正弦定理、余弦定理在生活中的应用
正弦定理与余弦定理的应用

正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。
以下是关于正弦定理和余弦定理的应用的详细探讨。
一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。
正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。
由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。
2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。
通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。
3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。
通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。
二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。
余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。
例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。
此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。
2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。
例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。
余弦定理可以帮助我们解决这个问题。
此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。
在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。
正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.1.测量中正、余弦定理的应用例1 某观测站C 在目标A 南偏西25︒方向,从A 出发有一条南偏东35︒走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ∆,求角B .再解ABC ∆,求出AC ,再求出AB ,从而求出AD (即为所求).解:由图知,60CAD ∠=︒.22222231202123cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯,sin B =. 在ABC ∆中,sin 24sin BC B AC A ⋅==.由余弦定理,得2222cos BC AC AB AC AB A =+-⋅⋅. 即2223124224cos60AB AB =+-⋅⋅⋅︒.整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米).答:此人所在D 处距A 还有15千米.评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理.2.航海中正、余弦定理的应用例2 在海岸A 处,发现北偏东45︒方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75︒方向,距A 为2海里的C 处的缉私船奉命以/小时A C D 312120 35︒25︒ 东 北的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间? 分析:注意到最快追上走私船,且两船所用时间相等,可画出示意图,需求CD 的方位角及由C 到D 所需的航行时间.解:设缉私船追上走私船所需时间为t 小时,则有CD =,10BD t =.在ABC △中,∵1AB =,2AC =,4575120BAC ∠=︒+︒=︒,根据余弦定理可得BC ==根据正弦定理可得2sin120sin 2AC ABC BC ︒∠===. ∴45ABC ∠=︒,易知CB 方向与正北方向垂直,从而9030120CBD ∠=︒+︒=︒. 在BCD △中,根据正弦定理可得:sin 1sin 2BD CBD BCD CD ∠∠===,∴30BCD =︒△,30BDC ∠=︒,∴BD BC ==则有10t =0.24510t ==小时14.7=分钟. 所以缉私船沿北偏东060方向,需14.7分钟才能追上走私船.评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.3.航测中正、余弦定理的应用例3 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m ,速度为180km/h ,飞行员先看到山顶的俯角为'1830︒,经过120秒后又看到山顶的俯角为81︒,求山顶的海拔高度(精确到1m ).分析:首先根据题意画出图形,如图,这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.解:设飞行员的两次观测点依次为A 和B ,山顶为M ,山顶到直线的距离为MD .如图,在ABM △中,由已知,得1830'A ∠=︒,99ABM ∠=︒,6230'AMB ∠=︒.又12018066060AB =⨯=⨯(km ), A B DM 45︒75︒ 30︒ ACDB根据正弦定理,可得6sin1830'sin 6230'BM ︒=︒,进而求得6sin1830'sin81sin 6230'MD ︒︒=︒,∴2120MD ≈(m ),可得山顶的海拔高度为20250212018130-=(m ).评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.4.炮兵观测中正、余弦定理的应用例4 我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知6000CD =米,45ACD ∠=︒,75ADC ∠=︒,目标出现于地面点B 处时,测得30BCD ∠=︒,15BDC ∠=︒(如图),求炮兵阵地到目标的距离(结果保留根号). 分析:根据题意画出图形,如图,题中的四点A 、B 、C 、D 可构成四个三角形.要求AB 的长,由于751590ADB ∠=︒+︒=︒,只需知道AD 和BD 的长,这样可选择在ACD ∆和BCD ∆中应用定理求解.解:在ACD △中,18060CAD ACD ADC ∠=︒-∠-∠=︒, 6000CD =,45ACD ∠=︒,根据正弦定理有sin 45sin 60CD AD ︒==︒, 同理,在BCD △中,180135CBD BCD BDC ∠=︒-∠-∠=︒,6000CD =,30BCD ∠=︒,根据正弦定理有sin 30sin1352CD BD CD ︒==︒. 又在ABD ∆中,90ADB ADC BDC ∠=∠+∠=︒,根据勾股定理有:AB ====所以炮兵阵地到目标的距离为米.评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解.5.下料中正余弦定理的应用例5 已知扇形铁板的半径为R ,圆心角为60︒,要从中截取一个面积最大的矩形,应怎样划线?分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的内接矩形,如图所示.30︒ 45︒ 75︒AC D 15︒解:在图(1)中,在AB 上取一点P ,过P 作PN OA ⊥于N ,过P 作PQ PN ⊥交OB 于Q ,再过Q 作QM OA ⊥于M .设AOP x ∠=,sin PN R x =.在POQ △中,由正弦定理,得sin(18060)sin(60)OP PQx =︒-︒︒-.∴sin(60)PQ R x =︒-.于是[]22sin sin(60)cos(260)cos 60S PN PQ R x x R x =⋅=⋅︒-=-︒-︒221(1)2≤-=. 当cos(260)1x -︒=即30x =︒时,S2. 在图(2)中,取AB 中点C ,连结OC ,在AB 上取一点P ,过P 作//PQ OC交OB 于Q ,过P 作PN PQ ⊥交AB 于N ,过Q 作QM PQ ⊥交CA 于M ,连结MN 得矩形MNPQ ,设POC x ∠=,则sin PD R x =.在POQ △中,由正弦定理得:sin(18030)sin(30)R Rx =︒-︒︒-,∴2sin(30)PQ R x =︒-.∴[]2224sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒222(1cos30)(2R R ≤-︒=(当15x =︒时取“=”).∴当15x =︒时,S取得最大值2(2R .∵22(26R R >, ∴作30AOP ∠=︒,按图(1)划线所截得的矩形面积最大.评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.ABQ POxMN (1)ABQPOxMNED(2)。
余弦定理在生活中的应用

