高等数学(同济5版)完整教案-第十二章 常系数微分方程.
高等数学(同济大学第五版)第十二章
习题12−11. 试说出下列各微分方程的阶数:(1)x (y ′)2−2yy ′+x =0;解 一阶.(2)x 2y ′−xy ′+y =0;解 一阶.(3)xy ′′′+2y ′+x 2y =0;解 三阶.(4)(7x −6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy ′=2y , y =5x 2;解 y ′=10x .因为xy ′=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y ′+y =0, y =3sin x −4cos x ;解 y ′=3cos x +4sin x .因为y ′+y =3cos x +4sin x +3sin x −4cos x =7sin x −cos x ≠0,所以y =3sin x −4cos x 不是所给微分方程的解.(3)y ′′−2y ′+y =0, y =x 2e x ;解 y ′=2xe x +x 2e x , y ′′=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ′′−2y ′+y =2e x +4xe x +x 2e x −2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ′′−(λ1+λ2)y ′+λ1λ2y =0, .x x e C e C y 2121λλ+= 解 , .x x e C e C y 212211λλλλ+=′x x e C e C y 21222211λλλλ+=′′因为y y y 2121)(λλλλ+′+−′′)())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++−+= =0,所以是所给微分方程的解.x x e C e C y 2121λλ+= 3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x −2y )y ′=2x −y , x 2−xy +y 2=C ;解 将x 2−xy +y 2=C 的两边对x 求导得2x −y −xy ′+2y y ′=0,即 (x −2y )y ′=2x −y ,所以由x 2−xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy −x )y ′′+xy ′2+yy ′−2y ′=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y y x y ′+=′11, 即xxy y y −=′. 再次求导得 )(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y ′+′−′−⋅−=−+−′−=−−′+−−′=′′. 注意到由y y x y ′+=′11可得1−′=′y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y ′+′−′−⋅−=′+′−′−′−⋅−=′′, 从而 (xy −x )y ′′+xy ′2+yy ′−2y ′=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2−y 2=C , y |x =0=5;解 由y |x =0=0得02−52=C , C =−25, 故x 2−y 2=−25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y ′|x =0=1;解 y ′=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y ′|x =0=1得, ⎩⎨⎧=+=10121C C C 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x −C 2), y |x =π=1, y ′|x =π=0.解 y ′=C 1cos(x −C 2).由y |x =π=1, y ′|x =π=0得, 即, ⎩⎨⎧=−=−0)cos(1)sin(2121C C C C ππ⎩⎨⎧=−=0cos 1sin 2121C C C C 解之得C 1=1, 22π=C , 故2sin(π−=x y , 即y =−cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ′, 由条件y ′=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分.解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y ′−1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(−x , 0), 从而有y x x y ′−=+−10, 即yy ′+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解2T P k dT dP =, 其中k 为比例系数.习题12−111. 试用幂级数求下列各微分方程的解:(1)y ′−xy −x =1;解 设方程的解为, 代入方程得 ∑∞=+=10n n n x a a y ,111011=−−−∑∑∞=+∞=−x x a x a x na n n n n n n 即 . 0])2[()12()1(112021=−++−−+−+∞=+∑n n n n x a a n x a a a 可见 a 1−1=0, 2a 2−a 0−1=0, (n +2)a n +2−a n =0(n =1, 2, ⋅ ⋅ ⋅),于是 , 11=a 2102a a +=, !!313=a , !!4104a a +=, ⋅ ⋅ ⋅ , !)!12(112−=−k a k , !)!2(102k a a k +=, ⋅ ⋅ ⋅. 所以 ]!)!2(1!)!12(1[120120∑∞=−++−+=k k k x k a x k a y ∑∑∞=∞=−++−+=12011202(!1)1(!)!12(1k k k k x k a xk a ∑∞=−−+++−=11220!)!12(1)1(12k k x x k e a , 即原方程的通解为∑∞=−−+−=1122!)!12(112k k x x k Ce y .(2)y ′′+xy ′+y =0;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,0)1(01122=++−∑∑∑∞=∞=−∞=−n n n n n n n n n x a xna x x a n n即 , 0])1()1)(2[(21220=++++++∑∞=+n n n n x a n a n n a a 于是 0221a a −=,1331a a −=, ⋅ ⋅ ⋅,1112!)!12()1(a k a k k −−=−−,02!)!2()1(a k a k k −=, ⋅ ⋅ ⋅. 所以 ]!)!12()1(!)!2()1([12112010+∞=+−+−++=∑k k k k k x k a x k a x a a y ∑∑∞=−−∞=−−+−=11211020!)!12()1()2(!!1k k k k k x k a x k a ∑∞=−−−−−+=1121120!)!12()1(2k k k x x k a e a , 即原方程的通解为∑∞=−−−−−+=1121221!)!12()1(2k k k x x k C e C y . (3)xy ′′−(x +m )y ′+my =0(m 为自然数);解 设方程的解为, 代入方程得 ∑∞==0n n n x a y , 0)()1(01122=++−−∑∑∑∞=∞=−∞=−n n n n n n n n n x a m xna m x x a n n x 即 . 0])())(1[()(1110=−−−++−∑∞=+n n n n x a m n a m n n a a m 可见 (a 0−a 1)m =0, (n −m )[(n +1)a n +1−a n ]=0 (n ≠m ),于是 a 0=a 1,)2( )2()1(1+≥+⋅⋅⋅−=+m n m n n a a m n ,)( !11m n a n a n ≤=. 所以 ∑∑∞+=+++=+⋅⋅⋅−+++=2111100)2()1(!m n n m m m m n n x m n n a x a x n a a y∑∑∞+=+++=+++=211100!)!1(!m n n m n m mn n n x a m x a n x a ∑∑∞+=+=++=1100!)!1(!m n n m m n n n x a m n x a )!()!1(!0100∑∑=+=−++=m n n x m m n n n x e a m n x a∑=+++−++=m n n m x m n x a m a e a m 0101!])!1([)!1(, 即原方程的通解为∑=+=m n n x n x C e C y 021!(其中C 1, C 2为任意常数). (4)(1−x )y ′=x 2−y ;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,∑∑∞=∞=−−=−0211)1(n n n n n n x a x x na x 即 . 0])1[()13(231223201=+−++−−+++∑∞=+n n n n n x a na a n x a a x a a a 可见 a 1+a 0=0, 2a 2=0, 3a 3−a 2−1=0, (n +1)a n +1−(n −1)a n =0(n ≥3),于是 a 1=−a 0, a 2=0, 313=a , )1(221−=−=−n n a n n a n n (n ≥4). 因此原方程的通解为∑∞=−++−=43)1(231)1(n n x n n x x C y (C =a 0为任意常数). . (5)(x +1)y ′=x 2−2x +y .解 设方程的解为, 代入方程得 ∑∞==0n n n x a y, ∑∑∞=∞=−+−=+02112)1(n n n n n n x a x x x na x 即 . 0])1()1[()13()1(231232210=++−+−+++++−∑∞=+n n n n x a n a n x a a x a a a 于是 a 1=a 0, a 2=−1,323=a ,)4()1(4)1( 231≥−−=−−=−−n n n a n n a n n n. 因此原方程的通解为 ∑∞=−−−++−+=4332)1(4)1(32)1(n n n x n n x x x C y (C =a 0为任意常数). 2. 试用幂级数求下列方程满足所给初始条件的解:(1)y ′=y 2+x 3, 21|0==x y ; 解 根据初始条件, 可设方程的解为∑∞=+=121n n n x a y , 代入方程得 32111)21(x x a x na n n n n n n ++=∑∑∞=∞=−, 即 ⋅⋅⋅+++++++=+∑∑∞=∞=− )2(2414312232122113211x a a a x a a x a x a x x na a n n n n n n . 比较两边同次幂的系数得411=a , 2a 2=a 1, 3a 3=a 2+a 12, 4a 4=a 3+2a 1a 2+1, ⋅ ⋅ ⋅, 于是 411=a , 812=a , 1613=a , 3294=a , ⋅ ⋅ ⋅. 因此所求特解为329161814121432⋅⋅⋅+++++=x x x x y . (2)(1−x )y ′+y =1+x , y |x =0=0;解 根据初始条件, 可设方程的解为, 代入方程得 ∑∞==1n n n x a y,x x a x na x n n n n n n +=+−∑∑∞=∞=−1)1(111即 . x x a n a n a n n n n +=−+−+∑∞=+1])1()1[(111比较系数得 , 11=a 212=a , )3( )1(121≥−=−=−n n n a n n a n n . 因此所求特解为∑∑∞=∞=−+=−++=232)1(1)1(121n n n n x n n x x n n x x y . 因为∑∞=−2)1(1n n x n n 的和函数为(1−x )ln(1−x )+x , 所以特解还可以写成 y =2x +(1−x )ln(1−x )+x .(3)0cos 22=+t x dt x d , x |t =0=a , 0|0==t dt dx . 解 根据初始条件, 可设方程的解为. ∑∞=+=2n n n t a a x 将, ∑∞=+=2n nn t a a x ∑∞=−−=2222)1(n n n t a n n dt x d 和∑∞=−=02)!2()1(cos n n n t n t 代 入方程得0)!2()1()()1(02222=−++−∑∑∑∞=∞=∞=−n n n n n n n n n t n t a a t a n n .将级数展开、整理合并同次项, 并比较系数得, a a =001=a , !22a a −=, , 03=a !424a a =, , 05=a !696a a −=, , 07=a !8558a a =, ⋅ ⋅ ⋅. 故所求特解为 !855!69!42!211(8642⋅⋅⋅++−+−=t t t t a x .习题12−21. 求下列微分方程的通解:(1)xy ′−y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得∫∫=dx x dy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x −5y ′=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得, ∫∫+=dx x x dy )53(52即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C =为任意常数.(3)2211y y x −=′−;解 分离变量得2211x dx y dy −=−, 两边积分得∫∫−=−2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y ′−xy ′=a (y 2+y ′);解 方程变形为(1−x −a )y ′=ay 2, 分离变量得dx x a a dy y −−=112, 两边积分得∫∫−−=dx xa a dy y 112, 即 1)1ln(1C x a a y−−−−=−, 故通解为)1ln(1x a a C y −−+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0; 解 分离变量得dx xx y y y tan sec tan sec 22−=, 两边积分得∫∫−=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=−ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10−y dy =10x dx ,两边积分得∫∫=−dx dy x y 1010, 即 10ln 10ln 1010ln 10C x y +=−−, 或 10−y =10x +C ,故通解为y =−lg(C −10x ).(7)(e x +y −e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1−e y )dx , 分离变量得dx e e dy e e xx y y +=−11, 两边积分得∫∫+=−dx e e dy e e xx y y 11, 即 −ln(e y )=ln(e x +1)−ln C ,故通解为(e x +1)(e y −1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos −=, 两边积分得∫∫−=dx x x dy y y sin cos sin cos , 即 ln(sin y )=−ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =−x 3dx ,两边积分得∫∫−=+dx x dy y 32)1(, 即 14341)1(31C x y +−=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2−4x )dy =0.解 分离变量得dx xx dy y 411(4−+=, 两边积分得∫∫−+=dx x x dy y )411(4, 即 ln y 4=ln x −ln(4−x )+ln C ,故通解为y 4(4−x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y ′=e 2x −y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得, ∫∫=dx e dy e x y 2即 C e e x y +=221,或 )21ln(2C e y x +=.由y |x =0=0得0)21ln(=+C , 21=C , 所以特解2121ln(2+=x e y .(2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得∫∫=xdx ydy tan tan ,即 −ln(cos y )=−ln(cos x )−ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y ′sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得∫∫=dx x dy y y sin 1ln 1,即 C xy ln 2ln(tan )ln(ln +=, 或2tan x C e y =. 由e y x ==π2得4tan πC e e =, C =1,所以特解为2tan x e y =.(4)cos ydx +(1+e −x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y x x +=−1cos sin , 两边积分得∫∫+=−dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21−=, 两边积分得∫∫−=dx x dy y 21, 即 ln y =−2ln x +ln C ,或 y =Cx −2.由y |x =2=1得C ⋅2−2=1, C =4, 所以特解为24x y =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60°, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0×××=, 即dt x dV )9802(5.062.0×××=. 又因为330tan x x r =°=,故 dx x dx r V 223ππ−=−=, 从而 dx x dt x 23)9802(5.062.0π−=×××, 即 x dt 2398025.062.03×××=π,因此 C x t +×××−=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053××××=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+−=−××××=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即v t dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=. 由初始条件有C +×=2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+×=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ−=, 即dt RdR λ−=, 两边积分得ln R =−λt +C 1,从而 .)( 1C t e C Ce R ==−λ 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e −λt .又由于当t =1600时, 021R R =, 故λ16000021−=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0−−==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为 xy x y −=−−2002, 故曲线满足微分方程:x y dx dy −=, 即dx x dy y 11−=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2×3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v −==, 故dx =ky (h −y )dt .又由已知, y =at , 代入上式得dx =kat (h −at )dt ,积分得C t ka kaht x +−=3223121.由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x −=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=−=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x −=.习题12−31. 求下列齐次方程的通解:(1)022=−−−′x y y y x ;解 原方程变为1)(2−−=x y x y dx dy . 令xy u =, 则原方程化为 12−+=+u u dx du x u , 即dx x du u 1112=−, 两边积分得C x u u ln ln )1ln(2+=−+, 即Cx u u =−+12, 将xy u =代入上式得原方程的通解Cx x y x y =−+1)(2, 即222Cx x y y =−+. (2)xy y dx dy xln =; 解 原方程变为xy x y dx dy ln =. 令xy u =, 则原方程化为 u u dx du x u ln =+, 即dx x du u u 1)1(ln 1=−, 两边积分得ln(ln u −1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx −xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx −x 2u (udx +xdu )=0, 即dx x udu 1=,两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx −3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx −3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=−, 两边积分得C x u ln ln )21ln(213+=−−, 即2312x C u −=, 将xy u =代入上式得原方程的通解 x 3−2y 3=Cx .(5)0ch 3)ch 3sh2(=−+dy xy x dx x y y x y x ; 解 原方程变为xy x y dx dy +=th 32. 令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx x du u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx xy =. (6)0)1(2)21(=−++dy yx e dx e y x y x . 解 原方程变为y xy xe e y x dy dx 21)1(2+−=.令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+−=+, 即u u ee u dy du y 212++−=, 分离变量得dy y du e u e uu 1221−=++, 两边积分得ln(u +2e u )=−ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x =+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2−3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2u 2−3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=−−, 或dx x du u u u 1)11113(=−+++− 两边积分得−3ln |u |+ln|u +1|+ln|u −1|=ln|x |+ln|C |, 即u 2−1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2−x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2−x 2=y 3.(2)xy y x y +=′, y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212,将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy −y 2)dx +(y 2+2xy −x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u −x 2u 2)dx +(x 2u 2+2x 2u −x 2)(udx +xdu )=0,即dx x du u u u u u 1112232−=+++−+, 或 dx x du u u u 1)1211(2=+−+, 两边积分得ln|u +1|−ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段所围图形的面积为x 2, 求曲线弧A O 的方程. 解 设曲线弧A O 的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x =−∫,两边求导得 x x y x x y x y 2)(21)(21)(=′−−, 即 4−=′x y y . 令xy u =, 则有 4−=+u dx du x u , 即dx xdu u 41−=, 两边积分得u =−4ln x +C . 将xy u =代入上式得方程的通解 y =−4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =−4x ln x +x .习题12−41. 求下列微分方程的通解:(1)x e y dxdy −=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+∫⋅∫=−−−−−∫∫. (2)xy ′+y =x 2+3x +2;解 原方程变为x x y x y 231++=+′.])23([11C dx e x x e y x x +∫⋅++∫=∫−])23(1])23([12C dx x x x C xdx x x x +++=+++=∫∫x Cx x C x x x x +++=+++=22331)22331(1223.(3)y ′+y cos x =e −sin x ;解 )(cos sin cos C dx e e e y xdx x dx +∫⋅∫=∫−−)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=−−−∫.