流体力学 第六章

合集下载

流体力学 第六章 流体波动

流体力学 第六章 流体波动

由上式可见,波群中包含两个波动的乘积。
其中:
sinkx t
称为高频载波,其波数k和圆频率ω都分别接近 各个单波的波数和圆频率。即
k
k1 k2 2
k1
k2,
1 2
2
1
2
载波的波速也接近于各个单波的波速,即
c 1 2
k k1 k2
Q* 2Qcos kx t
称为低频包络,它是载波的包络线,或称波包,
1
界面波传播速度是有相同厚度H的重力表面
波速度的十分之一。
§3 群速度
单波(单色波,单纯波):具有一定振幅、一 定频率和一定波长在时间和空间都是无限的波 动。
群波(group wave):由各种单色波叠加而成 的波动。叠加结果,有些振幅是相抵消的,有 些是加强的。所以群波的振幅随时间和空间改 变。群波 混合波
设其形式解为:
u(x,t) B sin k(x ct) (6.2.21)
代入原方程,
u t
g
h x
h
t
H
u x
0
(6.2.22)
有:
B g A H
(6.2.23)
说明u和h位相相同(c>0),或位相相差180(0 c 0).
若取 1波速 1 对于海洋若取H=4km, 0.01, c 20m / s,
kx ly mz t (x, y, z,t)
其中:
/ t k / x l / y m / z
圆频率 x 方向的波数 y 方向的波数 z 方向的波数
全波数的概念
定义波数矢量为:
K ki lj mk
波数矢量垂直于等位相面(波阵面) (波数矢量即为波动传播的方向) 定义其模称为全波数

流体力学第六章流体节流与缝隙流动

流体力学第六章流体节流与缝隙流动

第六章流体节流与缝隙流动(了解各种节流及缝隙流动现象,理解影响流量的因素,理解偏心状缝。

掌握气蚀现象。

) §6.1 流体的节流节流:管道内流体流经断面突然缩小的截面后,又进入和以前一样断面的管道,致使压力下降的现象,称为节流。

一、气体节流气体节流后各参数的变化规律,表6-1进行简要分析二、液体节流缝隙中油液产生运动的原因:1)缝隙两端存在压力差;1)组成缝隙的壁面存在相对运动;3)缝隙大小的变化。