余弦定理在生活中的应用一、余弦定理内容回顾1. 对于三角形ABC,设a、b、c分别为角A、B、C所对的边,则余弦定理有以下三种形式:- a^2=b^2+c^2-2bccos A- b^2=a^2+c^2-2accos B- c^2=a^2+b^2-2abcos C2. 余弦定理的作用- 已知三角形的两边及其夹角,可以求出第三边。
- 已知三角形的三边,可以求出三角形的三个角。
二、在测量中的应用1. 测量不可到达两点间的距离- 例:A、B两点被一个池塘隔开,无法直接测量它们之间的距离。
我们可以在池塘外选一点C,测得AC = m米,BC=n米,∠ ACB=θ。
- 根据余弦定理AB^2=AC^2+BC^2-2AC· BC·cos∠ ACB,即AB=√(m^2)+n^{2-2mncosθ}。
这样就可以计算出A、B两点间的距离。
2. 测量建筑物的高度- 假设要测量一座大楼的高度h。
在大楼底部的水平地面上选一点A,在距离A 点d米的地方再选一点B,然后测量出∠ BAC=α,∠ ABC = β。
- 设大楼高度h对应的边为BC,根据三角形内角和为180^∘,可得∠ACB=180^∘-α-β。
- 在 ABC中,已知AB = d,根据正弦定理(AB)/(sin∠ ACB)=(BC)/(sin∠BAC),可求出BC的长度。
再根据h = BCsinβ求出大楼的高度。
这里正弦定理求出BC的过程中,若先求出sin∠ ACB=sin(α + β),在计算BC时可能会涉及到较为复杂的三角函数运算。
如果我们用余弦定理,先根据AC^2=AB^2+BC^2-2AB· BC·cos∠ABC,设AC = x,则x^2=d^2+BC^2-2d· BC·cosβ,再结合(h)/(x)=tanα,联立方程求解h,有时会更简便。
三、在导航中的应用1. 飞机航线规划- 飞机从机场A飞往机场B,由于风向等因素,飞机实际飞行的路线是一个三角形的路径。
正弦定理余弦定理应用举例

正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。
(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。
正、余弦定理在实际生活中的应用

