人教版初中八年级数学上册《三角形的边》教案
八年级数学上册《三角形的边》教学设计 新人教版
《三角形的边》教学设计【教材分析】1.地位与作用:三角形是最常见的几何图形之一,在生产和生活中有广泛的应用,也是我们认识其他图形的基础。
2.重点与难点:重点是三角形三边之间的关系及其应用;难点是理解“首尾顺次相接”等关键语句;利用三角形三边关系熟练解决实际问题。
3.教法:动手操作、自主探索、合作交流。
【教材问题诊断】学生在七年级已经学过一些三角形的有关知识,如线段、角以及相交线、平行线等知识,这一些都是学习三角形有关内容的基础。
而学生在学习本节内容时,往往忽略构成三角形的三边之间的关系:两边之和大于第三边(或两边之差小于第三边),因此,在教学过程中,同学学生观察、动手操作等方法,让学生自己亲身感受体验,并归纳出三角形的三边之间的关系。
【教学目标】1.知识目标:①通过具体事例,进一步认识三角形的概念及其基本要素;②学会三角形的表示及掌握对边与对角的关系;③掌握三角形三边之间的关系。
2.能力目标:①在一个较为复杂的图形中能熟练找出其中的三角形并表示出来;②熟练判断三条线段能否组成三角形;③用三角形三边关系能熟练解决与三角形的边有关的实际问题。
3.情感态度与价值观:通过本节课的学习,使学生体会数学的应用价值及其学习数学的重要性、必要性,从而激发学生的求知欲。
【教学过程】(一)创设情境导入新课教师展示图片(悬浮桥上的钢索、金字塔、大棚人字形屋架),和学生一块感受三角形无处不在及三角形的美。
既然,在现实生活和工农业生产中到处有三角形的形象,那三角形具体有哪些性质呢?从本节课开始,我们一块来探索三角形的有关知识(引入课题)。
【设计意图】从学生身边的生活说起,学生通过举出三角形的实际例子认识和感受三角形,形成三角形的概念,让学生将实际问题数学化,培养学生的建模意识,并导入新课。
(二)回顾旧知学习定义问题:谁能告诉老师你了解三角形哪些知识?说出来,和同学分享。
【设计思路】由旧的知识点引入新知,符合学生的认知规律。
人教版数学八年级上册11.1.1三角形的边教案
11.1.1 三角形的边
【教学目标】
知识目标:(1)理解并掌握三角形的概念;
(2)探索三角形的三边关系。
能力目标:(1)能够利用三角形的定义判断三角形;
(2)能够利用三角形的三边关系解决相关计算和推理问题。
(3)通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理表达的能力。
情感目标:联系学生的生活环境,创设情境,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生
的学习兴趣。
【重点】:1、对三角形有关概念的了解,能用符号语言表示三角形;
2、能从图中识别三角形;
3、三角形三边关系的探究和归纳。
【难点】:三角形三边关系的应用。
【教具】:三角板、课件
教学流程安排。
人教版数学八年级上册《三角形全等的判定边边边》教学设计
人教版数学八年级上册《三角形全等的判定边边边》教学设计一. 教材分析人教版数学八年级上册《三角形全等的判定边边边》是学生在学习了三角形的基本概念、性质和三角形全等的判定方法后的进一步学习。
本节课主要让学生掌握三角形全等的判定方法之一——边边边(SAS)判定法,并能够运用该方法解决实际问题。
教材通过丰富的图形和实例,引导学生探究和发现三角形全等的规律,培养学生的观察能力、思考能力和动手能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、性质和三角形全等的判定方法AAA和SSA。
但他们对边边边(SAS)判定法的理解和运用还不够熟练,需要通过本节课的学习,进一步巩固和提高。
此外,学生需要通过实例分析和操作,提高观察能力、思考能力和动手能力。
三. 教学目标1.知识与技能目标:让学生掌握三角形全等的判定方法——边边边(SAS)判定法,并能运用该方法判断两个三角形是否全等。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的精神。
四. 教学重难点1.教学重点:三角形全等的判定方法——边边边(SAS)判定法。
2.教学难点:如何判断两个三角形是否全等,以及如何运用边边边(SAS)判定法解决实际问题。
五. 教学方法1.启发式教学法:通过提问、引导、探究等方式,激发学生的思考,帮助他们发现和理解三角形全等的规律。
2.直观教学法:利用图形、实例等直观教具,帮助学生形象地理解三角形全等的判定方法。
3.小组合作学习法:学生进行小组讨论、操作等活动,培养他们的合作意识和团队精神。
六. 教学准备1.准备相关的图形和实例,用于讲解和演示。
2.准备练习题和作业,用于巩固所学知识。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过一个具体的实例,引导学生回顾三角形全等的判定方法AAA和SSA,为新课的学习做好铺垫。