(4)y ′+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +∫⋅∫=∫−)2sin (cos ln cos ln C dx e x e x x +⋅=∫−∫+⋅=)cos 1cos sin 2(cos C dx x x x x=cos x (−2cos x +C )=C cos x −2cos 2x .(5)(x 2−1)y ′+2xy −cos x =0;解 原方程变形为1cos 1222−=−+′x xy x xy .)1cos(1221222C dx e x x e y x xdx x x +∫⋅−∫=∫−−−)(sin 11])1(1cos [112222C x x C dx x x xx +−=+−⋅−−=∫.(6)23=+ρθρd d ; 解 )2(33C d e e d d +∫⋅∫=∫−θρθθ )2(33C d e e +=∫−θθθ θθθ33332)32(−−+=+=Ce C e e . (7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +∫⋅∫=∫− )4(22C dx e x e x x +⋅=∫− .2222)2(x x x Ce C e e −−+=+= (8)y ln ydx +(x −ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e ye x y y dy y y +∫⋅∫=∫− )ln 1(ln 1C ydy yy +⋅=∫ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(−+=−x y dxdy x ; 解 原方程变形为2)2(221−=−−x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +∫⋅−∫=∫−−− ∫+−⋅−−=]21)2(2)[2(2C dx x x x =(x −2)[(x −2)2+C ]=(x −2)3+C (x −2).(10)02)6(2=+−y dxdy x y .解 原方程变形为y x y dy dx 213−=−. ])21([33C dy e y e x y dy y +∫⋅−∫=∫− )121(33C dy y y y +⋅−=∫ 32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =−, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +∫⋅∫=∫− )(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=∫. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x x +∫∫=∫− )cos (1)sin (1C x xC xdx x x x +−=+⋅=∫. 由y |x =π=1, 得C =π−1, 故所求特解为)cos 1(1x x y −−=π. (3)x e x y dx dy cos 5cot =+, 4|−==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +∫⋅∫=∫− )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +−=+⋅=∫. 由4|2−==πx y , 得C =1, 故所求特解为)15(sin 1cos +−=x e x y . (4)83=+y dxdy , y |x =0=2;解 )8(33C dx e e y dx dx +∫⋅∫=∫− x x x x x Ce C e e C dx e e 3333338)38()8(−−−+=+=+=∫. 由y |x =0=2, 得32−=C , 故所求特解为)4(323x e y −−=. (5)13232=−+y x x dx dy , y |x =1=0. 解 )1(223232C dx e e y dx x x dx x x +∫⋅∫=∫−−− )21()1(22221131313C e e x C dx e x e x x x x x +=+=−−∫. 由y |x =1=0, 得e C 21−=, 故所求特解为)1(211132−−=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y ′=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+∫∫=∫∫−− =e x (−2xe −x −2e −x +C )=Ce x −2x −2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x −x −1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dt dv m21−=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m km k +⋅=+∫⋅∫=∫∫−− )(22222121C e k m k te k k e t m kt m k t m k +−=−.由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(22122121222k m k e k m k te k k e v t m k t m k m k +−=− 即 )1(22121t m k e k m k t k k v −−−=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知01025sin 20=−−i dt di t , 即t i dt di 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(−−+−=+∫⋅∫=∫. 因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π−+=+−=−−t e e t t i t t (A).6. 设曲在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).dy x x xf dx x yf L ])(2[)(2−+∫ 解 因为当x >0时, 所给积分与路径无关, 所以])(2)]([2x x xf xx yf y −∂∂=∂∂, 即 f (x )=2f (x )+2xf ′(x )−2x , 或 1)(21)(=+′x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+∫⋅∫=∫∫−32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy −=+;解 原方程可变形为x x ydx dy y sin cos 11−=+, 即x x y dx y d cos sin )(11−=−−−. ])cos sin ([1C dx e x x e y dx dx +∫⋅−∫=−−∫x Ce C dx e x x e x x x sin ])sin (cos [−=+−=∫−, 原方程的通解为x Ce y x sin 1−=. (2)23xy xy dxdy =−; 解 原方程可变形为x y x dxdy y =−1312, 即x xy dx y d −=+−−113)(. ])([331C dx e x e y xdx xdx +∫⋅−∫=∫−−)(222323C dx xe e x x +−=∫− 31)31(222232323−=+−=−−x x x Ce C e e , 原方程的通解为311223−=−x Ce y . (3)4)21(3131y x y dx dy −=+; 解 原方程可变形为)21(31131134x y dx dy y −=+, 即12)(33−=−−−x y dx y d . ])12([3C dx e x e y dx dx +∫⋅−∫=−−∫x x x Ce x C dx e x e +−−=+−=∫−12])12([, 原方程的通解为1213−−=x Ce y x .(4)5xy y dxdy =−; 解 原方程可变形为x ydx dy y =−4511, 即x y dx y d 44)(44−=+−−. ])4([444C dx e x e y dx dx +∫⋅−∫=∫−− )4(44C dx xe e x +−=∫− x Ce x 441−++−=, 原方程的通解为x Ce x y 44411−++−=.(5)xdy −[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x yx dx dy y +=⋅−⋅, 即)ln 1(22)(22x y x dx y d +−=+−−. ])ln 1(2[222C dx e x e y x dx x +∫⋅+−∫=∫−− ])ln 1(2122C dx x x x ++−=∫ x x x x C 94ln 322−−=, 原方程的通解为x x x x C y 94ln 32122−−=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy −=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x −=−,即dx xdu v f v g v v g 1)]()([)(=−, 积分得 C x du v f v g v v g +=−∫ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =−, 即21u du dx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =−x +tan(x −C ).(2)11+−=yx dx dy ; 解 令u =x −y , 则原方程化为 111+=−udx du , 即dx =−udu . 两边积分得 1221C u x +−=.将u =x +y 代入上式得原方程的通解12)(21C y x x +−−=, 即(x −y )2=−2x +C (C =2C 1).(3)xy ′+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+−, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e xy 1=. (4)y ′=y 2+2(sin x −1)y +sin 2x −2sin x −cos x +1;解 原方程变形为y ′=(y +sin x −1)2−cos x .令u =y +sin x −1, 则原方程化为x u x dx du cos cos 2−=−, 即dx du u =21. 两边积分得 C x u +=−1. 将u =y +sin x −1代入上式得原方程的通解 C x x y +=−+−1sin 1, 即C x x y +−−=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为)1()1(22y x xy x xy y dx dy +++−=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++−=−, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+−−=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+−−=+, 即 2x 2y 2ln y −2xy −1=Cx 2y 2(C =2C 1).习题12−51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为x Q xy yP ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为 , C dy y y x dx x y x =++∫∫02202)46(3即 C y y x x =++3223343. (2)(a 2−2xy −y 2)dx −(x +y )2dy =0;解 这里P =a 2−2xy −y 2, Q =−(x +y )2. 因为xQ y x y P ∂∂=−−=∂∂22, 所以此方程是全微分方程, 其通解为 , C dy y x dx a y x =+−∫∫0202)(即 a 2x −x 2y −xy 2=C .(3)e y dx +(xe y −2y )dy =0;解 这里P =e y , Q =xe y −2y . 因为x Q e yP y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为 , C dy y xe dx e y y x =−+∫∫000)2(即 xe y −y 2=C .(4)(x cos y +cos x )y ′−y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy −(y sin x +sin y )dx =0. 这里P =−(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=−=∂∂sin cos ,所以此方程是全微分方程, 其通解为, C dy x y x dx yx =++∫∫00)cos cos (0即 x sin y +y cos x =C .解(5)(x 2−y )dx −xdy =0;解 这里P =x 2−y , Q =−x . 因为x Q yP ∂∂=−=∂∂1, 所以此方程是全微分方程, 其通解为, C xdy dx x y x =−∫∫002即 C xy x =−331. (6)y (x −2y )dx −x 2dy =0;解 这里P =y (x −2y ), Q =−x 2. 因为y x yP 4−=∂∂, x x Q 2−=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为 , C d e d =+∫∫θθρθρρ02022即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y yP 2=∂∂, y x Q =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx −dy )=dx +dy ;解 方程两边同时乘以y x +1得 y x dy dx dy dx ++=−, 即d (x −y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x −y =ln(x +y )+C .(2)ydx −xdy +y 2xdx =0;解 方程两边同时乘以21y 得 02=+−xdx y xdy ydx , 即02()(2=+x d y x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x −3y )dx +(1−3y 2x )dy =0;解 原方程变形为xy 2dx −3y 3dx +dy −3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+−+xdy ydx ydy xdx , 即0)(3)1()2(2=−−xy d y d x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C xy yx =−−3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得 022=−++dx yx ydy xdx , 即0)]ln(21[22=−+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x −y 2)dx +2xydy =0;解 原方程变形为xdx −y 2dx +2xydy =0, 两边同时乘以21x 得 0222=−+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C x y x =+2ln , 即x ln x +y 2=Cx . (6)2ydx −3xy 2dx −xdy =0.解 方程两边同时乘以x 得2xydx −x 2dy −3x 2y 2dx =0, 即yd (x 2)−x 2dy −3x 2y 2dx =0, 再除以y 2得03)(2222=−−dx x ydy x x yd , 即0)(32=−x y x d 所以2y x 为原方程的一个积分因子, 并且原方程的通解为 032=−x yx . 3. 验证)]()([1xy g xy f xy −是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy −得 0])()()]()([1=+−dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P −=, )]()([)(xy g xy f y xy g Q −=. 因为x Q xy g xy f xy g xy f xy g xy f y P ∂∂=−′−′=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy −是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2−2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2−2x 2y 2 , 所以 31)]()([1y x xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=−++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =−++∫∫122123232, 即C y x y x =−+−)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy −x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y −x 3 y 3 , 所以 441)]()([1yx xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以1y x 得全微分方程 02112433334=−+++dy y x y x xy dx yx xy ,其通解为C dy y x y x xy dx x x y x =−+++∫∫14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy ′+2y =4ln x ;解 原方程变为x x y x y ln 42=+′, 其积分因子为 22)(x e x x =∫=μ, 在方程x xy x y ln 42=+′的两边乘以x 2得 x 2y ′+2xy =4x ln x , 即(x 2y )′=4x ln x ,两边积分得, C x x x xdx x y x +−==∫222ln 2ln 4原方程的通解为21ln 2x C x y +−=. (2)y ′−tan x ⋅y =x . 解 积分因子为,x e x xdx cos )(tan =∫=−μ在方程的两边乘以cos x 得cos x ⋅y ′−sin x ⋅y =x cos x , 即(cos x ⋅y )′=x cos x , 两边积分得C x x x xdx x y x ++==⋅∫cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12−61. 求下列各微分方程的通解:(1)y ′′=x +sin x ;解 12cos 21)sin (C x x dx x x y +−=+=′∫, 21312sin 61)cos 21(C x C x x dx C x x y ++−=+−=∫, 原方程的通解为213sin 61C x C x x y ++−=. (2)y ′′′=xe x ;解 , 12C e xe dx xe y x x x +−==′′∫, 21122)2(C x C e xe dx C e xe y x x x x ++−=+−=′∫, 3221213)22(C x C x C e xe dx C x C e xe y x x x x +++−=++−=∫原方程的通解为.32213C x C x C e xe y x x +++−= (3)211x y +=′′; 解 12arctan 11C x dx x y +=+=′∫ x C dx x x x x dx C x y 1211arctan )(arctan ++−=+=∫∫ 212)1ln(21arctan C x C x x x +++−=, 原方程的通解为2121ln arctan C x C x x x y +++−=.(4)y ′′=1+y ′2;解 令p =y ′, 则原方程化为p ′=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y ′=p =tan(x +C 1),, 211|)cos(|ln )tan(C C x dx C x y ++−=+=∫原方程的通解为21|)cos(|ln C C x y ++−=.(5)y ′′=y ′+x ;解 令p =y ′, 则原方程化为p ′−p =x ,由一阶线性非齐次方程的通解公式得, 1)()(111−−=+=+∫⋅∫=∫∫−−x e C C dx xe e C dx e x e p x x x dx dx 即 y ′=C 1e x −x −1,于是 221121)1(C x x e C dx x e C y x x +−−=−−=∫, 原方程的通解为22121C x x e C y x +−−=.(6)xy ′′+y ′=0;解 令p =y ′, 则原方程化为 x p ′+p =0, 即01=+′p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x x 1ln 111==∫=−−, 即 xC y 1=′, 于是 211ln C x C dx xC y +==∫, 原方程的通解为y =C 1ln x +C 2 .(7)yy ′′+′=y ′2;解 令p =y ′, 则dy dp p dx dy dy dp y =⋅=′′, 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=−, 两边积分得||ln ||ln |1|ln 2112C y p +=−, 即. 22121y C p ±− 当|y ′|=|p |>1时, 方程变为2211y C y +±=′, 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y ′|=|p |<1时, 方程变为 2211y C y −±=′, 即dx dy y C ±=−21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ′′−1=0;解 令p =y ′, 则dy dp py =′′, 原方程化为 013=−dy dp py , 即pdp =y −3dy , 两边积分得122212121C y p +−=−, 即p 2=−y −2+C 1, 故 21−−±=′y C y , 即dx dy y C ±=−−211, 两边积分得)(12121C x C y C +±=−,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=′′; 解 令p =y ′, 则dy dp py =′′, 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=′, 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++−+±=.(10)y ′′=y ′3+y ′. 解 令p =y ′, 则dydp py =′′, 原方程化为 p p dy dp p +=3, 即0)]1([2=+−p dy dp p . 由p =0得y =C , 这是原方程的一个解. 由0)1(2=+−p dydp 得 arctan p =y −C 1, 即y ′=p =tan(y −C 1),从而 )sin(ln )tan(1112C y dy C y C x −=−=+∫, 故原方程的通解为.12arcsin C e y C x +=+ 2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ′′+1=0, y |x =1=1, y ′|x =1=0;解 令p =y ′, 则dy dp p y =′′, 原方程化为013=+dy dp p y , 即dy ypdp 31−=, 两边积分得1221C y p +=, 即y y C y 211+±=′. 由y |x =1=1, y ′|x =1=0得C 1=−1, 从而yy y 21−±=′, 分离变量得dx dy yy =−±21, 两边积分得221C x y +=−±, 即22)(1C x y +−±=.由y |x =1=1得C 2=−1, 2)1(1−−=x y , 从而原方程的通解为22x x y −=.(2)y ′′−ay ′2=0, y |x =0=0, y ′|x =0=−1;解 令p =y ′, 则原方程化为02=−ap dx dp , 即adx dp p=21, 两边积分得 11C ax p +=−, 即11C ax y +−=′. 由y ′|x =0=−1得C 1=1, 11+−=′ax y , 两边积分得 2)1ln(1C ax a y ++−=.由y |x =0=0得C 2=0, 故所求特解为)1ln(1+−=ax a y .(3)y ′′′=e ax , y |x =1=y ′|x =1=y ′′|x =1=0;解 11C e adx e y ax ax +==′′∫.。
高等数学(同济5版)完整教案-第十二章 二阶常系数齐次线性微分方程
2
R ( l x ) g R l g
2 2
R gx
2
2 2 d x R g 2 x 0 m dt 2 2 d x 2 记 R g 2 x0
2 x c cos t c sin t 1 2
2 gR m 195 . 25 ( kg )
故所求通解为
y 2 y 5 y 0 的通解 . 例3 求方程
解
2 2 r 5 0 , 特征方程为 r
1 2 j , 解得 r 1 , 2 故所求通解为
x y e ( C cos 2 x C sin 2 x ). 1 2
例4 设圆柱形浮筒,直径为0.5 米,铅直放 在水中,当稍向下压后突然放开,浮筒 在水中振动的周期为2 秒,求浮筒的质量
解 设浮筒的质量为 m 平衡时 圆柱浸入水中深度为 l
Rl g 重力 mg 浮力
2
2 R lg mg
设 t 时刻浮筒上升了 x 米 此时
2 浮力 R ( l x ) g 重力
mg
由Newton第二定律
dx 2 m 2 R ( l x ) g mg dt
二、二阶常系数齐次线性方程解法
y p y qy 0
-----特征方程法
特点 未知函数与其各阶导数的线性组合等于0 即函数和其各阶导数只相差常数因子
猜想 有特解
ye
rx
rx 设 ye , 将其代入上方程, 得 rx 2 rx e 0 , ( r pr q ) e 0
Y c e c e 2
r x 1 1
r x 2
r1 r2 r j 1 ,2
高等数学第十二章第六讲 常系数齐次线性微分方程
特征根: r1 , r 2
(1) 当 r1 r 2 时, 通解为 y C 1 e
r1 x
C2 e
r2 x
(2) 当 r1 r 2 时, 通解为 y (C 1 C 2 x ) e
r1 x
(3) 当 r1, 2 i 时, 通解为
y e x (C 1 cos x C 2 sin x)
以上结论可推广到高阶常系数线性微分方程 .
