()A.B.C.10D.或10【答案】D【解答】解:当5>x时,∵5※x=2,∴=2,解得x=.经检验,x=符合题意,是分式方程的解.当5<x时,∵5※x=2,∴=2.解得x=10.经检验,x=10符合题意,是分式方程的解.故选:D.10.(2023秋•开州区期末)若关于x的不等式组无解,且关于y的分式方程3﹣的解为正数,则所有满足条件的整数a的值的和为.【答案】13.【解答】解:,由①得,x≥﹣1,由②得,x<﹣a,∵不等式组无解,∴﹣a≤﹣1,即a≥1,3﹣,3(y﹣2)+a=y,3y﹣6+a=y,解得y=3﹣a,∵分式方程的解为正数,∴3﹣a>0且3﹣a≠2,解得a<6且a≠2,∴a的取值为1≤a<6且a≠2,∴所有满足条件的整数a的值的和为1+3+4+5=13,故答案为:13.11.(2023秋•虹口区校级期末)若关于x的方程的解为负数,则a 的取值范围是.【答案】a<﹣13或﹣13<a<﹣10.【解答】解:+=,去分母,得(x﹣1)(x+1)+(3﹣x)(x﹣3)=3x+a,去括号、合并同类项,得3x=a+10,等号两边同除以3,得x=(x≠3,且x≠﹣1),∵x=3或x=﹣1是原分式方程的增根,∴a≠﹣1,且a≠﹣13,∵<0,∴a<﹣10,∴a<﹣13或﹣13<a<﹣10,故答案为:a<﹣13或﹣13<a<﹣10.12.(2022秋•宁远县期末)若关于x的方程=+1无解,则a的值是3或1.【答案】见试题解答内容【解答】解:去分母,得:ax=3+x﹣1,整理,得:(a﹣1)x=2,当x=1时,分式方程无解,则a﹣1=2,解得:a=3;当整式方程无解时,a=1,故答案为:3或1.13.(2023秋•应城市期末)解下列分式方程.(1);(2).【答案】见试题解答内容【解答】解:(1)原方程变形得:,方程两边同乘以最简公分母(x﹣3)得:1=2(x﹣3)﹣x,整理的:1=2x﹣6﹣x,移项得:x=7,检验:当x=7时,x﹣3=7﹣3=4≠0,所以,x=7,是原方程的根,(2)方程两边同乘以最简公分母(x﹣1)(x+2)得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:x2+2x﹣x2﹣x+2=3,合并同类项得:x=1,检验:当x=1时,(x﹣1)(x+2)=(1﹣1)(1+2)=0,所以,x=1是原方程的增根,所以,原分式方程无解.14.(2023秋•南宁期末)为提高快递包裹分拣效率,物流公司引进了快递自动分拣流水线.一条某型号的自动分拣流水线的工作效率是一名工人工作效率的4倍,用这条自动分拣流水线分拣3000件包裹比一名工人分拣这些包裹要少用3小时.(1)这条自动分拣流水线每小时能分拣多少件包裹?(215000件,则至少应购买多少条该型号的自动分拣流水线,才能完成分拣任务?【答案】(1)条自动分拣流水线每小时能分拣3000件包裹;(2)至少应购买5条该型号的自动分拣流水线,才能完成分拣任务.【解答】解:(1)设一名工人每小时能分拣x件包裹,则这条自动分拣流水线每小时能分拣4x件包裹,由题意得:﹣=3,解得:x=750,经检验,x=750是原方程的解,且符合题意,∴4x=4×750=3000,答:这条自动分拣流水线每小时能分拣3000件包裹;(2)应购买m条该型号的自动分拣流水线,才能完成分拣任务,由题意得:3000m≥15000,解得:m≥5,答:至少应购买5条该型号的自动分拣流水线,才能完成分拣任务.15.(2022秋•洪山区校级期末)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?【答案】见试题解答内容【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200经检验,x=200是原方程的解,且符合题意,∴第一批箱装饮料每箱的进价是200元.(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.。