人教版八年级数学上册教案《三角形的边》人教)
《三角形的边》“三角形的边”是第十一章三角形的第一节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在小学已学过三角形的初步知识以及对三角形的表象认识的基础上,本节课给出了“严格”的定义,进一步深入了解三角形的特征、性质,为今后学习多边形作好准备,本课设计的思路是学生通过了解三角形的定义,进而质疑三角形的三边长度有没有一定的规律,通过观察分析、比较以及推断等过程,得出三角形的三边的关系。
【知识与能力目标】1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。
【过程与方法目标】经历摆三角形,画三角形、测量三角形的三边长度的过程,培养学生自主、合作、探索的学习方式,并锻炼其发现问题、提出问题、分析问题和解决问题的能力。
【情感态度价值观目标】认识到通过观察、比较、推断获得解决实际问题的方法,使学生体会到数学源于生活,而又在生活实践探索中得到解决,这样培养了学生学习数学的兴趣。
【教学重点】理解三角形三边不等关系。
【教学难点】三角形三边不等关系的应用。
相应课件;三角尺等。
一、情景导入三角形是一种最常见的几何图形,如古埃及金字塔,埃菲尔铁塔,自行车等等,处处都有三角形的形象。
那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC。
三角形ABC的顶点C所对的边AB可用c 表示,顶点B 所对的边AC可用b表示,顶点A所对的边BC可用a表示。
三、三角形三边的不等关系abc(1)CBA任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B →C ,(2)从B →A →C ;不一样, AB+AC >BC ①;因为两点之间线段最短。
初中数学《三角形的边》教案
教学设计教学过程(一)创设情境引入新课1.人不遵守交通规则,冒着生命危险斜穿马路.你能用所学的数学知识解释这种不文明的行为吗?2.展示学习目标:1、认识三角形的边、内角、顶点,能用符号语言表示三角形。
2、掌握三角形三边的关系定理,能利用定理及其推论进行简单的证明。
3、了解三角形按边分类的原则和结论。
(二) 探究新知(看书第2页,完成下列填空:)1.三角形有关的概念(1)定义:不在一条直线上的条线段相接所组成的图形叫做三角形。
(2)三角形ABC,表示为;读作: ;(3)三角形的元素: 条边、个顶点、个内角.2.三角形的分类⎧⎪⎪⎨⎪⎪⎩三角形按角分三角形三角形⎧⎪⎪⎧⎨⎪⎨⎪⎪⎪⎩⎩三角形三角形按边分三角形三角形即时训练:⑴、图中有几个三角形?用符号表示这些三角形。
⑵、图中以AB为边的三角形有哪些?⑶、图中以E为顶点的三角形有哪些?(4)、图中以D为顶点的三角形有哪些?EDCBA二.合作探究三角形三边的关系活动一:(画一画,量一量,算一算)在练习本上任画一个三角形,用a、bc 表示各边,用刻度尺量出各边的长度,并空:a= a= a= a=b= b= b= b=c= c= c= c= 计算每个三角形的任意两边之和,并与第三边比较,你能得到的结论是通过观察和实验得到的结论并不一定都正确,它的正确性必须经过严格的推理论证活动二:证明三角形三边关系,即:大于第三边已知如图,三角形ABC,求证:AB+AC>BC;AB+BC>AC;AC+BC>AB证明:由“两点之间,线段最短”,得AB+AC BC; 同理,AC+BC AB; AB+BC AC[例1] 下列长度的三条线段能否组成三角形?为什么(1)3,4,8 ()(2)2,5,6 ()(3)2:3:4 ()(4)3,5,8 ()思考:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才解题经验,有没有更简便的判断方法?方法小结:比较较短的两边之和与最长边的大小即可。
八年级上册数学教案《三角形的边》
八年级上册数学教案《三角形的边》学情分析三角形是最常见的几何图形之一,在生产和生活中有广泛的应用,三角形是认识其他图形的基础。
学生在小学时已经学过有关三角形的部分知识,也了解了三角形的一些性质,在七年级“图形认识初步”和“相交线与平行线”中也学习了线段、平行线、相交线等有关知识,为本单元的学习打下了基础。
所以,在学习本单元的内容时,应注意让学生多与实际生活相联系,多与已经学过的知识相联系。
由于在小学的学习中,图形的认识多以观察、测量为主,因此,在学习三角形的三边关系这一性质时,应注意培养学生的推理能力,所得到的每一个结论都要有依据,进一步培养学生的推理和证明能力。
教学目的1、认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2、理解三角形三边不等的关系。
3、懂得判定三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