缝隙中油液的运动大都呈稳定层流:1)缝隙高度与其长度宽度相比很小,液体在缝隙中流动时受固体壁面的影响;2)油液具有一定的粘度,Re一般很小。

§6.2 液体在小孔中的流动通道截面为圆孔型(分为薄壁小孔型和细长小孔型)。

l d≤。

薄壁小孔:当横隔板壁厚L与孔口直径d之比小于0.5,即/0.5l d>。

液压和润滑系统中的导油管。

细长小孔:小孔的长径比/4§6.3 液体流经平面缝隙平面缝隙:由两平行平面夹成的缝隙。

齿轮泵齿顶与泵壳之间的油液运动,柴油机中滑块与导板之间的油液流动。

结论:1)缝隙中液体流速按抛物线规律分布的;2)流经平面缝隙的流量与缝隙厚度δ的三次方成正比,和动力粘度μ成反比。

§6.4 液体流经同心环状缝隙同心环状缝隙:由内外两个同心圆柱面所围成的缝隙。

结论:流经平面缝隙的流量与缝隙厚度δ的三次方成正比。

§6.5 液体流经偏心环状缝隙偏心环状缝隙:在船舶机械中的环状缝隙,当运动部件装配不当或工作受力不均时,同心环状缝隙就变成偏心环状缝隙。

结论:流经偏心环状缝隙的流量与偏心距成正比,偏心距最大时,泄漏量为同心环状缝隙的2.5倍。

§6.6 液体流经具有相对运动的平行面缝隙喷油泵中的柱塞泵。

类型:(1、2、3)1)平行剪切流动∆=p,由于液体粘滞性,通过平行板的运动液体运动。

2)压差流动液体的运动,在缝隙两端的压差作用下实现。

3)压差与剪切流动的合成液体的运动,在缝隙两端的压差和平行剪切力的作用下共同实现。

流体力学第六章

流体力学第六章

量纲分析
量纲分析主要用于分析物理现象中的未知规 律,通过对相关的物理量做量纲幂次分析, 将它们组合成无量纲量,揭示他们间内在关 系,并降低变量数目。 较早提议做量纲分析的是瑞利 (L.Reyleigh,1877),而奠定量纲分析理 论基础的是白金汉 (E.Buckingham,1914),他提出了П定理。
FD Π1 = = CD 2 2 ρV d
П2的量纲幂次式
M L T = (ML ) (LT ) L (ML T )
0 0 0 - 3 a2 -1 b2 c2
−1
−1
M : a 2 + 1 = 0 L : - 3a 2 + b 2 + c 2 - 1 = 0 T : - b - 1 = 0 2
相似的概念
“相似”概念来源于几何学。矩形的相似条 件是对应边长成比例。
l h = ' = kl ' l h
力学相似比几何相似的内容丰富,以机翼绕 流流场为例。
1、几何相似 2、运动相似 3、动力相似
相似准数的确定
量纲分析法 方程分析法
方程分析法
根据物理方程的量纲齐次性可对已知方程进 行量纲为1化,无量纲形式的方程将包含相关 的相似准则数。
第五章
相似原理与量纲分析
实验研究是流体力学研究方法中的重要组成 部分。量纲分析和相似原理是关于如何设计 和组织实验,如何选择实验参数,如何处理 实验数据等问题的指导性理论。
主要内容:物理方程的量纲齐次性, 定理与 量纲分析法,流动相似与相似准则,相似准 数的确定,常用的相似准则数。 重点:(1)量纲齐次性原理; (2) 定理和量纲分析; (3)常用的相似准则.
量纲分析一般步骤
第一步 列举所有相关的物理量。 第二步 选择包含不同基本量纲的物理量为基本量。 第三步 将其余的物理量均作为导出量,分别与以基 本量为底的指数式组成П表达式。 第四步 用量纲幂次式求解每个П表达式中的指数,组 成П数。 第五步 用П数构成新的方程

《流体力学》第六章气体射流

《流体力学》第六章气体射流
和圆断面射流相比,流量沿程的增加,流速沿 程的衰减都要慢些,这是因为运动的扩散被限 定在垂直于条缝长度的平面上的缘故。
.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
扩散角 主
α tg3.4a tg2.44a

段 射流直径 或半高度
D b
D d0
6.8
as d0
0.147
b b0
2.44
0.095 as 0.147
d0
v1 0.492
v0
as 0.41
b0
v2
v2 v0
as
0.23 0.147
d0
v2 v0
0.833 as 0.41 b0
.
段名 参数名称
符 号
圆断面射流
平面射流

流量
Q
2
QQ0 10.76ar0s1.32ar0s
Q Q0
1 0.43 as b0

v 断面平均 流速
B0Kx
tgKxK3.4a
x
紊流系数
起始段
主体段
C
B
A
R
M
α r0
核心
0
D X0
边 E
界 层
Sn
F
S
X
射流结构
.
紊流系数与 出口断面上 紊流强度有 关,也与出 口断面上速 度分布的均 匀性有关。 (表6-1)
紊流系数
喷嘴种类 带有收缩口的喷嘴
a
0.066 0.071
圆柱形管
带有导风板的轴流式通风机 带导流板的直角弯管
已知射流直径D, v2,d0,a, 求S和Q0

