大学物理第11章磁场中的磁介质资料

合集下载

大学物理答案第11章

大学物理答案第11章

第十一章恒定磁场11-1两根长度相同的细导线分别多层密绕在半径为R和r的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R=2r,螺线管通过的电流相同为I,螺线管中的磁感强度大小满足()(A)(B)(C)(D)分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C).11-2一个半径为r的半球面如图放在均匀磁场中,通过半球面的磁通量为()(A)(B)(C)(D)题11-2 图分析与解作半径为r的圆S′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S′的磁通量;.因而正确答案为(D).11-3下列说法正确的是()(A)闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).11-4在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P1 、P2 为两圆形回路上的对应点,则()(A),(B),(C),(D),题11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C).11-5半径为R的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为()(A)(B)(C)(D)分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M=(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B).11-6北京正负电子对撞机的储存环是周长为240 m的近似圆形轨道,当环中电子流强度为8 mA时,在整个环中有多少电子在运行?已知电子的速率接近光速.分析一个电子绕存储环近似以光速运动时,对电流的贡献为,因而由,可解出环中的电子数.解通过分析结果可得环中的电子数11-7已知铜的摩尔质量M =63.75g·mol-1,密度ρ=8.9 g· cm-3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度,求此时铜线内电子的漂移速率v d;(2)在室温下电子热运动的平均速率是电子漂移速率v d的多少倍?分析一个铜原子的质量,其中N A为阿伏伽德罗常数,由铜的密度ρ可以推算出铜的原子数密度根据假设,每个铜原子贡献出一个自由电子,其电荷为e,电流密度.从而可解得电子的漂移速率v d.将电子气视为理想气体,根据气体动理论,电子热运动的平均速率其中k为玻耳兹曼常量,m e为电子质量.从而可解得电子的平均速率与漂移速率的关系.解(1)铜导线单位体积的原子数为电流密度为j m时铜线内电子的漂移速率(2)室温下(T=300 K)电子热运动的平均速率与电子漂移速率之比为室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.11-8有两个同轴导体圆柱面,它们的长度均为20 m,内圆柱面的半径为3.0 mm,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA电流沿径向流过,求通过半径为6.0 mm的圆柱面上的电流密度.题11-8 图分析如图所示是同轴柱面的横截面,电流密度j对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r的同轴圆柱面上流过的电流I 都相等,因此可得解由分析可知,在半径r=6.0 mm的圆柱面上的电流密度11-9如图所示,已知地球北极地磁场磁感强度B的大小为6.0×10-5T.如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?解设赤道电流为I,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度因此赤道上的等效圆电流为由于在地球地磁场的N极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10如图所示,有两根导线沿半径方向接触铁环的a、b两点,并与很远处的电源相接.求环心O的磁感强度.题11-10 图分析根据叠加原理,点O的磁感强度可视作由ef、b e、fa三段直线以及ac b、a d b两段圆弧电流共同激发.由于电源距环较远,.而b e、fa两段直线的延长线通过点O,由于,由毕奥-萨伐尔定律知.流过圆弧的电流I1、I2的方向如图所示,两圆弧在点O激发的磁场分别为,其中l1、l2分别是圆弧ac b、a d b的弧长,由于导线电阻R与弧长l成正比,而圆弧ac b、a d b 又构成并联电路,故有将叠加可得点O的磁感强度B.解由上述分析可知,点O的合磁感强度11-11如图所示,几种载流导线在平面内分布,电流均为I,它们在点O的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O处所激发的磁感强度较容易求得,则总的磁感强度.解(a)长直电流对点O而言,有,因此它在点O产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有B0的方向垂直纸面向外.(b)将载流导线看作圆电流和长直电流,由叠加原理可得B0的方向垂直纸面向里.(c)将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得B0的方向垂直纸面向外.11-12载流导线形状如图所示(图中直线部分导线延伸到无穷远),求点O的磁感强度B.题11-12 图分析由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O激发的磁感强度,磁感强度的方向依照右手定则确定.点O的磁感强度可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O的叠加.解根据磁场的叠加在图(a)中,在图(b)中,在图(c)中,11-13如图(a)所示,载流长直导线的电流为I,试求通过矩形面积的磁通量.题11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS.为此,可在矩形平面上取一矩形面元d S=l d x,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量11-14已知10 mm2裸铜线允许通过50 A电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题11-14 图分析可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解围绕轴线取同心圆为环路L,取其绕向与电流成右手螺旋关系,根据安培环路定理,有在导线内r<R,,因而在导线外r>R,,因而磁感强度分布曲线如图所示.11-15有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3.画出B-r图线.题11-15 图分析同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r的同心圆为积分路径,,利用安培环路定理,可解得各区域的磁感强度.解由上述分析得r<R1R1<r<R2R2<r<R3r>R3磁感强度B(r)的分布曲线如图(b).11-16如图所示,N匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I后,环内外磁场的分布.题11-16 图分析根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r的圆周为积分环路,由于磁感强度在每一环路上为常量,因而依照安培环路定理,可以解得螺线管内磁感强度的分布.解依照上述分析,有r<R1R2>r>R1r>R2在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若和R2,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径,则环内的磁感强度近似为11-17电流I均匀地流过半径为R的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题11-17 图分析由题11-14 可得导线内部距轴线为r处的磁感强度在剖面上磁感强度分布不均匀,因此,需从磁通量的定义来求解.沿轴线方向在剖面上取面元dS=ldr,考虑到面元上各点B相同,故穿过面元的磁通量dΦ=BdS,通过积分,可得单位长度导线内的磁通量解由分析可得单位长度导线内的磁通量11-18已知地面上空某处地磁场的磁感强度,方向向北.若宇宙射线中有一速率的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2)洛伦兹力的大小,并与该质子受到的万有引力相比较.题11-18 图解(1)依照可知洛伦兹力的方向为的方向,如图所示.(2)因,质子所受的洛伦兹力在地球表面质子所受的万有引力因而,有,即质子所受的洛伦兹力远大于重力.11-19霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d=2.0 mm,磁场为B=0.080 T,毫伏表测出血管上下两端的电压为U H=0.10 mV,血流的流速为多大?题11-19 图分析血流稳定时,有由上式可以解得血流的速度.解依照分析11-20带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5cm的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解根据带电粒子回转半径与粒子运动速率的关系有11-21从太阳射来的速度为0.80×108m/s的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大?若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径地磁北极附近的回转半径11-22如图(a)所示,一根长直导线载有电流I1=30 A,矩形回路载有电流I2=20 A.试计算作用在回路上的合力.已知d=1.0 cm,b=8.0 cm,l=0.12 m.题11-22图分析矩形上、下两段导线受安培力F1和F2的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F3和F4大小不同,且方向相反,因此线框所受的力为这两个力的合力.解由分析可知,线框所受总的安培力F为左、右两边安培力F3和F4之矢量和,如图(b)所示,它们的大小分别为故合力的大小为合力的方向朝左,指向直导线.11-23一直流变电站将电压为500k V的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m-1,若导线间的静电力与安培力正好抵消.求:(1)通过输电线的电流;(2)输送的功率.分析当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d,一导线在另一导线位置激发的磁感强度,导线单位长度所受安培力的大小.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C和电压U 已知,则单位长度导线所带电荷λ=CU,一导线在另一导线位置所激发的电场强度,两导线间单位长度所受的静电吸引力.依照题意,导线间的静电力和安培力正好抵消,即从中可解得输电线中的电流.解(1)由分析知单位长度导线所受的安培力和静电力分别为由可得解得(2)输出功率11-24在氢原子中,设电子以轨道角动量绕质子作圆周运动,其半径为.求质子所在处的磁感强度.h 为普朗克常量,其值为分析根据电子绕核运动的角动量可求得电子绕核运动的速率v.如认为电子绕核作圆周运动,其等效圆电流在圆心处,即质子所在处的磁感强度为解由分析可得,电子绕核运动的速率其等效圆电流该圆电流在圆心处产生的磁感强度11-25如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr(μr<1),导体的磁化可以忽略不计.沿轴向有恒定电流I通过电缆,内、外导体上电流的方向相反.求:(1)空间各区域内的磁感强度和磁化强度;*(2)磁介质表面的磁化电流.题11-25 图分析电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有,利用安培环路定理求出环路内的传导电流,并由,,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解(1)取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有对r<R1得忽略导体的磁化(即导体相对磁导率μr =1),有,对R2>r>R1得填充的磁介质相对磁导率为μr,有,对R3>r>R2得同样忽略导体的磁化,有,对r>R3得,,(2)由,磁介质内、外表面磁化电流的大小为对抗磁质(),在磁介质内表面(r=R1),磁化电流与内导体传导电流方向相反;在磁介质外表面(r=R2),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H(r)和B(r)分布曲线分别如图(b)和(c)所示.。