教学重难点三角形三边关系的探究和归纳三角形边角关系是平面几何中的几何形态问题。
教学难点三角形三边关系的应用。
教学方法教学过程一、情境引入在小学阶段,我们学习过三角形,谈谈你所了解的三角形。
二、学习新知1、三角形的相关概念(1)概念由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
(2)三角形的三要素边:AB、BC、AC(或a,b,c)顶点:A、B、C(大写字母)角:∠A、∠B、∠C顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”。
2、三角形的分类(1)按角的大小分类(看三角形最大的内角)(2)按边的相等关系分类3、三角形的三边关系(1)三角形两边的和大于第三边a +b > c,b +c > a,a + c > b三角形两边的差小于第三边a -b < c,b -c < a,a - c < b(2)应用①判断三条线段能否组成三角形②已知三角形的两边长,确定第三边长(或周长)③证明线段之间的不等关系(3)方法总结首先需要求两条较短线段的长度和,若是大于最长线段的长度,则可以组成三角形;若是小于或等于线段的长度,则不能组成三角形。
初中数学《三角形的边》教案
初中数学《三角形的边》教案7.1.1 三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P68-69图.教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.学生回答:a.不在一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P71,第一部分至思考,一段课文,并回答以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展示议论,并指定回答以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从BCb.从BAC(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+ACBC,可以说这两条路线的长是不一样的.四、议一议1.在用一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?按角分呢?(1)三角形按边分类如下:三角形不等三角形等腰三角形底和腰不等的等腰三角形等边三角形(2)三角形按角分类如下:三角形直角三角形斜三角形锐角三角形钝角三角形六、练一练有三根木棒长分别为3cm、6cm和2cm,用这木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm2cm用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+62,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业1.课本P71练习1.2,P75练习7.1 1.2.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
人教版八年级数学上册11.1.1《三角形的边》教学设计
人教版八年级数学上册11.1.1《三角形的边》教学设计一. 教材分析人教版八年级数学上册11.1.1《三角形的边》是三角形这一章的第一节,主要介绍了三角形的三条边的关系。
本节内容是学生学习三角形其他性质的基础,对于学生理解三角形的特点,以及后续学习三角形判定定理具有重要意义。
教材通过丰富的图形和实例,引导学生探究三角形边的关系,培养学生的观察、思考和动手能力。
二. 学情分析八年级的学生已经学习了多边形的概念,对多边形的性质有一定的了解。
但是,对于三角形这种特殊的图形,学生可能还存在着一些模糊的认识。
因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和直观的图形,帮助学生建立三角形的边的关系。
三. 教学目标1.知识与技能:使学生掌握三角形的三条边的关系,能够运用这些关系解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的动手能力和探究能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极思考的精神。
四. 教学重难点重点:三角形的三条边的关系。
难点:如何引导学生通过观察和操作,发现三角形边的关系。
五. 教学方法采用问题驱动法、观察操作法、讨论交流法等,引导学生主动探究,合作学习。
六. 教学准备1.准备一些三角形的模型或图片,用于引导学生观察和操作。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些三角形的模型或图片,引导学生观察并思考:这些三角形有什么共同的特点?你能否找出一些特殊的三边关系?2.呈现(10分钟)教师通过PPT或黑板,呈现三角形的三条边的关系,如:任意两边之和大于第三边,任意两边之差小于第三边。
