专题——数轴上的动点问题

合集下载

专题——数轴上的动点问题

专题——数轴上的动点问题

数轴上的动点问题动点问题处理策略1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数-左边点表示的数。

2、如何表示运动过程中的数:点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。

(简单说成左减右加)3、分类讨论的思想:数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况种的分类讨论4、绝对值策略:对于两个动点P,Q,若点P,Q的左右位置关系不明确或有多种情况,可用p,q两数差的绝对值表示P,Q两点距离,从而避免分复杂分类讨论类型一、数轴上两点距离的应用例1、已知数轴上A,B两点表示的数分别为-2和5,点P为数轴上一点(1)若点P到A,B两点的距离相等,求P点表示的数(2)若PA=2PB,求P点表示的数B的距离之和为13,求点P所表示的数。

(3)若点P到点A和点类型二、绝对值的处理策略例2、已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒(1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?(2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8?(3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?练、已知在数轴上有A,B两点,点A表示的数为-8,点B表示的数为4.动点P从数轴上点A出发,以每秒2个单位长度的速度运动,同时动点Q从点B出发,以每秒1个单位长度的速度,设运动时间为t秒。

(1)若点P向右运动,点Q向左运动,问多少秒后点P与Q相距2个单位长度?(2)若动点P、Q都向右运动,当点P与点Q重合时,P、Q两点停止运动.当t为何值时,2OP-OQ=4?类型三、小狗来回跑的问题例、数轴上,点A表示-3,点B表示12,A,B两点同时向负方向运动,速度分别为1个单位和4个单位每秒,同时另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.练习、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?类型四、运动中的变与不变例3、数轴上A,B,C三点分别表示-1,1,5,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.(1)请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.(2)是否存在一个常数m使得m•BC-2AB不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.练习、如图①,M、N、P是数轴上顺次三点,M、N之间的距离记为MN,M,P之间的距离记为MP.(1)若MP=3MN,求x的值;(2)在(1)的条件下,如图②,点M、N、P开始在数轴上运动,点M以每秒2个单位长度的速度向左运动,同时,点N和点P分别以每秒1个单位长度和4个单位长度的速度向右运动.设运动时间为t(t>0)秒,PN-MN的值是否随时间t的变化而改变?若改变,说明理由;若不变,求其值.为定值?若存在求出k值,并求出这个定值。

七年级上培优第1讲 数轴上的动点问题(专题)

七年级上培优第1讲  数轴上的动点问题(专题)

七年级上数学培优第1讲 数轴上的动点问题(专题)1. 已知数轴上两点A 、B 对应的数分别为—1,3,点P 为数轴上一动点,其对应的数为x 。

⑴若点P 到点A 、点B 的距离相等,求点P 对应的数;⑵数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值。

若不存在,请说明理由?⑶当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度向左运动,点B 以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P 点到点A 、点B 的距离相等?2. 数轴上A 点对应的数为-5,B 点在A 点右边,电子蚂蚁甲、乙在B 分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动。

(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数。

(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由。

3.已知数轴上有顺次三点A, B, C 。

其中A 的坐标为-20.C 点坐标为40,一电子蚂蚁甲从C点出发,以每秒2个单位的速度向左移动。

(1)当电子蚂蚁走到BC 的中点D 处时,它离A,B 两处的距离之和是多少?(2)这只电子蚂蚁甲由D 点走到BA 的中点E 处时,需要几秒钟?(3)当电子蚂蚁甲从E 点返回时,另一只电子蚂蚁乙同时从点C 出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B 点5个单位长度,求B 点的坐标4. 如图,已知A 、B 分别为数轴上两点,A 点对应的数为—20,B 点对应的数为100。

⑴ 求AB 中点M 对应的数;⑵ 现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;⑶若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。

专题01 数轴上的动点问题(解析版) -2020-2021学年七

专题01 数轴上的动点问题(解析版) -2020-2021学年七

2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)专题01 数轴上的动点问题【典型例题】1.(2020·苏州市工业园区第一中学初一月考)如图,在数轴上点A表示的数是-3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是____________;点C表示的数是_________;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【答案】(1)由题意可得:AB=18, A0=3(0为原点),∴B0=AB-A0=15,∵BC=2AC,∴B0-0C=2(A0+0C),∴0C=3.故答案为15, 3(2)由题意可得:存在2种情况点P与点Q之间的距离为6,①点P与点Q相遇前,18-6=(4+2)t,则t=2秒;②点P与点Q相遇后,18+6=(4+2)t,则t=4秒.故答案为t=2或4.(3)由题意可得:AC=6,PC=│6-4t│,QB=2t, 若PC+QB=4,则│6-4t│+2t=4,解得t=1或5 3故答案为点P表示的数是1或5 3【专题训练】一、选择题1.(2020·博兴县吕艺镇中学月考)已知点A和点B在同一数轴上,点A表示数﹣2,又已知点B和点A相距5个单位长度,则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C2.(2020·东北师范大学东安实验学校七年级期中)数轴上一点A向右移动5个单位长度到达点B,再向左移动3个单位长度到达点C.若点C表示的数是-1,则点A表示的数是()A.-1B.-2C.-3D.2【答案】C3.(2020·河南平顶山四十四中月考)点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长到B时,点B所表示的实数是()A.1B.-6C.2或-6D.不同于以上答案【答案】C4.(2020·内蒙古初三三模)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3B.-2C.-1D.1【答案】A5.(2019·南京民办求真中学初一月考)如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是().A.-2πB.3-2πC.-3-2πD.-3+2π【答案】B6.(2020·台州市双语实验学校初一月考)如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A,那么点A51所表示的数为()A3,…按照这种移动规律进行下去,第51次移动到点51A.﹣74B.﹣77C.﹣80D.﹣83【答案】B7.(2020·宜兴市树人中学月考)等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2020次后,点B()A.不对应任何数B.对应的数是2020C.对应的数是2019D.对应的数是2021【答案】B8.(2020·赣榆汇文双语学校月考)如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2020将与圆周上的哪个数字重合 ( )A.0B.1C.2D.3【答案】C二、填空题9.(2020·高邮市外国语学校初中部月考)在数轴上,与表示2.5的点距离为3.5的点表示的数是____________.【答案】6或-110.(2020·胶州市第二十六中学月考)如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.【答案】-111.(2020·温州市第十二中学月考)如图,数轴上点A表示的数是﹣2,将点A向右移动10个单位长度,得到点B,则点B 表示的数是_____.【答案】812.(2020·嘉祥县第四中学初一月考)一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为_____.【答案】2或﹣8.13.(2020·江苏建湖·汇文实验初中月考)折叠纸面,使-3表示的点与5表示的点重合,若数轴上A 、B 两点之间距离为11,(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数是 ___.【答案】-4.5,6.514.(2020·沧州市第十四中学初一月考)正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2019次后,数轴上数2019所对应的点是____________(填A 、B 、C 、D 中一个字母)【答案】C15.(2020·吉林长春外国语学校初一月考)如图所示,在数轴上,点A 表示1,现将点A 沿轴做如下移动,第一次点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_______.【答案】1316.(2020·泰兴市蒋华初级中学初一月考)如图,把半径为 0.5的圆放到数轴上,圆上一点 A 与数轴上表示 1的点重合,圆沿着数轴正方向滚动一周,此时点 A 表示的数是____________.(结果保留π)【答案】π+1三、解答题17.(2020·广西初一期中)在一条数轴上从左到右有点A,B,C三点,其中AC=5,BC=2,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A,C所对应的数分别为,p的值为;(2)若以A为原点,求p的值;(3)若原点O在数轴上点C的右边,且OB=15,求p的值.【答案】解:(1)∵以B为原点,AC=5,BC=2,∴点A,C所对应的数分别为-3、2,p的值为-3+2+0=-1;故答案为:﹣3、2,﹣1;(2)若以A为原点,则A点表示的数为0,由AC=5,BC=2可知,B点表示的数为3,C点表示的数为5,p=0+3+5=8.答:p的值为8;(3)由题意知:B点表示的数为-15,C点表示的数为-15+2= -13,A点表示的数为-15-3= -18,p=-15+(-13)+(-18)=-46,答:p的值为﹣46.【点睛】此题考查数轴上点与有理数的关系,数轴上两点间的距离,理解数轴上点与数的一一对应关系,掌握两点间的距离公式是解题的关键.18.(2020·江苏七年级期中)(概念提出)数轴上不重合的三个点,若其中一点到另外两点的距离的比值为n(n≥1),则称这个点是另外两点的n阶伴侣点.如图,O 是点A、B的1阶伴侣点;O是点A、C的2阶伴侣点;O也是点B、C的2阶伴侣点.(初步思考)(1)如图,C是点A、B的阶伴侣点;(2)若数轴上两点M、N分别表示-1和4,则M、N的32阶伴侣点所表示的数为;(深入探索)(3)若数轴上A、B、C三点表示的数分别为a、b、c,且点C是点A、B的n阶伴侣点,请直接用含a、b、n的代数式表示c.【答案】解:(1)∵O是点A、B的1阶伴侣点;O是点A、C的2阶伴侣点;O也是点B、C的2阶伴侣点,∴OA=OB,OC=2OA,OC=2OB,∴AC=3BC,∴C是点A、B的3阶伴侣点;故答案是:3(2)设表示的数为x,由题意有:①|x+1|=23|x-4|,解得,x=1或x=-11,②|x -4|=23|x +1|, 解得,x =2或x =14,综上所述,M 、N 的32阶伴侣点所表示的数为-11,1,2,14; (3)①当n =1时,c =2a b +. ②当n >1时,无论a >b 或a <b ,均有下列四种情况:点C 在点A 、B 之间且靠近点B 时,c =a +1n n + (b -a ); 点C 在点A 、B 之间且靠近点A 时,c =a +11n + (b -a ); 点C 在点A 、B 之外且靠近点B 时,c =a +1n n - (b -a ); 点C 在点A 、B 之外且靠近点A 时,c =a -11n - (b -a ). 【点睛】本题主要考查新定义“n 阶伴侣点”, 解题的关键是灵活运用所学知识,结合分类讨论思想解决问题.19.(2020·安徽七年级期中)如图,A 、B 两点在数轴上,这两点在数轴对应的数分别为12-、16.点P 、Q 分别从A ,B 两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t 秒,0点对应的数是0.(规定:数轴上两点A ,B 之间的距离记为AB )(1)如果点P 、Q 在A 、B 之间相向运动,当它们相遇时,t =_____,此时点P 所走的路程为______,点Q 所走的路程为______,则点P 对应的数是_______;(2)如果点P 、Q 都向左运动,当点Q 追上点P 时,求点P 对应的数;(3)如果点P 、Q 在点A 、B 之间相向运动,当8PQ =时,求P 点对应的数;【答案】解:(1)设经过t 秒时,点P 与点Q 相遇,由题意得:2t +4t =16-(-12)∴6t =28∴t =143∴此时点P 所走的路程为14282=33⨯, 点Q 所走的路程为14564=33⨯ 点P 对应的数为:-12+2×143=-83 故答案为:143、283、563、83- (2)因为16(12)28AB =--=个单位,所以Q 追上P 的时间28(42)14t=÷-=秒 1214240--⨯=-,所以点P 对应的数为40-(3)当8PQ =时,分两种情况:①P 、Q 相遇前相距8个单位,10(288)(24)3t =-÷+=,此时点P 对应的数为101612233-+⨯=-. ②P 、Q 相遇后相距8个单位,(288)(24)6t =+÷+=,此时点P 对应的数为12260-+⨯=综上所述,点P 对应的数为163-或0. 【点睛】本题综合考查了动点在数轴上的运动问题,其中涉及到了相遇行程问题,追及行程问题等知识点,具有较强的综合性.20.(2020·四川攀枝花第二初级中学初一期中)在数轴上有三点A,B,C分别表示数a,b,c,其中b是最小的正整数,且|a+2|与(c﹣7)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使点A与点C重合,则点B与表示数的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,若点A与点B的距离表示为AB,点A与点C的距离表示为AC,点B与点C的距离表示为BC,则t秒钟后,AB=,AC=,BC=;(用含t的式子表示)(4)请问:3BC﹣2AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请直接写出其值.【答案】(1)∵|a+2|+(c−7)2=0,∴a+2=0,c−7=0,解得a=−2,c=7,∵b是最小的正整数,∴b=1;故答案为:−2,1,7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,2.5+(2.5−1)=4;故答案为:4.(3)A点表示的数为-2-t,B点表示的数为1+2t,C点表示的数为7+4t,∴AB=(1+2t)-(-2-t)=3t+3,AC=(7+4t)-(-2-t)=5t+9,BC=(7+4t)-(1+2t)=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC−2AB=3(2t+6)−2(3t+3)=12.【点睛】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.21.(2020·浙江初一期中)“收获是努力得来的”,在数轴上,若点C到点A的距离刚好是3,则点C叫做点A的“收获点”,若点C到A、B两点的距离之和为6,则点C叫做A、B的“收获中心”.(1)如图1,点A表示的数为﹣1,则A的收获点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的收获中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过t秒时,电子蚂蚁是A和B的收获中心,求t的值.【答案】解:(1)A的收获点C所表示的数应该是-1-3=-4或-1+3=2;(2)∵4-(-2)=6,∴M,N之间的所有数都是M,N的收获中心.故C所表示的数可以是-2或-1或0或1或2或3或4(答案不唯一);(3)设经过x秒时,电子蚂蚁是A和B的收获中心,依题意有①8-2x-4+(8-2x+1)=6,②4-(8-2x)+[-1-(8-2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的收获中心.【点睛】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.AC=. 22.(2020·福建七年级期中)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且8(1)直接写出数轴上点C表示的数;t t>秒,动点R从点C出发,(2)动点P从B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为()0以每秒2个单位长度沿数轴向左匀速运动,求当t为何值时P,R两点会相遇.t t>秒,动点R从点C出发,(3)动点P从B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为()0,,以每秒2个单位长度沿数轴向左匀速运动,动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若P Q R 三点同时出发,当点P遇上点R后立即返回向点Q运动,遇到点Q后则停止运动.求点P从开始运动到停止运动,行驶的路程是多少个单位长度?【答案】解:(1)∵数轴上点A表示的数为4,AC=8,点C在点A左侧∴点C表示的数为4-8=-4;(2)∵点B表示的数为1,点C表示的数为-4∴BC=1-(-4)=5由题意可得3t+2t=5答:当t=1时,P,R两点会相遇;(3)由题意可得:AB=4-1=3点P遇上点R的时间为:5÷(3-2)=5(秒)此时点P与点Q的距离为3+(3-1)×5=13∴P、Q的相遇时间为13÷(3+1)=3.25(秒)∴点P从开始运动到停止运动,行驶的路程是3×(5+3.25)=24.75个单位长度答:点P从开始运动到停止运动,行驶的路程是24.75个单位长度.【点睛】此题考查的是数轴与动点问题,掌握数轴上两点之间的距离公式和行程问题公式是解题关键.。