大学物理学

大学物理学

磁场中的磁介质一.选择题1.关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的? (A)H仅与传导电流有关.(B)若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C)若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D)以闭合曲线L为边缘的任意曲面的H通量均相等.[] 2.磁介质有三种,用相对磁导率μr 表征它们各自的特性时, (A)顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1. (B)顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1. (C)顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D)顺磁质μr <0,抗磁质μr <1,铁磁质μr >0.[]3.用细导线均匀密绕成长为l 、半径为a (l>>a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的(A)磁感强度大小为B =μ0μr NI .(B)磁感强度大小为B =μr NI/l . (C)磁场强度大小为H =μ0NI/l .(D)磁场强度大小为H =NI/l .[]4.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0A 时,测得铁环内的磁感应强度的大小B 为1.0T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ0=4×10-7T ·m ·A -1)(A)7.96×102(B)3.98×102(C)1.99×102(D)63.3[]5.附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,MO图1-4(A)M 的左端出现N 极.(B)P 的左端出现N 极. (C)O 的右端出现N 极.(D)P 的右端出现N 极.[]二.填空题1.一个绕有500匝导线的平均周长50cm 的细环,载有0.3A 电流时,铁芯的相对磁导率为600.(1)铁芯中的磁感强度B 为__________________________. (2)铁芯中的磁场强度H 为____________________________.(μ0=4×10-7T·m·A -1)2.长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μr 的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =____________,磁感强度的大小B =__________。

川师大学物理第十一章-恒定电流的磁场习题解

川师大学物理第十一章-恒定电流的磁场习题解

第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。

(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。

(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。

…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC I B dμββ=-^IB21图11–2图11–1…B(a )AE(b )0(cos30cos150)4π/3Ih μ︒︒=-=方向垂直于纸面向外。

另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。

因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。

(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。

由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=-031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ=-】方向垂直纸面向里。

半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ===方向垂直纸面向里。

因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π22π26I I I I B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。

大学物理磁学部分复习资料..

大学物理磁学部分复习资料..

41 磁 学基本内容一、稳恒磁场 磁感应强度1. 稳恒磁场电流、运动电荷、永久磁体在周围空间激发磁场。

稳恒磁场是指不随时间变化的磁场。

稳恒电流激发的磁场是一种稳恒磁场。

2. 物质磁性的电本质无论是永磁体还是导线中的电流,它们的磁效应的根源都是电荷的运动。

因此,磁场是运动电荷的场。

3. 磁感应强度磁感应强度B是描述磁场的基本物理量,它的作用与E 在描述电场时的作用相当。

磁场对处于其中的载流导线、运动电荷、载流线圈、永久磁体有力及力矩的作用。

可以根据这些作用确定一点处磁场的强弱和方向——磁感应强度B。

带电q 的正点电荷在磁场中以速度v运动,若在某点不受磁力,则该点磁感应强度B 的方向必与电荷通过该点的速度v平行。

当该电荷以垂直于磁感应强度B 通过该点时受磁力⊥F ,则该点磁感应强度大小qvF B ⊥=,且⊥F ,v ,B两两互相垂直并构成右手系。

二、毕奥—萨伐尔定律 运动电荷的磁场1. 磁场的叠加原理空间一点的磁感强度等于各电流单独存在时在该点产生磁感应强度的矢量和:∑=ii B B 可推广为 ⎰=B d B42B d是电流强度有限而长度无限小的电流元l d I 或电流强度无限小而空间大小不是无限小的元电流的磁场。

上式中矢量号一般不能略去,只有当各电流产生磁场方向相同时,才能去掉矢量号。

2. 毕奥—萨伐尔定律电流元l d I 在空间一点产生的磁场B d为: 304rr l d I B d πμ⨯= 大小: 02I sin(I ,r)dB 4r dl dl μπ∠=方向:B d 垂直于电流元l d I 与r 所形成的平面,且B d与l d I 、r构成右手螺旋。