2022-2023学年九年级数学中考复习《分式方程解的相关问题》填空题专题训练
2022-2023学年九年级数学中考复习《分式方程解的相关问题》填空题专题训练(附答案)1.若关于x的方程有增根,则a的值.2.若关于x的方程有增根,实数m的值为.3.关于x的方程有增根,则增根是;且k的值是.4.解关于x的分式方程=时不会产生增根,则m的取值范围是.5.若关于x的方程=1﹣无解,则a的值为.6.若关于x的分式方程+=无解,则m的值为.7.已知关于x的方程的解为正数,则m的取值范围是.8.如果关于x的方程=2无解,则a的值为.9.已知关于x的方程的解大于1,则实数m的取值范围是.10.若关于x的分式方程有正整数解,则整数a=.11.若关于x的分式方程=1﹣的解为非负数,则m的取值范围是.12.已知关于x的方程无解,则m=.13.若整数a既使得关于x的分式方程有整数解,又使得关于x,y的方程组的解为正数,则a=.14.已知关于x的不等式组共有三个整数解,关于y的分式方程的解为整数,则整数a的值为.15.关于x的方程=1的解为正数,且关于y的不等式组有解,则符合题意的所有整数m的和为.16.若方程+1=的解使关于x的不等式(2﹣a)x﹣3>0成立,则实数a的取值范围是.17.如果关于x的不等式组的解集为x<1,且关于x的分式方程有非负整数解,则符合条件的m的所有值的和是.18.若关于x的不等式组有且仅有4个整数解,且使得关于y的分式方程﹣1=有整数解,则满足条件整数a的和为.19.若关于x的方程的解为整数,则满足条件的所有整数a的和等于.20.从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组的解集是x<a,且使关于x的分式方程有整数解,那么这5个数中所有满足条件的a的值之和是.参考答案1.解:去分母,得:2x+a=x+2,由分式方程有增根,得到x+2=0,即x=﹣2,把x=﹣2代入整式方程,﹣4+a=﹣2+2,可得:a=4.故答案为:4.2.解:去分母,得2mx﹣(m+1)=x+1,∵关于x的方程有增根,将增根为x=﹣1代入2mx﹣(m+1)=x+1,得﹣2m﹣(m+1)=0,解得m=﹣,将增根为x=0代入2mx﹣(m+1)=x+1,得﹣(m+1)=1,解得m=﹣2,∴m的值为﹣或﹣2,故答案为:﹣或﹣2.3.解:,x﹣1=2(x﹣3)+k,解得:x=5﹣k,∵方程有增根,∴x=3,把x=3代入x=5﹣k中,3=5﹣k,解得:k=2,∴关于x的方程有增根,则增根是x=3,且k的值是2,答案为:x=3;2.4.解:=,1+x﹣1=﹣m,解得:x=﹣m,∵分式方程不会产生增根,∴x≠1,∴﹣m≠1,∴m≠﹣1,∴m的取值范围是m≠﹣1,故答案为:m≠﹣1.5.解:∵=1﹣,∴ax=x﹣2+6,∴(a﹣1)x=4.当a=1时,方程无解,a=1符合题意;当a≠1时,x=,∵关于x的方程=1﹣无解,∴x﹣2=0,∴=2,∴a=3.∴a的值为1或3.故答案为:1或3.6.解:(1)x=﹣2为原方程的增根,此时有2(x+2)+mx=5(x﹣2),即2×(﹣2+2)﹣2m=5×(﹣2﹣2),解得m=10;(2)x=2为原方程的增根,此时有2(x+2)+mx=5(x﹣2),即2×(2+2)+2m=5×(2﹣2),解得m=﹣4.(3)方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=5(x﹣2),化简得:(m﹣3)x=﹣14.当m=3时,整式方程无解.综上所述,当m=10或m=﹣4或m=3时,原方程无解.故答案为:10或﹣4或3.7.解:去分母,得2x﹣m﹣(x﹣3)=﹣x,解得:x=,∵关于x的方程的解为正数,∴x=>0且x≠3,∴m>3且m≠9;故答案为:m>3且m≠9.8.