数轴上的动点问题专题

数轴上的动点问题专题

数轴上的动点问题专题(1)【例1】如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【练】1、已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则以每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么位置追上B点?2、已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=,b=;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?【例2】如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?【练】1、如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发向右运动,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.2、已知数轴上点A、B表示的数分别为﹣1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?【例3】如图,数轴上点A,C对应的数分别是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.【练】1、已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?2、已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.【例4】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.【练】已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?【例5】已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x=时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么秒钟时点P到点M,点N的距离相等.【练】1、数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x.(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?2、如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?【例6】如图,数轴上有两点A,B,点A表示的数为4,点B在点A的左侧,且AB=10,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0).(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示:.(2)设点M是AP的中点,点N是PB的中点.点P在线段AB上运动过程中,线段MN的长度是否发生变化?若变化,请说出理由;若不变,求线段MN的长度.(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,R同时出发,问点P运动多少秒与点R距离为2个单位长度.【练】1、已知数轴上A,B两点所表示的数分别为a,b,且满足ab<0,|a|=2,|b|=7,(1)求线段AB的长度;(2)若a<b,P为射线上的一点(点P不与A、B两点重合),M为P A的中点,N为PB 的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请求出线段MN的长;若改变,请说明理由.2、已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是P A,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.【例7】如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x .(1)P A = ;PB = (用含x 的式子表示)(2)在数轴上是否存在点P ,使P A +PB =5?若存在,请求出x 的值;若不存在,请说明理由.(3)如图2,点P 以1个单位/s 的速度从点D 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB -OPMN的值是否发生变化?请说明理由.【练】阅读下面的内容并用此结论(或变形式)解答下面题目的三个问题: (1)若点P 为线段MN 的中点,则MP =PN =12MN(2)若点P 为线段MN 上任一点,则:MP =MN ﹣PN如图①,已知数轴上有三点A ,B ,C ,点B 为AC 的中点,C 对应的数为200. ①若BC =300,求点A 对应的数.②在①的条件下,如图②,动点P 、Q 分别从两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10个单位长度每秒,5个单位长度每秒,2个单位长度每秒,点M 为线段PR 的中点,点N 为RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 和点Q 相遇之后的情形).③在①的条件下,如图③,若点E 、D 对应的数分别为﹣800,0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10个单位长度每秒,5个单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC ﹣AM 的值是否发生变化?若不变,求其值,若变,请说明理由.【补充练习】1、(2016江岸区期中)已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足0)10(10242=-++++c b a ;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.4、(2016外校期中)已知点A 、点B 在数轴上分别对应有理数a ,b ,其中a ,b 满足:()2112602a b -++=. (1)求a ,b 的值;(2)如图所示,在点A 、点B 之间存在一点C (点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过三秒之后到达BC 的中点,试求点C 所对应的有理数;OCAB(3)在(2)的条件下,现在我们在C 、A 两个位置各放一块挡板,有两个小球P 和Q 分别从点C 出发,P 以2个单位长度每秒的速度向右运动,Q 以4个单位长度每秒的速度向左运动,其中,小球P 在运动的过程中会碰到挡板,每次碰到挡板后按照原速度反弹(不考虑碰撞中能量的损失),按照此规律运动下去,试问:是否存在一个时间t ,使得PB =2QB ?若存在,求出所有满足条件的时间t ;若不存在,请说明理由. 5、(2016武珞路期中)已知点A 、B 在数轴上表示的数分别为a ,b ,且满足()22900a b -+-=.(1) a 的值为_______,b 的值为________;(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q 比P 先运动2秒,已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多长时间,有P 、Q 两只电子狗相距70个单位长度?(3) 求()()2222221912716189362114910329b x a x a x x ⎛⎫⎛⎫--+++--++ ⎪ ⎪⎝⎭⎝⎭的最大值.。

数轴上的动点问题专题(完整资料).doc

数轴上的动点问题专题(完整资料).doc

【最新整理,下载后即可编辑】数轴上的动点问题专题1.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。

⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。

若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B 的距离相等?2. 数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。

(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数。

(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由。

3.已知数轴上有顺次三点A, B, C 。

其中A 的坐标为-20.C 点坐标为40,一电子蚂蚁甲从C 点出发,以每秒2个单位的速度向左移动。

(1)当电子蚂蚁走到BC 的中点D 处时,它离A,B 两处的距离之和是多少?(2)这只电子蚂蚁甲由D 点走到BA 的中点E 处时,需要几秒钟?(3)当电子蚂蚁甲从E 点返回时,另一只电子蚂蚁乙同时从点C 出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B 点5个单位长度,求B 点的坐标4. 如图,已知A 、B 分别为数轴上两点,A 点对应的数为—20,B 点对应的数为100。

⑴求AB 中点M 对应的数;⑵现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;⑶若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。

部编数学七年级上册培优专题09数轴上册的动点问题解析版含答案

部编数学七年级上册培优专题09数轴上册的动点问题解析版含答案

培优专题09 数轴上的动点问题【专题精讲】数轴上的动点问题离不开数轴上两点之间的距离。

为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数—左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

类型一:求运动后点对应的数1.(2022·安徽·定远县第一初级中学七年级期末)如图,已知A,B两点在数轴上,点A表示的数为-10,3=,点M以每秒3个单位长度的速度从点A向右运动.点N以每OB OA秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是______.(2)经过几秒,点M、点N重合?【答案】(1)30(2)10【分析】(1)根据点A表示的数为-10,OB=3OA,可得点B对应的数;(2)点M、点N重合时,即点M追上点N,此时两点在数轴上的运动路程之差为10,以此列式即可求出.(1)解:OB=3OA=30.故B点对应的数是30.(2)点M、点N重合时,此时两点在数轴上的运动路程之差为10,设时间为t秒,则有3t-2t=10解得:t=10故经过10秒,点M、点N重合.【点睛】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.2.(2022·全国·七年级课时练习)已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点B,P所表示的数;(2)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数为 ,点B表示的数为 ;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动.点Q以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒;①求数轴上点P,Q表示的数(用含t的式子表示);②t为何值时,P,Q两点重合;③请直接写出t为何值时,P,Q两点相距5个单位长度.在数轴上点P表示的数是104t-+,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.【答案】(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,则6436BC t t t =+-=+,()32225AB t t t=---=+()62544BC AB t t t\-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.类型二:求运动中的时间5.(2022·全国·七年级专题练习)综合与探究阅读理解:数轴是一个非常重要的数学工具,使数和数轴上的点建立起对应关系,这样能够用“数形结合”的方法解决一些问题.数轴上,若A ,B 两点分别表示数a ,b ,那么A ,B 两点之间的距离与a ,b 两数的差有如下关系:||AB a b =-或b a -.问题解决:如图,数轴上的点A ,B 分别表示有理数2,5-.填空:(1)A ,B 两点之间的距离为_______;(2)点C 为数轴上一点,在点A 的左侧,且6AC =,则点C 表示的数是_______;(3)拓展应用:在(2)的条件下,动点P 从点A 出发,以每秒2个单位长度的速度在数轴上匀速运动,设运动时间为t 秒(0t >),当t 为何值时,P ,C 两点之间的距离为12个单位长度?【答案】(1)7(2)4-(3)3t =或9秒时,P ,C 两点之间的距离为12个单位长度【分析】(1)根据公式计算即可 .(2) 设C 表示的数为C x ,根据公式AC =|2-C x |=6,计算后,结合定C 的位置确定答案即可.(3) 解答时,分点P 向左运动和向右运动两种情况求解.(1)∵数轴上的点A ,B 分别表示有理数2,5-,∴AB =|-5-2|=7,故答案为:7.(2)设C 表示的数为C x ,根据题意,得AC =|2-C x |=6,∴2-C x =6或2-C x = -6,解得C x = -4或C x =8,∵点C 在点A 的左侧,∴C x <2A x =,∴C x = -4,故答案为:-4.(3)①当点P 向右运动时,点P 表示的数为2+2t ,根据题意,得 22(4)12t +--=,解这个方程,得 3t =;②当点P 向左运动时,点P 表示的数为2-2t ,根据题意,得4(22)12t ---=,解这个方程,得9t =,故当3t =或9秒时,P ,C 两点之间的距离为12个单位长度.【点睛】本题考查了数轴上的动点问题,两点间的距离,分类思想,熟练掌握公式,正确理解距离的意义是解题的关键.6.(2021·江苏·扬州市江都区第三中学七年级阶段练习)如图,直径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是 ;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是 ;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:第1次第2次第3次第4次第5次+1+2﹣1﹣4+3①第几次滚动后,A点距离原点最远?此时点A所表示的数是多少?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?(以上小题结果保留p)【答案】(1)p-;(2)2π或−2π;(3)①第2次,3p;②11p,p【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【详解】解:(1)∵圆片沿数轴滚动1周的长度为d p p=∴把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是-p.故答案为:-p;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,则滚动的长度为2p,点D 表示的数是2π或−2π.故答案为:2π或−2π;(3)①由表格可得第1次滚动后,A点距离原点为p;第2次滚动后,A点距离原点为3p;第3次滚动后,A点距离原点为2p;第4次滚动后,A点距离原点为-2p;第5次滚动后,A点距离原点为p;∴第2次滚动后,A点距离原点最远;②∵|+1|+|+2|+|-1|+|−4|+|+3|=11,∴11×p=11p,∴A点运动的路程共有11p个单位,此时点A所表示的数是p.【点睛】此题主要考查了数轴以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.7.(2022·全国·七年级专题练习)如图,在数轴上,点A、B、C表示的数分别为-2、1、6(点A与点B之间的距离表示为AB).(1)AB= ,BC= ,AC= .(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:2BC-AC的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,求其值.(3)若点C以每秒3个单位长度的速度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动.求随着运动时间t的变化,AB、BC、AC之间的数量关系.【答案】(1)3,5,8;(2)会,理由见解析;(3)当t<1时,AB+BC=AC;当t大于或等于1,且t小于或等于2时,BC+AC=AB;当t>2时,AB+AC=BC【分析】(1)根据点A、B、C在数轴上的位置,写出AB、BC、AC的长度;(2)求出BC和AB的值,然后求出2BC−AB的值,判断即可;(3)分别表示出AB、BC、AC的长度,然后分情况讨论得出之间的关系.【详解】解:(1)由图可得,AB=3,BC=5,AC=8,故答案为:3,5,8;(2)2BC−AB的值会随着时间t的变化而改变.设运动时间为t秒,则2BC−AB=2[6+5t−(1+2t)]−[1+2t−(−2−t)]=12+10t−2−4t−1−2t−2−t=3t+7,故2BC−AB的值会随着时间t的变化而改变;(3)由题意得,AB=t+3,BC=5−5t(t<1时)或BC=5t−5(t≥1时),AC=8−4t(t≤2时)或AC=4t−8(t>2时),当t<1时,AB+BC=(t+3)+(5−5t)=8−4t=AC;当1≤t≤2时,BC+AC=(5t−5)+(8−4t)=t+3=AB;当t>2时,AB+AC=(t+3)+(4t−8)=5t−5=BC.【点睛】本题主要考查了数轴及两点间的距离,解题的关键是能求出两点间的距离.8.(2022·全国·七年级专题练习)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”.(1)如图1,点A表示的数为-1,则A的幸福点C所表示的数应该是______;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C就是M、N的幸福中心,则C所表示的数可以是______(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,74秒时,电子蚂蚁是A和B的幸福中心吗?请说明理由.类型三:求运动中的速度等问题9.(2022·全国·七年级课时练习)如图,在数轴上,点A,B分别表示15-,9,点P、Q 分别从点A、B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒,在运动过程中,当点P,点Q和原点O这三点中的一点恰好是另外两点为端点的线段的中点时,则满足条件整数t的值()A.22B.33C.44D.5510.(2022·全国·七年级课时练习)已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为( )A .34B .14 或 34C .14或32D .322+|b ﹣4|=0,记AB =|a ﹣b |.(1)求AB 的值;(2)如图,点P 、Q 分别从点A 、B 同时出发沿数轴向右运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,当BQ =2BP 时,P 点对应的数是多少?(3)在(2)的条件下,点M 从原点与P 、Q 点同时出发沿数轴向右运动,速度是每秒x 个单位长度(1<x <2),若在运动过程中,2MP —MQ 的值与运动的时间t 无关,求x 的值.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)解得:21mn=ìí=î,答:P点的运动速度2单位长度/秒,Q点的运动速度1单位长度/秒.【点睛】本题考查数轴上的点表示的数及两点间的距离、一元一次方程的应用,二元一次方程组的应用等知识,根据题中描述找到等量关系式是解题的关键.。