3. 电流与运动电荷的关系导体中电荷定向运动形成电流,设导体截面积为S ,单位体积载流子数为n 。

每个载流子带电q ,定向运动速率为v ,则nqvS I =。

电量为q 的带电体作半径为R 、周期为T 的匀速圆周运动相当于半径为R 、电流强度T q I /=的圆电流,具有磁矩TqR I R p m 22ππ==。

《大学物理磁学》ppt课件

《大学物理磁学》ppt课件
《大学物理磁学》 ppt课件
目录
• 磁学基本概念与原理 • 静电场中的磁现象 • 恒定电流产生磁场及应用 • 电磁波与光波在磁学中的应用 • 铁磁物质及其性质研究 • 现代磁学发展前沿与挑战
01
磁学基本概念与原理
磁场与磁力线
01 磁场
由运动电荷或电流产生的特殊物理场,具有方向 和大小,可用磁感线描述。
通过分析带电粒子在静电场中的运动规律,可以 03 了解电场分布和粒子性质等信息。
静电场和恒定电流产生磁场比较
静电场和恒定电流都可以产生磁场,但它们产 生的磁场具有不同的特点。
静电场产生的磁场是瞬时的,随着静电场的消 失而消失;而恒定电流产生的磁场是持续的, 只要电流存在就会一直产生磁场。
此外,静电场和恒定电流产生的磁场在分布、 强度和方向等方面也存在差异。
02 磁力线
形象描述磁场分布的曲线,其切线方向表示磁场 方向,疏密程度表示磁场强度。
03 磁场的基本性质
对放入其中的磁体或电流产生力的作用。
磁感应强度与磁通量
磁感应强度
描述磁场强弱和方向的物理量,用B表示, 单位为特斯拉(T)。
磁通量
描述穿过某一面积的磁感线条数的物理量,用Φ表 示,单位为韦伯(Wb)。
电磁铁
利用恒定电流产生的磁场来制作电磁 铁,用于吸附铁磁性物质或作为电磁
开关等。
电磁炉
利用恒定电流产生的交变磁场来加热 铁质锅具,从而实现对食物的加热和
烹饪。
电机与发电机
电机是将电能转换为机械能的装置, 而发电机则是将机械能转换为电能的 装置。它们的工作原理都涉及到恒定 电流产生的磁场。
磁悬浮列车
利用恒定电流产生的强磁场来实现列 车的悬浮和导向,具有高速、安全、 舒适等优点。

9-磁介质 大学物理

9-磁介质 大学物理

当线圈中通入电流后,在磁化场的力矩作用下, 当线圈中通入电流后,在磁化场的力矩作用下,各分子环 流的磁矩在一定程度上沿着场的方向排列起来,此时, 流的磁矩在一定程度上沿着场的方向排列起来,此时,软 铁棒被磁化了。 铁棒被磁化了。
对于各向同性的均匀介质,介质内部各分子电流相互抵消, 对于各向同性的均匀介质,介质内部各分子电流相互抵消, 而在介质表面,各分子电流相互叠加, 而在介质表面,各分子电流相互叠加,在磁化圆柱的表面出 磁化面电流( 现一层电流,好象一个载流螺线管,称为磁化面电流 现一层电流,好象一个载流螺线管,称为磁化面电流(或安 培表面电流) 培表面电流)。
(2)电子自旋磁矩 (2)电子自旋磁矩 实验证明: 实验证明:电子有自旋磁矩
ps = 0.927×10-23 A⋅m2 0.927×
(3)分子磁矩 (3)分子磁矩 分子磁矩是分子中所有电子的轨道磁矩和自旋磁矩 与所有核磁矩的矢量和。 与所有核磁矩的矢量和。 三.顺磁质与抗磁质的磁化 顺磁质与抗磁质的磁化 1、顺磁质及其磁化(如铝、 1、顺磁质及其磁化(如铝、铂、氧) 分 子 磁 矩 分子的固有磁矩不为零 pm ≠ 0 无外磁场作用时, 无外磁场作用时,由 于分子的热运动, 于分子的热运动,分 子磁矩取向各不相同, 子磁矩取向各不相同 整个介质不显磁性。 整个介质不显磁性。
B0
I0 Is
Is——磁化电流 磁化电流 js——沿轴线单位长度上的磁 沿轴线单位长度上的磁 化电流(磁化面电流密度) 化电流(磁化面电流密度)
3、磁化强度和磁化电流密度之间的关系: 磁化强度和磁化电流密度之间的关系:
以长直螺线管中的圆柱形磁介质来说明它们的关系。 以长直螺线管中的圆柱形磁介质来说明它们的关系。
磁场中的磁介质

大学物理——11-1磁感应强度B

大学物理——11-1磁感应强度B

电源电动势的方向:电源内部电势升高的方向; 或在电源内部从负极指向正极。
§11.1磁场 磁感应强度
一、基本磁现象
永磁体的性质:
(1)具有磁性,能吸引铁、 钴、镍等物质。 (2)具有磁极,分磁北极N和磁南极S。 (3)磁极之间存在相互作用,同性相斥,异性相吸。 (4)磁极不能单独存在。
司南勺
在磁极区域,磁性最强。

S

S


载流子:导体中宏观定向运动的带电粒子。
电流强度(I):单位时间内通过导体任一 横截面的电荷 。
dq I dt
3
单位:安培 1A 1 C s 1
6
1A 10 mA 10 μ A
恒定电流(直流电): 导体中通过任一截面的电流不随时间变化(I = 恒量)。 电流的方向:导体中正电荷的流向。
B
dF
dF
B
θ
Idl
三、安培力
电流元 Idl 置于磁感应强度为 B 的外磁场中时,
电流元所受的力为: 安培定律:
dF Idl B
安培定律:
一段电流元Idl在磁场中所受的力dF,其大小与电 流元Idl成正比,与电流元所在处的磁感应强度B成正 比,与电流元Idl和B的夹角的正弦成正比,即
dS
n
dI 大小: j j 速度方向上的单位矢量 d S d 对任意小面元 d S , I j d S j d S dS 对任意 dI I j d S j S 曲面S:
d S
P 处正电荷定向移动 j
三、电源和电动势
+
第11章 恒定电流的磁场
11.1 磁感应强度 B