解:去分母得,ax﹣1=2(x﹣1)ax﹣2x=﹣1,(a﹣2)x=﹣1,当a﹣2=0时,∴a=2,此时方程无解,满足题意,当a﹣2≠0时,∴x=﹣,将x=﹣代入x﹣1=0,解得:a=1,综上所述,a=1或a=2,故答案为:1或2.9.解:方程两边同乘以x﹣5得:x+m=5﹣x,解这个整式方程得:x=,由题意得:>1且≠5,解得:m<3且m≠﹣5,故答案为:m<3且m≠﹣5.10.解:分式方程去分母得1﹣ax+3(x﹣2)=﹣1,整理得(3﹣a)x=4,解得x=,∵分式方程有正整数解,且x﹣2≠0,∴整数a=﹣1或2.故答案为:﹣1或2.11.解:=1﹣,2=x﹣3+m,x=5﹣m,∵方程的解为非负数,∴5﹣m≥0,∴m≤5,∵x≠3,∴5﹣m≠3,∴m≠2,∴m的取值范围为m≤5且m≠2,故答案为:m≤5且m≠2.12.解:去分母得:2x=mx﹣3(x+3),整理为:(5﹣m)x=﹣9,当5﹣m=0,即m=5时,此方程无解,原分式方程也无解,当5﹣m≠0时,由x+3=0得:x=﹣3,把x=﹣3代入(5﹣m)x=﹣9得:(5﹣m)×(﹣3)=﹣9,解得:m=2,∴m=5或2.故答案为:5或2.13.解:解方程得,x=,∵分式方程有整数解,且x≠1,∴a﹣3=﹣4或﹣2或﹣1或1或2或4,且a≠7,∴a=﹣1或1或2或4或5,解方程组得,,∵方程组的解为正数,∴,解得a>4,综上,a=5.故答案为:5.14.解:解不等式3x﹣a>0,得x>.解不等式x﹣4≤﹣x,得x≤2.∵关于x的不等式组有且仅有三个整数解,∴﹣1≤<0,∴﹣3≤a<0,分式方程,去分母,得a+y﹣1=3y﹣6,∴y=,且≠2,∵关于y的分式方程有整数解,∴a=﹣3,故答案为:﹣3.15.解:∵关于x的方程=1的解为正数,∴2﹣x﹣m=x﹣3,解得:x=,∵x﹣3≠0,∴x≠3,∴≠3,m≠﹣1,则5﹣m>0,故m<5,且m≠﹣1,∵关于y的不等式组有解,∴m+3≤y≤3m+6,且m+3≤3m+6,解得:m≥﹣1.5,故m的取值范围是:﹣1.5≤m<5,且m≠﹣1,则符合题意的整数m有:0,1,2,3,4,∴符合题意的所有整数m的和为10.故答案为:10.16.解:+1=,+=,=0,解得:x=1,∵x﹣2≠0,2﹣x≠0,∴x=1是分式方程的解,将x=1代入不等式(2﹣a)x﹣3>0,得:2﹣a﹣3>0,解得:a<﹣1,∴实数a的取值范围是a<﹣1,故答案为:a<﹣1.17.解:,由①得:x<m,由②得:x﹣4>3x﹣6.∴x<1.∵原不等式组的解集为:x<1.∴m≥1.∵﹣=3.∴x+2﹣m=3x﹣3.∴x=,∵方程的解是非负整数,∴符合条件的整数m为:1,3,5.当m=3是,x=1,x﹣1=0不合题意,∴m=1,5.1+5=6.故答案为:6.18.解:,解不等式①,得:x≤3,解不等式②,得:x>﹣,∵该不等式组有且仅有4个整数解,∴﹣1≤﹣<0,解得:﹣4<a≤1,分式方程去分母,得:y﹣(1﹣y)=﹣a,解得:y=,∵分式方程有整数解,且y≠1,∴满足条件的整数a可以取﹣3,1,其和为﹣3+1=﹣2,故答案为:﹣2.19.解:原分式方程可化为:﹣=,去分母,得x﹣3﹣a(x+1)=2a﹣2,解得,x===﹣3+,∵x≠3且x≠﹣1,∴﹣3+≠3且﹣3+≠﹣1,∴a≠且a≠﹣1,a≠1,∵关于x的方程的解为整数,∴a=±1或a=±2或a=±4,∴a=﹣3、0、2、3、5,∴﹣3+0+2+3+5=7,故答案为:7.20.解:不等式组化简为,∵不等式组的解集是x<a,∴a≤3,∴a=﹣4,﹣3,1,3,解分式方程得:x=,∵x≠2,∴≠2,∴a≠1,∵分式方程有整数解,∴x=是整数,∴满足条件的a有:﹣3,3,∴满足条件的a的值之和为﹣3+3=0,故答案为:0.。
分式方程经典训练题(含答案解析)
∴ ,
解得a≠4,
∴a的取值范围为-2<a≤7且a≠4,
又∵y为正整数,
∴a=1,7,
满足条件的整数a的和为1+7=8.
故答案为:8.
【点睛】