初一培优专题数轴上动点问题有答案

初一培优专题数轴上动点问题有答案

培优专题:借助方程求解数轴上的动点问题(压轴题常考题型)数轴上的动点问题离不开数轴上两点之间的间隔。

为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的间隔,即为这两点所对应的坐标差的肯定值,也即用右边的数减去左边的数的差。

即数轴上两点间的间隔 =右边点表示的数—左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的根底上加上点的运动路程就可以干脆得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进展分析,点在数轴上运动形成的途径可看作数轴上线段的和差关系。

一、相关学问打算1.数轴上表示4和1的两点之间的间隔是。

2.假设数轴上点A表示的数为x,点B表示的数为1-,那么A 及B两点之间的间隔用式子可以表示为,假设在数轴上点A在点B的右边,那么式子可以化简为。

3.A点在数轴上以2个单位长度/秒的速度向右运动,假设运动时间为t,那么A点运动的路程可以用式子表示为。

4.假设数轴上点A表示的数为1-点在数轴上以2个单位长度/秒的速度向右运动,假设运动时间为t,那么A点运动t秒后到达的位置所表示的数可以用式子表示为。

答案:1、3; 2、1x+,1; 3、2t; 4、12t-+二、已做题再解:1、半期考卷的第25题:如下图,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满意2-a16(b)0++8=(1)点A表示的数为,点B表示的数为。

(2)假设点P从点A动身沿数轴向右运动,速度为每秒3个单位长度,点Q从点B动身沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。

(3)在〔2〕的条件下,假设点P运动到达B点后按原路原速马上返回,点Q接着按原速原方向运动,从P、Q在点C 处相遇开始,再经过多少秒,P、Q两点的间隔为4个单位长度?解:〔1〕点A 表示的数为 16-,点B 表示的数为8(2) 设P 、Q 同时运动t 秒在点C 处相遇324 解得6此时点C 所表示的数是16+36=2-⨯答:点C 所表示的数是2.(2)再经过a 秒,P 、Q 两点的间隔 为4个单位长度分类探讨:① 从点C 处相遇后反向而行,点P 到达B 点前相距4个单位长度34 解得1② 点P 到达B 点后返回,此时相当于点Q 在P 点前4个单位长度()a 63a 64+--= 解得4③ 点P 到达B 点后返回,从后追上Q 点后又相距4个单位长度,此时相当于点P 在点Q 前4个单位长度()3a 6a 64--+= 解得8备用备用答:再经过1秒或4秒或8秒,P、Q两点的间隔为4个单位长度。

专题——数轴上的动点问题

专题——数轴上的动点问题

专题——数轴上的动点问题数轴上的动点问题处理数轴上动点问题的策略:1.两点间距离的计算:两点间距离等于它们对应的坐标差的绝对值,即右边点的坐标减去左边点的坐标。

2.数的表示:在数轴上,向右运动的速度看作正速度,向左运动的速度看作负速度。

点在起点的基础上加上运动路程就可以得到运动后的坐标。

例如,一个点表示的数为a,向左运动b个单位后表示的数为a-b,向右运动b个单位后表示的数为a+b。

3.分类讨论:数轴是数形结合的产物,分析点的运动要结合图形进行分析,注意多种情况的分类讨论。

4.绝对值策略:若点的左右位置关系不明确或有多种情况,可用两点距离的绝对值表示它们之间的距离,从而避免复杂分类讨论。

5.中点公式:若数轴上点A,B表示的数分别为a,b,M为线段AB中点,则M点表示的数为(a+b)/2.类型一:数轴上两点距离的应用例1:已知数轴上A,B两点表示的数分别为-2和5,点P为数轴上一点1)若点P到A,B两点的距离相等,求P点表示的数。

2)若PA=2PB,求P点表示的数。

3)若点P到点A和点B的距离之和为13,求点P所表示的数。

练1:已知数轴上A、B两点对应数分别为-2和4,P为数轴上一动点,对应数为x。

(1)若P为线段AB的三等分点,则x的值为-1;(2)若线段PA=3PB,则P点表示的数为2;(3)若点P到A点、B点距离之和为10,则P点表示的数为1.类型二:绝对值的处理策略例2:已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8?3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?练2、已知数轴上有A、B两点,其中点A对应的数为-8,点B对应的数为4.动点P从点A出发,以每秒2个单位长度的速度向右运动,同时动点Q从点B出发,以每秒1个单位长度的速度向左运动。

初中数学七年级数轴上的动点问题专题(压轴题练习)

初中数学七年级数轴上的动点问题专题(压轴题练习)