机动 目录 上页 下页 返回 结束
第十二章
2 p 3. 当 4 q 0 时, 特征方程有一对共轭复根
这时原方程有两个复数解:
y1 e ( i ) x e x (cos x i sin x ) y2 e ( i ) x e x (cos x i sin x )
1. 当 p 2 4 q 0 时, ②有两个相异实根
方程有两个线性无关的特解:
②
称②为微分方程①的特征方程, 其根称为特征根. 则微分
因此方程的通解为
y C1 e
r1 x
C2 e
r2 x
机动
目录
上页
下页
返回
结束
第十二章
2 p 2. 当 4 q 0 时, 特征方程有两个相等实根 则微分方程有一个特解
机动
目录
上页
下页
返回
结束
第十二章
.
例1 求方程 y 3 y 2 y 0 的通解.
2 r 解: 特征方程 3 r 2 0, 特征根: r 1 , r 2 ,
1 2
因此原方程的通解为 例2. 求解初值问题 解: 特征方程 4r 1 0
2
高等数学第十二章微分方程
dy 1 dy y 2 y 2 。这是贝努利方程, 解出 ? ,得 dx x dx
对于这些类型的方程,它们各自都有固定的解法。如
果所给的方程按上述思路不能转化为已知类型的方程,这 时常用的方法和技巧如下: A.熟悉常用的微分公式; B.选取适当的变量代换,转化成上述可解类型的方程; C.变换自变量和因变量(即有时把 y看成自变量,而 考虑
dx 的方程类型)。 dy
一阶微分方程的解题方法流程图如下。
解题方法流程图
求Pdx Qdy 通解 0 Yes 可分离变量 No Yes
P Q y x
dy 解出 dx = f ( x, y )
No
可分离变 量方程
全微分 方程
齐次方程
dy y ( ) dx x
dy P ( x ) y Q( x ) dx
一阶线性方程
dy P ( x ) y Q( x ) y n dx
dy y (2)齐次方程: dx x
dy P ( x ) y Q( x ) (3)一阶线性微分方程: dx
dy n (4)伯努利方程: P ( x ) y Q( x ) y ( n 0,1) dx
(5)全微分方程:P ( x , y )dx Q( x , y )dy 满足 ,0
y dy du u x 解:令 u ,于是 y ux , ,上式可化为 x dx dx
du 1 u cos u u x sec u u dx cos u
du sec u , 为可分离变量的方程 即x dx
分离变量 积分得 所以 故原方程的通解为
dx cos udu x sin u ln x ln C
常系数微分方程
如果特征根有复根,由于方程 的系数为实常数, 如果特征根有复根,由于方程(4.19)的系数为实常数,因此复 的系数为实常数 根总是成对出现的。 根总是成对出现的。
设λ1 = α + iβ 是一特征根,则λ1 = α − iβ 也是特征根,可求得与之 对应的两个实解代替对应的两个复值解: eαt cos β t , eαt sin β t
3. 设 K = α + i β , 令 K =α − i β . 这里 α , β 为实数, t为实变量,则函数 e 有如下性质:
Kt
Kt
(1) e
= e Kt ;
( 2 ) e ( K 1 + K 2 ) t = e K 1t e K 2 t ; de Kt (3) = K e K t , 其 中 t为 实 变 量 ; dt dn (e Kt ) = K ne Kt . dtn
∆
d nx d n −1 x dx L[ x] ≡ + a1 + ... + a n −1 + a n x = 0 ( 4 .1 9 ) n n −1 dt d t dt F ( λ ) = λ n + a1λ n −1 + ... + a n −1λ + a n = 0 ( 4 .2 1)
x = ye λ1t
于是(4.19)化为 化为 于是
dny d n −1 y dy L1 [ y ] ≡ + b1 n − 1 + ... + b n − 1 + bn y = 0 , n dt d t dt 其 中 b1 , b 2 , ..., b n 仍 为 常 数 , 而 相 应 的 特 征 方 程 为 G ( µ ) = µ n + b1 µ n − 1 + . . . + b n − 1 µ + b n = 0 .
高数同济第五版第十二章答案
习题12-11. 试说出下列各微分方程的阶数:(1)x (y ')2-2yy '+x =0; 解 一阶. (2)x 2y '-xy '+y =0; 解 一阶. (3)xy '''+2y '+x 2y =0; 解 三阶. (4)(7x -6y )dx +(x +y )dy =0; 解 一阶. (5)022=++C Qdt dQ Rdt Q d L; 解 二阶(6)θρθρ2sin =+d d . 解 一阶. 2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy '=2y , y =5x 2; 解 y '=10x . 因为xy '=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解 (2)y '+y =0, y =3sin x -4cos x ; 解 y '=3cos x +4sin x . 因为y '+y =3cos x +4sin x +3sin x -4cos x =7sin x -cos x ≠0, 所以y =3sin x -4cos x 不是所给微分方程的解.(3)y ''-2y '+y =0, y =x 2e x ; 解 y '=2xe x +x 2e x , y ''=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x . 因为y ''-2y '+y =2e x +4xe x +x 2e x -2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解. (4)y ''-(λ1+λ2)y '+λ1λ2y =0, x x e C e C y 2121λλ+=. 解 x x e C e C y 212211λλλλ+=', x x e C e C y 21222211λλλλ+=''. 因为y y y 2121)(λλλλ+'+-'')())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++-+==0, 所以x x e C e C y 2121λλ+=是所给微分方程的解.3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x -2y )y '=2x -y , x 2-xy +y 2=C ; 解 将x 2-xy +y 2=C 的两边对x 求导得2x -y -xy '+2y y '=0, 即 (x -2y )y '=2x -y , 所以由x 2-xy +y 2=C 所确定的函数是所给微分方程的解. (2)(xy -x )y ''+xy '2+yy '-2y '=0, y =ln(xy ). 解 将y =ln(xy )的两边对x 求导得 y yx y '+='11, 即x xy y y -='. 再次求导得)(1)()()1()(2222y y y y yxx xy x xy y y y x x xy y x y y x xy y y '+'-'-⋅-=-+-'-=--'+--'=''. 注意到由y y x y '+='11可得1-'='y x y yx, 所以)2(1])1([12y y y y x xxy y y y y y x x xy y '+'-'-⋅-='+'-'-'-⋅-='', 从而 (xy -x )y ''+xy '2+yy '-2y '=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件: (1)x 2-y 2=C , y |x =0=5; 解 由y |x =0=0得02-52=C , C =-25, 故x 2-y 2=-25. (2)y =(C 1+C 2x )e 2x , y |x =0=0, y '|x =0=1; 解 y '=C 2e 2x +2(C 1+C 2x )e 2x . 由y |x =0=0, y '|x =0=1得⎩⎨⎧=+=1121C C C , 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x -C 2), y |x =π=1, y '|x =π=0. 解 y '=C 1cos(x -C 2). 由y |x =π=1, y '|x =π=0得⎩⎨⎧=-=-0)cos(1)sin(2121C C C C ππ, 即⎩⎨⎧=-=0cos 1sin 2121C C C C , 解之得C 1=1, 22π=C , 故)2sin(π-=x y , 即y =-cos x .5. 写出由下列条件确定的曲线所满足的微分方程: (1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ', 由条件y '=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分. 解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y '-1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(-x , 0), 从而有y x x y '-=+-10, 即yy '+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比. 解2TPk dT dP =, 其中k 为比例系数. 习题12-21. 求下列微分方程的通解: (1)xy '-y ln y =0; 解 分离变量得dx xdy y y 1ln 1=, 两边积分得⎰⎰=dx xdy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx . (2)3x 2+5x -5y '=0; 解 分离变量得5dy =(3x 2+5x )dx , 两边积分得⎰⎰+=dx x x dy )53(52,即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C C =为任意常数.(3)2211y y x -='-; 解 分离变量得2211xdx ydy -=-,两边积分得⎰⎰-=-2211xdx ydy 即 arcsin y =arcsin x +C , 故通解为y =sin(arcsin x +C ).(4)y '-xy '=a (y 2+y ');解 方程变形为(1-x -a )y '=ay 2, 分离变量得dx x a a dy y --=112,两边积分得⎰⎰--=dx x a a dy y112, 即 1)1l n (1C x a a y----=-, 故通解为)1ln(1x a a C y --+=, 其中C =aC 1为任意常数.(5)sec 2x tan ydx +sec 2y tan xdy =0;解 分离变量得dx x x y y y tan sec tan sec 22-=, 两边积分得⎰⎰-=dx xxy y y tan sec tan sec 22, 即 ln(tan y )=-ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dx dy+=10; 解 分离变量得10-ydy =10xdx , 两边积分得⎰⎰=-dx dy xy1010, 即10ln 10ln 1010ln 10Cx y +=--, 或 10-y =10x +C ,故通解为y =-lg(C -10x ).(7)(e x +y -e x )dx +(e x +y +e y )dy =0; 解 方程变形为e y (e x +1)dy =e x (1-e y )dx ,分离变量得dx e e dy e e x x y y +=-11, 两边积分得⎰⎰+=-dx e e dy e e xxy y 11, 即 -ln(e y )=ln(e x +1)-ln C , 故通解为(e x +1)(e y-1)=C . (8)cos x sin ydx +sin x cos ydy =0; 解 分离变量得dx x x dy y y sin cos sin cos -=, 两边积分得⎰⎰-=dx xxdy y y sin cos sin cos , 即 ln(sin y )=-ln(sin x )+ln C , 故通解为sin x sin y =C .(9)0)1(32=++x dxdyy ; 解 分离变量得 (y +1)2dy =-x 3dx ,两边积分得⎰⎰-=+dx x dy y 32)1(,即 14341)1(31C x y +-=+,故通解为4(y +1)3+3x 4=C (C =12C 1). (10)ydx +(x 2-4x )dy =0. 解 分离变量得dx xx dy y )411(4-+=, 两边积分得⎰⎰-+=dx x x dy y )411(4, 即 ln y 4=ln x -ln(4-x )+ln C , 故通解为y 4(4-x )=Cx .2. 求下列微分方程满足所给初始条件的特解: (1)y '=e 2x -y , y |x =0=0; 解 分离变量得e y dy =e 2x dx , 两边积分得⎰⎰=dx e dy e x y 2, 即 C e e xy +=221, 或 )21l n (2C e y x +=. 由y |x =0=0得0)21ln(=+C , 21=C ,所以特解)2121ln(2+=x e y . (2)cos x sin ydy =cos y sin xdx , 4|0π==x y ;解 分离变量得tan y dy =tan x dx , 两边积分得⎰⎰=xdx ydy tan tan , 即 -ln(cos y )=-ln(cos x )-ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cosπ, 21=C , 所以特解为x y cos cos 2=.(3)y 'sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得⎰⎰=dx x dy y y sin 1ln 1, 即 C x y ln )2ln(tan )ln(ln +=, 或 2t a n xC ey =. 由e y x ==2π得4tan πC ee =, C =1, 所以特解为2tan xe y =.(4)cos ydx +(1+e -x )sin ydy =0, 4|0π==x y ;解 分离变量得dx e e dy y y x x +=-1cos sin , 两边积分得⎰⎰+=-dx ee dy y y xx1cos sin , 即 ln|cos y |=ln(e x+1)+ln |C |, 或 cos y =C (e x+1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=xe y . (5)xdy +2ydx =0, y |x =2=1. 解 分离变量得dx x dy y 21-=, 两边积分得⎰⎰-=dx xdy y 21,即 ln y =-2ln x +ln C , 或 y =Cx -2. 由y |x =2=1得C ⋅2-2=1, C =4, 所以特解为24xy =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60︒, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV)9802(5.062.0⨯⨯⨯=, 即dt x dV )9802(5.062.0⨯⨯⨯=. 又因为330tan x x r =︒=, 故 dx x dx r V 223ππ-=-=,从而 dx x dt x 23)9802(5.062.0π-=⨯⨯⨯, 即 dxx dt 2398025.062.03⨯⨯⨯=π,因此 C x t +⨯⨯⨯-=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053⨯⨯⨯⨯=πC , 故水从小孔流出的规律为645.90305.0)10(98025.062.0532252525+-=-⨯⨯⨯⨯=x x t π.令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少? 解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此v tF 20=. 又由牛顿定律, F =ma , 即vt dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=.由初始条件有C +⨯=⨯2210105021, C =250. 因此500202+=t v .当t =60s 时, cm/s 3.26950060202=+⨯=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系. 解 由题设知, R dtdR λ-=, 即dt RdR λ-=, 两边积分得ln R =-λt +C 1,从而 )( 1C t e C Ce R ==-λ. 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e -λt. 又由于当t =1600时, 021R R =, 故λ16000021-=e R R , 从而16002ln =λ. 因此 t t e R eR R 000433.0010002ln 0--==. 6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为x y x y -=--2002, 故曲线满足微分方程: xy dx dy -=, 即dx x dy y 11-=,从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2⨯3=6, 曲线方程为xy =6. 7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dtdxv -==, 故dx =ky (h -y )dt . 又由已知, y =at , 代入上式得dx =kat (h -at )dt , 积分得 C t ka kaht x +-=3223121. 由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x -=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=-=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x -=. 习题12-31. 求下列齐次方程的通解:(1)022=---'x y y y x ; 解 原方程变为1)(2--=xyx y dx dy . 令x y u =, 则原方程化为12-+=+u u dx du x u , 即dx x du u 1112=-,两边积分得C x u u ln ln )1ln(2+=-+, 即Cx u u =-+12,将x y u =代入上式得原方程的通解Cx x yx y =-+1)(2, 即222Cx x y y =-+.(2)xyy dx dy xln =; 解 原方程变为x y x y dx dy ln =. 令xyu =, 则原方程化为 u u dxdu xu ln =+, 即dx x du u u 1)1(ln 1=-, 两边积分得ln(ln u -1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解y =xe Cx +1. (3)(x 2+y 2)dx -xydy =0; 解 这是齐次方程. 