流体力学第六章 流动阻力及能量损失

流体力学第六章 流动阻力及能量损失

第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。

对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。

对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。

对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。

本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。

第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。

1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。

特点:(1)有序性。

水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

(2)粘性占主要作用,遵循牛顿内摩擦定律。

(3)能量损失与流速的一次方成正比。

(4)在流速较小且雷诺数Re较小时发生。

2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。

特点:(1)无序性、随机性、有旋性、混掺性。

流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

(2)紊流受粘性和紊动的共同作用。

(3)水头损失与流速的1.75~2次方成正比。

(4)在流速较大且雷诺数较大时发生。

二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。

(2)ef段:当υ>υ''时,流动只能是紊流。

(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。

图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。

流体力学第六章

流体力学第六章

流体由于具有易变形的特性(易流动性),因此流体的
运动要比工程力学中的刚体的运动复杂得多。在流体运动中,
有旋流动和无旋流动是流体运动的两种类型。由流体微团运
动分析可知,有旋流动是指流体微团旋转角速度
动,无旋流动是指
r 的 0流动。
r 的 0流
粘性流体的流动大多数是有旋流动,而且有时是以明显的 旋涡形式出现的,如桥墩背流面的旋涡区,船只运动时船尾 后形成的旋涡,大气中形成的龙卷风等等。但在更多的情况 下,流体运动的有旋性并不是一眼就能看得出来的,如当流 体绕流物体时,在物体表面附近形成的速度梯度很大的薄层 内,每一点都有旋涡,而这些旋涡肉眼却是观察不到的。至 于工程中大量存在着的湍流运动,更是充满着尺度不同的大 小旋涡。
旋转角速度:流体微团单位时间内绕与平面垂直的轴所 转过的角度。
流体微团转过的角度为
90 45
2
2
z
lim 1 2 t 0

t

1 (v 2 x
u ) y
同理可得
x

1 2
( w y

v ) z
u xt x
x
vC

v

v x
x
v y
y
线变形速度:单位时间内某方向的微元长度在此方向的
相对变化量。
x

lim
t ,x0

x

u x
xt


xt
x

u x
同理可得
y

v y
z

w z
角变形速度:单位时间内在坐标平面内的两条微元边的 夹角的减小量的一半。

流体力学第六章

流体力学第六章

积分常数C1、C2由边界条件确定。
C1 exp( h) C2 exp( h) 0
消去一个常数
C C1 exp(h) C 2 exp(h) 2 C exp ( z h) exp ( z h) Cch ( z h) 2 Cch ( z h)sin x cos t 在 z0
t x x y y z
自由面上的运动边界条件
波浪问题的基本方程和边界条件:

2φ x
2

2φ y
2
1 t 2
n 0

z p pa

2
2
0
运动学方程 动力学方程

gz 0
=+

pa C (t ) dt
1 p pa gz 0 t 2
在自由面上: z , p pa
1 g 0 t 2
在自由面上:
z ( x, y, t ) , z z ( x x, y y, t t )
流体质点的速度 :
Ach ( z h) u cos x cos t x shh
w Ash ( z h) sin x cos t z shh
波数和频率之间的关系
Ach ( z h) sin x cos t shh
z0
0 在 z h z g 0 在 z 0 t
Ach ( z h) sin x cos t shh
2 gthh
流体质点的运动轨迹(有限水深):
u w
Ach ( z h) sh h Ash ( z h) sh h

流体力学 第6章

流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v

8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数

流体力学第六章 气体射流

流体力学第六章 气体射流

射流考虑,当长宽比大于10时,按平面射流考虑。
6.按射流流体的流动方向与外界空间流体的流动
方向不同,可分为顺流射流、逆流射流和叉流射流。
7.按射流流体与外界空间内流体的温度及浓度不
同,可分为温差射流和浓差射流。
8.按射流流体内所携带的异相物质的不同,可分
为气液两相射流,气固两相射流和液固两相射流以及
流到无限大空间中,流动不受固体边壁的限制,
为无限空间射流,又自由射流。反之为有限空间 射流
射流的分类方法:
1.按射流流体的流动状态不同,可分为层流射流 和紊流射流。一般按喷口直径和出口流速计算的雷诺 数大于30以后即为紊流射流。 2.按射流流体的流动速度大小不同,可分为亚音 速射流和超音速射流。
3.按射流流体在充满静止流体的空间内扩散流动
R 3 .4 R 0 ( as R0 0 . 294 ) 3 . 4 a s R 0
所以,喷口至工作区的距离为
s R R0 3 .4 a 1 . 2 0 . 15 3 . 4 0 . 08 3 . 86 m
射流起始段长度为
习 题 解 析
s n 0 . 672 R0 a 0 . 672 0 . 15 0 . 08 1 . 26 m 3.86 m
R r0 = x x0 = x0 s x0 =1+ s x0 1 3 .4 a s r0 3 .4 ( as r0 0 . 294 )
R r0
3 .4 a x , x
x r0
D d0
as 6 .8 d 0 . 147 0