数轴上的动点问题专题【例1】1.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【练】2.已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=,b=;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?【练】5.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.6.已知数轴上点A、B表示的数分别为﹣1、3、P为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.【练】8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?9.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.【练】11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?12.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x=时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么秒钟时点P到点M,点N的距离相等.【练】13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?14.如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?15.已知A、B、C是数轴上从左至右的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.17.如图,数轴上A,B,C,D四点,分别对应的数为a、b、c、d,且满足a、b是|x+5|=1的两个解(a<b),(c﹣6)2与|d﹣10|互为相反数.(1)直接写出a,b,c,d的值;(2)若A,B两点以4个单位长度/秒的速度向右匀速运动,设运动时间为t秒,问t为时,点B运动到点C,D的中点上;(3)在(2)中,A,B继续运动,当B运动到D的右侧时,问是否存在时间t,使B与C 的距离是A与D的距离的2倍?若存在,求时间t;若不存在,请说明理由.18.已知数轴上两点A,B对应的数分别用a和b表示,且a,b满足|a+1|+(b﹣3)2=0,点P为数轴上一动点,其对应的数为x.(1)请直接写出求a和b的值;(2)若点P到点A,点B的距离相等,请直接写出点P对应的数x;(3)数轴上是否存在点P,使点P到点A,点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(4)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【例6】19.如图,数轴上有两点A,B,点A表示的数为4,点B在点A的左侧,且AB=10,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0).(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示:.(2)设点M是AP的中点,点N是PB的中点.点P在线段AB上运动过程中,线段MN的长度是否发生变化?若变化,请说出理由;若不变,求线段MN的长度.(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,R同时出发,问点P运动多少秒与点R距离为2个单位长度.【练】20.已知数轴上A,B两点所表示的数分别为a,b,且满足ab<0,|a|=2,|b|=7,(1)求线段AB的长度;(2)若a<b,P为射线上的一点(点P不与A、B两点重合),M为P A的中点,N为PB 的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请求出线段MN的长;若改变,请说明理由.21.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是P A,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.22.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?23.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N 分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.24.阅读下面的内容并用此结论(或变形式)解答下面题目的三个问题: (1)若点P 为线段MN 的中点,则MP =PN =12MN(2)若点P 为线段MN 上任一点,则:MP =MN ﹣PN如图①,已知数轴上有三点A ,B ,C ,点B 为AC 的中点,C 对应的数为200. ①若BC =300,求点A 对应的数.②在①的条件下,如图②,动点P 、Q 分别从两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10个单位长度每秒,5个单位长度每秒,2个单位长度每秒,点M 为线段PR 的中点,点N 为RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 和点Q 相遇之后的情形).③在①的条件下,如图③,若点E 、D 对应的数分别为﹣800,0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10个单位长度每秒,5个单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC ﹣AM 的值是否发生变化?若不变,求其值,若变,请说明理由.25.如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x .(1)P A = ;PB = (用含x 的式子表示)(2)在数轴上是否存在点P ,使P A +PB =5?若存在,请求出x 的值;若不存在,请说明理由.(3)如图2,点P 以1个单位/s 的速度从点D 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB -OPMN的值是否发生变化?请说明理由.26.(2014秋•江岸区期中)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0. (1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①P A +PBPC 的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.27.如图1,点A 、B 分别在数轴原点O 的左右两侧,且13OA +50=OB ,点B 对应数是90.(1)求A 点对应的数;(2)如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离; (3)如图3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求22RQ ﹣28RO ﹣5PN 的值.28.如图,在数轴上有A ,B 两点,所表示的数分别为a ,a +4,A 点以每秒32个单位长度的速度向正方向运动,同时B 点以每秒1个单位的速度也向正方向运动,设运动时间为t 秒.(1)运动前线段AB 的长为_____,t 秒后,A 点运动的距离可表示为_____,B 点运动距离可表示为_____; (2)当t 为何值时,A 、B 两点重合,并求出此时A 点所表示的数(用含a 与t 的式子表示); (3)在上述运动的过程中,若P 为线段AB 的中点,O 为数轴的原点,当a =﹣8时,是否存在这样的t 值,使得线段PO =5?若存在,求出符合条件的t 值;若不存在,请说明理由.动点问题补充训练1、(2016江岸区期中)已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足0)10(10242=-++++c b a ;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.2、(2016二十五中期中)已知:数轴上A 、B 两点表示的有理数为a 、b ,且(a -1)2+|b +2|=0(1) 求a 、b 的值(2) 点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为9,求值:a (bc +3)-|3(a -31b 2)-b 2|(3) 蚂蚁甲以2个单位长度/秒的速度从点B 出发向其左边30个单位长度处的食物M 爬去,10秒后位于点A 的蚂蚁乙收到它的信号,以3个单位长度/秒的速度也迅速爬向食物.蚂蚁甲到达M 后用了2秒时间背上食物,立即返回,速度降为1个单位长度/秒,与蚂蚁乙在数轴上D 点相遇,求点D 表示的有理数是多少?从出发到此时,蚂蚁甲共用去时间为多少?3、(2016东湖高新区期中)如图,若数轴上的A 、B 两点对应的数分别为a 、b ,且a 、b 满足|a +3|+(b +3a )2=0,请回答下列问题: (1)求a 和b 的值.(2)若数轴上有一点C ,满足点C 到点B 的距离为点C 到点A 的距离的2倍,求点C 在数轴上所对应的数.(3)若数轴上有一点P 从A 点向B 点运动(只在A 、B 两点之间运动),同时,数轴上的点M 是线段AP 的中点,数轴上的点N 是线段BP 的中点,请问:当点P 运动时,点M 、N 之间的距离是否发生变化,若不变化,求出该距离;若变化,说明理由.4、(2016外校期中)已知点A 、点B 在数轴上分别对应有理数a ,b ,其中a ,b 满足:()2112602a b -++=. (1)求a ,b 的值;(2)如图所示,在点A 、点B 之间存在一点C (点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过三秒之后到达BC 的中点,试求点C 所对应的有理数;OCAB(3)在(2)的条件下,现在我们在C 、A 两个位置各放一块挡板,有两个小球P 和Q 分别从点C 出发,P 以2个单位长度每秒的速度向右运动,Q 以4个单位长度每秒的速度向左运动,其中,小球P 在运动的过程中会碰到挡板,每次碰到挡板后按照原速度反弹(不考虑碰撞中能量的损失),按照此规律运动下去,试问:是否存在一个时间t ,使得PB =2QB ?若存在,求出所有满足条件的时间t ;若不存在,请说明理由.5、(2016武珞路期中)已知点A 、B 在数轴上表示的数分别为a ,b ,且满足()22900a b -+-=.(1) a 的值为_______,b 的值为________;(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q 比P 先运动2秒,已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多长时间,有P 、Q 两只电子狗相距70个单位长度?(3) 求()()2222221912716189362114910329b x a x a x x ⎛⎫⎛⎫--+++--++ ⎪ ⎪⎝⎭⎝⎭的最大值.AB6、(2016洪山区期中)已知多项式2234x xy --的常数项是a ,次数是b .(1)直接写出a =________,b =________;并将这两数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离定义记作AB,定义AB =a b -,设P 在数轴上对应的数为x ,当PA +PB =13时,直接写出x 的值_______________________;(3)若点A ,点B 同时沿数轴向正方向运动.点A 的速度是点B 的2倍,且3秒后,32OA=OB ,求点B 的速度.点为===秒或秒时,(2010秋•武昌区期末)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.)存在关系式,即<,即时,有==时,有=当时,时,有=参考答案与试题解析一.解答题(共27小题)1.(2014秋•滕州市期末)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?2.(2014秋•宝安区校级期末)已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.(2013秋•江北区校级月考)已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=﹣2,b=1;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.(2013秋•泰兴市校级期中)如图A、B两点在数轴上分别表示﹣10和20,动点P从点A 出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?,,为秒或5.(2014秋•滨湖区期中)如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t 秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为﹣4,点P、Q之间的距离是10个单位;(2)经过4或12秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.;,,秒时,6.(2014秋•徐州期末)已知数轴上点A、B表示的数分别为﹣1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=1;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.(2014秋•成都期末)如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.;.8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?.9.(2014秋•西城区校级期中)已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是6单位长度/秒,此时点Q表示的有理数是60;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过1秒,点P,Q到数轴上表示有理数20的点的距离相等.×=10.(2013秋•江都市期末)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.=综上,运动s11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?;答:经过12.(2014秋•商丘期末)已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是﹣1;(2)当x=﹣3.5或1.5时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么或2秒钟时点P到点M,点N的距离相等.或)13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?=分钟时点=分钟时点分钟或分钟时点14.(2014春•万州区校级期中)如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?=分钟时点15.已知A、B、C是数轴上的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?=答:经过16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.=。

专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)(原卷版)

专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)(原卷版)

专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)【方法清单】【关键】化动为静,分类讨论。

抓住动点,化动为静,以不变应万变寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等) 建立所求的等量代数式,求出未知数等等。

动点问题定点化是主要思想。

比如以某个速度运动,设出时间后即可表示该点位置:再如函数动点,尽量设一个变量,y 尽量用来表示,可以把该点当成动点,来计算。

【步骤】1.画图形2.表线段3.列方程4.求正解1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数一左边点表示的数2,点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b 个单位后表示的数为 a b; 向右运动b个单位后所表示的数为a+b。