同时,引导学生进行操作,自己发现这些关系。
3.操练(10分钟)学生分组进行讨论,每组找出一些三角形,验证这些三角形是否符合三角形的三边关系。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成,检验学生对三角形三边关系的掌握情况。
11.1.1三角形的边 初中八年级上册数学教案教学设计课后反思 人教版
教师姓名安江单位名称新源县第六中学填写时间2020年8月23日学科数学年级/册八年级(上)教材版本人教版课题名称第十一章 11.1与三角形有关的线段 11.1.1三角形的边难点名称为什么“任意两边的和大于第三边”,如何导出“任意两边的差小于第三边”。
难点分析从知识角度分析为什么难通过在三角形中依据两点之间线段最短,分别研究从点B 到点C 、点A 到点B 、点A 到点C 的两种不同路径长短问题,进行列式、猜想、归纳总结并验证最终得到任意两边的和大于第三边,本身一系列推理证明就要求严谨的思维模式;其次任意两边的差小于第三边就包涵利用绝对值进行归纳的问题,而绝对值也是一个难点问题,再加上要归纳总结,所以难度加深。
难点教学方法 1.数形结合:通过学生结合图形,从在△ABC 中从点B 沿三角形的边到点C 的路径研究,建立丰富的表象,形成直觉思维,简洁明了的体现任意两边之和大于第三边。
2.分类讨论:从在△ABC 中从点B 沿三角形的边到点C 的路径研究,再同理研究点A 到点B 、点A到点C,进而综合得到任意两边的和大于第三边。
3.练习法:通过学生练习对a+b>c 和a+c>b 移项,得到a>c-b 和b>c-a 以及a>b-c 和c>b-a ,让学生发现任意两边的差小于第三边。
教学环节教学过程导入1.观察图片,让学生思考怎样的图形叫做三角形呢? (学生可以自由发言)知识讲解(难点突破)新知探究:1:三角形定义:在学生充分交流的基础上得出:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2:三角形表示方法:三角形用符号“Δ”表示,如图顶点是A ,B ,C 的三角形(1)记作“ΔABC ”(2)读作“三角形ABC”3:三角形的有关概念:△ABC 的顶点:点A ,B ,C△AB C 的三边:顶点A 所对的边BC , 顶点B 所对的边AC , 顶点C 所对的边AB .有时也用a ,b ,c 来表示.一般地,顶点A 所对的边记作a ,顶点B所对的边记作b ,顶点C 所对的边记作c .△AB C 的内角:∠A ,∠B ,∠C 是相邻两边组成的角4.三角形的分类:按角分⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形按边分⎧⎪⎧⎨⎨⎪⎩⎩三边都不相等的三角形底边和腰不相等的等腰三角形等腰三角形等边三角形5.三角形三边关系当我们知道了三角形的一些基本表示之后,我们迫切想知道的是组成三角形的三边及三角是否存在一定的规律?接下来我们就一起探究一下三角形边的规律.(1)任意画△ABC ,从点B 出发,沿三角形的边到点C ,有几条线路可以选择?各条线路的长有什么关系?证明你的结论。
人教版数学八年级上册《三角形全等的判定——“边角边”》说课稿
人教版数学八年级上册《三角形全等的判定——“边角边”》说课稿一. 教材分析人教版数学八年级上册《三角形全等的判定——“边角边”》这一节主要让学生掌握三角形全等的判定方法之一——边角边(SAS)判定法。
在之前的学习中,学生已经掌握了三角形的基本概念、性质以及三角形的判定方法。
本节课的内容是在此基础上,引导学生进一步探究三角形全等的条件,并通过实例让学生学会运用边角边判定法证明三角形全等。
二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,学生在运用数学知识解决实际问题时,往往还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与课堂讨论,提高学生运用数学知识解决问题的能力。
三. 说教学目标1.知识与技能:让学生掌握三角形全等的判定方法之一——边角边(SAS)判定法,能运用边角边判定法证明三角形全等。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生推理、论证的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用价值。
四. 说教学重难点1.教学重点:掌握三角形全等的判定方法——边角边(SAS)判定法。
2.教学难点:如何引导学生理解并运用边角边判定法证明三角形全等。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等途径,自主探究三角形全等的判定方法。