令xyu =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx -x 2u (udx +xdu )=0, 即dx xudu 1=, 两边积分得u 2=ln x 2+C , 将xyu =代入上式得原方程的通解y 2=x 2(ln x 2+C ). (4)(x 3+y 3)dx -3xy 2dy =0; 解 这是齐次方程. 令xyu =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx -3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=-,两边积分得C x u ln ln )21ln(213+=--, 即2312x Cu -=, 将xyu =代入上式得原方程的通解x 3-2y 3=Cx . (5)0ch 3)ch 3sh2(=-+dy xyx dx x y y x y x ;解 原方程变为x y x y dx dy +=th 32. 令xyu =, 则原方程化为 u u dxdu x u +=+th 32, 即dx xdu uu 2sh ch 3=,两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将x y u =代入上式得原方程的通解22sh Cx xy=. (6)0)1(2)21(=-++dy y x e dx e yx yx. 解 原方程变为yx yxee y xdydx 21)1(2+-=. 令yxu =, 则原方程化为u ue eu dy du y u 21)1(2+-=+, 即uu e e u dy du y 212++-=,分离变量得dy y du eu e uu 1221-=++, 两边积分得ln(u +2e u )=-ln y +ln C , 即y (u +2e u)=C , 将yxu =代入上式得原方程的通解C e y x y y x=+)2(, 即C yex yx=+2.2. 求下列齐次方程满足所给初始条件的特解: (1)(y 2-3x 2)dy +2xydx =0, y |x =0=1; 解 这是齐次方程. 令xyu =, 即y =xu , 则原方程化为 (x 2u 2-3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=--, 或dx x du u u u 1)11113(=-+++-两边积分得-3ln |u |+ln|u +1|+ln|u -1|=ln|x |+ln|C |, 即u 2-1=Cxu 3, 将xyu =代入上式得原方程的通解y 2-x 2=Cy 3. 由y |x =0=1得C =1, 故所求特解为y 2-x 2=y 3. (2)xyy x y +=', y |x =1=2; 解 令x y u =, 则原方程化为u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212, 将xyu =代入上式得原方程的通解 y 2=2x 2(ln x +C ). 由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy -y 2)dx +(y 2+2xy -x 2)dy =0, y |x =1=1. 解 这是齐次方程. 令xyu =, 即y =xu , 则原方程化为 (x 2+2x 2u -x 2u 2)dx +(x 2u 2+2x 2u -x 2)(udx +xdu )=0, 即dx x du u u u u u 1112232-=+++-+, 或 dx x du u u u 1)1211(2=+-+, 两边积分得ln|u +1|-ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解x +y =C (x 2+y 2). 由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O上任一点P (x , y ),曲线弧P O 与直线段OP 所围图形的面积为x 2, 求曲线弧A O 的方程.解 设曲线弧A O 的方程为y =y (x ). 由题意得20)(21)(x x xy dx x y x =-⎰,两边求导得x x y x x y x y 2)(21)(21)(='--, 即 4-='xy y . 令x yu =, 则有4-=+u dx du xu , 即dx xdu u 41-=, 两边积分得u =-4ln x +C . 将xyu =代入上式得方程的通解y =-4x ln x +Cx . 由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =-4x ln x +x .习题12-41. 求下列微分方程的通解:(1) )()()(C x e C dx e e e C dx e e e y x x x x dxx dx +=+⋅=+⎰⋅⎰=-----⎰⎰.(2)原方程变为x x y x y 231++=+'.])23([11C dx e xx e y dx x dx x +⎰⋅++⎰=⎰-])23([1])23([12C dx x x x C xdx x x x +++=+++=⎰⎰ xC x x C x x x x +++=+++=22331)22331(1223.(3) )(cos sin cos C dx e e e y xdxx dx +⎰⋅⎰=⎰--)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=---⎰. (4) )2sin (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)2sin (cos ln cos ln C dx e x e x x +⋅=⎰-⎰+⋅=)c o s 1c o s s i n 2(c o s C dx xx x x =cos x (-2cos x +C )=C cos x -2cos 2x .(5)原方程变形为1cos 1222-=-+'x x y x x y . )1cos (1221222C dx e x x e y dx x xdx x x+⎰⋅-⎰=⎰--- )(s i n 11])1(1c o s [112222C x x C dx x x x x +-=+-⋅--=⎰. (6) )2(33C d e e d d +⎰⋅⎰=⎰-θρθθ)2(33C d e e +=⎰-θθθθθθ33332)32(--+=+=Ce C e e . (7) )4(22C dx e x e y xdxxdx +⎰⋅⎰=⎰-)4(22C dx e x e x x +⋅=⎰-2222)2(x x x Ce C e e --+=+=.(8)原方程变形为yx y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e y e x dy y y dyyy +⎰⋅⎰=⎰- )ln 1(ln 1C ydy y y +⋅=⎰yCy C y y ln ln 21)ln 21(ln 12+=+=. (9)原方程变形为2)2(221-=--x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +⎰⋅-⎰=⎰--- ⎰+-⋅--=]21)2(2)[2(2C dx x x x =(x -2)[(x -2)2+C ]=(x -2)3+C (x -2). (10)原方程变形为y x y dy dx 213-=-. ])21([33C dy e y e x dy y dy y +⎰⋅-⎰=⎰- )121(33C d y y y y +⋅-=⎰32321)21(Cy y C y y +=+=.2.)sec (tan tan C dx e x e y xdxxdx+⎰⋅⎰=⎰-)(c o s 1)c o s s e c (c o s 1C x xC x d x x x +=+⋅=⎰. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2) )sin (11C dx e x x e y dx x dx x +⎰⋅⎰=⎰-)cos (1)sin (1C x xC xdx x x x +-=+⋅=⎰. 由y |x =π=1, 得C =π-1, 故所求特解为)cos 1(1x xy --=π.(3) )5(cot cos cot C dx e e e y xdxx xdx +⎰⋅⎰=⎰-)5(s i n 1)s i n 5(s i n 1c o s c o s C e xC x d x e x xx +-=+⋅=⎰. 由4|2-==πx y , 得C =1, 故所求特解为)15(sin 1cos +-=x e xy . (4) )8(33C dx e e y dxdx +⎰⋅⎰=⎰-x x x x x Ce C e e C dx e e 3333338)38()8(---+=+=+=⎰.由y |x =0=2, 得32-=C , 故所求特解为)4(323x e y --=. (5) )1(32323232C dxe ey dx x x dx x x +⎰⋅⎰=⎰---)21()1(22221131313C e e x C dx e xex x x x x +=+=--⎰.由y |x =1=0, 得e C 21-=, 故所求特解为)1(211132--=x e x y .3. 解 由题意知y '=2x +y , 并且y |x =0=0. 由通解公式得)2()2(C dx xe e C dx xe e y x x dxdx +=+⎰⎰=⎰⎰--=e x (-2xe -x -2e -x +C )=Ce x -2x -2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x -x -1). 4.由牛顿定律F =ma , 得v k t k dtdvm21-=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t mk eC dt et mk ev tm k tmk dtm k dtm k +⋅=+⎰⋅⎰=⎰⎰--)(22222121C ek mk tek k etmk tmk tmk +-=-. 由题意, 当t =0时v =0, 于是得221k mk C =. 因此)(22122121222k mk e k mk te k k ev tm k tm k tmk +-=-即 )1(222121tmk ek mk t k k v ---=.5.由回路电压定律知01025sin 20=--i dtdi t , 即t i dtdi 5sin 105=+.由通解公式得t dtdt Ce t t C dt e t e i 5555cos 5sin )5sin 10(--+-=+⎰⋅⎰=⎰.因为当t =0时i =0, 所以C =1. 因此)45s i n (25c o s 5s i n 55π-+=+-=--t e e t t i t t (A).6.因为当x >0时, 所给积分与路径无关, 所以])(2[)]([2x x xf xx yf y -∂∂=∂∂, 即 f (x )=2f (x )+2xf '(x )-2x , 或 1)(21)(=+'x f xx f .因此 xC x C dx x xC dx eex f dxx dx x +=+=+⎰⋅⎰=⎰⎰-32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=.7. (1)原方程可变形为x x ydx dy y sin cos 112-=+, 即x x y dx y d cos sin )(11-=---.])c o s s i n ([1C dx e x x e y dxdx +⎰⋅-⎰=--⎰x Ce C dx e x x e x x x sin ])sin (cos [-=+-=⎰-,原方程的通解为x Ce yx sin 1-=. (2)原方程可变形为x y x dxdy y =-1312, 即x xy dx y d -=+--113)(. ])([331C dx e x eyxdxxdx+⎰⋅-⎰=⎰--)(222323C dx xe e x x +-=⎰-31)31(222232323-=+-=--x x xCe C e e, 原方程的通解为311223-=-x Ce y .(3)原方程可变形为)21(31131134x ydx dy y -=+, 即12)(33-=---x y dx y d .])12([3C dx e x e y dxdx +⎰⋅-⎰=--⎰x x x Ce x C dx e x e +--=+-=⎰-12])12([,原方程的通解为1213--=x Ce yx .(4)原方程可变形为x y dx dy y =-4511, 即x y dx y d 44)(44-=+--. ])4([444C dx e x e y dx dx +⎰⋅-⎰=⎰-- )4(44C dx xe e x +-=⎰-x Ce x 441-++-=, 原方程的通解为x Ce x y44411-++-=.(5)原方程可变形为)ln 1(11123x yx dx dy y +=⋅-⋅, 即)ln 1(22)(22x y x dx y d +-=+--.])ln 1(2[222C dx ex e y dxx dxx +⎰⋅+-⎰=⎰--])ln 1(2[122C dx x x x++-=⎰ x x x xC 94ln 322--=, 原方程的通解为x x x x C y 94ln 32122--=. 8. 解 原方程可变形为)()(xy xg xy yf dx dy -=. 在代换v =xy 下原方程化为 )()(22v g x v vf x vdx dvx-=-, 即 dx x du v f v g v v g 1)]()([)(=-, 积分得C x d u v f v g v v g +=-⎰ln )]()([)(,对上式求出积分后, 将v =xy 代回, 即得通解. 9. (1) 令u =x +y , 则原方程化为21u dx du =-, 即21ududx +=. 两边积分得x =arctan u +C . 将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =-x +tan(x -C ). (2) 令u =x -y , 则原方程化为111+=-udx du , 即dx =-udu . 两边积分得1221C u x +-=.将u =x +y 代入上式得原方程的通解12)(21C y x x +--=, 即(x -y )2=-2x +C (C =2C 1). (3)令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+-, 即du uu dx x ln 11=.两边积分得ln x +ln C =lnln u , 即u =e Cx . 将u =xy 代入上式得原方程的通解 xy =e Cx , 即Cx e xy 1=.(4)原方程变形为y '=(y +sin x -1)2-cos x . 令u =y +sin x -1, 则原方程化为x u x dx du cos cos 2-=-, 即dx du u=21. 两边积分得 C x u +=-1. 将u =y +sin x -1代入上式得原方程的通解C x x y +=-+-1sin 1, 即Cx x y +--=1sin 1.(5)原方程变形为)1()1(22y x xy x xy y dx dy +++-=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++-=-, 即)1(1223u u x u dx du x ++=. 分离变量得du u u u dx x )111(123++=. 两边积分得u u uC x ln 121ln 21+--=+. 将u =xy 代入上式得原方程的通解xy xy yx C x ln 121ln 221+--=+,即 2x 2y 2ln y -2xy -1=Cx 2y 2(C =2C 1). 习题12-51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解: (1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0; 解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为xQ xy y P∂∂==∂∂12, 所以此方程是全微分方程, 其通解为C dy y y x dx xyx=++⎰⎰02202)46(3,即 C y y x x =++3223343. (2)(a 2-2xy -y 2)dx -(x +y )2dy =0; 解 这里P =a 2-2xy -y 2, Q =-(x +y )2. 因为xQ y x y P∂∂=--=∂∂22, 所以此方程是全微分方程, 其通解为C dy y x dx a yx=+-⎰⎰0202)(,即 a 2x -x 2y -xy 2=C .(3)e ydx +(xe y-2y )dy =0; 解 这里P =e y, Q =xe y-2y . 因为xQ e y Py ∂∂==∂∂, 所以此方程是全微分方程, 其通解为C dy y xe dx e yy x=-+⎰⎰00)2(,即 xe y -y 2=C .(4)(x cos y +cos x )y '-y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy -(y sin x +sin y )dx =0. 这里P =-(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P∂∂=-=∂∂s i n c o s , 所以此方程是全微分方程, 其通解为C dy x y x dx yx=++⎰⎰0)cos cos (0,即 x sin y +y cos x =C . 解(5)(x 2-y )dx -xdy =0;解 这里P =x 2-y , Q =-x . 因为xQ y P∂∂=-=∂∂1, 所以此方程是全微分方程, 其通解为 C x d y dx x yx=-⎰⎰02,即C xy x =-331. (6)y (x -2y )dx -x 2dy =0;解 这里P =y (x -2y ), Q =-x 2. 因为y x y P4-=∂∂, x xQ 2-=∂∂, 所以此方程不是全微分方程. (7)(1+e 2θ)d ρ+2ρe 2θd θ=0; 解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为C d e d =+⎰⎰θθρθρρ02022,即 ρ(e 2θ+1)=C . (8)(x 2+y 2)dx +xydy =0. 解 这里P =x 2+y 2, Q =xy . 因为y y P2=∂∂, y xQ =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解: (1)(x +y )(dx -dy )=dx +dy ; 解 方程两边同时乘以yx +1得 yx dydx dy dx ++=-, 即d (x -y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x -y =ln(x +y )+C . (2)ydx -xdy +y 2xdx =0; 解 方程两边同时乘以21y 得 02=+-x d x y x d y y d x , 即0)2()(2=+x d y x d ,所以21y 为原方程的一个积分因子, 并且原方程的通解为C x y x =+22. (3)y 2(x -3y )dx +(1-3y 2x )dy =0; 解 原方程变形为xy 2dx -3y 3dx +dy -3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+-+x d y y d x y dy xdx , 即0)(3)1()2(2=--xy d yd x d , 所以21y为原方程的一个积分因子, 并且原方程的通解为C xy yx =--3122. (4)xdx +ydy =(x 2+y 2)dx ; 解 方程两边同时乘以221y x +得022=-++dx y x ydy xdx , 即0)]ln(21[22=-+dx y x d ,所以221yx +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x . (5)(x -y 2)dx +2xydy =0; 解 原方程变形为 xdx -y 2dx +2xydy =0, 两边同时乘以21x 得 0222=-+x dxy xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C xy x =+2ln , 即x ln x +y 2=Cx .