此题考查了解分式方程以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
4.
【分析】
根据题意先解分式方程,求得 的值,再根据一次函数图像不经过第二象限确定 的范围,再根据题意求整数解
10.(1)16;(2)10
【分析】
(1)设每本《中国共产党简史》的价格是 元,则每本《论中国共产党历史》的价格为 元,根据题意列出分式方程求解并检验即可;
(2)首先结合(1)的结论求出4月份《简史》和《历史》的价格与数量,再根据题目对5月份购买数量与价格的描述列出一元二次方程,并利用换元思想求解即可.
(2)先求出第二次购入洗手液和消毒液各多少瓶,再结合题意列出关于a的一元一次方程,解出a即可.
【详解】
(1)设一瓶洗手液的价格为x元,则一瓶消毒液的价格为(x+7)元.
根据题意可列方程: ,
解得: ,经检验 是原方程得解.
故一瓶洗手液的价格为8元,一瓶消毒液的价格为8+7=15元.
(2)第二次购入洗手液 瓶,购入消毒液 瓶.
7.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
(方案一)甲队单独完成这项工程,刚好按规定工期完成;
(方案二)乙队单独完成这项工程要比规定工期多用5天;
根据题意可列等式: .
解得: .
如何求分式方程中参数的值
数学篇学思导引在学习分式方程时,我们会遇到分子含有参数,要求分式方程中参数的值的问题.解答这类问题的基本思路是把分式方程转化为整式方程.但在解答过程中,若对含参数分式方程的解的情况分析不当,极易导致错误.对此,笔者针对如下几种情况,探讨了如何求分式方程中参数的值.一、已知分式方程有增根,求参数的值分式方程出现增根的原因是在去分母的过程中,方程两边同时乘以了一个可能使最简公分母为0的整式,致使未知数的取值范围发生了变化.因此,在求分式方程中参数的值时,若已知分式方程有增根,同学们要注意如下两点:一是准确去分母,把分式方程转化为整式方程;二是令最简公分母为零,求出其增根,再把增根代入所得的整式方程中,求出参数的值.例1若关于x 的方程1x -3+m x -4=4m +2x 2-7x +12有增根,则m 的值为_______.解:原方程两边同乘以(x -3)(x -4),去分母整理可得:(1+m )x =7m +6①.因为关于x 的分式方程有增根,所以(x -3)(x -4)=0,解得x =3或x =4.当x =3时,方程①为:3(1+m )4=7m +6,即4m =-3,解得m =-34.当x =4时,方程①为:4(1+m )=7m +6,即3m =-2,解得m =23.评注:分式方程的增根,既是分式方程去分母后所得整式方程的根,也是使分式方程最简公分母为零的未知数的值.所以,令分式方程最简公分母为零,是破解分式方程有增根问题的重要突破口.二、已知分式方程无解,求参数的值有解,故而原分式方程无解;二是原分式方程去分母整理后所得到的整式方程有解,但该解为原分式方程的增根,从而导致原分式方程无解.所以,在求分式方程参数的值时,若已知分式方程无解,同学们要注意对整式方程无解、整式方程有解但该解为原分式方程的增根这两种情况进行分类讨论.例2当p 为何值时,关于x 的分式方程x x -2+p x +2=x x +2无解?解:原方程两边同乘以(x -2)(x +2),可得(x +2)x +p (x -2)=x (x -2),整理可得(p +4)x =2p .(1)当p +4=0,即p =-4时,整式分方程无解,原分式方程也无解.(2)当p +4≠0时,整式方程有解,该解为x =2p p +4.因为原分式方程无解,所以x -2=0或x +2=0,即2p p +4+2=0或2p p +4-2=0.当2p p +4+2=0时,p =-2;当2p p +4-2=0时,p 不存在,应舍去.所以当p =-4或p =-2时,原分式方程无解.