正、余弦定理在实际生活中的应用正弦定理和余弦定理是三角学中重要的定理,它们不仅在数学领域有着重要的意义,而且在日常生活中也有着广泛的应用。
本文将通过几个实际生活中的例子,来说明正弦定理和余弦定理的应用。
我们来看一个生活中常见的例子,即测量高楼的高度。
假设有一栋高楼,我们无法通过直接测量得到其高度,但是我们可以通过测量某一点到高楼顶部的距离和测量这一点与高楼底部的夹角,利用正弦定理和余弦定理来计算高楼的高度。
设高楼的高度为h,某一点到高楼顶部的距离为d,某一点与高楼底部的夹角为θ,则根据正弦定理可得:\[ \frac{h}{\sin{\theta}} = \frac{d}{\sin{(90^\circ - \theta)}} \]根据余弦定理可得:\[ h^2 = d^2 + L^2 - 2dL\cos{\theta} \]通过这两个公式,我们可以根据已知的距离和夹角,计算出高楼的高度。
这就是正弦定理和余弦定理在测量高楼高度时的应用。
正弦定理和余弦定理也可以在航海领域中得到应用。
航海员在航海时需要测量两个位置之间的距离和方向角,而这正是正弦定理和余弦定理所擅长的。
假设航海员需要确定A点和B点之间的距离d和方向角θ,可以利用正弦定理和余弦定理来进行计算。
首先利用余弦定理计算A点和B点的距离:\[ d^2 = a^2 + b^2 - 2ab\cos{\theta} \]然后利用正弦定理计算出方向角θ:\[ \frac{\sin{\theta}}{a} = \frac{\sin{B}}{d} \]通过这些计算,航海员可以准确地确定A点和B点之间的距离和方向角,从而确保航行的安全和准确性。
在建筑领域中,正弦定理和余弦定理也有着重要的应用。
在设计桥梁和建筑物结构时,需要计算各种角度和距离,而这些计算中常常需要用到正弦定理和余弦定理。
在地质勘探和地震预测中,也需要利用正弦定理和余弦定理来计算地层的深度和角度,从而进行地质勘探和地震预测工作。
余弦定理及正弦定理的应用

余弦定理及正弦定理的应用余弦定理和正弦定理是解决三角形相关问题的重要工具。
它们被广泛应用于测量、导航、工程等领域。
下面将分别介绍余弦定理和正弦定理,并说明它们在实际应用中的具体运用。
一、余弦定理余弦定理描述了一个三角形的边与夹角之间的关系。
对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。
根据余弦定理,可以得到以下等式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC余弦定理可以用于解决以下问题:1. 测量三角形边长:如果已知三角形的两个边长和它们之间的夹角,可以利用余弦定理计算出第三条边的长度。
2. 计算三角形的夹角:如果已知三角形的三条边长,可以利用余弦定理的逆运算求解三个夹角的大小。
3. 解决航海导航问题:根据已知的方位角和航程,可以利用余弦定理计算船只的坐标位置。
二、正弦定理正弦定理描述了三角形边与其对应角的正弦值之间的关系。
对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。
根据正弦定理,可以得到以下等式:a/sinA = b/sinB = c/sinC正弦定理可以用于解决以下问题:1. 求解三角形的面积:如果已知三角形的两边和它们之间的夹角,可以利用正弦定理求解三角形的面积。
2. 判定三角形类型:根据三边的长度和正弦定理,可以判断三角形是锐角三角形、直角三角形还是钝角三角形。
3. 解决建筑工程问题:在建筑测量中,需利用正弦定理计算高度、距离等未知量。
综上所述,余弦定理和正弦定理是解决三角形相关问题的重要工具。
通过运用这些定理,我们可以计算三角形的边长、夹角,求解三角形的面积,判断三角形的类型等。
在测量、导航、工程等领域,都离不开这两个定理的应用。
正余弦定理在生活中的运用