(6)2ydx -3xy 2dx -xdy =0. 解 方程两边同时乘以x 得2xydx -x 2dy -3x 2y 2dx =0, 即yd (x 2)-x 2dy -3x 2y 2dx =0, 再除以y 2得 03)(2222=--dx x y dyx x yd , 即0)(32=-x yx d 所以2y x为原方程的一个积分因子, 并且原方程的通解为 032=-x yx . 3. 验证)]()([1xy g xy f xy -是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy -得0])()([)]()([1=+-dy xy xg dx xy yf xy g xy f xy ,这里)]()([)(xy g xy f x xy f P -=, )]()([)(xy g xy f y xy g Q -=.因为x Q xy g xy f xy g xy f xy g xy f y P∂∂=-'-'=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy -是原方程的一个积分因子.(1)y (x 2y 2+2)dx +x (2-2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2-2x 2y 2 , 所以3331)]()([1y x xy g xy f xy =-是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程032323222232=-++dy y x y x dx y x x ,其通解为C dy yx y x dx x x y x=-++⎰⎰132221323232, 即 C yx y x =-+-)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy -x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y -x 3 y 3 , 所以441)]()([1yx xy g xy f xy =-是方程的一个积分因子. 方程两边同乘以441yx 得全微分方程 02112433334=-+++dy y x y x xy dx y x xy ,其通解为 C dy y x y x xy dx x x y x=-+++⎰⎰14333142112,即C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程: (1)xy '+2y =4ln x ; 解 原方程变为x xy x y ln 42=+', 其积分因子为 22)(x e x dxx =⎰=μ,在方程x xy x y ln 42=+'的两边乘以x 2得 x 2y '+2xy =4x ln x , 即(x 2y )'=4x ln x , 两边积分得C x x x x d x x y x +-==⎰222ln 2ln 4, 原方程的通解为21ln 2x Cx y +-=.(2)y '-tan x ⋅y =x .解 积分因子为x e x xdxcos )(tan =⎰=-μ,在方程的两边乘以cos x 得cos x ⋅y '-sin x ⋅y =x cos x , 即(cos x ⋅y )'=x cos x , 两边积分得C x x x x d x x y x ++==⋅⎰c o s s i n c o s c o s , 方程的通解为xC x x y cos 1tan ++=.习题12-61. 求下列各微分方程的通解: (1)y ''=x +sin x ; 解 12cos 21)sin (C x x dx x x y +-=+='⎰, 21312s i n 61)c o s 21(C x C x x dx C x x y ++-=+-=⎰, 原方程的通解为 213s i n 61C x C x x y ++-=. (2)y '''=xe x ;解 12C e xe dx xe y x x x +-==''⎰,21122)2(C x C e xe dx C e xe y x x x x ++-=+-='⎰,3221213)22(C x C x C e xe dx C x C e xe y x x x x +++-=++-=⎰, 原方程的通解为32213C x C x C e xe y x x +++-=. (3)211x y +=''; 解 12arctan 11C x dx xy +=+='⎰x C dx x xx x dx C x y 1211arctan )(arctan ++-=+=⎰⎰212)1l n (21a r c t a n C x C x x x +++-=, 原方程的通解为2121ln arctan C x C x x x y +++-=.(4)y ''=1+y '2;解 令p =y ', 则原方程化为p '=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y '=p =tan(x +C 1),211|)c o s (|ln )tan(C C x dx C x y ++-=+=⎰,原方程的通解为21|)c o s (|ln C C x y ++-=.(5)y ''=y '+x ;解 令p =y ', 则原方程化为p '-p =x ,由一阶线性非齐次方程的通解公式得1)()(111--=+=+⎰⋅⎰=⎰⎰--x e C C dx xe e C dx e x e p x x x dx dx , 即 y '=C 1e x-x -1,于是 221121)1(C x x e C dx x e C y x x +--=--=⎰, 原方程的通解为22121C x x e C y x +--=. (6)xy ''+y '=0;解 令p =y ', 则原方程化为x p '+p =0, 即01=+'p xp , 由一阶线性齐次方程的通解公式得x C e C e C p x dx x 1ln 111==⎰=--,即 xC y 1=', 于是 211ln C x C dx x C y +==⎰, 原方程的通解为y =C 1ln x +C 2 .(7)yy ''+'=y '2;解 令p =y ', 则dydp p dx dy dy dp y =⋅='', 原方程化为 21p d y d p yp =+, 即dy y dp p p 112=-, 两边积分得||ln ||ln |1|ln 2112C y p +=-, 即22121y C p ±-. 当|y '|=|p |>1时, 方程变为2211y C y +±=', 即dx dy y C ±=+21)(11,两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y '|=|p |<1时, 方程变为2211y C y -±=', 即dx dy y C ±=-21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(s i n 1121x C C C y ±=.(8)y 3y ''-1=0;解 令p =y ', 则dy dp p y ='', 原方程化为013=-d yd p py , 即pdp =y -3dy , 两边积分得 122212121C y p +-=-, 即p 2=-y -2+C 1, 故 21--±='y C y , 即dx dy y C ±=--211, 两边积分得)(12121C x C y C +±=-,即原方程的通解为 C 1y 2=(C 1x +C 2)2 .(9)y y 1='';解 令p =y ', 则dy dp py ='', 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=', 即dx dy C y ±=+11,两边积分得原方程的通211231]2)(32[C C y C C y x ++-+±=.(10)y ''=y '3+y '.解 令p =y ', 则dy dp py ='', 原方程化为 p p d y d p p +=3, 即0)]1([2=+-p dydp p . 由p =0得y =C , 这是原方程的一个解.由0)1(2=+-p dydp 得 arctan p =y -C 1, 即y '=p =tan(y -C 1), 从而 )s i n (ln )tan(1112C y dy C y C x -=-=+⎰, 故原方程的通解为12a r c s i n C e y C x +=+.2. 求下列各微分方程满足所给初始条件的特解:(1)y 3y ''+1=0, y |x =1=1, y '|x =1=0;解 令p =y ', 则dy dp p y ='', 原方程化为 013=+d y d p p y , 即dy ypdp 31-=, 两边积分得1221C y p +=, 即y y C y 211+±='. 由y |x =1=1, y '|x =1=0得C 1=-1, 从而y y y 21-±=', 分离变量得dx dy y y=-±21,两边积分得221C x y +=-±, 即22)(1C x y +-±=.由y |x =1=1得C 2=-1, 2)1(1--=x y , 从而原方程的通解为22x x y -=.(2)y ''-ay '2=0, y |x =0=0, y '|x =0=-1;解 令p =y ', 则原方程化为02=-ap dx dp , 即adx dp p =21,两边积分得11C ax p +=-, 即11C ax y +-='. 由y '|x =0=-1得C 1=1, 11+-='ax y , 两边积分得 2)1l n (1C ax ay ++-=. 由y |x =0=0得C 2=0, 故所求特解为)1ln(1+-=ax ay . (3)y '''=e ax, y |x =1=y '|x =1=y ''|x =1=0;解 11C e a dx e y ax ax +==''⎰. 由y ''|x =1=0得a e a C 11-=. 2211)11(C x e a e a dx e a e a y a ax a ax +-=-='⎰. 由y '|x =1=0得a a e a e a C 2211-=. dx e a e a x e a e a y a a a ax )1111(22⎰-+-= 322311211C x e ax e a x e a e a a a a ax +-+-=. 由y |x =1=0得a a a a e a e a e a e a C 32312111-+-=, 故所求特解为 322232)22()1(2aa a e a x a e a x e a e y a a a ax ----+-=. (4)y ''=e 2y , y |x =0=y '|x =0=0;解 令p =y ', 则dy dp py ='', 原方程化为 y e dydp p2=, 即pdp =e 2y dy , 积分得p 2=e 2y +C 1, 即12C e y y +±='. 由y |x =0=y '|x =0=0得C 1=-1, 故12-±='y e y , 从而d x d ye y ±=-112,积分得-arcsin e -y=±x +C 2.由y |x =0=0得22π-=C , 故 x x e y c o s )2s i n (=-=-π , 从而所求特解为y =-lncos x .(5)y y 3='', y |x =0=1, y '|x =0=2;解 令p =y ', 则dy dp py ='', 原方程化为 y d yd p p 3=, 即dy y pdp 3=, 两边积分得12322221C y p +=, 即1232C y y +±='. 由y |x =0=1, y '|x =0=2得C 1=0, 432y y =', 从而dx dy y 243=-, 两边积分得24124C x y +=, 即42)4121(C x y +=. 由y |x =0=1得C 2=4, 故原方程的特解为4)121(+=x y .(6)y ''+y '2=1, y |x =0=0, y '|x =0=0.解 令p =y ', 则dydp p y ='', 原方程化为 12=+p d y d p p , 即2222=+p dydp , 于是 1)2(211222+=+⎰⋅⎰=--⎰y dy dy e C C dy e e p ,即 121+±='-y e C y .由y |x =0=0, y '|x =0=0得C 1=-1, y e y 21--±='.故dx dy e y ±=--211,两边积分得 22)1l n (C x e e y y +±=-+.由y |x =0=0得C 2=0, x e e y y ±=-+)1ln(2,从而得原方程的特解y =lnch x .3. 试求y ''=x 的经过点M (0, 1)且在此点与直线121+=x y 相切的积分曲线. 解 1221C x y +=', 21361C x C x y ++=. 由题意得y |x =0=1, 21|0='=x y . 由21|0='=x y 得211=C , 再由y |x =0=1得C 2=1, 因此所求曲线为 121613++=x x y . 4. 设有一质量为m 的物体, 在空中由静止开始下落, 如果空气阻力为R =c 2v 2(其中c 为常数, v 为物体运动的速度), 试求物体下落的距离s 与时间t 的函数关系.解 以t =0对应的物体位置为原点, 垂直向下的直线为s 正轴, 建立坐标系. 由题设得⎪⎩⎪⎨⎧==-===0| |0022t t v s v c mg dt dv m .将方程分离变量得d t v c mg mdv =-22, 两边积分得1||ln C kt mg cv mgcv +=-+(其中m gc k 2=)由v |t =0=0得C 1=0, kt mg cv mgcv =-+||ln , 即kt e mg cv mgcv =-+.因为mg >c 2v 2, 故kt e cv mg mg cv )(-=+, 即 )1()1(kt kt e mg e cv -=+,或 ktkt e e c mg dt ds +-⋅-=11, 分离变量并积分得211ln C e e ck mgs ktkt +++-=-. 由s |t =0=0得C 2=0, 故所求函数关系为kt kt ee ck mgs ++-=-11ln , 即)(ch ln 2t m g c c m s =. 习题12-71. 下列函数组在其定义区间内哪些是线性无关的?(1)x , x 2;解 因为x xx =2不恒为常数, 所以x , x 2是线性无关的. (2)x , 2x ;解 因为22=xx , 所以x , 2x 是线性相关的. (3)e 2x , 3e 2x ;解 因为332=x x ee , 所以e 2x , 3e 2x 是线性相关的. (4)e -x ; e x ;解 因为x x x e ee 2=-不恒为常数, 所以e -x ; e x 是线性无关的. (5)cos2x , sin2x ;解 因为x x x 2tan 2cos 2sin =不恒为常数, 所以cos2x , sin2x 是线性无关的. (6) 2x e , 22x xe ;。
高数第十二章常系数齐次线性微分方程
C1,C2是 任 意 常 数 .
6
2 .特 征 根 是 实 重 根 的 情 形
r p (二重), 2
则 y 1 e r x 是 微 分 方 程 的 一 个 解 ,要 求 方 程 的 通 解 , 只 令 需 y y再 1 2 求 u 一 (x 个 ),解 则 y2y ,2 且 y yy 1 21不 u(是 x)常 数 erx .u(x),
12
例 1 求 微 分 方 程 y 2 y 3 y 0 的 通 解 . 解 特征方程为
r2 2r30,
解 得 特 征 根 r 1 1 ,r 2 3 , 故 所 求 方 程 的 通 解 为
yC1exC2e3x. C1,C2是 任 意 常 数 .
13
例 2 求 方 程d2s2dss0满 足 初 始 条 件 dt2 dt
y1
1 2 ( y1
y2 )
ex cosx
y2
1 2i ( y1
y2 )
ex sinx
9
y1,y2仍 是 微 分 方 程 的 解 .且
y1 y2
eexxcsoinsxxcotx
不是常数. 于 是 微 分 方 程 的 通 解 为
y e x (C 1c o sx C 2s inx )
则 (1 )的 通 解 即 可 求 得 :
yC1y1C2y2
2
分 析 : 一 阶 常 系 数 齐 次 线 性 微 分 方 程
dy ay 0 dx 有 形 如 y e a x 的 解 ( 通 解 y C e a x 中 C 1 ) ,
猜 想 : 假 如 方 程 ( 1 ) 也 有 指 数 形 式 的 解
高等数学同济第五版(下)微分方程
dy 2x
①
dx
y x1 2
②
由①得
(C为任意常数)
由 ② 得 C = 1, 因此所求曲线方程为 y x2 1.
引例2. 列车在平直路上以
的速度行驶, 制动时
获得加速度
求制动后列车的运动规律.
解: 设列车在制动后 t 秒行驶了s 米 , 即求 s = s (t) .
已知
s t0 0 ,
由前一式两次积分, 可得 s 0.2 t 2 C1 t C2
此齐次线性方程的通解为 y C2ex (x 1)
利用衔接条件得 C2 2(e 1)
因此有
y 2(e 1) ex (x 1)
3) 原问题的解为
y
2(1ex ), 2(e 1) ex
0 ,
x
x 1
1
四、全微分方程(数一)
一、全微分方程
若存在 u(x, y) 使 d u(x, y) P (x, y) dx Q (x, y) dy
即
两端积分得对应齐u 次 方Q程(x通) e解 P(x)ydx dCxeC P(x)dx
故原方程的通解
y
e
P(x)d
x
Q(
x)
e
P(
x)
dd x e P(x)d x Q(x) e P(x)d xdx
齐次方程通解
非齐次方程特解
例1. 解方程
解:
先解
dy 2y 0 , 即 dx x 1
思考与练习
判别下列方程类型:
(1) x dy y xy dy
dx
dx
(2) x dy y (ln y ln x) dx
(3) ( y x3) dx 2x dy 0
第十二章 欧拉方程【高等数学+同济大学】
特征方程的根为 r1 0, r2 1, r3 3.
所以齐次方程的通解为
Y
C1
C2etC3e3t
C1
C2 x
C3x3.
设特解为 y be2t bx2 ,
代入原方程,得 b 1 . 2
即 y x2 , 2
所给欧拉方程的通解为
y
C1
C2 x
用 D 表示对自变量 t 求导的运算 d ,
dt 上述结果可以写为
xy Dy,
x2 y d 2 y dy (D2 D) y D(D 1) y, dt 2 dt
x3 y d 3 y 3 d 2 y 2 dy dt 3 dt 2 dt
(D3 3D2 2D) y D(D 1)(D 2) y,
欧拉方程
一、欧拉方程
形如
xn y(n)
p x y n1 (n1) 1
pn1 xy
pn y
f (x)
的方程(其中 p1 , p2 pn为常数) 叫欧拉方程.
特点:各项未知函数导数的阶数与乘积因子自 变量的方次数相同.
解法:欧拉方程是特殊的变系数方程,通过变 量代换可化为常系数微分方程.
一般地, xk y(k) D(D 1)(D k 1) y.
将上式代入欧拉方程,则化为以 t 为自变量
的常系数 线性微分方程. 求出这个方程的解后
把 t 换为 ln x ,即得到原方,程的解.