2.利用多媒体课件辅助教学,生动展示三角形全等的判定过程,提高学生的学习兴趣。
3.采用分组讨论、合作交流的教学手段,培养学生的团队合作意识和沟通能力。
六. 说教学过程1.导入新课:通过复习三角形的基本概念、性质和判定方法,引出本节课的内容——三角形全等的判定方法之一——边角边(SAS)判定法。
2.自主探究:让学生观察两个三角形,引导学生发现判定两个三角形全等的方法。
学生在教师的引导下,通过观察、思考、交流,总结出边角边(SAS)判定法。
人教版八年级数学上册教案(RJ) 第十一章 三角形
11.1 与三角形有关的线段11.1.1 三角形的边1.结合具体的实例,进一步认识三角形的概念及其基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.3.理解三角形任何两边之和大于第三边与任意两边之差小于第三边的性质,并会初步运用这些性质来解决问题.重点三角形的三边关系. 难点三角形的三边关系.一、创设情境,引入新课老师出示一个用硬纸板剪好的三角形,并提出问题;小学中我们已经认识了三角形,那么你能不能给三角形下一个完整的定义? 老师出示教具,提出问题.让学生观察教具,然后给出三角形的定义. 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 二、探究问题,形成概念(一)探究三角形的有关概念1.三角形的顶点及符号表示方法. 2.三角形的内角. 3.三角形的边.教师继续利用教具向学生直接指明相关的概念. 学生注意记忆相关的概念. 教师再出示另外剪好的三角形,各顶点字母与原来不同,然后通过新三角形让学生巩固刚才的有关概念.(二)探究三角形的分类问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类? 教师提出问题,学生举手回答. 教师提示,分类的标准是什么?学生回答:有两边相等和有三边相等,以及三条边均不相等.教师进一步提出新的问题,并进一步讲解等边三角形、等腰三角形的有关概念,然后给出三角形按边分类的方法:三角形⎩⎪⎨⎪⎧三边都不相等的三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形之后师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法.(三)探究三角形的三边关系探究:画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C点,它有几种路线可以选择?各条路线的长一样吗?教师提出问题,学生先画图然后进行讨论,并思考问题,然后教师指定学生回答问题.(1)小虫从点B出发沿三角形的边爬到点C有如下几条路线:a.从B→Cb.从B→A→C(2)从B→C路线最短.然后老师进一步提出问题:这条路线为什么是最短的?学生举手回答:“两点之间,线段最短.”然后师生共同归纳得出:AC+BC>AB①AB+AC>BC②AB+BC>AC③即三角形两边的和大于第三边.教师提问:(1)由不等式①②③移项,你能得到怎样的不等式?(2)通过刚才得到的不等式,你有什么发现?学生回答,师生共同归纳:三角形两边的差小于第三边.教师出示教材第3页例题.分析:(1)“用一条长18 cm的细绳围成一个等腰三角形”,这句话有什么含义?(2)有一边长为4 cm是什么意思,哪一边的长度是4 cm?三、练习巩固练习:教材第4页练习第1,2题.老师布置练习,学生举手回答即可.第2题注意让学生说明理由.解决完以后,教师利用投影出示补充练习,学生独立完成.补充练习:一个三角形有两条边相等,周长为20 cm,一条边长是6 cm,求其他两条边长.四、小结与作业小结:谈谈本节课的收获.老师引导学生主要从对三角形的分类和三边关系的认识方面进行小结.布置作业:习题11.1第1,2,7题.三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,让学生自己动手操作,初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。
人教版八年级数学上册11.1.1三角形的边教案
第1课时
11.1 与三角形有关的线段(1)
备课人:备课日期:年月日
2.提出问题:三角形是常见的几何图形之一,现实生活中到处都有三角形的形象。
那么你能准确地说出什么是三角形吗?我们已经知道三角形的内角和等于180°,那么你会证明这个结论吗?三角形还有哪些性质呢?这节课,我们学习三角形的有关概念,将三角形从不同角度进行分类,并探索三角形的三边的关系。
用PPT展示课题:11.1三角形的边(第1课时)
二、教学新课
【活动1】归纳三角形的有关概念及边的表示方法
1.在引言的钢架桥及现代建筑物中,从三角形的一个顶点开始按顺序画三角形的边。
讨论:三角形是由什么几条线段组成的?这些线段的位置有何特点?你能用一句话概括出什么叫做三角形吗?