tg K a

0 . 965 as r0 0 . 294
,可得

大学物理 第6章流体力学

大学物理 第6章流体力学
流线: 某瞬间在流场中绘出的曲线,曲线上各流元的速度矢 量和该线相切。 流线表示瞬时流动方向,流线不能相交。
流线密处流速大,流线稀处流速小
稳定流动中,流线与迹线重合
流管:
某时刻在速度场中做一条非流线的曲线,经过曲线 上的每一点做流线,这些流线在空间形成一个曲面, 称为流面。 如果在流体中所做的非流线的 曲线是闭合的,则所得到的流 面称为流管。 流管内外的流体都没有穿过流 面的速度分量,管内流体不能 流到管外,管外流体也不能流 入管内。 对稳定流动,流线和流管都不随时间变化,流管和真 的管道相似。
二、流体的连续性原理
体积流量 流体中单位时间内流过某一横截面的流体体积
ds
v
对于面元 s s 0
s ds 可认为面元上各点流速 v相等
单位时间内流过面元的流体体积
ds
S
vdt
dV ds vdt cos dQV v ds dt dt
pA po ρg (hA ho )
重力场中,静止流体静压强公式。流体静力学 是流体动力学的特殊情况。
(6)h1、h2是相对同一参考平面的,两个参考点的位 置应该在同一流线上
h1 h2
1 2 p ρv 常数 2
小孔流速
p0
A
h
取一流线,在该流线上在液面处取点 A、 小孔处取点B 1 2 1 2 p A v A ghA pB vB ghB 2 2
外力做功
b b
p2 , S2
v2
a
A p1S1l1 p2S2l2 p1V1 p2V2
由功能原理,得
p1 , S1
v1
h1
h2
1 1 2 2 p1V1 m1 gh1 m1v1 p2 V2 m2 gh2 m2 v2 2 2 1 1 2 2 p1 gh1 v1 p2 gh2 v2 2 2 1 2 伯努利方程 p gh v 常量 2

《流体力学》第六章_粘性流体绕物体的流动

《流体力学》第六章_粘性流体绕物体的流动

第四节 平面层流边界层的微分方程
❖ 在这一节里,将利用边界层流动的特点如流体的粘度大小、 速度与温度梯度大和边界层的厚度与物体的特征长度相比为 一小量等对N-S方程进行简化从而导出层流边界层微分方程。 在简化过程中,假定流动为二维不可压定常流,不考虑质量 力,则流动的控制方程N-S方程为:
vx
vx x
◆空间流动三维问题,N—S方程及其求解 ◆扰流阻力及其计算 ◆附面层的问题
第一节 不可压缩粘性流体的运动微分方程
以流体微元为分析对象,流体的运动方程可写为 如下的矢量形式:
DV F P
Dt
(8-1)
这里 :
DV V V V
Dt t
(8-2)
是流体微团的加速度,微分符号:
D Dt
t
V
p 2
vr r
p
3
2 r0
cos
( ) r, rr0
(1 vr r
v0 r
v ) v
r
r
3
sin
2 r0
(8-25)
对上述两式积分,可分别得到作用在球面上的压强和切应力 的合力。将这两个合力在流动方向的分量相加,可得到流体 作用在圆球上的阻力为:
FD 6 r0 3 d
2vy z 2
)
p z
(2vz
x 2
2vz y 2
2vz z 2
)
(8-18)
一、蠕动流动的微分方程
●如果流动是不可压缩流体,则连续性方程为:
vx v y vz 0 x y z
(8-19)
将式(8-18)依次求
2 x
p
2