评注:在解答分式方程无解问题时,若分式方程去分母后所得的整式方程可以化为ax =b (b ≠0)的形式时,要注意分a =0和a ≠0两种情况进行讨论.当a =0时,整式方程无解,此时原分式方程也无解;当a ≠0时,整式方程有解x =b a,此解为原分式方程的增根,此时原分式方程无解.如何求分式方程中参数的值广东省珠海市斗门区斗门镇初级中学叶春甜数学篇学思导引数、负数、非正数、非负数等.在求分式方程中参数的值时,若已知分式方程有解,同学们要注意如下两点:一是认真审读题目,弄清题设中解的情况,即明确该解是正数,还是负数等;二是参数的取值要使分式有意义,即分式方程的分母不能为零.例3若关于x 的分式方程x +a x -5+6a 5-x=4的解为正数,则a 的值满足().A.a <4B.a >-4C.a <4且a ≠1D.a >-4且a ≠-1分析:本题分式方程有根,求解时既要考虑根为正数的情形,又要考虑分式方程的分母不能为零.解:原方程同时乘以(x -5),可得(x +a )-6a =4(x -5),整理可得3x =20-5a ,解得x =20-5a 3.因为分式方程的解为正数,所以20-5a 3>0,即20-5a >0,解得a <4.又因为x -5≠0,所以x ≠5,即20-5a 3≠5,解得a ≠1.所以当a <4,且a ≠1时,原分式方程的解为正数,故正确答案为C 项.评注:求分式方程参数的取值范围,一般先去分母,化分式方程为整式方程;然后用含参数的代数式把分式方程的解表示出来,再由分式方程中解的条件(正数、负数等),将其转化为不等式问题.在这一过程中,同学们特别要注意分式方程有解的隐含条件:分母不能为零.总之,分式方程中参数的值或取值范围与分式方程的增根、无解、有解息息相关.在平时做题时,同学们要仔细审题,把握已知条件,尤其是隐含条件,并注意结合具体情况展开分类讨论,及时检验和修正,从而规避漏解、多解以及错解,提高解题的准确性.我们知道,在同一平面内不相交的两条直线叫做平行线.那么,如何证明两条直线平行呢?有关两条直线平行的证明方法有许多,笔者归纳了如下三种常用的证明方法,以期对同学们证题有所帮助.一、利用“平行线判定定理”平行线的判定定理是指两条直线被第三条直线所截,如果同位角、内错角相等,或同旁内角互补,那么这两条直线平行,简称为“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.”它是判定两直线平行的基本定理,也是证明两条直线平行最为常用的一种方法.例1如图1所示,在△MNP 中,∠MNP =90°,NQ 是MP 边上的中线,将△MNQ 沿MN 边所在的直线折叠,使得点Q恰好落在点R 处,从而得到四边形MPNR .求证:RN ∥MP .分析:要想证明RN ∥MP ,关键是确定第三条直线.观察图形,很容易看出,这两条直线是被MN 所截的,由题意易知NQ =MQ ,∠QMN =∠QNM ,∠RNM =∠QNM ,这样易推出∠QMN =∠RNM ,再由“内错角相等,两直线平行”进而得到RN ∥MP .证明:因为NQ 是MP 边上的中线,且∠MNP =90°,所以NQ =MQ ,∠QMN =∠QNM .例谈证明两条直线平行的常用方法江阴市夏港中学姚菁菁图127。
分式方程的含参问题
分式方程的含参问题
分式方程的含参问题是指分式方程中包含一个或多个参数的问题。
例如,考虑以下分式方程:
$\frac{x+3}{x-2}=a$
其中,$a$是一个参数。
这个方程中的未知数是$x$,参数是$a$。
我们可以通过解这个方程来求出$x$的值,并且可以根据参数$a$的取值的不同,得到不同的解。
通过化简方程,我们可以得到:
$x+3=a(x-2)$
然后,根据参数$a$的取值进行分类讨论:
当$a=0$时,方程变为$3=0$,没有实数解。
当$a\neq 0$时,可以通过将方程进一步化简为一次方程求解,得到$x=\frac{3}{a+1}$。