3,分析数轴上点的运动要是数形结合进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系题型一、数轴上与速度、时间、距离有关问题【例1】.(2022秋•代县期中)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,从图中可以看出,终点表示的数是﹣2,已知A,B是数轴上的点.请参照图并思考,完成下列填空:(1)如果点A表示数3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是.(2)如果点B表示数2,将点B向左移动9个单位长度,再向右移动5个单位长度,那么终点A表示的数是,A,B两点间的距离是.(3)如果点A表示的数是﹣4,将点A向右移动168个单位长度;再向左移动2个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是,A,B两点间的距离是.【变式1】.(2022秋•博罗县期中)如图,点A,B,C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A,B表示的数:,;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.①当t=2时,求出此时P,Q在数轴上表示的数;②t为何值时,点P,Q相距2个单位长度,并写出此时点P,Q在数轴上表示的数.【变式2】.(2022秋•历下区期中)为宣传健康知识,某社区居委会派车按照顺序为7个小区(分别记为A,B,C,D,E,F,G)分发防疫安全手册.社区工作人员乘车从服务点(原点)出发,沿东西向公路行驶,如果约定向东为正,向西为负,当天的行驶记录如下(单位:百米):+10,﹣18,+14,﹣30,+6,+22,﹣6(1)请你在数轴上标记出这D,E,F这三个小区的位置(在相应位置标记字母即可).(2)服务车最后到达的地方距离服务点多远?若该车辆油耗为0.01升/百米,则这次分发工作共耗油多少升?(3)为方便附近居民进行核酸检测,现居委会计划在这七个小区中选一个作为临时核酸检测点,为使七个小区所有居民步行到检测点的路程总和最小,假设各小区人数相等,那么检测点的位置应设在小区.题型二、数轴上点之间的位置关系问题【例2】(2022秋•余江区期中)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)原点在第部分;(2)若AC=5,BC=3,b=﹣1,求a的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,直接写出d的值.【变式1】.(2022秋•南溪区期中)如图,在数轴上有三个点A,B,C,请回答下列问题:(1)将点B向左移动4个单位长度后,哪个字母所表示的数最小?是多少?(2)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?(3)怎样移动A、B、C中的两个点才能使三个点表示的数相同?有几种移法?【变式2】.(2022秋•惠济区期中)如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.【变式3】.(2022秋•庐阳区校级期中)根据课堂所学知识我们知道:数轴上两点A、B对应的数分别为a,b(a<b),那么A,B两点之间距离可以用代数式b﹣a来表示.已知:如图,数轴上两点M、N对应的数分别为﹣8、4,点P为数轴上任意一点,其对应的数为x.(1)M,N两点之间的距离是;(2)当点P到点M、点N的距离相等时,求x的值;(3)当点P到点M、点N的距离之和是16时,求出此时x的值.题型三、数轴上动点定值问题【例3】.(2022秋•灞桥区校级期中)如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是,点C在数轴上表示的数是;(2)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度秒的速度也向左匀速运动,设运动时间为t秒,当t为何值时,点B与点C之间的距离为1个单位长度?(3)若线段AB、线段CD分别以1个单位长度/秒、2个单位长度/秒的速度同时向左匀速运动,与此同时,动点P从﹣15出发,以4个单位长度/秒的速度向右匀速运动.设运动时间为t秒,当0<t<5时,2AC﹣PD的值是否发生变化?若不变化,求出这个定值,若变化,请说明理由.【变式1】.(2022秋•河北区期中)在数轴上有三点A,B,C分别表示数a,b,c,其中b是最小的正整数,且|a+2|与(c﹣7)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使点A与点C重合,则点B与表示数的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,若点A与点B的距离表示为AB,点A 与点C的距离表示为AC,点B与点C的距离表示为BC,则t秒钟后,AB=,AC=,BC =;(用含t的式子表示)(4)请问:3BC﹣2AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请直接写出其值.【变式2】.(2022秋•上林县期中)已知点A、B在数轴上对应的数分别为a、b,且a=﹣2,b=10,点A、B之间的距离记作AB.(1)线段AB的长为;(直接写出结果)(2)若动点P在数轴上对应的数为x,①当点P是线段AB上一点,P A=2PB,则点P表示的数为;此时P A+PB=;(直接写出结果)②当P A+PB=14时,求x的值;③当动点P在点A的左侧,M、N分别是P A、PB的中点,在运动过程中的值是否发现变化?若不变,求出其值;若变化,请求出变化范围.题型四、数轴上折叠问题【例4】(2022秋•仁怀市期中)如图,在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数对应的点重合;(3)若点A、B、C是数轴上的动点,点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,那么3BC﹣2AB的值是否随着运动时间t(秒)的变化而改变?若变化,请说明理由;若不变,请求出其值.【变式1】(2022秋•濮阳县期中)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣3的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣3的点与表示的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为.【变式2】.(2022秋•桓台县期中)如图所示的数轴中,点A表示1,点B表示﹣2,试回答下列问题:(1)A、B两点之间的距离是;(2)观察数轴,与点A的距离为5的点表示的数是;(3)若将数轴折叠,使点A与表示﹣3的点重合,则点B与表示数的点重合;(4)若数轴上M,N两点之间的距离为2022(点M在点N的左侧),且M,N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是和.【变式3】.(2022秋•南山区校级期中)学习完数轴以后,喜欢探索的小聪在纸上画了一个数轴(如图所示),并进行下列操作探究:(1)操作一:折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣4的点与表示的点重合.操作二:折叠纸面,使表示﹣3的点与表示1的点重合,回答以下问题:(2)表示2的点与表示的点重合;(3)若数轴上A、B两点之间距离是a(a>0)(A在B的左侧),且折叠后A、B两点重合.求A、B两点表示的数是多少?题型五、数轴上探究问题【例5】(2022秋•宛城区期中)【问题探索】如图,将一根木棒放在数轴(单位长度为lcm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30:若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长度为cm.(2)图中点A所表示的数是,点B所表示的数是.【实际应用】由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,丽丽去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要32年才出生;你若是我现在这么大,我就106岁啦!”根据对话可知丽丽现在的岁数是,奶奶现在的岁数是.【变式】.(2022秋•和平区校级期中)阅读并解决相应问题:(1)问题发现:在数轴上,点A表示的数为﹣2,点B表示的数为3,若在数轴上存在一点P,使得点P到点A的距离与点P到点B的距离之和等于n,则称点P为点A、B的“n节点”.如图1,若点P表示的数为,有点P到点A的距离与点P到点B的距离之和为+=5,则称点P为点A、B的“5节点”.填空:①若点P表示的数为0,则n的值为.②数轴上表示整数的点称为整点,若整点P为A、B的“5节点”,请直接写出整点P所表示的数.(2)类比探究:如图2,若点P为数轴上一点,且点P到点A的距离为1,请你求出点P表示的数及n的值,并说明理由.(3)拓展延伸:在(1)(2)的条件下,若点P在数轴上运动(不与点A、B重合),满足点P到点B的距离等于点P到点A的距离的,且此时点P为点A、B的“n的节点”,求点P表示的数及n的值,并说明理由.题型六、数轴上新定义问题【例6】(2022秋•永安市期中)[阅读理解]点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离2倍,那么我们就称点C是{A,B}的关联点.例如,如图1,点A表示的数为﹣4,点B表示的数为2.表示0的点C到点A的距离是4,到点B的距离是2,那么点C是{A,B}的关联点;又如,表示﹣2的点D到点A的距离是2.到点B的距离是4,那么点D就不是{A,B}的关联点,但点D是{B,A}的关联点.[知识运用](1)如图2,M、N为数轴上两点,点M所表示的数为﹣4,点N所表示的数为5.数所表示的点是{M,N}的关联点;数所表示的点是{N,M}的关联点;[拓展提升](2)如图3,A、B为数轴上两点,点A所表示的数为﹣60,点B所表示的数为30.现有一动点从点P 出发向左运动.P点运动到数轴上的什么位置时,点P、点A和点B中恰有一个点为其余两点的关联点?【变式1】.(2022秋•衢州期中)点A,B,C为数轴上的三点,如果点C在点A,B之间,且到点A的距离是点C到点B的距离的3倍,那么我们就称点C是{A,B}的奇妙点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇妙点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇妙点,但点D是{B,A}的奇妙点.(1)点A表示的数为1,点B表示的数为2,点C表示的数为5,B是否为{C,A}的奇妙点?请说明理由.(2)如图2,M,N为数轴上的两点,点M所表示的数为﹣2,点N所表示的数为6.表示数的点是{M,N}的奇妙点;表示数的点是{N,M}的奇妙点;(3)如图3,A,B为数轴上的两点,点A所表示的数为﹣10,点B所表示的数为50.现有一动点P从点A出发向右运动,点P运动到数轴上的什么位置时,B为其余两点的奇妙点?【变式2】.(2022秋•平遥县期中)阅读下列材料:我们给出一个新定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.解答下列问题:(1)若点A表示的数为﹣3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为;(2)若点A表示的数为﹣3,点A与点B的“平衡点M”表示的数为﹣5,则点B表示数为;操作探究:如图,已知在纸面上有一条数轴.操作一:(3)折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:(4)折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为.【变式3】.(2022秋•高青县期中)数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.【变式4】.(2022秋•朝阳区校级期中)已知数轴上两点A、B,若在数轴上存在一点C,使得AC+BC=nAB,则称点C为线段AB的“n倍点”.例如图1所示:当点A表示的数为﹣2,点B表示的数为2,点C表示的数为0,有AC+BC=2+2=4=AB,则称点C为线段AB的“1倍点”.请根据上述规定回答下列问题:已知图2中,点A表示的数为﹣3,点B表示的数为1,点C表示的数为x.(1)当﹣3≤x≤1时,点C(填“一定是”或“一定不是”或“不一定是”)线段AB的“1倍点”;(2)若点C为线段AB的“n倍点”,且x=﹣4,求n的值;(3)若点D是线段AB的“2倍点”,则点D表示的数为;(4)若点E在数轴上表示的数为t,点F表示的数为t+12,要使线段EF上始终存在线段AB的“3倍点”,求t的取值范围(用不等号表示)题型七:数轴上存在性问题【例7】(2022秋•蓝山县期中)已知数轴上三点A、B、C对应的数分别是﹣1,1,4,点P为数轴上任意一点,且表示的数是x.(1)点A到点B的距离AB为多少个单位长度?(2)点P到B的距离PB可以表示为;(3)如果点P到点A和到点C的距离相等,那么x的值是多少?(4)数轴上是否存在点P,使点P到点A与到点C的距离之和是8?若存在,请直接写出x的值;若不存在,请说明理由.【变式1】(2022春•南岗区校级期中)若数轴上A、B两点对应的数分别为﹣5、4,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点,直接写出P点对应的数.(2)数轴上是否存在点P,使P点到A点、B点的距离和为11?若存在,求出x值;若不存在,请说明理由.(3)若点P从点A出发向右运动,速度是2个单位/分,点Q从点B出发向左运动,速度是3个单位/分,它们同时出发,经过几分钟,Q、B、P三点中,其中一点是另外两点连成线段的中点?【变式2】(2022秋•定远县期中)对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣4,点B表示数5,点M是点A,B的“联盟点”,点M在A、B之间,且表示一个负数,则点M表示的数为;(2)若点A表示数﹣2,点B表示数2,下列各数,0,4,6所对应的点分别为C1,C2,C3,C4,其中是点A,B的“联盟点”的是;(3)点A表示数﹣15,点B表示数25,P为数轴上一点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,此时点P表示的数是;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数.【变式3】(2022秋•鱼台县期中)如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C 之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为,点B表示的数为;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由.【提升训练】1.(2022秋•桥西区期中)在一条不完整的数轴上标出若干个点,每相邻两点相距一个单位长度,其中点A,B,C对应的分别是整数a,b,c.(1)若以B为原点,写出a,c的值;(2)若c﹣2a=14,判断并说明A,B,C中哪个点是数轴的原点;(3)在(2)的条件下,M点从A点以每秒0.5个单位的速度向右运动,点N从点C以每秒1.5个单位的速度向左运动,点P从点B以每秒2个单位的速度先向左运动碰到点M后立即返回向右运动,碰到点N后又立即返回向左运动,碰到点M后又立即返回向右运动,三个点同时开始运动,当三个点聚于一点时停止运动.直接写出点P在整个运动过程中,移动了多少个单位.2.(2022秋•肥西县校级期中)如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数是﹣2,将点A向右移动5个单位长度到点B,那么点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数是4,将点A向左移动8个单位长度,再向右移动3个单位长度到点B,那么点B表示的数是,A、B两点间的距离是.(3)如果点A表示的数是m,将点A向左移动n个单位长度,再向右移动p个单位长度到点B,那么点B表示的数是.3.(2022秋•沙坪坝区校级期中)数轴上给定两点A、B,点A表示的数为﹣1,点B表示的数为3,若数轴上有两点M、N,线段MN的中点在线段AB上(线段MN的中点可以与A或B点重合),则称M点与N 点关于线段AB对称,请回答下列问题:(1)数轴上,点O为原点,点C、D、E表示的数分别为﹣3、6、7,则点与点O关于线段AB对称;(2)数轴上,点F表示的数为x,G为线段AB上一点,若点F与点G关于线段AB对称,则x的最小值为,最大值为;(3)动点P从﹣9开始以每秒4个单位长度,向数轴正方向移动时,同时,线段AB以每秒1个单位长度,向数轴正方向移动,动点Q从5开始以每秒1个单位长度,向数轴负方向移动;当P、Q相遇时,分别以原速立即返回起点,回到起点后运动结束,设移动的时间为t,则t满足时,P 与Q始终关于线段AB对称.4.(2022秋•泊头市期中)如图是某一条东西方向直线上的公交线路的部分路段,西起A站,东至L站,途中共设12个上下车站点.某天,小明参加该路线上的志愿者服务活动,从C站出发,最后在某站结束服务活动.如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣3,+4,﹣5,+8,﹣2,+1,﹣3,﹣4,+1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?5.(2022秋•夏津县期中)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.6.(2022秋•文成县期中)如图,在数轴上,点A表示﹣4,点B表示﹣1,点C表示8,P是数轴上的一个点.(1)求点A与点C的距离;(2)若PB表示点P与点B之间的距离,PC表示点P与点C之间的距离,当点P满足PB=2PC时,请求出在数轴上点P表示的数.7.(2022秋•新郑市期中)如图,已知在纸面上有一条数轴.操作一:(1)折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示的点重合.操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示的点重合;②若数轴上A,B两点之间的距离为9(点A在点B的左侧),且A,B两点折叠后重合,求A,B两点表示的数.8.(2022秋•昆明期中)问题探究:(1)如图①,将两根长度为6cm的木棒放置在数轴(单位长度为1cm)上,第一根的两端分别与数轴上表示2的点和点A重合,第二根的两端分别与数轴上点A和点B重合,则图中点A所表示的数是,点B所表示的数是;(2)如图②,将一根未知长度的木棒放置在数轴(单位长度为1cm)上,木棒的左端与数轴上的点C重合,右端与数轴上的点D重合.若将木棒沿数轴向右移动,当它的左端移动到点D时,右端在数轴上所对应的数为26;若将木棒沿数轴向左移动,当它的右端移动到点C时,左端在数轴上所对应的数为2.由此可得这根木棒的长为cm;(3)在(2)的条件下,若数轴上有一点P,点P到木棒CD中点的距离为16个单位长度,则点P所表示的数是.9.(2022秋•嘉祥县期中)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?10.(2022秋•承德期中)如图所示,在数轴上点A,B,C表示的数分别为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)AB=,BC=,AC=;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.①设运动时间为t,请用含有t的算式分别表示出AB,BC,AC;②在①的条件下,请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由;若不变,请求其值.11.(2022秋•霍邱县期中)如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?12.(2022秋•秦淮区校级期中)如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?。

七年级数学培优-数轴上的动点问题专题(一)

七年级数学培优-数轴上的动点问题专题(一)

动点问题专题(一)前言:数轴上的动点问题离不开数轴上两点之间的距离,为了便于我们对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数-左边点表示的数.2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度,这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a ,向左运动b 个单位后表示的数为;向右运动b 个单位后所表示的数为.3.数轴是数形结合的产物,分析数轴上点的运动耍结合图形进行分析.直在数轴上运动形成的路径可看作数轴上线段的和差关系,一、基础能力过关测试1.数轴上表示-5的点离原点的距离是个单位长度,数轴上离原点6个单位长度的点有个,它们表示的数是.2.数轴上的A 点与表示-3的点距离4个单位长度,则A 点表示的数为.3.数轴上A 、B 两点离原点的距离分别为2和3,则AB 间距离是.4.点A 、B 在数轴上对应的数分别是m 、n ,(n 在m 的右边).则AB 间距离是.5.数轴上表示x 和-2的两点间距离是;若︱x +2︱=5,则x =.6.若︱a ︱=︱b ︱,则a 、b 的关系是;若︱x -3︱=︱4-2x ︱,则x =7.若点A 、点B 表示的数分别是-2、6,则AB 的中点为,若点A 、点B 表示的数分别是a 、b ,则AB 的中点为.二、例题解析【例1】如图,动点A 从原点出发向数轴负方向运动,同时动点B 也从原点出发,向数轴正方向运动,A的速度为a 个单位长度/秒,B 的速度为b 个单位长度/秒,且a 、b 满足21(2)352a b -=--(1)求出两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动到3秒时的位置;(2)若A 、B 两点在(1)中的位置,在数轴上存在一点C ,且AC =2BC ,求C 点对应的数-15-12-9-6-31512963(3)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,几秒时,原点恰好在两个动点的正中间;(4)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,问几秒后点A和点B 相距2个单位长度;(5)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,同时点C从原点出发,以1个单位长度/秒的速度向数轴负方向运动,问几秒后点C到点A的距离与到点B的距离相等.【例2】已知数轴上有A、B两点,分别表示的数为-40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动,设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为,线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点约经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为-5?并直接写出在这一运动过程中点M的运动方向和运动速度.【例3】己知如图,数轴上A、B、C三点对应有理数a,b,c.(1)若︱a︱>︱b︱>︱c︱,化简:3︱b-c︱-2︱a+2b︱+︱b+c︱;aC BAb c(2)若ab+c=0,︱a+5︱=7,且点B、A之间的距离与点B、C之间的距离相等,求b的值(3)在(2)的条件下,数轴上是否存在点P,使得点P分别到A、B、C三点的距离之和等于30?若存在,求出点P的数轴上所对应的数;若不存在,请说明理由.【例4】在数轴上有顺次排列的三点A、B、C,A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足︱a+2︱+(c-7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB =,AC=,BC=.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【例5】如图,点A、B为数轴上两点(A点在负半轴,用数a表示;B点在正半轴,用数B表示)a0b(1)若︱b-a︱=︱3a︱,试求a、b的关系式;(2)在(1)的条件下,Q是线段OB上一点,且AQ –BQ =OQ,求OQ:AB的值;(3)在线段AO上有一点C,OC=4,在线段OB上有一动点D(OD>4),M、N分别是OD、CD 的中点,下列结论:①OM-ON的值不变;②OM+ON的值不变,其中只有一个结论是正确的,请你找出正确的结论,并求值.【例6】已知数轴上有A、B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以相同的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.BA0C三、课后练习1、已知:数轴上A、B、C三点对应有理数a、b、c,a、b、c在数轴上的位置如图所示,︱c︱>︱a︱.(1)化简:︱b-c︱-︱c-3a︱+︱2a+b︱;(2)若︱a+10︱=20,b2=400,c是︱x-3︱-30的最小值,求a、b、c的值;(3)在(2)的条件下,数轴上是否存在一点P,使得P点到C点的距离加上P点到A点的距离减去P点到B点的距离为50,即PC+PA-PB=50,若存在,求出P点在数轴上所对应的数;若不存在,请说明理由.c ab2.己知多项式x3-3xy2-4的常数项是a,次数是b.(1)则a=,b=,并将这两数在数轴上所对应的点A、B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,求点C在数轴上所对应的数;(3)若A点,B点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,且3秒后,2OA=OB ,求点B 的速度.-5-4-3-2-15432103.已知在数轴点A ,点B 对应的数分别是-2,8,点O 是原点,点C 从A 以每秒2个单位的速度向右移动,同时点D 从B 以每秒1个单位的速度向右移动,设移动时间为t 秒,(1)当t 为多少时,;32AC BC=(2)当t 为多少时,线段CD =8;(3)设OC 的中点为M ,在移动过程中,线段DM 的长度是否发生变化;说明理由.lDC B A 4.在数轴上有两点A 与B ,分别对应数-2与6,若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒).(1)分别表示甲、乙两小球到原点的距离(用t 表示)(2)求甲、乙两小球到原点的距离相等时经历的时间.5.如图,已知直线l 有两条可以左右移动的线段:AB =m ,CD =n ,且m ,n 满足︱m -4︱+(n -8)2=0.(1)求线段AB ,CD 的长;(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN =4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N 分别为AB 、CD 中点,BC=24,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值,求出这个定值,并直接写出t 在哪一个时间段内.N MlABC D。