大学物理——第11章-恒定电流的磁场

大学物理——第11章-恒定电流的磁场


单 位:特斯拉(T) 1 T = 1 N· -1· -1 A m 1 特斯拉 ( T ) = 104 高斯( G )
3
★ 洛仑兹力 运动的带电粒子,在磁场中受到的作用力称为洛仑兹力。
Fm q B
的方向一致; 粒子带正电,F 的指向与矢积 B m 粒子带负电,Fm的指向与矢积 B的方向相反。
L
dB
具体表达式
?
5
★ 毕-萨定律
要解决的问题是:已知任一电流分布 其磁感强度的计算
方法:将电流分割成许多电流元 Idl
毕-萨定律:每个电流元在场点的磁感强度为:
0 Idl r ˆ dB 4 πr 2
大 小: dB
0 Idl sin
4 πr
2
方 向:与 dl r 一致 ˆ
整段电流产生的磁场:
r 相对磁导率
L
B dB
8
试判断下列各点磁感强度的方向和大小?
8
7

6

R
1
1、5 点 :
dB 0
0 Idl
4π R 2
Idl

2
3、7 点 : dB 2、4、6、8 点 :
3 4
5
dB
0 Idl
4π R
sin 450 2
9
★ 直线电流的磁场
29
★ 磁聚焦 洛仑兹力
Fm q B (洛仑兹力不做功)
与 B不垂直

//
// cosθ
sin θ
m 2π m R T qB qB
2πm 螺距 d // T cos qB

大学物理学下册答案第11章-大学物理11章答案

大学物理学下册答案第11章-大学物理11章答案

第11章稳恒磁场习 题一 选择题11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I 〔其中ab 、cd 与正方形共面〕,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ]〔A 〕10B =,20B = 〔B 〕10B =,02IB lπ= 〔C〕01IB lπ=,20B = 〔D〕01I B l π=,02IB lπ=答案:C解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4IB dμθθπ=-,并结合右手螺旋定那么判断磁感应强度方向,按照磁场的叠加原理,可计算01IB lπ=,20B =。

故正确答案为〔C 〕。

11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,那么在圆心O 处的磁感应强度大小为多少? [ ]〔A 〕0 〔B 〕R I 2/0μ〔C 〕R I 2/20μ〔D 〕R I /0μ 答案:C解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定习题11-1图习题11-2图那么判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O处的磁感应强度大小为0/2B I R =。

11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,那么通过该半球面的磁通量的大小为[ ]〔A 〕B R 2π〔B 〕B R 22π〔C 〕2cos R B πα〔D 〕2sin R B πα 答案:C解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=⋅=。

故正确答案为〔C 〕。

11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量ΦB 将如何变化?[]〔A 〕Φ增大,B 也增大〔B 〕Φ不变,B 也不变 〔C 〕Φ增大,B 不变〔D 〕Φ不变,B 增大 答案:D解析:根据磁场的高斯定理0SBdS Φ==⎰,通过闭合曲面S 的磁感应强度始终为0,保持不变。

大学物理-第十一章静磁学C

大学物理-第十一章静磁学C
34
例11-24 图示为三种不同的磁介
质的B~H关系曲线,其中虚线表示 B
a
的是B=oH的关系。a、b、c各代
表哪一类磁介质的B~H关系曲线:
b
a代表铁磁质 的B~H关系曲线。
c
b代表顺磁质 的B~H关系曲线。
H
c代表抗磁质 的B~H关系曲线。
抗磁质和顺磁质的B和H间是线性关系, 相对磁导率r
与1相差不大。在一般性(精度要求不高)的问题中,可
χmH
其中m叫磁介质的磁化率。
由:
H
B
M
μo
得: B 0 (H M ) 0 (1 m )H
可证明1+m=r相对磁导率, or= 磁导率, 则
B μ0 μr H μH
21
磁场强度
真正有物理意义的, 对磁场中的运动电荷或 电流有力的作用的是B而不是H, 磁学中H仅 是一个辅助量, 相当于电学中的D,由于历史
M
dL
I
dt
dL Mdt
dL垂直于磁矩和磁场构成的平面,在虚线的圆周上, 绕磁场转动。
7
因此抗磁质中
B
B0
B
B0
这是抗磁性的重要表现。
(2)顺磁质:
pm Δpm pm 0 称为取向磁化。
分子的固有磁矩pm产生的附加磁场B´的方向总是 与外磁场Bo的方向相同, 因此顺磁质中
求解思路
选高斯面
(2)由
求 (3)由
(2)由
D dS
s
q0
(S内)

D E
D
(3)由
0 r
H dl l
I o内
H
B 0rH 求 B
求E
24

第11章磁场中的磁介质PPT课件

第11章磁场中的磁介质PPT课件

分子磁矩的矢量和:
Pm 0
从介质横截面看,介质内分子电流两两反向,相互抵消。
导体边缘分子电流同向,未被 抵消的分子电流沿柱面流动
⊙ B0
B0
等效
分子电流可等效成磁
介质表面的磁化电流 Is,
Is
B
Is产生附加磁场。
B B0 B B0
磁化电流 Is 可产生附加磁场,但无热效应,因无宏观电 荷移动,磁第化13页电/共流2束6页缚在介质表面,也称为束缚电流。
Hc
矫顽力——加反向磁场Hc, 使介质内部的磁场为 0,
o
Hc
H
结论
继续增加反向磁场,介质
达到反向磁饱和状态; 铁磁质的r不是一个常数,
改变外磁场为正向磁场, 它是 H 的函数。
不断增加外场,介质又达 到正向磁饱和状态。
B的变化落后于H,从而具有 剩磁,即磁滞效应。
第17页/共26页
二、铁磁质的磁化机制
解 (1)当两个无限长的同轴圆柱体和圆柱面中有电流通过
时,它们所激发的磁场是轴对称分布的,而磁介质亦呈轴对
称分布,因而不会改变场的这种对称分布。设圆柱体外圆柱
面内一点到轴的垂直距离是r1,以r1为半径作一圆,取此圆为 积分回路,根据安培环路定理有
r3
I
R1 R2 rr12
II
第9页/共26页
H dl H
抗磁质:分子中各电子的磁矩完全抵消,整个分子无固有磁矩
第12页/共26页
(1)顺磁质的磁化机制
磁介质是由大量分子或原子组成,无外场时,顺磁质分子的磁矩排列杂 乱无章,介质内分子磁矩的矢量和
Pm 0
有外磁场时,这些分子固有磁矩就要受到磁场的力矩
作用,力矩的方向力图使分子磁矩的方向沿外场转向。