所以,当$a\neq 0$时,方程的解为$x=\frac{3}{a+1}$。
当
$a=0$时,方程无解。
这就是这个分式方程的含参问题的解。
分式方程的含参问题
分式方程的含参问题解含有参数的分式方程解含有参数的分式方程的基本方法是将等式中的参数看作常数,用含有参数的代数式表示未知数的值。
例如,对于关于x的方程1/(x-1)+a=1(a≠1),可以通过在等式两边乘以最简公分母x-1,然后整理方程,得到x=(a-2)/(a-1)。
在解决含有参数的分式方程时,需要注意将参数看作常数进行运算,用含有参数的代数式表示方程的解。
已知含有参数的分式方程有特殊解,求参数的值如果已知含有参数的分式方程有特殊解,可以将这个特殊解代入原式,然后求解参数的值。
例如,对于关于x的方程(x+12a-3)/(x-2a+5)=0,如果已知其解为0,可以将x=0代入原式,建立关于参数a的方程,然后解出a的值。
在解决这种问题时,需要注意方程的解有意义这个前提条件。
已知含有参数的分式方程解的范围,求参数的值如果已知含有参数的分式方程解的范围,可以用含有参数的代数式将方程的解表示出来,然后根据解的范围建立与参数有关的关系式。
例如,对于关于x的方程x^m-2/(x-3)(x-3),如果已知其解为正数,可以将m看作常数,表示出方程的解为x=6-m/(x-3),然后根据解的范围建立关于m的关系式,解出m的取值范围。
在解决这种问题时,需要注意方程的解为正且原式有意义这两个前提条件。
解含有参数的分式方程的基本方法是将等式中的参数看作常数,用含有参数的代数式表示未知数的值。
例如,对于关于x的方程1/(x-1)+a=1(a≠1),可以通过在等式两边乘以最简公分母x-1,然后整理方程,得到x=(a-2)/(a-1)。
在解决含有参数的分式方程时,需要注意将参数看作常数进行运算,用含有参数的代数式表示方程的解。
如果已知含有参数的分式方程有特殊解,可以将这个特殊解代入原式,然后求解参数的值。
例如,对于关于x的方程(x+12a-3)/(x-2a+5)=0,如果已知其解为0,可以将x=0代入原式,建立关于参数a的方程,然后解出a的值。
专题12解题技巧专题不等式(组)中含参数问题压轴题五种模型全(原卷版)
专题12 解题技巧专题:不等式(组)中含参数问题压轴题五种模型全攻略【考点导航】目录【典型例题】 .................................................................................................................................................. 1 【类型一 根据不等式(组)的解集求参数】..................................................................................................... 1 【类型二 利用整数解求参数的取值范围】..................................................................................................... 1 【类型三 根据不等式(组)的解集的情况求参数的取值范围】 ..................................................................... 2 【类型四 整式方程(组)与不等式(组)结合求参数】 ..................................................................................... 2 【类型五 分式方程与不等式(组)结合求参数】 (3)【过关检测】 (4)【典型例题】【类型一 根据不等式(组)的解集求参数】例题:(2023春·安徽合肥·七年级合肥市第四十二中学校考期中)已知关于x 的不等式1x a ->的解集如图所示,则a 的值等于______【变式训练】1.