初一培优专题:数轴上动点问题(有答案)Word版

初一培优专题:数轴上动点问题(有答案)Word版

培优专题:借助方程求解数轴上的动点问题(压轴题常考题型)数轴上的动点问题离不开数轴上两点之间的距离。

为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数—左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。

-,则A与B两点之间的距离用式子2.若数轴上点A表示的数为x,点B表示的数为1可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。

3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为t,则A点运动的路程可以用式子表示为______________。

-,A点在数轴上以2个单位长度/秒的速度向右运动,4.若数轴上点A表示的数为1若运动时间为t,则A点运动t秒后到达的位置所表示的数可以用式子表示为______________。

答案:1、3; 2、1x+,x+1; 3、2t; 4、12t-+二、已做题再解:1、半期考卷的第25题:如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足-2++8=a16(b)0(1)点A表示的数为_________,点B表示的数为________。

(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。

专题02 数轴上的动点问题(原卷版)(人教版)

专题02 数轴上的动点问题(原卷版)(人教版)

专题02 数轴上的动点问题点的往返运动 1.一个动点P 从数轴上的原点O 出发开始移动,第1次向右移动1个单位长度到达点P 1,第2次向右移动2个单位长度到达点P 2,第3次向左移动3个单位长度到达点P 3,第4次向左移动4个单位长度到达点P 4,第5次向右移动5个单位长度到达点P 5…,点P 按此规律移动,则移动第158次后到达的点在数轴上表示的数为( )A .159B .-156C .158D .12.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长度,n x 表示第n 秒时机器人在数轴上的位置所对应的数.给出下列结论:①33x =;②51x =;③108104x x <;④20192020x x >.其中,正确结论的序号是 . 运动时间问题3.已知多项式10514293420x x y xy -+-的常数项是a ,次数是b a b ,、在数轴上分别表示的点是A B 、(如图),点A 与点B 之间的距离记作AB .(1)求a b ,的值;(2)求AB 的长;(3)动点P 从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A ,B 在数轴上运动,点A ,B 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.若点A 向右运动,点B 向左运动,AP PB =,求t 的值.4.已知数轴上有A ,B ,C 三个点,分别表示有理数2-,4,6.(1)画出数轴,并用数轴上的点表示点A ,点B ,点C ;(2)动点P 从点C 出发,以每秒4个单位长度的速度沿数轴向数轴负方向运动,到达点A 后立即以每秒2个单位长度的速度沿数轴返回到点C ,到达点C 后停止运动,设运动时间为t 秒.①当1t =时,PA 的长为__________个单位长度,PB 的长为__________个单位长度,PC 的长为____________个单位长度;②在点P 的运动过程中,若9PA PB PC ++=个单位长度,则请直接写出t 的值为___________5.如图,在数轴上点A 表示的数为﹣6,点B 表示的数为10,点M 、N 分别从原点O 、点B 同时出发,都向左运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,运动时间为t 秒.(1)求点M 、点N 分别所对应的数(用含t 的式子表示);(2)若点M 、点N 均位于点A 右侧,且AN =2AM ,求运动时间t ;(3)若点P 为线段AM 的中点,点Q 为线段BN 的中点,点M 、N 在整个运动过程中,当PQ +AM =17时,求运动时间t .点表示的数6.已知A,B两点在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB a b.已知数轴上A,B两点对应的数分别为-1,3,P为数轴上一动点.(1)若点P到A,B两点之间的距离相等,则点P对应的数为______.(2)若点P到A,B两点的距离之和为6,则点P对应的数为______.(3)现在点A以2个单位长度/秒的速度运动,同时点B以0.5个单位长度/秒的速度运动,A和B的运动方向不限,当点A与点B之间的距离为3个单位长度时,求点B所对应的数是多少?7.平移和翻折是初中数学中两种重要的图形变化,阅读并回答下列问题:(1)平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.①把笔尖放在数轴的原点处,先向左移动2个单位长度,再向右移动3个单位长度,这时笔尖的位置表示的数是______;②一个机器人从数轴上表示﹣1的点出发,并在数轴上移动2次,每次移动3个单位后到达B点,则B点表示的数是______;③数轴上点A表示的数为m.则点A向左移动n个单位长度所表示的数为______;(2)翻折:将一个图形沿着某一条直线折叠的运动.①若折叠纸条,表示﹣2的点与表示1的点重合,则表示﹣4的点与表示______的点重合;②若数轴上A、B两点之间的距离为8,点A在点B的左侧,A、B两点经折叠后重合,折痕与数轴相交于表示﹣2的点,则A点表示的数为______;③在数轴上,点P表示的数为4,点Q表示的数为x,将点P、Q两点重合后折叠,折痕与数轴交于M点;将点P与点M重合后折叠,新的折痕与数轴交于N点,若此时点P与点N的距离为3,数x 的值为______.定值问题8.如图,记数轴上A 、B 两点之间线段长为AB ,2AB =(单位长度),1CD =(单位长度),在数轴上,点A 在数轴上表示的数是12-,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是_____,点C 在数轴上表示的数是_____,线段BC 的长=_____.(2)若线段AB 以1个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动,当点B 与C 重合时,点B 与点C 在数轴上表示的数是多少?(3)若线段AB 以1个单位长度/秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左匀速运动,设运动时间为t 秒,当024t <<时,M 为AC 中点,N 为BD 中点.①若数轴上两个数为a 、b ,则它们的中点可表示为2a b +.则点M 表示的数为_____,点N 表示的数为______.(用代数式表示)②线段MN 的长是否为定值,如果是,请求出这个值;如果不是,请说明理由.9.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向右移动3cm 到达B 点,然后再向右移动8cm 3到达C 点,数轴上一个单位长度表示1cm . (1)请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =_______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ? (4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动。

数轴上的运动点问题专题

数轴上的运动点问题专题

数轴上的运动点问题专题引言数轴是一个重要的数学工具,可以用来表示和解决各种问题。

在数轴上,我们可以描述和分析点的位置和运动。

本文将讨论关于数轴上运动点的一些问题和解决方法。

问题一:点的移动方向和距离在数轴上,点可以向左或向右移动。

当点向左移动时,我们用负数表示其移动的距离;当点向右移动时,我们用正数表示其移动的距离。

例如,如果一个点从初始位置0向左移动3个单位,则可以表示为-3;如果一个点从初始位置0向右移动5个单位,则可以表示为5。

问题二:点的相对位置和运动当数轴上有多个点同时移动时,我们可以比较它们的相对位置和运动。

如果一个点A在数轴上的位置大于另一个点B的位置,则表示点A在点B的右侧;反之,则表示点A在点B的左侧。

同样,我们也可以比较点A和点B的移动距离。

例如,如果点A从初始位置0向右移动5个单位,而点B从初始位置0向左移动3个单位,则点A在数轴上比点B的位置更大,且点A的移动距离大于点B的移动距离。

问题三:点的相对运动当数轴上有多个点同时移动时,我们可以观察它们的相对运动。

两个点之间的相对运动可以用一个虚拟点来表示,该虚拟点的位置是这两个点的相对位置之和。

例如,如果点A从初始位置0向右移动5个单位,而点B从初始位置0向左移动3个单位,则我们可以用一个虚拟点C来表示它们的相对位置,虚拟点C的位置为2。

换句话说,点A和点B在数轴上相对运动了2个单位。

结论数轴上的运动点问题是数学中的一类基本问题,可以通过比较点的位置和运动来解决。

在解决问题时,我们需要注意点的移动方向、距离和相对位置。

通过理解和运用这些概念,我们可以更好地分析和解决数轴上的运动点问题。

小专题(十一) 数轴上的动点问题

小专题(十一) 数轴上的动点问题
30+4t-(-10+2t)=40+2t.所以mAP+7BP-2CP=3mt+7(20+t)-2(40+2t)=(3m+
3)t+60.因为要使得mAP+7BP-2CP为一个定值,所以3m+3=0,解得m=-1.所
以mAP+7BP-2CP=(3m+3)t+60=60.综上所述,m的值为-1,这个定值为60
1
2
3
4
(3) 动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若
点P,Q同时出发,点P运动多少秒时,P,Q两点相距4个单位长度?
(3) 因为动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运
动,所以点Q表示的数是-6-4t.因为点P表示的数是10-8t,P,Q两点相距4个
单位长度,所以|(-6-4t)-(10-8t)|=4.所以4t-16=4或4t-16=-4,解得t=5或t=3.所
1
2
3
4
(2) 若点M到点A的距离是到点B距离的2倍,求点M表示的数.
(2) 设点M表示的数为x.因为点M到点A的距离是到点B距离的2倍,所以

|x-3|=2|x-(-5)|.所以x-3=2(x+5)或x-3=-2(x+5),解得x=-13或x=- ,即点M表


示的数为-13或
1
2
3
4
(3) 动点P从点B出发,沿着数轴以每秒4个单位长度的速度向点A运动,同
1
2
3
4
1
2
3
4
② 在移动过程中,当木棒m,n重叠部分的长为3个单位长度时,求t的值.