例 求欧拉方程
x3 y x2 y 4xy 3x2 的通解.
解 作变量变换 x et 或 t ln x,
同济第六《高等数学》教案word-第12章 微分方程
第十二章 微分方程教学目的:1.了解微分方程及其解、阶、通解,初始条件和特等概念。
2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。
4. 会用降阶法解下列微分方程:()()n yf x =, (,)y f x y '''+和(,)y f y y '''=5. 理解线性微分方程解的性质及解的结构定理。
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。
9.会解微分方程组(或方程组)解决一些简单的应用问题。
教学重点:1、可分离的微分方程及一阶线性微分方程的解法2、可降阶的高阶微分方程()()n yf x =, (,)y f x y '''+和(,)y f y y '''=3、二阶常系数齐次线性微分方程;4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、齐次微分方程、伯努利方程和全微分方程;2、线性微分方程解的性质及解的结构定理;3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。
4、欧拉方程§121 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映 利用函数关系又可以对客观事物的规律性进行研究 因此如何寻找出所需要的函数关系 在实践中具有重要意义 在许多问题中 往往不能直接找出所需要的函数关系 但是根据问题所提供的情况有时可以列出含有要找的函数及其导数的关系式这样的关系就是所谓微分方程 微分方程建立以后 对它进行研究找出未知函数来 这就是解微分方程例1 一曲线通过点(1 2) 且在该曲线上任一点M (x y )处的切线的斜率为2x 求这曲线的方程解 设所求曲线的方程为y y (x ) 根据导数的几何意义 可知未知函数y y (x )应满足关系式(称为微分方程)x dxdy2= (1)此外 未知函数y y (x )还应满足下列条件 x 1时y2 简记为y |x12 (2)把(1)式两端积分 得(称为微分方程的通解) ⎰=xdxy 2 即y x 2C (3)其中C 是任意常数 把条件“x 1时 y 2”代入(3)式 得212C由此定出C 1 把C 1代入(3)式 得所求曲线方程(称为微分方程满足条件y |x12的解)y x 21例 2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶 当制动时列车获得加速度04m/s2问开始制动后多少时间列车才能停住 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米 根据题意 反映制动阶段列车运动规律的函数s s (t )应满足关系式4.022-=dts d (4)此外 未知函数s s (t )还应满足下列条件t 0时 s0 20==dtds v 简记为s |t 0=0 s |t 0=20 (5)把(4)式两端积分一次 得 14.0C t dtds v +-==(6)再积分一次 得 s02t2C 1t C 2 (7)这里C 1 C 2都是任意常数 把条件v |t20代入(6)得20C 1 把条件s |t0代入(7)得0C 2把C 1 C 2的值代入(6)及(7)式得 v 04t 20 (8) s02t220t (9)在(8)式中令v 0 得到列车从开始制动到完全停住所需的时间 504.020==t (s ) 再把t 50代入(9) 得到列车在制动阶段行驶的路程 s 025022050500(m )解 设列车在开始制动后t 秒时行驶了s 米 s 04 并且s |t 0=0s|t 0=20把等式s 04两端积分一次 得 s04t C 1即v04t C 1(C 1是任意常数)再积分一次 得 s 02t2C 1t C 2 (C 1 C 2都C 1是任意常数) 由v |t 020得20C 1 于是v04t 20由s |t0得0C 2 于是s 02t220t令v 0 得t 50(s) 于是列车在制动阶段行驶的路程s025022050500(m )几个概念微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程 叫微分方程 常微分方程 未知函数是一元函数的微分方程 叫常微分方程 偏微分方程 未知函数是多元函数的微分方程 叫偏微分方程微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数 叫微分方程的阶 x 3y x 2 y4xy3x2y (4) 4y 10y12y5y sin2xy(n )10一般n 阶微分方程 F (x y y y(n ))0y(n )f (x y yy (n1))微分方程的解 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解 确切地说 设函数y (x )在区间I 上有n 阶连续导数 如果在区间I 上F [x (x )(x )(n )(x )]0 那么函数y (x )就叫做微分方程F (x y yy(n ))0在区间I 上的解通解如果微分方程的解中含有任意常数且任意常数的个数与微分方程的阶数相同这样的解叫做微分方程的通解初始条件 用于确定通解中任意常数的条件 称为初始条件 如 x x 0 时 y y 0 y y一般写成0y y x x == 00y y x x '='=特解 确定了通解中的任意常数以后 就得到微分方程的特解 即不含任意常数的解 初值问题 求微分方程满足初始条件的解的问题称为初值问题 如求微分方程yf (x y )满足初始条件00y y x x ==的解的问题 记为⎩⎨⎧=='=00),(y y y x f y x x积分曲线 微分方程的解的图形是一条曲线 叫做微分方程的积分曲线 例3 验证 函数 x C 1cos kt C 2 sin kt是微分方程0222=+x k dt x d 的解解 求所给函数的导数kt kC kt kC dtdx cos sin 21+-=)sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=将22dtx d 及x 的表达式代入所给方程 得 k 2(C 1cos kt C 2sin kt ) k 2(C 1cos kt C 2sin kt )0 这表明函数x C 1cos kt C 2sin kt 满足方程0222=+x k dt x d 因此所给函数是所给方程的解例4 已知函数x C 1cos kt C 2sin kt (k 0)是微分方程0222=+x k dtx d 的通解 求满足初始条件 x | t 0A x | t的特解解 由条件x | t 0A 及x C 1 cos kt C 2 sin kt 得C 1A 再由条件x | t0 及x (t ) kC 1sin kt kC 2cos kt 得C 20把C 1、C 2的值代入x C 1cos kt C 2sin kt 中 得 x A cos kt§12 2 可分离变量的微分方程 观察与分析 1 求微分方程y2x 的通解 为此把方程两边积分 得y x 2C一般地 方程y f (x )的通解为C dx x f y +=⎰)((此处积分后不再加任意常数)2 求微分方程y2xy 2的通解因为y 是未知的 所以积分⎰dx xy 22无法进行 方程两边直接积分不能求出通解 为求通解可将方程变为xdx dy y 212= 两边积分 得 C x y+=-21 或Cx y +-=21可以验证函数Cx y +-=21是原方程的通解 一般地 如果一阶微分方程y(x , y )能写成g (y )dy f (x )dx形式 则两边积分可得一个不含未知函数的导数的方程 G (y )F (x )C由方程G (y )F (x )C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程一阶微分方程有时也写成如下对称形式 P (x y )dx Q (x y )dy在这种方程中 变量x 与y 是对称的若把x 看作自变量、y 看作未知函数 则当Q (x ,y )0时 有),(),(y x Q y x P dx dy -=若把y 看作自变量、x 看作未知函数 则当P (x ,y )0时 有),(),(y x P y x Q dy dx -=可分离变量的微分方程如果一个一阶微分方程能写成g (y )dy f (x )dx (或写成y(x )(y ))的形式 就是说 能把微分方程写成一端只含y 的函数和dy 另一端只含x 的函数和dx 那么原方程就称为可分离变量的微分方程 讨论 下列方程中哪些是可分离变量的微分方程? (1) y 2xy 是 y 1dy 2xdx(2)3x 25x y0 是 dy (3x 25x )dx(3)(x2y 2)dx xydy =0 不是(4)y 1x y 2xy 2 是 y(1x )(1y 2)(5)y 10x y是 10ydy 10xdx(6)xy y x y +=' 不是可分离变量的微分方程的解法第一步 分离变量 将方程写成g (y )dy f (x )dx 的形式 第二步 两端积分⎰⎰=dxx f dy y g )()( 设积分后得G (y )F (x )C第三步 求出由G (y )F (x )C 所确定的隐函数y (x )或x(y )G (y )F (x ) C y(x )或x(y )都是方程的通解 其中G (y )F (x )C 称为隐式(通)解例1 求微分方程xy dxdy2=的通解 解 此方程为可分离变量方程 分离变量后得xdx dy y21=两边积分得⎰⎰=xdx dy y 21即 ln|y |x 2C 1从而 2112xC C xe e e y ±=±=+因为1C e ±仍是任意常数 把它记作C 便得所给方程的通解 2xCe y =解 此方程为可分离变量方程 分离变量后得xdx dy y 21=两边积分得⎰⎰=xdxdy y 21即 ln|y |x 2ln C 从而 2xCe y =例2 铀的衰变速度与当时未衰变的原子的含量M 成正比 已知t 0时铀的含量为M 0 求在衰变过程中铀含量M (t )随时间t 变化的规律 解 铀的衰变速度就是M (t )对时间t 的导数dtdM由于铀的衰变速度与其含量成正比 故得微分方程 M dtdM λ-=其中(>0)是常数 前的曲面号表示当t 增加时M 单调减少 即0<dtdM由题意 初始条件为 M |tM 0将方程分离变量得dt MdM λ-=两边积分 得⎰⎰-=dt M dM )(λ即 ln Mt ln C 也即M Cet由初始条件 得M 0CeC所以铀含量M (t )随时间t 变化的规律M M 0et例 3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系 解 设降落伞下落速度为v (t )降落伞所受外力为F mg kv ( k 为比例系数) 根据牛顿第二运动定律F ma 得函数v (t )应满足的方程为 kv mg dtdv m-= 初始条件为 v |t方程分离变量 得mdt kv mg dv =-两边积分 得⎰⎰=-mdt kv mg dv1)ln(1C m t kv mg k +=--即 t m k Cek mg v -+=(ke C kC 1--=) 将初始条件v |t 00代入通解得kmgC -=于是降落伞下落速度与时间的函数关系为)1(t m k e kmgv --=例4 求微分方程221xy y x dxdy+++=的通解解 方程可化为)1)(1(2y x dxdy++=分离变量得dx x dy y )1(112+=+两边积分得⎰⎰+=+dx x dy y )1(112 即Cx x y ++=221arctan于是原方程的通解为)21tan(2C x x y ++=例4 有高为1m 的半球形容器 水从它的底部小孔流出 小孔横截面面积为1cm2开始时容器内盛满了水 求水从小孔流出过程中容器里水面高度h 随时间t 变化的规律 解 由水力学知道 水从孔口流出的流量Q 可用下列公式计算 gh S dtdV Q 262.0==其中0 62为流量系数 S 为孔口横截面面积g 为重力加速度现在孔口横截面面积S 1cm 2 故gh dtdV 262.0= 或dtgh dV 262.0=另一方面 设在微小时间间隔[t t d t ]内 水面高度由h 降至h dh (dh 0)则又可得到 dVr 2dh其中r 是时刻t 的水面半径右端置负号是由于dh 0而dV 0的缘故又因222200)100(100h h h r -=--=所以 dV(200h h 2)dh通过比较得到dhh h dt gh )200(262.02--=π这就是未知函数h h (t )应满足的微分方程此外 开始时容器内的水是满的 所以未知函数h h (t )还应满足下列初始条件 h |t100将方程dh h h dt gh )200(262.02--=π分离变量后得 dhh h gdt )200(262.02321--=π两端积分 得 ⎰--=dhh h gt )200(262.02321π即 Ch h g t +--=)523400(262.02523π其中C 是任意常数 由初始条件得C g t +⨯-⨯-=)100521003400(262.02523π5101514262.0)52000003400000(262.0⨯⨯=-=g g C ππ因此 )310107(262.0252335h h gt +-⨯=π上式表达了水从小孔流出的过程中容器内水面高度h 与时间t 之间的函数关系§12 3 齐次方程 齐次方程 如果一阶微分方程),(y x f dxdy=中的函数f (x , y )可写成 xy的函数 即)(),(x y y x f ϕ= 则称这方程为齐次方程下列方程哪些是齐次方程?(1)022=---'x y y y x 是齐次方程1)(222-+=⇒-+=⇒xyx y dx dy x x y y dx dy(2)2211y y x -='-不是齐次方程2211x y dx dy --=⇒(3)(x2y 2)dx xydy 0是齐次方程 xyy x dx dy xy y x dx dy +=⇒+=⇒22(4)(2x y 4)dx (x y 1)dy 0不是齐次方程142-+-+-=⇒y x y x dx dy(5)0ch 3)ch 3sh 2(=-+dy xy x dx x y y x yx 是齐次方程x y x y dx dy xy x x y y x y x dx dy +=⇒+=⇒th 32ch 3ch 3sh 2齐次方程的解法在齐次方程)(x ydx dy ϕ=中 令x y u = 即y ux 有)(u dxdu xu ϕ=+分离变量 得x dx u u du =-)(ϕ两端积分 得⎰⎰=-xdx u u du )(ϕ求出积分后 再用xy代替u 便得所给齐次方程的通解 例1 解方程dxdyxydx dy x y =+22 解 原方程可写成1)(222-=-=xy x y xxy ydx dy因此原方程是齐次方程 令u xy = 则 y ux dxdu x u dx dy+=于是原方程变为12-=+u u dx du x u 即 1-=u u dx du x 分离变量 得 xdx du u =-)11(两边积分 得uln|u |Cln|x |或写成ln|xu |u C以xy代上式中的u 便得所给方程的通解C xy y +=||ln例2 有旋转曲面形状的凹镜 假设由旋转轴上一点O 发出的一切光线经此凹镜反射后都与旋转轴平行 求这旋转曲面的方程 解 设此凹镜是由xOy 面上曲线L yy (x )(y >0)绕x 轴旋转而成 光源在原点 在L 上任取一点M (x , y ) 作L 的切线交x 轴于A 点O 发出的光线经点M 反射后是一条平行于x 轴射线 由光学及几何原理可以证明OA OM 因为 x y y OP PM OP AP OA -'=-=-=αcot而 22y x OM +=于是得微分方程22y x x y y+=-'整理得1)(2++=yx y x dy dx 这是齐次方程问题归结为解齐次方程1)(2++=yx y x dy dx令vyx = 即x yv 得12++=+v v dydv yv 即 12+=v dydv y分离变量 得ydy v dv =+12两边积分 得 C y v v ln ln )1ln(2-=++, C yv v =++⇒12, 1)(22+=-⇒v v Cy , 1222=-CyvC y 以yv x 代入上式 得)2(22C x C y +=这是以x 轴为轴、焦点在原点的抛物线 它绕x 轴旋转所得旋转曲面的方程为)2(222C x C z y +=+这就是所求的旋转曲面方程例3 设河边点O 的正对岸为点A 河宽OA h 两岸为平行直线 水流速度为a 有一鸭子从点A 游向点O 设鸭子的游速为b (b >a ) 且鸭子游动方向始终朝着点 O 求鸭子游过的迹线的方程例3 设一条河的两岸为平行直线 水流速度为a有一鸭子从岸边点A 游向正对岸点O 设鸭子的游速为b (b >a ) 且鸭子游动方向始终朝着点O 已知OA h 求鸭子游过的迹线的方程解 取O 为坐标原点 河岸朝顺水方向为x 轴 y 轴指向对岸 设在时刻t 鸭子位于点P (x , y ) 则鸭子运动速度) ,() ,(dtdy dt dx v v y x ==v 故有yx v v dy dx =另一方面 ) ,()0 ,(2222y x y y x x b a +-+-+=+=b a v ) ,(2222y x by y x bx a +-+-=v因此yxy x b a v v dy dx y x ++-==1)(2 即yxy x b a dy dx ++-=1)(2问题归结为解齐次方程yxy x b a dy dx ++-=1)(2令uyx = 即x yu 得12+-=u ba dy du y分离变量 得dy bya u du -=+12两边积分 得 )ln (ln arsh C y ab u +-=将yx u =代入上式并整理 得])()[(2111b ab aCy Cy C x +--= 以x |yh0代入上式 得hC 1=故鸭子游过的轨迹方程为])()[(211b a b a hy h y h x +--= 0y h 将y x u =代入)ln (ln arsh C y a b u +-=后的整理过程)ln (ln arsh C y a b y x +-=a bCy y x -=⇒)ln(sh ])()[(21a ba bCy Cy y x -=⇒- ])()[(2a b a b Cy Cy y x -=⇒-])()[(2111a b a b Cy Cy C x +--=⇒§ 线性微分方程一、 线性方程 线性方程 方程)()(x Q y x P dxdy=+叫做一阶线性微分方程 如果Q (x )0 则方程称为齐次线性方程 否则方程称为非齐次线性方程 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dxdy=+的齐次线性方程 下列方程各是什么类型方程? (1)y dxdyx =-)2(021=--y x dx dy 是齐次线性方程 (2) 3x 25x 5y0y3x25x 是非齐次线性方程(3) y y cos x e sin x是非齐次线性方程(4)y x dxdy+=10 不是线性方程(5)0)1(32=++x dxdy y 0)1(23=+-y x dx dy 或32)1(x y dy dx +-不是线性方程齐次线性方程的解法 齐次线性方程0)(=+y x P dxdy是变量可分离方程 分离变量后得dx x P ydy)(-=两边积分 得1)(||ln C dx x P y +-=⎰或 )( 1)(C dxx P e C Ce y ±=⎰=-这就是齐次线性方程的通解(积分中不再加任意常数) 例1 求方程y dxdyx =-)2(的通解 解 这是齐次线性方程 分离变量得2-=x dx y dy两边积分得ln|y |ln|x 2|lnC方程的通解为y C (x 2) 非齐次线性方程的解法将齐次线性方程通解中的常数换成x 的未知函数u (x )把⎰=-dxx P e x u y )()(设想成非齐次线性方程的通解 代入非齐次线性方程求得)()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =⎰+⎰-⎰'---化简得 ⎰='dxx P e x Q x u )()()(Cdx e x Q x u dxx P +⎰=⎰)()()(于是非齐次线性方程的通解为])([)()(C dx e x Q e y dxx P dx x P +⎰⎰=⎰-或 dx e x Q e Ce y dx x P dx x P dx x P ⎰⎰⎰+⎰=--)()()()(非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和例2 求方程25)1(12+=+-x x y dx dy 的通解 解 这是一个非齐次线性方程 先求对应的齐次线性方程012=+-x y dx dy 的通解 分离变量得12+=x dx y dy两边积分得ln y 2ln (x 1)ln C齐次线性方程的通解为 y C (x 1)2用常数变易法 把C 换成u 即令y u (x 1)2代入所给非齐次线性方程 得2522)1()1(12)1(2)1(+=+⋅+-+⋅++⋅'x x u x x u x u21)1(+='x u两边积分 得C x u ++=23)1(32再把上式代入y u (x1)2中即得所求方程的通解为])1(32[)1(232C x x y +++=解 这里12)(+-=x x P 25)1()(+=x x Q 因为 )1ln(2)12()(+-=+-=⎰⎰x dx x dx x P2)1ln(2)()1(+==⎰+-x e e x dxx P2321225)()1(32)1()1()1()(+=+=++=⎰⎰⎰⎰-x dx x dx x x dx e x Q dx x P所以通解为 ])1(32[)1(])([232)()(C x x C dx e x Q ey dxx P dxx P +++=+⎰⎰=⎰-例3 有一个电路如图所示 其中电源电动势为E E m sin t (E m 、都是常数) 电阻R 和电感L 都是常量 求电流i (t )解 由电学知道 当电流变化时 L 上有感应电动势dtdi L - 由回路电压定律得出0=--iR dtdi L E 即LE i L R dt di =+把E E m sin t 代入上式 得t LE i L R dt di m sin ω=+初始条件为 i |t 0方程t LE i L R dt di m sin ω=+为非齐次线性方程 其中LR t P =)( t LE t Q msin )(ω=由通解公式 得 ])([)()()(C dt e t Q et i dtt P dtt P +⎰⎰=⎰-) sin (C dt e t LE e dt L Rm dt L R +⎰⎰=⎰-ω)sin (C dt te e LE t L R t L Rm +=⎰-ωt LR mCe t L t R LR E -+-+=) cos sin (222ωωωω其中C 为任意常数 将初始条件i |t0代入通解 得222 L R LE C m ωω+=因此 所求函数i (t )为) cos sin ( )(222222t L t R L R E e L R LE t i m t L R m ωωωωωω-+++=-二、伯努利方程 伯努利方程 方程n y x Q y x P dxdy)()(=+ (n 0 1) 叫做伯努利方程 下列方程是什么类型方程?(1)4)21(3131y x y dx dy -=+ 是伯努利方程 (2)5xy y dx dy += 5xy y dxdy=- 是伯努利方程(3)x y y x y +='11-=-'xy y xy 是伯努利方程(4)x xy dxdy42=- 是线性方程 不是伯努利方程伯努利方程的解法 以y n除方程的两边 得 )()(1x Q y x P dxdyy n n =+-- 令z y1n得线性方程)()1()()1(x Q n z x P n dxdz -=-+例4 求方程2)(ln y x a xydx dy -+的通解 解 以y 2除方程的两端 得 x a y xdx dy y ln 112=+-- 即 xa y xdx y d ln 1)(11=+---令z y1则上述方程成为x a z xdx dz ln 1-=-这是一个线性方程 它的通解为 ])(ln 2[2x a C x z -=以y 1代z 得所求方程的通解为 1])(ln 2[2=-x a C yx经过变量代换 某些方程可以化为变量可分离的方程 或化为已知其求解方法的方程 例5 解方程yx dx dy+=1解 若把所给方程变形为y x dydx +=即为一阶线性方程则按一阶线性方程的解法可求得通解 但这里用变量代换来解所给方程令x y u 则原方程化为udx du 11=- 即uu dx du 1+=分离变量 得dx du u u =+1两端积分得 u ln|u1|x ln|C |以u x y 代入上式 得 y ln|x y 1|ln|C | 或x Ceyy 1§125 全微分方程全微分方程 一个一阶微分方程写成P (x , y )dx Q (x , y )dy 0形式后 如果它的左端恰好是某一个函数u u (x , y )的全微分du (x , y )P (x , y )dx Q (x , y )dy那么方程P (x , y )dx Q (x , y )dy 0就叫做全微分方程 这里),(y x P xu =∂∂),(y x Q yu =∂∂而方程可写为 du (x , y )0全微分方程的判定 若P (x , y )、Q (x , y )在单连通域G 内具有一阶连续偏导数 且xQ y P ∂∂=∂∂则方程P (x , y )dx Q (x , y )dy 0是全微分方程 全微分方程的通解若方程P (x , y )dx Q (x , y )dy 0是全微分方程 且du (x , y )P (x , y )dx Q (x , y )dy 则 u (x , y )C 即)),(( ),(),(0000G y x C dx y x Q dx y x P yy xx∈=+⎰⎰是方程P (x , y )dx Q (x , y )dy 0的通解 例1 求解(5x 43xy2y 3)dx (3x 2y 3xy 2y 2 )dy 0解 这里xQ y xy y P ∂∂=-=∂∂236所以这是全微分方程 取(x 0, y 0)(0, 0)有⎰⎰+-+=y xdy y dx y xy x y x u 020324)35(),(332253123y xy y x x +-+=于是 方程的通解为Cy xy y x x =+-+332253123积分因子 若方程P (x , y )dx Q (x , y )dy 0不是全微分方程 但存在一函数(x , y ) ((x , y )0) 使方程(x , y )P (x , y )dx(x , y )Q (x , y )dy 0是全微分方程 则函数(x , y )叫做方程P (x , y )dx Q (x , y )dy 0的积分因子例2 通过观察求方程的积分因子并求其通解: (1)ydx xdy 0(2)(1xy )ydx (1xy )xdy 0 解 (1)方程ydx xdy 0不是全微分方程 因为 2)(y xdy ydx yx d -=所以21y 是方程ydx xdy 0的积分因子 于是 02=-y xdy ydx 是全微分方程 所给方程的通解为C y x =(2)方程(1xy )ydx (1xy )xdy 0不是全微分方程将方程的各项重新合并 得(ydx xdy )xy (ydx xdy )0再把它改写成 0)()(22=-+ydy x dx y x xy d这时容易看出2)(1xy 为积分因子 乘以该积分因子后 方程就变为0)()(2=-+ydyx dx xy xy d 积分得通解C y x xy ln ||ln 1=+- 即xyCe yx 1=我们也可用积分因子的方法来解一阶线性方程y P (x )y Q (x )可以验证⎰=dxx P e x )()(μ是一阶线性方程y P (x )y Q (x )的一个积分因子 在一阶线性方程的两边乘以⎰=dxx P e x )()(μ得⎰=⎰+⎰'dxx P dxx P dxx P e x Q e x yP e y )()()()()( 即 ⎰='⎰+⎰'dxx P dxx P dx x P e x Q e y e y )()()()(][亦即 ⎰='⎰dxx P dxx P e x Q ye )()()(][ 两边积分 便得通解 Cdx e x Q ye dxx P dxx P +⎰=⎰⎰)()()( 或 ])([)()(C dx e x Q e y dxx P dx x P +⎰⎰=⎰-例3用积分因子求x xy dxdy42=+的通解 解 方程的积分因子为 22)(xxdxe e x =⎰=μ方程两边乘以2x e 得 22242xx x xe y xe e y =+' 即224)(xx xe y e ='于是 Ce dx xe y e x x x +==⎰22224因此原方程的通解为2224xx Ce dx xe y -+==⎰§126 可降阶的高阶微分方程一、y (n )f (x )型的微分方程 解法 积分n 次1)1()(C dx x f y n +=⎰-21)2(])([C dx C dx x f y n ++=⎰⎰-例1 求微分方程y e 2x cos x 的通解解 对所给方程接连积分三次 得 12sin 21C x e y x +-=''212cos 41C x C x e y x +++='3221221sin 81C x C x C x e y x ++++=这就是所给方程的通解或 122sin 21C x e y x +-=''2122cos 41C x C x e y x +++='32212sin 81C x C x C x e y x ++++=这就是所给方程的通解例 2 质量为m 的质点受力F 的作用沿Ox 轴作直线运动 设力F 仅是时间t 的函数F F (t ) 在开始时刻t 0时F (0)F 0 随着时间t 的增大 此力F 均匀地减小 直到t T 时 F (T )0 如果开始时质点位于原点 且初速度为零 求这质点的运动规律 解 设x x (t )表示在时刻t 时质点的位置 根据牛顿第二定律 质点运动的微分方程为)(22t F dtx d m =由题设 力F (t )随t 增大而均匀地减小 且t 0时 F (0)F 0所以F (t )F 0kt 又当t T 时 F (T )0 从而 )1()(0TtF t F -=于是质点运动的微分方程又写为)1(022T t m F dtx d -=其初始条件为0|0==t x0|0==t dt dx把微分方程两边积分 得120)2(CTt t m F dt dx +-=再积分一次 得21320)621(C t C Tt t m F x ++-= 由初始条件x |t 00 0|0==t dtdx 得C 1C 20于是所求质点的运动规律为)621(320Tt t m F x -= 0t T解 设x x (t )表示在时刻t 时质点的位置 根据牛顿第二定律 质点运动的微分方程为 mxF (t )由题设 F (t )是线性函数 且过点(0 F 0)和(T 0) 故1)(0=+T tF t F 即)1()(0Tt F t F -=于是质点运动的微分方程又写为 )1(0Tt m F x -='' 其初始条件为x |t 00 x |t把微分方程两边积分 得 120)2(C Tt t m F x +-=' 再积分一次 得2320)621(C Tt t m F x +-= 由初始条件x |t 00 x |t得C 1C 20于是所求质点的运动规律为)621(320Tt t m F x -= 0t T二、y f (xy )型的微分方程解法 设yp 则方程化为p f (x p ) 设p f (x p )的通解为p (x C 1) 则),(1C x dxdyϕ=原方程的通解为21),(C dx C x y +=⎰ϕ例3 求微分方程 (1x 2)y 2xy 满足初始条件y |x1y|x3的特解解 所给方程是y f (x y )型的 设yp 代入方程并分离变量后 有dx x x p dp 212+=两边积分 得ln|p |ln(1x 2)C即 p y C 1(1x 2) (C 1e C )由条件y |x 03 得C 13所以 y 3(1x 2)两边再积分 得 y x 33x C 2 又由条件y |x 01 得C 21于是所求的特解为y x 33x 1例4 设有一均匀、柔软的绳索 两端固定 绳索仅受重力的作用而下垂 试问该绳索在平衡状态时是怎样的曲线?三、yf (y y )型的微分方程解法 设y p 有dydpp dx dy dy dp dx dp y =⋅==''原方程化为),(p y f dy dpp = 设方程),(p y f dydpp =的通解为y p (y C 1) 则原方程的通解为21),(C x C y dy+=⎰ϕ例5 求微分yy y20的通解解 设y p 则dydp py =''代入方程 得02=-p dydp yp在y 0、p 0时 约去p 并分离变量 得ydy p dp =两边积分得ln|p |ln|y |ln c即 p Cy 或yCy (C c )再分离变量并两边积分 便得原方程的通解为 ln|y |Cx ln c 1 或 y C 1e Cx(C 1c 1)例5 求微分yy y 20的通解解 设y p 则原方程化为02=-p dydp yp当y 0、p 0时 有01=-p ydy dp 于是 yC e p dyy 11=⎰=即 yC 1y 0从而原方程的通解为 xC dxC e C e C y 1122=⎰=例6 一个离地面很高的物体受地球引力的作用由静止开始落向地面 求它落 到地面时的速度和所需的时间(不计空气阻力)§12 7 高阶线性微分方程一、二阶线性微分方程举例例1 设有一个弹簧 上端固定 下端挂一个质量为m 的物体 取x 轴铅直向下 并取物体的平衡位置为坐标原点给物体一个初始速度v 00后 物体在平衡位置附近作上下振动 在振动过程中 物体的位置x 是t 的函数 x x (t ) 设弹簧的弹性系数为c则恢复力fcx又设物体在运动过程中受到的阻力的大小与速度成正比 比例系数为则dtdx R μ-由牛顿第二定律得 dt dxcx dt x d mμ--=22移项 并记mn μ=2 mck =2则上式化为 02222=++x k dt dx n dtx d这就是在有阻尼的情况下 物体自由振动的微分方程 如果振动物体还受到铅直扰力 F H sin pt 的作用 则有pt h x k dt dx n dt x d sin 2222=++其中mH h =这就是强迫振动的微分方程例2 设有一个由电阻R 、自感L 、电容C 和电源E 串联组成的电路 其中R 、L 、及C 为常数电源电动势是时间t 的函数 E E m sin t 这里E m 及也是常数设电路中的电流为i (t ) 电容器极板上的电量为q (t )两极板间的电压为u c 自感电动势为E L 由电学知道 dtdqi =Cq u c =dtdi LE L -=根据回路电压定律 得0=---Ri C q dt di L E 即 tE u dt du RC dt u d LC m c cc ωsin 22=++或写成t LC E u dt du dt u d m cc c ωωβsin 22022=++ 其中L R 2=β LC10=ω 这就是串联电路的振荡方程 如果电容器经充电后撤去外电源(E 0) 则上述成为022022=++c c c u dt du dtu d ωβ二阶线性微分方程 二阶线性微分方程的一般形式为y P (x )y Q (x )y f (x )若方程右端f (x )0时 方程称为齐次的 否则称为非齐次的二、线性微分方程的解的结构 先讨论二阶齐次线性方程 yP (x )yQ (x )y 0 即0)()(22=++y x Q dx dyx P dxy d定理1 如果函数y 1(x )与y 2(x )是方程 yP (x )yQ (x )y 0的两个解 那么y C 1y 1(x )C 2y 2(x )也是方程的解 其中C 1、C 2是任意常数齐次线性方程的这个性质表明它的解符合叠加原理 证明 [C 1y 1C 2y 2]C 1 y 1C 2 y 2[C 1y 1C 2y 2]C 1 y 1C 2 y 2因为y 1与y 2是方程y P (x )y Q (x )y 0 所以有y 1P (x )y 1Q (x )y 10及y 2P (x )y 2Q (x )y 20从而 [C 1y 1C 2y 2]P (x )[ C 1y 1C 2y 2]Q (x )[ C 1y 1C 2y 2]C 1[y 1P (x )y 1Q (x )y 1]C 2[y 2P (x )y 2Q (x )y 2]000这就证明了y C 1y 1(x )C 2y 2(x )也是方程y P (x )yQ (x )y 0的解函数的线性相关与线性无关设y 1(x ) y 2(x ) y n (x )为定义在区间I 上的n 个函数 如果存在n 个不全为零的常数k 1 k 2k n使得当x I 时有恒等式k 1y 1(x )k 2y 2(x ) k n y n (x )0成立 那么称这n 个函数在区间I 上线性相关 否则称为线性无关 判别两个函数线性相关性的方法对于两个函数 它们线性相关与否 只要看它们的比是否为常数 如果比为常数 那么它们就线性相关 否则就线性无关例如 1 cos 2x sin 2x 在整个数轴上是线性相关的 函数1 x x 2在任何区间(a ,b)内是线性无关的定理2 如果如果函数y1(x)与y2(x)是方程y P(x)y Q(x)y0的两个线性无关的解那么y C1y1(x)C2y2(x) (C1、C2是任意常数)是方程的通解例3 验证y1cos x与y2sin x是方程y y0的线性无关解并写出其通解解因为y1y1cos x cos x0y2y2sin x sin x0所以y1cos x与y2sin x都是方程的解因为对于任意两个常数k1、k2要使k1cos x k2sin x0只有k1k20所以cos x与sin x在(, )内是线性无关的因此y1cos x与y2sin x是方程y y0的线性无关解方程的通解为y C1cos x C2sin x例4 验证y1x与y2e x是方程(x1)y xy y0的线性无关解并写出其通解解因为(x1)y1xy1y10x x0(x1)y2xy2y2(x1)e x xe x e x0所以y1x与y2e x都是方程的解因为比值e x/x不恒为常数所以y1x与y2e x在(, )内是线性无关的因此y1x与y2e x是方程(x1)y xy y0的线性无关解方程的通解为y C1x C2e x推论如果y1(x)y2(x)y n(x)是方程y(n)a1(x)y(n1)a n1(x)y a n(x)y0的n个线性无关的解那么此方程的通解为y C1y1(x)C2y2(x) C n y n(x)其中C1C2C n为任意常数二阶非齐次线性方程解的结构我们把方程y P(x)y Q(x)y0叫做与非齐次方程y P(x)y Q(x)y f(x)对应的齐次方程定理3 设y*(x)是二阶非齐次线性方程y P(x)y Q(x)y f(x)的一个特解Y(x)是对应的齐次方程的通解那么y Y(x)y*(x)是二阶非齐次线性微分方程的通解证明提示 [Y(x)y*(x)]P(x)[ Y(x)y*(x)]Q(x)[ Y(x)y*(x)][Y P(x)Y Q(x)Y ][ y* P(x)y* Q(x)y*]0 f(x) f(x)例如Y C1cos x C2sin x是齐次方程y y0的通解y*x22是y y x2的一个特解因此y C1cos x C2sin x x22是方程y y x2的通解定理4 设非齐次线性微分方程y P(x)y Q(x)y f(x)的右端f(x)几个函数之和如y P(x)y Q(x)y f1(x)f2(x)而y1*(x)与y2*(x)分别是方程y P(x)y Q(x)y f1(x)与y P(x)y Q(x)y f2(x)的特解那么y1*(x)y2*(x)就是原方程的特解证明提示[y1y2*]P(x)[ y1*y2*]Q(x)[ y1*y2*][ y1*P(x) y1*Q(x) y1*][ y2*P(x) y2*Q(x) y2*]f1(x)f2(x)§129 二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程 方程 ypy qy 0称为二阶常系数齐次线性微分方程 其中p 、q 均为常数如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看能否适当选取r 使y erx满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程y py qy 0得(r2pr q )e rx 0由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解特征方程 方程r2pr q 0叫做微分方程ypyqy 0的特征方程 特征方程的两个根r 1、r 2可用公式2422,1qp p r -±+-= 求出特征方程的根与通解的关系(1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为 函数xr ey 11=、xr ey 22=是方程的解 又xr r xr x r e e e y y )(212121-==不是常数 因此方程的通解为 xr x r e C e C y 2121+=(2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解这是因为 x r e y 11=是方程的解 又x r x r xr x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r所以x r xe y 12=也是方程的解 且x e xe y y x r xr ==1112不是常数 因此方程的通解为 xr x r xe C e C y 1121+=(3)特征方程有一对共轭复根r 1, 2i 时 函数y e(i )x、y e (i )x是微分方程的两个线性无关的复数形式的解 函数y e xcos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e(i )x和y 2e(i )x都是方程的解 而由欧拉公式 得y 1e (i )x e x (cos x i sin x ) y 2e(i )xe x (cos x i sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x )(21sin 21y y ix e x -=βα故e x cos x 、y 2e xsin x 也是方程解可以验证 y 1e x cos x 、y 2e xsin x 是方程的线性无关解 因此方程的通解为y e x(C 1cos x C 2sin x ) 求二阶常系数齐次线性微分方程y py qy 0的通解的步骤为第一步 写出微分方程的特征方程 r2pr q 0第二步 求出特征方程的两个根r 1、r 2第三步 根据特征方程的两个根的不同情况 写出微分方程的通解 例1 求微分方程y2y3y 0的通解解 所给微分方程的特征方程为。
同济高数 教案
第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2、了解函数的奇偶性、单调性、周期性和有界性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形。
5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质.教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;5、闭区间上连续函数性质的应用。
§1. 1 映射与函数一、集合1。
集合概念集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A,B, C….等表示。
元素:组成集合的事物称为集合的元素。
a是集合M的元素表示为a M。
集合的表示:列举法: 把集合的全体元素一一列举出来.例如A ={a , b , c , d , e , f , g }。
描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A ={a 1, a 2, ⋅ ⋅ ⋅, a n }, M ={x | x 具有性质P }. 例如M ={(x , y )| x , y 为实数, x 2+y 2=1}. 几个数集:N 表示所有自然数构成的集合, 称为自然数集。
同济大学第五版高数共137页文档
x x D f
yf(x)
2yf(x)与yf1(x)的
(x,f(x))
图象对称于 yx直 . 线 o
x
6、基本初等函数
1)幂函数 yx (是常) 数
2)指数函数 y a x (a 0 ,a 1 ) 3)对数函数 y la o x ( a g 0 , a 1 ) 4)三角函数 ysix n ; yco x ;s
T1
y
yx[x]
1
o
1
x
3、反函数
由 yf(x)确定 yf 的 1(x)称为.反函
ysinxh yf1(x)asrinxh
4、隐函数
由方F程 (x,y)0所确定的函数 y f(x)称为隐.函数 如 yx ey 0
5、反函数与直接函数之间的关系
设函数 f(x)是一一对应
函数,则
y yf1(x)
1f(f1(x) )f1(f(x)) (f(x)x ,)
ytax;n yco x;t 5)反三角函数 yarcsx;inyarcxc ; os
yarctx;aynarccoxt
7、复合函数
设 函 数yf(u)的 定 义 域 Df,而 函 数 u(x) 的值域为Z,若Df Z,则称函数 yf[(x)为 ]x的 复 合 函 数 .
8、初等函数
由常数和基本初等函数经过有限次四则运算和有 限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
函数的分类
有 有理整函数(多项式函数) 理
代 数
函 数 有理分函数(分式函数)
初 等
函 数
函
无理函数
函数
数
超越函数
非初等函数(分段函数,有无穷多项等函数)
2、函数的性质
同济大学-高等数学微积分教案
第一章:函数与极限1.1 初等函数图象及性质1.1.1 幂函数函数(m 是常数)叫做幂函数。
幂函数的定义域,要看m 是什么数而定。
例如,当m = 3时,y=x3的定义域是(-∞ ,+∞);当m = 1/2时,y=x1/2的定义域是[0,+∞ );当m = -1/2时,y=x-1/2的定义域是(0,+∞ )。
但不论m 取什么值,幂函数在(0,+∞)内总有定义。
最常见的幂函数图象如下图所示:[如图]1.1.2 指数函数与对数函数1.指数函数函数y=a x(a是常数且a>0,a≠1)叫做指数函数,它的定义域是区间(-∞ ,+∞)。
因为对于任何实数值x,总有a x >0,又a0=1,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。
若a>1,指数函数a x是单调增加的。
若0<a<1,指数函数a x是单调减少的。
由于y=(1/a)-x=a-x,所以y=a x的图形与y=(1/a)x的图形是关于y轴对称的(图1-21)。
[如图]2.对数函数指数函数y=a x的反函数,记作y=log a x(a是常数且a>0,a≠1),叫做对数函数。
它的定义域是区间(0,+∞)。
对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。
y=log a x的图形总在y轴上方,且通过点(1,0)。
若a>1,对数函数log a x是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞)内函数值为正。
若0<a<1,对数函数log a x是单调减少的,在开区间(0,1)内函数值为正,而在区间(1,+∞)内函数值为负。
[如图] 1.1.3 三角函数与反三角函数1.三角函数正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间(-∞ ,+∞),值域都是必区间[-1,1]。
正弦函数是奇函数,余弦函数是偶函数。
正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数。
高等数学课件微分方程D128常系数齐次线性微分方程
称②为微分方程①的特征方程, 其根称为特征根.
1. 当 p24q0时, ②有两个相异实根 r1, r2,则微分
方程有两个线性无关的特解: y1 er1x, y2 er2x,
因此方程的通解为 yC 1er1xC 2er2x
2020/7/20
高等数学课件
机动 目录 上页 下页 返回 结束
高等数学课件
机动 目录 上页 下页 返回 结束
解的特征:
xA siktn ()简谐振动
A: 振幅, : 初相, 周期: T 2
k
c m
:
固有频率
k (仅由系统特性确定)
下图中 xt0 假 x00 设 ,ddxt t0 v0 0
x
A
xo0
T
t
A
2020/7/20
高等数学课件
机动 目录 上页 下页 返回 结束
利用初始条件得
C14, C2 2
于是所求初值问题的解为 s(42t)et
2020/7/20
高等数学课件
机动 目录 上页 下页 返回 结束
例3. 质量为m的物体自由悬挂在一端固定的弹簧上,
在无外力作用下做自由运动, 取其平衡位置为原点建
立坐标系如图, 设 t = 0 时物体的位置为 xx0,初始 速度为 v0, 求物体的运动规律 xx(t).
机动 目录 上页 下页 返回 结束
推广:
y (n ) a 1 y (n 1 ) a n 1 y a n y 0(a k均为 ) 特征方程: r n a 1 r n 1 a n 1 r a n 0
若特征方程含 k 重实根 r , 则其通解中必含对应项
( C 1 C 2 x C k x k 1 ) e r x
高等数学 常微分方程
9
当 f ( u) u 0时,
即 x Ce
( u)
得
du ln C1 x , f ( u) u
,
( ( u)
du ) f ( u) u
( )
y x
y 将 u 代入 , x
得通解 x Ce
,
当 u0 , 使 f (u0 ) u0 0,
2
第十二章习题课
机动 目录 上页 下页 返回 结束
22
2). y f ( x , y ) 型的微分方程 .
【方程特点】方程右端不显含未知函数 y
【解法】令 y p( x ) ,则 y p( x ) 代入方程
得 p( x) f ( x, p( x ))
这是一个关于自变量 x 和未知函数 p( x ) 的一阶微分方程,
ln y P ( x )d x ln C
y C e P ( x )d x
dy P ( x ) y Q( x ) dx
第十二章习题课
机动 目录 上页 下页 返回 结束
12
y ( x ) u ( x ) e 用常数变易法: 作变换
P ( x )d x
, 则
( 2) 2 x ln x d y y ( y 2 ln x 1 ) d x 0
[提示](1) 原方程化为 令 u = x y , 得 du (2) 将方程改写为
u ln u dx x
(分离变量方程)
dy 1 y3 y (贝努里方程) 令 z y 2 d x 2 x ln x 2x
【解】 ① 全微分方程 所求通解为
② 一阶线性非齐次微分方程
同济高等数学(第五版)150教时
同济《高等数学》(第五版)150教时教学建议书(转)1 总体建议1.1 总课时分配:第1章分析引论16第2章导数与微分14第3章中值定理与导数的应用14第4章不定积分14第5章定积分12第6章定积分的应用4第7章空间解析几何与向量代数10第8章多元函数微分学16第9章重积分12第10章曲线积分与曲面积分14第11章无穷级数12第12章常微分方程12排课150教时,在实际执行教学计划时,01学期5节/周,17周共85教时。
02学期4节/周,18周共72教时,理论总课时为157教时,有一定的机动余地。
1.2 备课与讲课:备课:〔1〕每一章在计划教时内,在不改变教学要求、尽量尊重教材的基础上,适当重组教学内容,编写讲稿,使其具有更好的条理性,更强的逻辑性,突出数学思想与数学方法。
讲稿应体现教师的创新思路,应有教师的个人特色。
〔2〕教学内容的广度与深度。
以高等数学(Ⅰ)教学大纲为基准,对局部的概念、数学技能与方法的教学,根据各专业的不同,作适当的延拓与删减。
〔3〕关于定理的证明:数学定理的证明是培养学生逻辑推理能力,巩固学生数学基础的一个重要手段,要证明。
但由于课时的限制,不全证。
选择证明思路不类同的,有一定启发作用的典型定理在课堂教学上证明。
要注意启发学生的证明思路。
对不太难的,证明方法与思路已在其它定理的证明中出现过的,应由学生自证。
〔4〕每学期初、高等数学(Ⅰ)责任教师会召开备课会议,需要统一、讨论的问题,每位任课教师应早作准备。
讲课:讲课一定要体现教师的个人特色,不教条,应有创造性的工作,通过讲课激发学生学数学的积极性,但从控制课时,增大讲课信息量,巩固学生的学习成果这几个方面看,讲课应注意:〔1〕不要花大量时间放在板书定义、定理上。
可运用电化教学的功能或事先作好教学准备。
也不要将大量的时间放在重复计算或简单计算上。
增大教学信息量。
〔2〕每章一定要讲习题课,通过习题课对重要概念作加深理解,纠正作业中的倾向性错误,疑难习题解析等。