2.引导学生说出①三角形是由三条线段组成的;②这三条线段不在同一条直线上;③这三条线段首尾顺次相接。
之后,用PPT展示三角形的概念:不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
3.如图1,教师在黑板上(或用PPT展示)用三条线段画三角形的过程。
之后,在三角形的相应位置标出三角形的边、角、顶点。
用PPT展示概念:组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
4.三角形各部分的表示方法。
教师边讲解边用PPT出示:图2中,三。
人教版数学八年级上册《三角形全等的判定——“边角边”》教学设计
人教版数学八年级上册《三角形全等的判定——“边角边”》教学设计一. 教材分析人教版数学八年级上册《三角形全等的判定——“边角边”》这一节,主要让学生掌握三角形全等的判定方法之一——边角边(SAS)判定方法。
学生通过前面的学习,已经掌握了三角形的基本概念、性质和三角形全等的概念。
本节课通过边角边判定方法的学习,让学生能够判断两个三角形是否全等,为后续学习其他全等判定方法打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和性质有一定的了解。
但是,学生在判断三角形全等时,可能还存在着对全等概念理解不深、判断方法不明确的问题。
因此,在教学过程中,教师需要注重引导学生理解全等三角形的本质,让学生在实践中掌握边角边判定方法。
三. 教学目标1.让学生掌握三角形全等的判定方法——边角边(SAS)判定方法。
2.培养学生运用全等三角形的性质和判定方法解决实际问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:三角形全等的判定方法——边角边(SAS)判定方法。
2.教学难点:如何引导学生理解全等三角形的本质,以及如何灵活运用边角边判定方法判断三角形全等。
五. 教学方法1.情境教学法:通过生活实例引入三角形全等的概念,让学生在实际情境中感受全等三角形的意义。
2.启发式教学法:在教学过程中,教师引导学生思考、探索,让学生主动发现问题、解决问题。
3.实践教学法:通过大量的练习,让学生在实践中掌握边角边判定方法。
六. 教学准备1.教学课件:制作三角形全等的判定方法——边角边(SAS)课件,内容包括:导入、讲解、例题、练习等。
2.练习题:准备一些有关三角形全等的练习题,用于巩固所学知识。
3.教学道具:准备一些三角形模型,用于直观展示三角形全等的情况。
七. 教学过程1.导入(5分钟)利用生活实例,如:拼图、建筑施工等,引入三角形全等的概念,让学生初步了解全等三角形的意义。
人教版八年级上册 11.1.1三角形的边 教案
初中数学 重难点第八.一讲---三角形的边年级八年级1.认识三角形并会用几何语言表示三角形,了解三角形分类.2.掌握三角形的三边关系.(难点)3.运用三角形三边关系解决有关的问题.(重点)【知识储备】知识点一三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
B注意:三条线段必须①不在一条直线上 ②首尾顺次相接。
ca3. 三角形的顶点如图,△ABC 的三个顶点A分别是:A,B,Cb(1)C4.三角形的边、内角如图,△ABC 的三条边分别是:AB,BC,CA.它的三个内角(简称三角形的角)分别是: <A, <B, <C.注意:1.三角形的三边用字母表示时,字母没有顺序限制.12.三角形的三边,有时也用一个小写字母来表示. 如:在△ABC 的三边中,顶点 A、B、C 分别所对的边 BC、AC、AB 也可分别表 示为 a,b,c. 3.一般情况下,我们把边 BC 叫做 A 的对边,AC,AB 叫 A 的邻边;边 AC 叫 B 的对边,AB,BC 叫 B 的邻边;你能说出 C 的对边及邻边吗? 对边是 AB,邻边是 BC,AC.组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内 角,简称角,相邻两边的公共端点是三角形的顶点。
三角形 ABC 用符号表示为△ABC。
三角形 ABC 的顶点 C 所对的边 AB 可用 c 表 示,顶点 B 所对的边 AC 可用 b 表示,顶点 A 所对的边 BC 可用 a 表示.知识点二三角形三边的不等关系 探究:[投影 7]任意画一个△ABC,假设有一只小虫要从 B 点出发,沿三角形的 边爬到 C,它有几种路线可以选择?各条路线的长一样吗?为什么? 有两条路线:(1)从 B→C,(2)从 B→A→C;不一样, AB+AC>BC ①;因为两点之间线段最短。
同样地有 AC+BC>AB ② AB+BC>AC ③ 三角形的任意两边之和大于第三边.2由式子①②③我们可以知道什么? 由不等式②③移项可得 BC >AB -AC,BC >AC -AB.由此你能得出什么 结论?三角形两边的差小于第三边.三角形 不等边三角形 等腰三角形 底和腰不等的等腰三角形 等边三角形注意:1.一个三角形的三边关系可以归纳成如下一句话:三角形的任何两边之和 大于第三边,任何两边之差小于第三边.2.在做题时,不仅要考虑到两边之和大于第三边,还必须考虑到两边之差小于第 三边.【典例精析】例 1: 用一条长为 18 ㎝的细绳围成一个等腰三角形。
人教版数学八年级上册11.1.1《三角形的边》教学设计
人教版数学八年级上册11.1.1《三角形的边》教学设计一. 教材分析人教版数学八年级上册11.1.1《三角形的边》是学生在学习了平面几何基本概念的基础上,进一步研究三角形的性质。