大学物理电与磁的相互关系PPT课件

大学物理电与磁的相互关系PPT课件
第十一章 电与磁的相互作用
和相互联系
精选ppt课件2021
1
• 熟悉电磁感应现象; • 掌握电磁感应定律、 感应电动势; • 掌握互感现象、 自感现象、 *磁场的能量。

精选ppt课件2021
2
§11-1 电磁感应及其基本规律
• 一、电磁感应现象 (electromagnetic induction phenomenon
精选ppt课件2021
18
解: 无限长直导线在离开它的距离 处产生的磁场大小为 B 0I 2x
• 方向垂直纸面向里,长为 的金属棒 上的任一元段的元电动势为
di (vB)dx2Ixvdv
由右旋关系, d i 由 B 指向 A ,所以
idid来自0Ivdxdl 2x
0I 2
vln(d l) d
i 的指向是从B到A,也就是A点的电势比B点高,即
• 感应电动势的方向,总是使得感应电流的 磁场去阻碍引起感应电动势(或感应电流)的 磁通量变化.感应电流的效果总是反抗引起 感应电流的原因的。
精选ppt课件2021
7
• 楞次定律的后一种表述可以方便判断感应电流所 引起的机械效果的问题。“阻碍”或“反抗”是 能量守恒定律在电磁感应现象中的具体体现。磁 棒插入线圈回路时,线圈中感应电流产生的磁场 阻碍磁棒插入,若继续插入则须克服磁场力作功。 感应电流所释放出焦耳热,是插入磁棒的机械能
精选ppt课件2021
3
• 磁场相对于线圈或导体回路改变大小或方向, 会在回路中产生电流,并且改变得越迅速, 产生的电流越大
• 导体回路相对于磁场改变面积和取向会在回 路中产生电流,并且改变得越迅速,产生的 电流越大。
精选ppt课件2021

《大学物理磁学》课件

《大学物理磁学》课件
核磁共振谱(NMR)
利用核自旋磁矩进行研究物质结构和化学键的谱学技术。NMR可应用于有机化学、药物化学、石油化 工等领域,用于分析分子结构和化学反应机理。
磁性材料在电子器件中的应用
磁性材料
具有铁磁、亚铁磁等性质的金属和非金属材 料,如铁、钴、镍及其合金。磁性材料具有 高磁导率、低矫顽力等特点,广泛应用于电 子器件中。
洛伦兹力,用于描述磁场对运动电荷的作用。
磁场对电流的作用
安培力,用于描述磁场对电流的作用。
磁场对磁体的作用
磁体之间的相互作用力,与磁体的磁感应强度和距离 有关。
02
磁场与电流
奥斯特实验与安培环路定律
奥斯特实验
揭示了电流的磁效应,即电流能在其 周围产生磁场。
安培环路定律
描述了电流与磁场之间的关系,即磁 场线总是围绕电流闭合。
铁磁性
铁、钴、镍等金属具有显著的铁磁性,其内部原子、分子的自旋磁矩在一定条件 下自发排列形成磁畴。
磁畴结构
铁磁体内部存在许多自发磁化的小区域,称为磁畴。不同磁畴的磁化方向不同, 导致宏观上铁磁体的磁化强度呈现出复杂的空间分布。
磁记录与磁头技术
磁记录
利用磁介质记录信息的技术,通过改变 磁介质表面的磁场方向实现信息的存储 。
详细描述
磁场对光的干涉和衍射具有重要影响。在磁场作用下,光的干涉和衍射现象会发生变化,表现为干涉条纹的移动 和衍射角的改变。这些现象在物理学中具有重要的应用价值,如光学仪器设计、光谱分析和量子力学等领域。
05
磁学的应用
磁力机械与磁力悬浮
磁力机械
利用磁场力实现机械运动的装置,如磁力泵、磁力传动器等。磁力机械具有无接触、无摩擦、低能耗等优点,广 泛应用于化工、制药、石油等领域。

大学物理物质磁性

大学物理物质磁性

电子绕原子核作轨道运动——轨道磁矩
电子有自旋
——自旋磁矩
分子磁矩 —— 所有电子磁矩的总和
分子磁矩可以用一个等效的圆电流来表示。
抗磁质 Pm 0
p m
无外场作用时,对外不显磁性
I
顺磁质 Pm 0
无外场作用时,由于热运动,对外也不显
磁性
2、磁介质的磁化
顺磁质磁化机理——来自分子的固有磁矩
无外磁场: ——未磁化状态
讨论
对于各向同性 介质,在外磁场不太强的情况下 B μ 0μ rH μ H
一定条件下,可用安培环路定理求解磁场强度, 然后再求解磁感应强度。
例 一无限长载流直导线,其外包
I
围一层磁介质,相对磁导率
R1
r 1
求 磁介质中的磁感应强度
i2 '
R2
i1'
r
解 根据磁介质的安培环路定理
LHdl H2r I
加外磁场:
分子固有磁矩受外磁场的作用
分子磁矩沿外磁场方向排列
产生附加的磁场
B0
B1'
抗磁质磁化机理 ——电子轨道在外磁场作用下发生变化
无外磁场: 分子中每个的轨道磁矩和自旋磁矩的矢量和 不为零, 但分子的固有磁矩等于零,所以不显磁性。
f当外场方向与P分m子(磁矩Pm方) 向相同B时0
Pm
电子轨道半径不变
10.7 物质的磁性
一、磁介质的分类
1、磁介质 能够磁化的物质称作磁介质
2、介质的磁化 电介质放入外场 E 0
磁介质放入外场 B 0
E
E0
E
'
E
E
0
B B0 B
B ' 的方向,随磁介质的不同而不同。

大学物理练习题 磁场中的介质

大学物理练习题  磁场中的介质

练习十四 磁场中的介质一、选择题1. 用细导线均匀密绕成长为l 、半径为a (l >>a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质。