专题02 数轴上的三种动点问题(原卷版)(人教版)

专题02 数轴上的三种动点问题(原卷版)(人教版)

专题02 数轴上的三种动点问题数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。

那么,本专题对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。

【知识点梳理】1.数轴上两点间的距离数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a 表示的点向右移动b 个单位长度后到达点表示的数为a+b ;向左移动b 个单位长度后到达点表示的数为a -b.类型一、求值(速度、时间、距离)例1.如图在数轴上A 点表示数a ,B 点表示数b ,a ,b 满足2a ++6b -=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则C 点表示的数 ;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后 (忽略球的大小,可看作一点) 以原来的速度向相反的方向运动,设运动的时间为t (秒),请分别表示出甲,乙两小球到原点的距离 (用t 表示).例2.如图,数轴上两个动点A ,B 起始位置所表示的数分别为8-,4,A ,B 两点各自以一定的速度在数轴上运动,已知A 点的运动速度为2个单位/秒.(1)若A ,B 两点同时出发相向而行,正好在原点处相遇,请直接写出B 点的运动速度.(2)若A ,B 两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?(3)若A ,B 两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,如果在运动过程中,始终有2CA CB =,求C 点的运动速度.【变式训练1】如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-10,点B 表示10,点C 表示18,我们称点A 和点C 在数轴上相距28个长度单位.动点P 、Q 同时出发,点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒.问:(1)动点P 从点A 运动至点C 需要多少时间?(2)求P 、Q 两点相遇时,t 的值和相遇点M 所对应的数.【变式训练2】如图,已知A 、B 、C 是数轴上三点,点B 表示的数为4,8AB =,2BC =.(1)点A 表示的数是______,点C 表示的数是______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 的运动时间为t (0t >)秒.①用含t 的代数式表示:点P 表示的数为______,点Q 表示是数为______;②当1t =时,点P 、Q 之间的距离为______;③当点Q 在C B →上运动时,用含t 的代数式表示点P 、Q 之间的距离;④当点P 、Q 到点C 的距离相等时,直接写出t 的值.【变式训练3】如图,点A 、B 为数轴上的点(点A 在数轴的正半轴),8AB =,N 为AB 的中点,且点N 表示的数为2.(1)点A 表示的数为______,点B 表示的数为______;(2)点M 为数轴上一动点,点C 是AM 的中点,若1CM =,求点M 表示的数,并画出点M 的位置;(3)点P 从点N 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,设运动时间为()0t t >秒.在运动过程中,点P 、Q 之间的距离为3时,求运动时间t 的值.类型二、定值问题例1.已知:a 是单项式-xy 2的系数,b 是最小的正整数,c 是多项式2m 2n -m 3n 2-m -2的次数.请回答下列问题:(1)请直接写出a 、b 、c 的值.a = ,b = ,c = .(2)数轴上,a 、b 、c 三个数所对应的点分别为A 、B 、C ,点A 、B 、C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC . ①t 秒钟过后,AC 的长度为 (用含t 的关系式表示);②请问:BC -AB 的值是否会随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出其值.【变式训练1】如图,已知数轴上点A 表示的数为12,B 是数轴上一点.且20AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)写出数轴上点B 表示的数___,点P 表示的数___(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,问点P 运动多少秒时追上点Q ;(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.【变式训练2】如图,已知数轴上点A 表示的数为9,B 是数轴负方向上一点,且15AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为(0)t t >秒.(1)数轴上点B 表示的数为_____,点P 表示的数为________;(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,问t 为何值时,点P 追上点Q ?此时P 点表示的数是多少?(3)若点M 是线段AP 的中点,点N 是线段BP 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变化,请求出MN 的长度;【变式训练3】点A 、B 在数轴上对应的数分别为a 、b ,且a 、b 满足2130a b ++-=.(1)如图1,求线段AB 的长;(2)若点C 在数轴上对应的数为x ,且x 是方程12122x x +=-的根,在数轴上是否存在点P 使PA PB BC +=,若存在,求出点P 对应的数,若不存在,说明理由;(3)如图2,点P 在B 点右侧,P A 的中点为M ,N 为PB 靠近于B 点的四等分点,当P 在B的右侧运动时,有两个结论:①2PM BN -的值不变;②23PM BN -的值不变,其中只有一个结论正确,请判断正确的结论,并直接写出该值.类型三、点之间的位置关系问题例1.如图,已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且12AB =.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P 的运动时间为t 秒.(1)解决问题:①当1t =时,写出数轴上点B ,P 所表示的数;②若点P ,Q 分别从A ,B 两点同时出发,问点P 运动多少秒与点Q 相距3个单位长度?(2)探索问题:若M 为AQ 的中点,N 为BP 的中点.当点P 在A ,B 两点之间运动时,探索线段MN 与线段PQ 的数量关系(写出过程).例2.如图,在数轴上A 点表示的数为a ,B 点表示的数为b ,C 点表示的数为c ,b 是最大的负整数,且a ,c 满足|a +3|+(c ﹣9)2=0.点P 从点B 出发以每秒3个单位长度的速度向左运动,到达点A 后立刻返回到点C ,到达点C 后再返回到点A 并停止.(1)a = ,b = ;(2)点P 从点B 离开后,在点P 第二次到达点B 的过程中,经过x 秒钟,P A +PB +PC =13,求x 的值.(3)点P 从点B 出发的同时,数轴上的动点M ,N 分别从点A 和点C 同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t 秒钟时,P 、M 、N 三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t 的值.【变式训练1】如图,已知A 、B 、C 是数轴上三点,点O 为原点,点C 表示的数为6,BC =4, AB =12.(1)写出数轴上点A 、B 表示的数;(2)动点P 、Q 分别从A 、C 同时出发,沿数轴向右匀速运动.点P 的速度是每秒6个单位长度,点Q 的速度是每秒3个单位长度,点M 为AP 的中点,点N 在线段CQ 上,且CN =13CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②当M、B、N三个点中的其中一个点是另两点构成的线段的中点的时候,求t的值.【变式训练2】已知,如图1:数轴上有A、B、C三点,点A表示的数为-5,点B表示的数为13,点C表示的数为-2,将一条长为9个单位长度的线段MN放在该数轴上(点M 在点N的左边).(1)求线段AB中点表示的数;(2)如图2:若从点M与点A重合开始,将线段MN以0.3个单位长度/秒的速度沿数轴向右移动,经过x秒后,点N恰为线段BC的中点,求x的值;(3)如图3:在(2)的基础上,若线段MN向右移动的同时,动点P从点C开始以0.6个单位长度/秒的速度也沿数轴向右移动,设移动的时间为t秒,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,求t的值.【变式训练3】已知A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,,A B的优点.我们就称点C是()例如:如图1,A,B为数轴上两点,点A表示的数为-1,点B表示的数为2,表示数1的,A B的优点;表示数0的点D到点C到点A的距离是2,到点B的距离是1,那么点C是(),B C的优点.点C的距离是1,到点B的距离是2,那么点D是()(1)在图1中,点C是(),A B的优点,也是(A,_____________)的优点;点D是(),B C的优点,也是(B,_____________)的优点;(2)如图2,A,B为数轴上两点,点A所表示的数为-2,点B所表示的数为4.设数x所表,A B的优点,求x的值;示的点是()(3)如图3,A,B为数轴两点,点A所表的数为-20,点B所表示的数为40.现有一只电子蚂蚁Р从点B出发,以5个单位每秒的速度向左运动,到达点A停止,设点Р的运动时间为t秒,在点Р运动过程中,是否存在P、A和B中恰有一个点为其余两点的优点﹖如果存在请求出t的值;如果不存在,说明理由.。

专题 数轴上的动点问题

专题      数轴上的动点问题

专题——数轴上的动点问题类型1 数轴上的规律探究问题方法:用由特殊到一般的思想例1. 如图,A 点的初始位置位于数轴上表示1的点,现对A 点做如下移动:第1次向左移动3个单位长度至B 点,第2次从B 点向右移动6个单位长度至C 点,第3次从C 点向左移动9个单位长度至D 点,第4次从D 点向右移动12个单位长度至E 点,…,依此类推,这样第_____次移动到的点到原点的距离为2018。

【分析】: 本题考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究。

对这列数的奇数项、偶数项的规律分别进行探究,是解决这道题的关键。

根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】:第1次从点A 向左移动3个单位至点B ,则B 表示为:1﹣3=﹣2;第2次从点B 向右移动6个单位至点C ,则C 表示为:﹣2+6=4;第3次从点C 向左移动9个单位至点D ,则D 表示为:4﹣9=﹣5;第4次从点D 向右移动12个单位至点E ,则点E 表示为﹣5+12=7;第5次从点E 向左移动15个单位至点F ,则F 表示为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:-(3n+1)/2,当移动次数为偶数时,点在数轴上所表示的数满足:(3n+2)/2。

①当移动次数n 为奇数时,-(3n+1)/2=﹣2018,n=1345,②当移动次数n 为偶数时,(3n+2)/2=2018,n=4034/3(不合题意)。

故答案为:1345。

类型2 数轴上的两点距离问题方法:用分类讨论及数形结合思想例2.已知M 、N 在数轴上,M 对应的数是﹣3,点N 在M 的右边,且距M 点4个单位长度。

点P 、Q 是数轴上两个动点;(1)直接写出点N 所对应的数;(2)当点P 到点M 、N 的距离之和是5个单位时,点P 所对应的数是多少?(3)如果P 、Q 分别从点M 、N 出发,均沿数轴向左运动,点P 每秒走2个单位长度,先出发5秒钟;点Q 每秒走3个单位长度。

专题09 难点探究专题:数轴上的动点问题压轴题五种模型全攻略(原卷版)

专题09 难点探究专题:数轴上的动点问题压轴题五种模型全攻略(原卷版)