(2023春·福建漳州·七年级统考期中)若关于x 的不等式()22a x a ->-的解集是1x <,则a 满足( ) A .a<0B .2a >C .2a <D .2a ≠2.(2023春·七年级课时练习)已知不等式组211x m nx m +>+⎧⎨-<-⎩的解集为12x -<<,则n m 的值为__________.【类型二 利用整数解求参数的取值范围】例题:(2023春·浙江宁波·九年级校联考竞赛)若关于x 的不等式组3211x x m -≥⎧⎨≥+⎩共有2个整数解,则m 的取值范围是( ) A .1m =-B .21m -<≤-C .21m -≤≤-D .1m <-【变式训练】1.(2023春·七年级课时练习)已知关于x 的不等式21x a +≤只有3个正整数解,则a 的取值范围为( ) A .75a -<≤-B .75a -<<-C .75a -≤<-D .5a ≤-2.(2023·山东泰安·新泰市实验中学校考一模)关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有四个整数解,那么m的取值范围为( ) A .1m ≥- B .0m <C .10m -≤<D .10m -<≤【类型三 根据不等式(组)的解集的情况求参数的取值范围】【变式训练】1.(2023春·全国·八年级阶段练习)若不等式组3x ax >⎧⎨≥-⎩的解集为x a >,则a 的取值范围是( )A .3a <B .3a ≤C .3a >-D .3a ≥-2.(2023春·全国·八年级专题练习)若不等式组>162>0x a x -⎧⎨-⎩的解集为13x <<,则=a __________.【类型四 整式方程(组)与不等式(组)结合求参数】例题:(2023春·浙江杭州·九年级专题练习)已知关于x y 、的二元一次方程组22124x y m x y m +=-⎧⎨+=+⎩的解满足24x y x y +>⎧⎨-<⎩,则m 的取值范围是______. 【变式训练】解为正整数,则满足条件的所有整数a 的个数是( )A .1个B .2个C .3个D .4个2.(2023春·四川成都·八年级成都市第二十中学校校考阶段练习)若方程组2321x y x y m -=⎧⎨-+=-⎩的解,x y 满足5x y +>,则m 的取值范围为_________.【类型五 分式方程与不等式(组)结合求参数】A .8B .24C .14D .28【变式训练】【过关检测】一、单选题1.(2023春·安徽合肥·七年级校考期中)已知关于x 的不等式231x a -≤-的解集在数轴上表示如图所示,11A .2m ≤B .2m ≥C .>2mD .2m <3.(2023春·山东济宁·七年级统考期末)如果不等式组21600x x m -<⎧⎨->⎩有且仅有3个整数解,那么m 的取值范围是( ) A .45m ≤≤B .45m ≤<C .45m <<D .45m <≤4.(2023春·福建泉州·七年级校考期中)已知关于x 的不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则a b +为( )A .15B .17C .18D .226.(2023春·河北承德·七年级统考期末)已知关于x 的不等式组11x x a >⎧⎨≤-⎩,下列四个结论:①若它的解集是12x <≤,则3a =;②当2a =,不等式组有解;③若它的整数解仅有3个,则a 的取值范围是56a ≤<; ④若它无解,则2a ≤. 其中正确的结论有( ) A .1个 B .2个C .3个D .4个二、填空题三、解答题a的取值范围.14.(2023春·四川广元·七年级统考期末)已知方程组21242x y ax y a-=+⎧⎨+=+⎩的解满足13x y-<+≤.。