本节课主要让学生了解三角形的三边关系,学会用不等式表示三角形的三边关系,并能够运用这一性质解决一些实际问题。
教材通过生活中的实例引入,激发学生的学习兴趣,接着引导学生通过观察、操作、推理等过程,发现三角形的边长之间存在的关系,培养学生的几何直观能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具有一定的观察、操作和推理能力。
但部分学生对抽象的几何概念理解不够深入,对三角形的边长关系理解起来可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习差异,引导学生通过实际操作和几何直观图,更好地理解三角形的边长关系。
三. 教学目标1.理解三角形的三边关系,并能用不等式表示。
2.学会运用三角形的三边关系解决一些实际问题。
3.培养学生的几何直观能力和逻辑思维能力。
4.激发学生学习数学的兴趣,提高学生合作交流的能力。
四. 教学重难点1.重点:三角形的三边关系,三角形三边关系的应用。
2.难点:三角形三边关系的证明和灵活运用。
五. 教学方法1.情境教学法:通过生活中的实例引入,激发学生的学习兴趣。
2.观察操作法:引导学生观察三角形模型,操作实践,发现边长关系。
3.推理教学法:引导学生运用逻辑推理,证明三角形的三边关系。
4.合作交流法:鼓励学生分组讨论,分享学习心得,提高合作交流能力。
六. 教学准备1.教学课件:制作三角形的性质课件,用于辅助教学。
2.几何模型:准备一些三角形模型,让学生观察和操作。
3.练习题:准备一些有关三角形边长关系的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如:帆船比赛中的三角形帆船,引出三角形的三边关系。
引导学生关注三角形在实际生活中的应用,激发学生的学习兴趣。
《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册
(1)三角形的内角和定理的应用:在解决具体问题时,学生可能难以灵活运用内角和定理;
突破方法:通过设置不同类型的练习题,让学生多角度、多层次的运用内角和定理,提高其解决问题的能力。
(2)三角形两边之和大于第三边的原理的理解:学生对这一原理的理解可能不够深入,难以应用到实际问题中;
突破方法:通ห้องสมุดไป่ตู้举例、画图等方式,让学生直观地理解这一原理,并引导他们将其应用于解决实际问题。
《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册
一、教学内容
《11.1.1三角形的边》教案教学反思,选自2023-2024学年数学人教版八年级上册第十一章第一节的课程内容。本节课主要围绕以下知识点展开:
1.三角形的定义及其基本性质;
2.三角形的分类:按边分(不等边三角形、等腰三角形、等边三角形)和按角分(锐角三角形、直角三角形、钝角三角形);
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的基本概念、内角和定理以及两边之和大于第三边的原理等重要知识点。同时,我们也通过实践活动和小组讨论加深了对三角形边的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对三角形的边这一知识点表现出较大的兴趣。通过引入日常生活中的例子,同学们能够更好地理解三角形的概念和性质。以下是我对今天教学的一些思考:
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版八年级数学上册《三角形的边》教学教案
《三角形的边》精品教案【教学目标】1.知识与技能(1)理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数;(2)能利用三角形的三边关系判断三条线段能否构成三角形;(3)三角形在实际生活中的应用。
2.过程与方法通过观察、操作、交流等活动发展空间观念和推理能力。
3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
【教学重点】(1)认识三角形的顶点、边、角。
(2)三边关系的应用。
【教学难点】三角形三边关系的应用【教学方法】自学与小组合作学习相结合的方法【课前准备】教学课件,几个不同的三角形板。
【课时安排】1课时【教学过程】一、情境导入展示两张图片。
【过渡】这两张图片中,都应用到了三角形,大家找一下吧。
(学生根据观察,找到图片中的三角形)【过渡】大家都找到了这两张图片中用到的三角形,其实,在生活中,有很多设计师会选择三角形来作为创作的原型。
展示三角形状的建筑图片【过渡】为什么会有这么多地方用三角形呢?三角形有什么特别的地方吗?三角形的定义又是什么呢?今天我们就来学习一下关于三角形的基础知识。
二、新课教学1.三角形的基本概念【过渡】现在,老师想让大家做一个小活动,大家拿三支笔,然后动手摆一个三角形吧。
(老师巡视,同时指出不足)【过渡】大家可以看看,自己摆的三角形有什么特点呢?三角形需要满足什么条件?(引导学生回答)(1)三角形的定义:不在同一直线上三条线段首尾顺次相接组成的图形叫做三角形。
【过渡】在这里,大家要注意“首尾相接”这四个字,也就是说如果三条线段没有连接,就不能构成三角形。
课件展示几种形状,让学生判断是否为三角形。
然后再画出正确的三角形,强调两个注意点。
(老师可以拿三支笔进行演示,不相接的不能称为三角形)(2)三角形的基本概念课件展示三角形ABC。
【过渡】现在我们观察这个三角形,我们看到,在三角形的三个点,标有ABC,这三个点,我们称之为顶点,而这个三角形我们称之为三角形ABC,写作△ABC。