专题09 难点探究专题:数轴上的动点问题压轴题五种模型全攻略【考点导航】目录【典型例题】 .................................................................................................................................................. 1 【考点一 数轴上的动点中求运动的时间问题】 ............................................................................................. 1 【考点二 数轴上的动点中求定值问题】......................................................................................................... 3 【考点三 数轴上的动点中找点的位置问题】 ................................................................................................. 5 【考点四 数轴上的动点中几何意义最值问题】 ............................................................................................. 7 【考点五 数轴上的动点规律探究问题】 (9)【典型例题】【考点一 数轴上的动点中求运动的时间问题】例题:(2023秋·江苏徐州·七年级校考期末)如图数轴上有两个点AB 、,分别表示的数是2 ,4.请回答以下问题:(1)A 与B 之间距离为___________;(2)若点P 从A 点出发,以每秒5个单位长度的速度向右作匀速运动,点Q 从B 出发,以每秒3个单位长度的速度向右作匀速运动,P Q ,同时运动,设运动的时间为t 秒; ①当点P 运动多少秒时,点P 和点Q 重合?②当点P 运动多少秒时,P Q ,之间的距离为3个单位长度?【变式训练】1.(2023春·安徽安庆·七年级统考期末)已知如图,数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运t t>秒.动时间为()0(1)数轴上点B表示的数是___________;当点P运动到AB的中点时,它所表示的数是__________.(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发.求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?2.(2023秋·河北沧州·七年级统考期末)综合与实践:A、B、C三点在数轴上的位置如图所示,点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数为,点B表示的数为;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动.点Q以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒;①求数轴上点P,Q表示的数(用含t的式子表示);②t为何值时,P,Q两点重合;③请直接写出t为何值时,P,Q两点相距5个单位长度.3.(2023秋·湖北武汉·七年级统考期末)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示12-,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,记L=.动点M从点A出发,沿着“折线数轴”的正方向运动,同时,动点N从点C出发,沿着“折线数为32AC轴”的负方向运动,它们在水平轴AO,BC上的速度都是2单位/秒,在O,B之间的上行速度为1单位/秒,下行速度为3单位秒.设运动的时间为t秒.t=秒时,M,N两点在数轴上相距多少个单位长度?(1)当4(2)当M,N两点相遇时,求运动时间t的值.(3)若“折线数轴”上定点P与O,B两点相距的长度相等,且存在某一时刻t,使得两点M,N与点P相距的长度之和等于6,请直接写出t的值为____________.【考点二数轴上的动点中求定值问题】2().130a b【变式训练】1.阅读下面的材料:(>),则线段AB的长(点A到点B的距离)如图①,若线段AB在数轴上,A,B点表示的数分别为a,b b a=-.可表示为AB b a【考点三数轴上的动点中找点的位置问题】例题:已知在纸面上有一数轴(如图所示).(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数4的点与表示数的点重合;(2)操作二:折叠纸面,使表示数6的点与表示数﹣2的点重合,回答下列问题:①表示数9的点与表示数的点重合;②若这样折叠后,数轴上的A,B两点也重合,且A,B两点之间的距离为10(点A在点B的左侧),求A,B两点所表示的数分别是多少?③在②的条件下,在数轴上找到一点P,设点P表示的数为x.当P A+PB=12时,直接写出x的值.【变式训练】1.已知在数轴上A,B两点对应数分别为﹣2,6.(1)请画出数轴,并在数轴上标出点A、点B;(2)若同一时间点M从点A出发以1个单位长度/秒的速度在数轴上向右运动,点N从点B出发以3个单位长度/秒的速度在数轴上向左运动,点P从原点出发以2个单位长度/秒的速度在数轴上运动.①若点P向右运动,几秒后点P到点M、点N的距离相等?②若点P到A的距离是点P到B的距离的三倍,我们就称点P是【A,B】的三倍点.当点P是【B,A】的三倍点时,求此时P对应的数.2.如图,已知A B,为数轴上的两个点,点A表示的数是60-,点B表示的数是20.(1)直接写出线段AB的中点C对应的数;(2)若点D在数轴上,且30BD=,直接写出点D对应的数;(3)若熊大从点A出发,在数轴上每秒向右前进8个单位长度;同时熊二从点B出发,在数轴上每秒向左前进12个单位长度它们在点E处相遇,求点E对应的数;(4)若熊大从点A出发,在数轴上每秒向左前进8个单位长度;同时熊二从点B出发,在数轴上每秒向左前进12个单位长度,当它们在数轴上相距20个单位长度时,求熊大所在位置点F对应的数.-,3.(2023秋·山东滨州·七年级统考期末)如图,已知A,B为数轴上的两个点,点A表示的数是90点B表示的数是30.(1)直接写出线段AB的中点C对应的数;BD=,直接写出点D对应的数;(2)若点D在数轴上,且50(3)若李明从点A出发,在数轴上每秒向右前进8个单位长度;同时王聪从点B出发,在数轴上每秒向左前进12个单位长度它们在点E处相遇,求点E对应的数;(4)若李明从点A出发,在数轴上每秒向左前进8个单位长度;同时王聪从点B出发,在数轴上每秒向左前进12个单位长度,当它们在数轴上相距20个单位长度时,求李明所在位置点F对应的数.【考点四数轴上的动点中几何意义最值问题】例题:(2023春·湖北武汉·七年级校联考阶段练习)数形结合是解决数学问题的重要思想方法.例如,代数【变式训练】1.(2022秋·江苏·七年级期中)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合的几何意义知:当﹣2≤x ≤1时,|x ﹣1|+|x +2|恒有最小值3,所以要使|x ﹣1|+|x +2|=4成立,则点P 必在﹣2的左边或1的右边,且到表示数﹣2或1的点的距离均为0.5个单位. 故方程|x ﹣1|+|x +2|=4的解为:x 1=﹣2﹣0.5=﹣2.5,x 2=1+0.5=1.5. 阅读以上材料,解决以下问题:(1)填空:|x ﹣3|+|x +2|的最小值为 ;(2)已知有理数x 满足:|x +3|+|x ﹣10|=15,有理数y 使得|y ﹣3|+|y +2|+|y ﹣5|的值最小,求x ﹣y 的值. (3)试找到符合条件的x ,使|x ﹣1|+|x ﹣2|+…+|x ﹣n |的值最小,并求出此时的最小值及x 的取值范围.【考点五 数轴上的动点规律探究问题】例题:(2022秋·河北沧州·七年级统考期末)一电子跳蚤落在数轴上的某点k 0处,第一步从k 0向左跳一个单位到k 1,第二步从k 1向右跳2个单位到k 2,第三步由k 2处向左跳3个单位到k 3,第四步由k 3向右跳4个单位k 4…按以上规律跳了100步后,电子跳蚤落在数轴上的数是0,则k 0表示的数是( ) A .0 B .100 C .50 D .﹣50【变式训练】1.(2022秋·广东佛山·七年级校考阶段练习)一只跳蚤在数轴上从0点开始,第1次向右跳2个单位,紧接着第2次向左跳4个单位,第3次向右跳6个单位,第4次向左跳8个单位,…,依此规律跳下去,当它跳第100次落下时,落点处表示的数为 .2.(2022秋·湖南长沙·七年级校考阶段练习)如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第2次将点1A 向右平移6个单位长度到达点2A ,第3次将点2A 向左移动9个单位长度到达点3A ⋯则第6次移动到点6A 时,点6A 在数轴上对应的实数是 ;按照这种规律移动下去,至少移动 次后该点到原点的距离不小于41.3.(2022秋·七年级课时练习)如图,数轴上O 、A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点1A 处,第2次从1A 点跳动到1A O 的中点2A 处,第3次从2A 点跳动到2A O 的中点3A 处,按照这样的规律继续跳动到点456,,,...,n A A A A (3n ≥,n 是整数)处,问经过这样2021次跳动后的点与O 点的距离是 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴上的动点问题
动点问题处理策略
1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数-左边点表示的数。

2、如何表示运动过程中的数:点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a ,向左运动b 个单位后表示的数为a -b ;向右运动b 个单位后所表示的数为a+b 。

(简单说成左减右加)
3、分类讨论的思想:数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况种的分类讨论
4、绝对值策略:对于两个动点P,Q ,若点P,Q 的左右位置关系不明确或有多种情况,可用p,q 两数差的绝对值表示P,Q 两点距离,从而避免分复杂分类讨论 …
5、中点公式:若数轴上点A,B 表示的数分别为a,b ,M 为线段AB 中点,则M 点表示的数为
2
a b
类型一、数轴上两点距离的应用
例1、已知数轴上A,B 两点表示的数分别为-2和5,点P 为数轴上一点 (1)若点P 到A,B 两点的距离相等,求P 点表示的数
(2)若PA=2PB,求P 点表示的数 …
(3)若点P 到点A 和点B 的距离之和为13,求点P 所表示的数。

B
A O B
A O B
A
O
练、已知数轴上A 、B 两点对应数分别为-2和4,P 为数轴上一动点,对应数为x . (1)若P 为线段AB 的三等分点,则x 的值为_________ (2)若线段PA=3PB,则P 点表示的数为__________ ]
类型二、
绝对值的处理策略
例2、已知数轴上
A,B 两点表示的数分别为-8和20,点P,Q 分别从A,B 两点同时出发,P 点运动速度为每秒3个单位,
Q 点运动速度为每秒1个单位,设运动时间为t 秒 (1)点P 向右运动,Q 点向左运动,当t 为何值时,P,Q 两点之间距离为8 !
(2)若P 点和Q 点都向右运动,多少秒后,P,Q 两点之间距离为8
(3)在(2)的条件下,另一动点M 同时从O 点出发,以每秒2个单位的速度向右运动,多少秒后,点M 到点P 和点Q 的距离相等

练、已知在数轴上有A,B两点,点A表示的数为-8,点B表示的数为4.动点P从数轴上点A出发,以每秒2个单位长度的速度运动,同时动点Q从点B出发,以每秒1个单位长度的速度,设运动时间为t秒。

(1)若点P向右运动,点Q向左运动,问多少秒后点P与Q相距2个单位长度

(2)若动点P、Q都向右运动,当点P与点Q重合时,P、Q两点停止运动.
当t为何值时,2OP-OQ=4
类型三、小狗来回跑的问题
例、数轴上,点A表示-3,点B表示12,A,B两点同时向负方向运动,速度分别为1个单位和4个单位每秒,同时另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.
~
练习、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少

类型四、运动中的变与不变
例3、数轴上A,B,C三点分别表示-1,1,5,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.
(1)请问:BC-AB的值是否随着时间t的变化而改变若变化,请说明理由;若不变,请求其值.
(2)是否存在一个常数m使得m•BC-2AB不随运动时间t的改变而改变.若存在,请求出m 和这个不变化的值;若不存在,请说明理由.
)
>
练习、如图①,M、N、P是数轴上顺次三点,M、N之间的距离记为MN,M,P之间的距离记为MP.
(1)若MP=3MN,求x的值;
(2)在(1)的条件下,如图②,点M、N、P开始在数轴上运动,点M以每秒2个单位长度的速度向左运动,同时,点N和点P分别以每秒1个单位长度和4个单位长度的速度向右运动.设运动时间为t(t>0)秒, PN-MN的值是否随时间t的变化而改变若改变,说明理由;若不变,求其值.
为定值若存在求出k值,并求出这个定值。

若不存(3)是否存在常数k,使k MN PN
在,请说明理由。

.
类型五、中点问题
例、如图,数轴上的两个点A、B所对应的数分别为-8、7,点M、N对应的数分别是m、m+3.(1)若AM=BN,请直接写出点M、N所对应的数;
(2)若AN=2BM,求m的值;
(3)设点P为AN的中点,点Q为BM的中点,问当线段MN在数轴上运动时,PQ的值是否发生改变如果不变,求出PQ的值;如果改变,请说明理由.
~
练习1、如图,已知数轴上有三点A、B、C,它们对应的数分别为-40,-10,20,O为原点,动点P、Q分别从A、C同时出发,P向左运动,Q向右运动,P点的运动速度为8个单位长度/秒,Q点的运动速度为4个单位长度/秒,N为OP的中点,M为BQ的中点,在P、Q运动的过程中,PQ-2MN的值是否发生变化若不变,求其值;若变化,请说明理由.

2、已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.若M为AQ 的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ的数量关系.
类型六、多状态分析
例、已知数轴上A,B两点对应的数分别为-20,13,点C对应的数为16,点D对应的数为-13.点A,B沿数轴同时出发相向匀速运动,点A的速度为6个单位/秒,点B的速度为2个单位/秒,点A,B从起始位置同时出发.当A点运动到点C时,迅速以原来的速度返回,到达出发点后,又折返向点C运动.B点运动至D点后停止运动,当B停止运动时点A也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.
'
!
练、点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.
(1)若点C为原点,则点A表示的数是______
(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a-c|+|d-b|-|a-d|=____________(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.
①当点停止运动时,求点P、Q之间的距离;
②设运动时间为t(单位:秒),则t为何值时,PQ=5
-
类型七、辅助参数
例、数轴上两个点A ,B 所对应的数为-8,4,A 、B 两点各自以一定的速度同时运动,且A 点的运动速度为
2个单位/秒.B 点运动速度为1个单位每秒若A,B 同时向数轴负方向运动,与此同时,C 点从原点出发也向数轴负方向运动,且C 点总在A 、B 两点之间,并在运动过程中始终有BC:CA=1:2(BC 表示C 点到B 点的距离),设运动t 秒钟后,点A 、B 、C 分别运!
练习1、一次数学课上,小明同学给小刚同学出了一道数形结合的综合题,他是这样出的:
如图,数轴上两个动点M
,N 开始时所表示的数分别为-10,5,M ,N 两点各自以一定的速度在数轴上运动,且M 点的运动速度为2个单位长度/s .
(1)M ,N 两点同时出发相向而行,在原点处相遇,求N 点的运动速度.
(2)M ,N 两点按上面的各自速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?
(3)M,N两点按上面的各自速度同时出发,向数轴负方向运动,与此同时,C点从原点出发沿同方向运动,且在运动过程中,始终有CN:CM=1:2.若干秒后,C点在-12处,求此时N点在数轴上的位置.
?
练习2、A点坐标为-20,C点坐标为40,一只电子蚂蚁甲从C点出发向左移动,速度为2个单位长度/秒.B为数轴上(线段AC之间)一动点,D为BC的中点.
(1)这只电子蚂蚁甲由D点走到AB的中点E处,需要几秒钟?
(2)在(1)的条件下,当电子蚂蚁甲从E点返回时,另一只蚂蚁乙同时从C点出发向左移动,速度为3个单位长度/秒,如果两只蚂蚁相遇于H点离B点5个单位长度,求B点对应的数.。

相关文档
最新文档