2 y
p
2
、 2

流体力学第六章

流体力学第六章
r0 d0
(3)起始段质量平均温差∆T2 将起始段的 qv 0 / qv代入T2 / T0 qv 0 / qv ,即得起始段 质量平均温差计算式为
T2 qv 0 T0 qv
1 as as 1 0 .76 1 .32 r0 r 0
2
二、射流弯曲
质量平均流速为轴心流速的 47%。因此用v2 代表使用区 v2 :不仅在数值上 v1 、 的流速要比 v1 更合适些。但必须注意, 不同,更重要的是在定义上根本不同,不可混淆。
五、起始段核心长度 Sn 及核心收缩角
r0 s n 0.672 a
r0 tg 1.49a sn
§6-4 平面射流
一、有限空间射流结构
C :漩涡中心
Ⅰ-Ⅰ断面也称第一临界断面, Ⅱ-Ⅱ断面也称第二临界断面 ,
橄榄形流场由三部分组成: 射流出口至断面Ⅰ-Ⅰ为自由扩张段
Ⅰ-Ⅰ断面至Ⅱ-Ⅱ断面为有限扩张段
Ⅱ-Ⅱ断面至Ⅳ-Ⅳ为收缩区段
二、有限空间射流动力特征与半经验公式
有限空间射流研究起来较自由射流困难得多。 有限空间射流不同于自由射流的重要特征是橄榄形边界 外部与固体边壁形成与射流方向相反的回流区。而空调工程 中,工作区通常就设在回流区内,因此对其风速需要限制。 计算回流区速度v 的半经验公式:
三、射流的动力特征
射流过流断面间的动量变化规律为射流的动力特征。
实验表明,射流中任意一点上的压强均等于周围气体的 压强。根据动量方程可以导出,射流各断面上的动量相等。 这就是射流的动力特征。
三、射流的动力特征
以圆断面射流为例,它的任意断面上的动量可表示为
Q0 v0 r v 2 u 2 y dy
得: 令

流体力学第六章

流体力学第六章
●圆柱形外管嘴恒定出流 ●圆柱形外管嘴的真空 ●圆柱形外管嘴的正常工作条件 ●其它类型管嘴的出流
在孔口上连接一段短管,即形成了的管嘴。 应用管嘴的目的是为了增加孔口出流的流量,或者是为了增加 或减小射流的速度。 管嘴的基本型式: (a)圆柱形外管嘴 (b)圆柱形内管嘴 (c)圆锥形收敛管嘴 (d)圆锥形扩张管嘴 (e)流线形管嘴 着重介绍圆柱形外管嘴的恒定出流。
解:水位由D降至0所需时间
t 1 0dh
A 2g D h
式中水箱水面面积
lBl2 D 2 2 hD 2 22l hD h2
t 1 02l hDh2dh
A 2g D
h
2 l 0(D h )12d (D h ) 4lD 32 4 .4 m in
A2 gD
3A2 g
§6-2 管嘴出流
φn--管嘴的流速系数,n
1
2
1 0.82 10.5
μn――管嘴的流量系数 因出口断面无收缩,n n 0.82
薄壁小孔自由出流 QA 2gH,0 全部完善收缩 μ=0.62
结论:在相同的水头作用下, μn/μ=1.32,同样断面管嘴的过 流能力是孔口的1.32倍。
二、圆柱形外管嘴的真空
孔口外面加管嘴后,增加了阻力,但流量并不减少,反而增加。 这是由于收缩断面处真空的作用。
2、按孔口作用水头(或压力) 的稳定与否分
恒定孔口出流:出流水头不变 非恒定孔口出流:出流水头变化
3、按出口出流后的周围介质分
自由出流:若液体经孔口流入大气,称自由出流。 淹没出流:液体经孔流入充满液体的空间,称淹没出流。
4、按孔壁的厚度分
薄壁孔口:液流与孔壁仅在一条周线上接触,壁厚对出流无影 响。
全部收缩的孔口分为:

流体力学第六章明渠恒定均匀流

流体力学第六章明渠恒定均匀流
(1)b一定,求h 假定若干不同的h值,绘出Q=f(h)曲线,
找出对应的h。 (2)h一定,求b
假定若干不同的b值,绘出Q=f(b)曲线, 找出对应的b。
(3)按梯形水力最佳断面条件,确定b和h。 确定边坡系数m,计算宽深比βm,根据
h=f(βm)得出h。 (4)已知 Q、v、i、n、m,求断面尺寸b和h。
流的汇入与分出; (3)渠道表面粗糙系数沿程不变; (4)渠道中无闸门、坝体或跳水等建筑物
对水流的干扰。
明渠均匀流的特性: (1)流线均为相互平行的直线; (2)过水断面上的流速分布、断面平均流
速沿程不变,V 2不变; 2g
(3)水面线、总水头线及底坡线三者相互 平行。
明渠均匀流的计算公式:
谢才公式:v C RJ C Ri
设计n值偏小,设计阻力偏小,断面尺寸 偏小,实际流速<设计流速;
水力最佳断面:流量一定时过水断面最小
或者过水断面一定时流量最大。
51
Q AC
Ri
A
3i n
2

1
2
3
n,i,A一定时,湿周χ越小,Q越大; n,i,Q一定时,湿周χ越小,A越小。
梯形水力最佳断面: n,i,A一定时,湿周
χ最小。
dA dh
d
dh
0
0
m
R
2( A
1 m2 m) hm
m 2
§6-2 简单断面明渠均匀流的水力计算
➢ 验算渠道的输水能力:已知断面形状、 尺寸、n、i,求Q。
➢ 确定渠道底坡:已知断面形状、尺寸、n、 Q,求i。
➢ 确定渠道的断面尺寸:已知Q、i、n、m, 求断面尺寸b和h。
确定渠道的断面尺寸:
例1:某矩形断面渠道,粗糙系数

流体力学第六章边界层理论(附面层理论)

流体力学第六章边界层理论(附面层理论)
减阻和节能
通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。

流体力学第六章 边界层理论 (附面层理论)

流体力学第六章 边界层理论 (附面层理论)
整理ppt
流体力学第六章
1921年起,层流边界层的近似算法大量出现,这些算 法大多数以流体力学中的一般积分原理为基础:如卡门-波 尔豪森积分、列宾森的能量积分等.
整理ppt
流体力学第六章
整理ppt
流体力学第六章
第一节 普朗特边界层微分方程式 6.1.1普朗特理论
整理ppt
流体力学第六章
一、普朗特关于对边界层的定义:
整理ppt
6.2.3附加边界条件
流体力学第六章
以下三个方程均只有两个未知量: u(y),(x)
U(x),p(x)为已知 一.哥氏积分
k1x0uk2dyU kk11 x0udypx0ukdyk0uk1uy2dy
二.卡氏积分
x
0
u2dy
U
x
0
udy
p x
u y
0.
三.列氏积分
流体力学第六章
[u
v x
v
v y
]
(
p y
)
2v x2
2v y 2
U
(U L
)
1 L
(U
L
)2
1
(
p ) y
(U
L
)
1
2
U U 1 (U )2 1 ( p ) (U )2
LL L
y
L
p y
U2 L2
U2 U
L
2
整理ppt
流体力学第六章
比较
p x
U2 L
0
u
kdy
k
0
u
k 1
u y
2
dy
(6-2-3)
x
u 2dy
0