若线圈中载有恒定电流I ,则管中任意一点 (A ) 磁场强度大小为H=NI ,磁感应强度大小为B = μ0μr NI 。

(B ) 磁场强度大小为H=μ0NI /l ,磁感应强度大小为 B = μ0μr NI /l 。

(C ) 磁场强度大小为H=NI /l ,磁感应强度大小为 B = μr NI /l 。

(D ) 磁场强度大小为H=NI /l ,磁感应强度大小为 B = μ0μr NI /l 。

2. 图所示为某细螺绕环,它是由表面绝缘的导线在铁环上密绕而成,若每厘米绕10匝线圈. 当导线中的电流I = 2.0A 时,测得铁环内的磁感强度的大小B = 1.0T ,则可求得铁环的相对磁导率μr 为 (A ) 7.96×102。

(B )3.98×102。

(C ) 1.99×102。

(D ) 63.3。

3. 如图所示,一个磁导率为μ1的无限长均匀磁介质圆柱体,半径为R 1,其中均匀地通过电流I 。

在它外面还有一半径为R 2的无限长同轴圆柱面,其上通有与前者方向相反的电流I ,两者之间充满磁导率为μ2的均匀磁介质,则在0 < r <R 1的空间磁场强度的大小H 为 (A ) 0。

(B ) I /(2πr )。

(C ) I /(2πR 1)。

(D ) Ir /(2πR 12)。

4. 图,M 、P 、O 为软磁材料制成的棒,三者在同一平面内,当K 闭合后(A ) P 的左端出现N 极。

(B ) M 的左端出现N 极。

(C ) O 的右端出现N 极。

(D ) P 的右端出现N 极。

5. 一长直螺旋管内充满磁介质,若在螺旋管中沿轴挖去一半径为r 的长圆柱,此时空间中心O 1点的磁感应强度为B 1,磁场强度为H 1,如图(a )所示;另有一沿轴向均匀磁化的半径为r 的长直永磁棒,磁化强度为M ,磁棒中心O 2点的磁感应强度为B 2,磁场强度为H 2,如图(b )所示.若永磁棒的M(a )(b )v与螺旋管内磁介质的磁化强度相等,则O 1、O 2处磁场之间的关系满足: (A ) B 1 ≠ B 2;H 1 = H 2。

西北工业大学《大学物理上》课件-第十一章磁场中的磁介质

西北工业大学《大学物理上》课件-第十一章磁场中的磁介质
·26 ·
Chapter 11. 磁场中的磁介质 §11. 3 铁磁质及其磁化特性
例 试判断下列起始磁化曲线所对应的磁介质类型。
a :铁磁质; b :顺磁质 ( μ >μ0 ); c :抗磁质 ( μ <μ0 );
·27 ·
Chapter 11. 磁场中的磁介质 §11. 3 铁磁质及其磁化特性
一、物质的分子磁矩
1. 电子的轨道磁矩: 等效成圆电流:
§11. 1 磁介质 磁化强度
2. 电子自旋磁矩: 3. 核自旋磁矩: 分子磁矩 =电子轨道磁矩+电子自旋磁矩+核自旋磁矩
·3 ·
Chapter 11. 磁场中的磁介质
二、顺磁质与抗磁质
§11. 1 磁介质 磁化强度
1. 顺磁质: 分子磁矩≠0 (亦称分子的固有磁矩)
·12 ·
Chapter 11. 磁场中的磁介质
§11. 1 磁介质 磁化强度
1. 磁介质: 顺磁质:介质内B > B0 ; 抗磁质:介质内B < B0 ;
2. 磁化强度:
3. M与磁化电流的关系:
( The end )·13 ·
Chapter 11. 磁场中的磁介质
§11. 2 磁介质中的安培环路定理
§11. 1 磁介质 磁化强度
js : 面磁化电流的线密度。 一般地有如下关系:
: 磁介质表面外法线单位 矢量。
·11 ·
Chapter 11. 磁场中的磁介质
§11. 1 磁介质 磁化强度
试判断 : 顺磁质中的磁化电流方向。
分析: 顺磁质
与 同向。
即:磁化电流 内侧:向上 外侧:向下
( 俯视图 )
抗磁质
氢 铜 铋 汞×10 - 5 -3.2×10 - 5

大学物理下-第十一章--磁介质省名师优质课赛课获奖课件市赛课一等奖课件

大学物理下-第十一章--磁介质省名师优质课赛课获奖课件市赛课一等奖课件

L M dl IS
bM
IS
c
a
L
磁化强度 2024/9/22
磁化电流 d
三、 有介质时旳高斯定理和安培环路定理
• 磁介质中旳高斯定理
S
B B0 B '
sB dS 0
B
B
磁力线无头无尾。穿过任何一闭合曲面旳磁通量为零。
• 磁介质中旳安培环路定理
L B dl 0 I 0 IS
二、磁化强度
(magnetization)
pmi
M lim i
ΔV ΔV0
M是描述磁介质旳宏观量。与介质特征、温度与
统计规律有关。 单位:安培/米 (A/m)
顺磁质M 与B0 同向
B B0 B' B0
抗磁质 M与B0反向 2024/9/22 B B0 B' B0
B'
B0
B'
V0 V
mH
def
B
H M
0
H dl
I i
B 0rH H
r
(1
m)
js M nˆ
2024/9/22
• P、D、E 旳关系:
P e0E
def
D 0E P
D dS qi
D r0E E
r (1 e )
' P nˆ
顺磁质
n
I
抗磁质
I
M
M
n
js M n
有 外 磁 场
2024/9/22
无外磁场
在外磁场较弱时,自发磁化方向与外磁场方向相
同或相近旳那些磁畴逐渐增大(畴壁位移),在外磁
场较强时,磁畴自发磁化方向作为一种整体,不同程

大学物理 第十一章 电流与磁场

大学物理 第十一章 电流与磁场
2) 提供非静电力的装置。
A
E
B
Ek
凡电源内部都有非静电力,
U
非静电力使正电荷由负极经电源内部到达正极。
A
UB
引入:非静电场强
Ek
=
单位正电荷所受的非静电力。
Ek E
Fk qEk
2 电动势ε
A非
L qEk
dl

qEk
dl
qEk 外
dl
内 qEk
dl
★ 结论:当电荷在闭合电路中运动一周时,只有非静电力做功
右手法则,dB (
Idl
r
)
(11-29)
2. 载流导线的磁场
B
l
0 4
Idl r0
r2
(矢量积分) (11-30)
方向判断练习
• dB
r
Idl
dB
r
Idl
r
Idl
dB
dB
r
Idl