人教版数学八年级上册11.1.1《三角形的边》说课稿
人教版数学八年级上册11.1.1《三角形的边》说课稿一. 教材分析《三角形的边》是人教版数学八年级上册第11章第1节的内容。
本节课主要让学生了解三角形的三条边之间的关系,掌握三角形的边长特性。
在教材中,通过引入“三角形的边”的概念,让学生在探究过程中发现三角形的边长之间的相互关系,从而培养学生的观察能力、操作能力和推理能力。
二. 学情分析八年级的学生已经掌握了平面几何的基本概念,具备了一定的观察、操作和推理能力。
但对于三角形边长的特性和关系,可能还比较陌生。
因此,在教学过程中,我将以学生已有的知识为基础,引导学生通过观察、操作、猜想、验证等方法,探究三角形边长之间的关系,提高学生的几何思维能力。
三. 说教学目标1.知识与技能:让学生了解三角形的三条边之间的关系,掌握三角形的边长特性。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:三角形的三条边之间的关系,三角形的边长特性。
2.教学难点:如何引导学生发现并证明三角形边长之间的关系。
五. 说教学方法与手段1.教学方法:采用观察、操作、猜想、验证的教学方法,引导学生主动探究三角形边长之间的关系。
2.教学手段:运用多媒体课件、几何画板等教学辅助工具,直观展示三角形边长的特性。
六. 说教学过程1.导入新课:通过复习平面几何的基本概念,引导学生进入新课。
2.探究三角形边长之间的关系:让学生分组讨论,每组设计实验,观察、操作、猜想三角形边长之间的关系,并尝试用语言描述。
3.验证猜想:引导学生利用几何画板等工具,验证猜想的正确性。
4.归纳总结:师生共同总结三角形边长的特性,得出结论。
5.巩固练习:设计一些具有代表性的练习题,让学生巩固新知识。
6.课堂小结:回顾本节课的学习内容,总结三角形边长的特性。
七. 说板书设计板书设计如下:三角形的三条边:1.任意两边之和大于第三边2.任意两边之差小于第三边八. 说教学评价本节课的教学评价主要从学生的知识掌握、能力培养、情感态度三个方面进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的边
教学目标
1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;
2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.
3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;
4.体会数学与现实生活的联系,增强克服困难的勇气和信心 重点难点
三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
教学过程
一、情景导入
三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。
那么什么叫做三角
形呢? 二、三角形及有关
概念 不在一条直线上的
三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
a b c (1)C B A
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC 用符号表示为△ABC 。
三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.
三、三角形三边的不等关系
探究:[投影7]任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?
有两条路线:(1)从B→C ,(2)从B→A→C ;不一样, AB+A C >BC ①;因为两点之间线段最短。
同样地有 AC+BC >AB ②
AB+BC >AC ③
由式子①②③我们可以知道什么?
三角形的任意两边之和大于第三边.
四、三角形的分类
我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。
按角分类:
三角形 直角三角形 斜三角形 锐角三角形 ⎧
⎨⎩⎧⎨⎩
钝角三角形
那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。
三边都相等的三角形叫做等边三角形;
有两条边相等的三角形叫做等腰三角形;
三边都不相等的三角形叫做不等边三角形。
显然,等边三角形是特殊的等腰三角形。
按边分类:
三角形 不等边三角形 等腰三角形 底和腰不等的等腰三角形 等边三角形
五、例题
例 用一条长为18㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?
分析:(1)等腰三角形三边的长是多少?若设底边长为x ㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?
解:(1)设底边长为x ㎝,则腰长2 x ㎝。
x+2x+2x=18
解得x=3.6
所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.
⎧⎨⎩⎧
⎨
⎩底边
底角 底角
(2)如果长为4㎝的边为底边,设腰长为x㎝,则
4+2x=18
解得x=7
如果长为4㎝的边为腰,设底边长为x㎝,则
2×4+x=18
解得x=10
因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。
由以上讨论可知,可以围成底边长是4㎝的等腰三角形。
五、课堂练习
课本4頁练习1、2题。