6工程流体力学 第六章理想不可压缩流体的定常流动

6工程流体力学 第六章理想不可压缩流体的定常流动

§6-1 理想不可压缩流体的一元流动(续41)
分别取进口截面与喉部截面为1、2计算截面, 利用伯努利方程可得:
gz——重力场中单位质量流体从z=0上升至z克服重
力所做的功,因此具有的重力势能。
p
——单位质量流体从 p=0至状态p克服压力所做
功,也可以理解为流体相对于p=0的状态所
蕴含的能量,这种能量称为压力能。
§6-1 理想不可压缩流体的一元流动(续9)
引入压力能的概念后,伯努利方程就 可理解为:
在重力场中,当理想不可压缩流体定常 流动时,单位质量流体沿流线的重力势能、 压力能和动能之和为常数,该定理反映了机 械能转化和守恒定理。
表示理论出流射流速度。
上述分析中,忽略了粘性和表面张力的影响。
§6-1 理想不可压缩流体的一元流动(续30)
速度系数定义为:
CV
实 际 平 均 速 度——速度系数 理论速度
Cd

际出流的体积流 理论体积流量
量——流量系数
CC
收 缩截 面 面积AC 孔 口 面 积A
——面积收缩系数
§6-1 理想不可压缩流体的一元流动(续31)
Cd
实际体积流量 理 论 体 积 流 量

缩 截 面 面 积 孔 口 面 积
实 理
际 论
平 速
均 度

度=CcCV
Q CdQth Cd A 2gH CcCV A 2gH
速度系数,体积收缩系数和流量系数均需由实 验确定。对于锐缘圆形孔口,
CV 0.97 0.99, Cc 0.61 0.66
§6-1 理想不可压缩流体的一元流动 一元流动: 所谓一元是指只有一个空间变量。
在流体力学中属于这种性质的流动是指沿流 线的流动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几个概念
涵箱
加拿大某渠
龙羊峡导流洞
引渠
顺坡(正坡):i>0
平坡:i=0
逆坡(反坡):i<0明槽槽底沿程
降低
不变
增高
顺坡渠道i>0,当渠底坡度较小,
如i<0.01或θ很小时,两断面
间渠底长度△S与两断面间水平
距离△L近似相等,故:
此时,过流断面可以看成铅直面(θ很小),水深h可以直
接量取,认为h=h’。

§6-1 明渠均匀流的水力学特征
一、明渠均匀流特征
3.总水头线、测压管水头线及渠底线相互平行,且
假定单位面积上所受的阻力损失为
流体由断面1流至断面2总阻力损失为
11:21
由于是明渠紊流,故需要讨论流动的水力半径,根据
圆管水力半径的计算,R=d/4,故:
谢才公式(1775年):
由公式可知,要使明渠中的流动保持均匀流动,则i必须大于
0,也就是说只有在顺坡渠道的均匀流动中才有可能满足
§6-2 明渠均匀流的基本计算公式§6-3 水力最优断面及允许流速
从均匀流的公式可以看出,明渠的输水能力(流量)取决于过
水断面的形状、尺寸、底坡和粗糙系数的大小。

设计渠道时,底坡一般依地形条件或其它技术上的要求而定;
11:21
§6-3 水力最优断面及允许流速
从经济的观点来说,总是希望所选定的横断面形状和尺寸在
的比值成为边坡系数,
表示。


11:21
11:21
二、矩形断面的水力最优条件对于矩形断面,m=0
故,矩形断面水力最优条件为
在一般土渠中,边坡系数m>l,则按水力最优断面求得宽深比<1,即梯形水力最佳断面通常都是窄而深的断面。

11:21
内,即:
11:21§6-4 明渠均匀流水力计算的几类问题
一、校核渠道的输水能力
下,将已知值代入公式即可。

11:21
m、h,求底坡i。

11:21
§6-5 复式断面明渠均匀流水力计算
前述梯形、矩形等单式过流断面,如果某一渠道承担着
由于渠道主槽左右两侧各有边滩,因此该复式断面可以
分为三个部分,主槽、左边滩和右边。

具体做法是在左右边滩内侧做1-1和2-2铅垂线将主槽与
边滩分开,通过复式断面的流量=各单式断面流量之和,即
11:21
、梯形单式断面水力最优条件:
、矩形单式断面水力最优条件:b=2h
水力最优断面不一定最经济最合理,需要根据实际情况确定。

、设计中要求渠道流速u在不冲、不淤的允许流速范围内。

11:21。

相关文档
最新文档