二、毕 - 沙 定律 的应用(重点 计算B的方法之一)
1. 一段直电流的磁场
I
讲义 P.324 例 11-1
一 磁现象 磁场 — 运动电荷周围存在的一种物质。
1. 运动电荷 电流
磁场;
2. 磁场可脱离产生它的“源”独立存在于空间;
3. 磁力通过磁场传递,作用于运动电荷或载流导线;
4. 磁场可对载流导线做功,所以具有能量。
演示磁场电流相互作用
I
SN
二、磁感应强度 B
1. 实验结果
z
F
B
F q, v, B, sin
五、欧姆定律 (Ohm’s law)
R是与U 和I 无关的常量。
I U R

大学物理磁介质(老师课件)

大学物理磁介质(老师课件)

2)硬磁材料
HC — 104~106 A/m
特点:剩余磁感应强度大 矫顽力大 不容易磁化 也不容易退磁 剩磁性强 磁滞回线宽 磁滞损耗大 应用: 适合制作永久磁铁 永磁喇叭 用于拾音器、扩音 器、麦克风、收录 音机等 B
H
3)矩磁材料: 特点:磁滞回线呈矩形状
应用:作计算机中的记忆元件 磁化时极 性的反转构成了“0”与“1”
二、铁磁质的磁化
三、铁磁性材料的分类
四、磁致伸缩
一、 铁磁质的宏观性质
1. r 1 可使原场大幅度增加 B r B 0 0 r H
2. r与磁化历史(H)有关,不是常数。 B—H和r—H曲线是非线性关系 3. 磁滞现象----B的变化落后 B (B T) 于H 的变化 4. 居里温度----铁磁性 消失的临界温度
B H
四、磁致伸缩 B变 M 磁畴方向改变 晶格间距改变
铁磁体长度和体积改变— 磁致伸缩
长度相对改变约10-5量级 温下可达10 -1
某些材料在低
磁致伸缩有一定固有频率 当外磁场变 化频率和固有频率一致时 发生共振
可用于制作激振器、超声波发生器等
磁介质与电介质的比较
无磁荷 基本场量 B
4
取回路如图,设总匝数为N H dl H 2πr NI
L
O R1 r R2
NI nI H 2πr
细螺绕环
R1 R2 r
H nI B μ H μ nI
长直螺线管亦然
M ( μr 1) H ( μr 1)nI
j M 表
代入数据
M 7.9410 A/m
· 当T > Tc时,铁磁性消失, 铁磁质顺磁质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


D 0 r E E
D dS q0
S
H dl I 0
l
第三篇
电磁学
铁磁质
§ 11.2
在工程技术上常用的磁介质是铁磁质,如电机、变压器和电表等。 铁磁质有如下特点: 1.在外磁场作用下能产生很强的磁感应强度;μ>>1 2.当外磁场停止作用时,仍能保持其磁化状态; 3.B与H之间不是简单的线性关系(与顺磁质和抗磁质不同); 4.铁磁质都有一临界温度。在此温度(居里温度)之上,铁磁性 完全消失而成为顺磁质。 B Fe(1040K) Co(630K) Ni(1390K) ( H ) BS C S B 磁化曲线——磁介质内磁感应强度 B随磁场强度H的变化关系曲线。 O
第三篇
电磁学
说明:
抗磁性是一切磁介质固有的特性,它不仅存在于抗磁介质中,也存在 于顺磁介质中;只不过对于顺磁介质,磁化产生的磁矩>电子附加磁 矩,顺磁效应 > 抗磁效应。 抗磁介质中电子附加磁矩起主要作用,显抗磁性。
磁化的宏观效果: (1)在外磁场下,总的分子磁矩不为零, m≠0; (2)介质某些表面出现磁化电流I’(束缚电流); (3)磁化电流会产生附加的磁场B’,总的磁场B=B0+B’=urB0;
第三篇
电磁学
磁场中的磁介质
第十一章
上章我们学习了真空中稳恒电流激发的磁场及其规律。 当空间有介质(导体、绝缘体)存在时,磁场将与介质发生相 互作用,我们把磁场中的介质称为磁介质。磁介质在外加磁 场作用下自身产生附加磁场的过程称为磁化。 本章简要介绍磁介质的性质、磁化的机制、以及磁介质 中的安培环路定理。
并不沿起始磁化曲线返回,而是滞后于 外磁场变化——磁滞现象, 当H = 0时, B = Br ≠0,Br——剩磁。
第三篇
电磁学
B
b ~c : 加上反向外磁场,则B 继续 减小,当H=-Hc时,B=0,Hc称为矫顽 力, 即为了消除剩磁所需加的反向 外磁场Hc 。 c~d:继续增加反向磁场,介质达 到反向磁饱和状态。
I
B'
第三篇
电磁学
实验已经证明,均匀磁介质磁化后,磁介质中的磁感应强度与无介质时 (真空中)的磁感应强度有比例关系,这就是介质的相对磁导率;(可用 均匀介质充满长直螺线管验证)。
B r B0
顺磁质:μr≥ 1 抗磁质:μr ≤ 1 铁磁质:μr >> 1
E E0 / r
第三篇
电磁学
二、铁磁质的磁化规律——磁滞回线
1. 实验目的: 确定铁磁质内的B随外场H 的变 化关系, 确定其磁导率m 的特点和铁磁质的磁 化规律。 2. 实验结果 o~a : 起始磁化曲线,未经磁化的铁磁质, 起始时, B 随H 而增大, 到a点达到饱 和。
B b a
Br o
H
a ~b :当外磁场减小时,介质中的磁场
电磁学
2. 抗磁质的磁化机理——抗磁性(电子进动) 在无外磁场时,抗磁质中分子的轨 道和自旋磁矩均不为零,但其和— —分子磁矩为零m=0 ,物质不显磁 性。 有外场时,外磁场使分子中作轨道 运动的电子的角速度变化(当电子 轨道运动角速度与外磁场同向时, 角速度增加;当电子轨道运动角速 度与外磁场反向时,角速度减小), 产生一总是与外磁场B0反向的附加磁 矩m ≠ 0,从而产生与外场B0反向的 附加磁场B'。
第三篇
电磁学
2.磁畴的形成 按照量子理论, 铁磁质内电子间存在着很强的由电子自旋引起的相互 作用——电子交换作用, 使各电子的自旋磁矩排列整齐,从而形成磁畴。 每个磁畴内的电子自旋磁矩整齐排列,磁性很强——自发磁化。
3.磁畴与外磁场的关系
无外磁场时, 各个磁畴由于热运动其方向排列无序, 因而整体对外 不显磁性。 有外磁场时, 各个磁畴的磁矩在外磁场的磁力矩作用下以整体的形 式趋向外磁场方向排列, 从而对外显示很强的磁性。出现高m 值。 具体过程: 与外磁场方向一致和相同的磁畴范围扩大, 磁畴磁矩方向同 时尽力转向外磁场的方向。 4. 磁畴与温度的关系: 当温度持续升高到某值时, 由于剧烈的热运动, 磁畴瓦解, 铁磁质的铁磁性消失, 过渡到顺磁质。此温度叫做居里温度或 居里点。
第三篇
电磁学
无损耗输电。传统输电过程中总要产生一部分焦耳热损耗,一般在 10%~20%,如果采用超导体输电,几乎没有电能损失,而且不需要升压, 可以不用变压器设备,也不必架设高压线,可以在地下管道中。甚至 可以直接传输直流电。 产生强磁场。因超导体无热损耗,可通过很大电流,如用超导芯线为 Nb3Sn。其最大电流密度为 109 A/m2, 在承受相同电流的情况下,超导 芯线可以细得多,超导磁铁不仅效率高,而且可以做得很轻便。例如, 一个能产生 5T 的中型电磁铁的重量可达 20 吨,而超导磁铁的重量 不过几公斤。 美国在 磁谱仪中,将采用超导磁铁产生强磁场, 2003 年再次送入地球轨道,观察暗物质和反物质。

第三篇
电磁学
角速度与外磁场同向时

F Fe Fm Fe

i
产生与B0反向的附加电 子磁矩m' 抗磁质的总磁矩m=m' ≠ 0 与B0反向 产生与B0反向的附加磁场B’' 角速度与外磁场反向时,可作类似分析而得到相同的结论。
B B0 B B0 , B B0
超导体是理想的抗磁 体,具有超导性和完 全抗磁性。

所以
B
L
0 r
dl I 0 B B
定义磁场强度: H
0 r

第三篇
电磁学
则有磁介质中的安培环路定理成为:
H dl I 0
L
即:磁场强度沿任意闭合路径的线积分(环流),等于穿过以该回路为 边界的传导电流的代数和。
说明:
H 是为消除磁化电流的影响而引入的辅助物理量。 H 的环流仅与传导电流I 有关,与介质无关。(当I相同时,尽管介 质不同,H在同一点上也不相同,然而环流却相同。因此可以用它求 场量H ,就象求D 那样。
方向沿圆的切线方向
r
R
B
第三篇
电磁学
例2:P140, 例11.1。
第三篇
电磁学
电介质中的高斯定理
磁介质中的安培环路定理

L
B dl 0 I 0 0 i '
L L
1 E dS
S
0
(q
S
0
q )
'
H
B
0 r

B
任何物质皆由原子或分子构成。原 子(分子)中的电子同时参与两种运动: 自旋及绕核的轨道运动,对应有轨道磁 矩和自旋磁矩。 分子磁矩——分子所有轨道磁矩与自旋 磁矩之和,称为分子固有磁矩,简称为 分子磁矩 m。分子磁矩的方向与电子运 动的角速度方向相反。 分子电流——分子磁矩产生的磁效应可 以用一等效的圆电流的磁效应来表示。
如金属铝、锰、铬等。 如金属金、银、铜等。 如金属铁、钴、镍等。
顺磁质和抗磁质的磁性很弱,统称弱磁质,它们的相对磁导率一般是 常数;铁磁质的磁性很强,且具有非线性和磁滞特性,属于强磁场物 质,常常是制作磁铁的材料,它们的相对磁导率往往是变化的。
第三篇
电磁学
二、介质的磁化 magnetization
B Bo B B0
第三篇
电磁学
无外场Bo时,分子的磁矩排列杂 乱无章,介质内分子磁矩的矢 量和m=m=0
有外场Bo时,分子磁矩沿外场转 向,分子磁矩的矢量和m=m≠0
第三篇
电磁学

等效
Is
对各向同性(均匀)磁介质,从 导体横截面看,导体内部分子电 流两两反向,相互抵消。导体边 缘分子电流同向。 对各向同性(均匀)磁介质,分 子电流可等效成磁介质表面的磁 化电流Is,Is产生附加磁场B'。
第三篇
电磁学
三、磁介质中的安培环路定理
有磁介质时,安培环路定理是:
B dl 0 ( I 0 I ')
L
磁介质的总场
传导电流
磁化电流
由于磁化电流的计算很繁,所以我们从无磁介质时出发。
无磁介质时:
根据实验规律

L
B0 B0
这就是安培提出的分子电流假设。
第三篇
电磁学
顺磁质和抗磁质的磁化可用安培分子电流假说解释,而铁磁质的磁化很 复杂,后面我们将用磁畴的概念解释。 1. 顺磁质的磁化机理——顺磁性 无外磁场时,顺磁质中的每个分子虽然具有磁矩m≠0,但由于分子热 运动而使其取向无规则,物质分子的总分子磁矩m=0,物质对外不显 磁性。 有外磁场时,各分子磁矩在外磁场力矩的作用下,向外场方向偏转取 向,物质分子的总分子磁矩m=m≠0,从而产生附加磁场B'。m 和B'及 Bo同向——顺磁性。 顺磁质内的磁感应强度为:
A
H
第三篇
电磁学
一、铁磁介质的磁化机理——磁畴
1.磁畴 磁畴——铁磁质中因电子自旋而引 起的强烈相互作用,在铁磁质内形 成磁性很强的小区域 。磁畴的体积 约为 10-12 m3 。
在无外磁场时,各磁 畴排列杂乱无章,铁磁质 不显磁性;在外磁场中, 各磁畴沿外场转向,介质 内部的磁场迅速增加,在 铁磁质充磁过程中伴随着 发声、发热。
Br Hc c d
b
a
d~e~f:改变外磁场为正向磁 场,不断增加外场,介质又 达到正向磁饱和状态。
磁滞回线——闭合曲线abcdefa。 实验结论
o f e
H
铁磁质具有非线性,其m 值具有非单值性,与磁化的历史有关。 铁磁质会出现磁滞和剩磁现象。
第三篇
电磁学
相关文档
最新文档