正余弦定理在生活中的运用正余弦定理在实际生活中的应用有:航海、地理、物理、建筑工程。
1、航海在航海中,正余弦定理被广泛用于计算方向角。
当航行在广阔的海域或天空时,确定目标的方向是至关重要的。
通过观测两个已知位置相对于自身的角度,利用正弦或余弦定理,航行者可以精确地计算出到达目标的航向角,确保安全、准确地到达目的地。
2、地理在地理中,正余弦定理被用于计算地球上两点之间的精确距离。
由于地球是一个球体,因此需要使用球面三角学来进行计算。
通过观测两个已知位置相对于第三个位置的角度,利用正弦定理或余弦定理,测量人员可以精确地计算出两点之间的实际距离,为地图绘制、导航等提供准确的数据支持。
3、物理在物理学中,正弦定理和余弦定理被广泛应用于波动和振动的研究。
例如,在声学和光学中,这些定理被用来描述波的传播和干涉现象。
通过测量波的振幅、频率和传播方向,可以使用正弦定理或余弦定理来计算波在不同介质中的传播速度、波长和相位差。
4、建筑工程在建筑工程中,正弦定理和余弦定理可用于解决与角度和距离相关的问题。
例如,在设计桥梁、隧道或高楼大厦时,工程师需要计算各种角度和距离以确保结构的稳定性和安全性。
通过使用正弦定理或余弦定理,工程师可以确定结构物的高度、长度、宽度和角度等参数。
正余弦定理介绍和区别一、正余弦定理介绍1、正弦定理在一个三角形中,各边和它所对角的正弦的比值相等。
即,a/sinA=b/sinB=c/sinC,其中a、b、c为三角形的三边,A、B、C为三角形的三个内角。
2、余弦定理在任意三角形中,一边的平方等于其他两边的平方和减去这两边与其夹角的余弦的积的两倍。
即,c²=a²+b²-2abcosC,其中a、b、c为三角形的三边,C为夹角。
余弦定理与正弦定理的应用

余弦定理与正弦定理的应用在数学中,余弦定理和正弦定理是解决三角形的边长和角度关系的重要工具。
它们的应用范围广泛,不仅限于几何学,还可以在物理学、工程学以及实际生活中的各种测量和计算问题中使用。
本文将介绍余弦定理和正弦定理的基本原理,并通过一些实际应用例子来展示它们的实用性。
一、余弦定理余弦定理是指在任意三角形中,三条边和它们所对的角之间存在着一个关系,即:c^2 = a^2 + b^2 - 2abcosC其中,a、b、c为三角形的三条边,C为夹角。
该定理可以用于计算三角形的边长或夹角大小,特别适用于已知两边和夹角,求解第三边或第三个角的情况。
例如,我们有一个三角形,已知两条边分别为a=5cm,b=7cm,夹角C为60度。
我们可以利用余弦定理来计算第三条边c的长度:c^2 = 5^2 + 7^2 - 2×5×7×cos60°c^2 = 25 + 49 - 70×0.5c^2 = 24c = √24c ≈ 4.9cm通过余弦定理,我们可以得到这个三角形的第三边c约为4.9cm。
除了计算边长,余弦定理还可以用于计算三角形的角度。
例如,我们有一个三角形,已知三边分别为a=6cm,b=8cm,c=10cm。
我们可以利用余弦定理来计算各个角的大小:cosA = (b^2 + c^2 - a^2) / (2bc)cosB = (a^2 + c^2 - b^2) / (2ac)cosC = (a^2 + b^2 - c^2) / (2ab)通过上述公式,我们可以求得角A,角B和角C的余弦值,再利用反余弦函数求得它们的度数。
二、正弦定理正弦定理是指在任意三角形中,三条边和对应的角的正弦之间存在着一个关系,即:a / sinA =b / sinB =c / sinC正弦定理可以用于解决已知一个角和与之对应的两个边,求解其他角和边长的问题。
例如,我们有一个三角形,已知角A为30度,边a为5cm,边b 为7cm。
高一数学-正、余弦定理在实际生活中的应用

B
E
D
A
C
探究二
E B
D
C
(2-2)
解:由余弦定理得
AB2 AC2 BC2 2AC BC cos ACB
A 482.802 631.502 2 482.80 631.50 cos 56.3 293557.0525 AB 541.81 DE AB AD BE 421(米)
在BCD中,BCD=120,CBD=20
由正弦定理:BC DC sin120 2.53.
C
sin 20
在ABC中,由余弦定理:
AB2 BC2 AC 2 2AC BC cos 40
即400 9x2 6.4x2 2 3x 2.53x cos 40
x 10.3
SABC
1 2
AC BC sin C
角为 22.81 。问:他能否算出金茂大厦的高度呢?
若能算出,请计算其高度。(精确到1米)
A
h
D
C
B
探究一
A
h
D
C
(2-2)
解:在ABC中, ABC=15.66,ACD=22.81
BAC=22.81 15.66 7.15
由正弦定理: AC BC
B
sin ABC sin BAC
AC 500 sin15.66 1084.3 sin 7.15
260(m2 )
答:绿地面积约为260m2。
练习一
练习二
练习三
练习四
练习一
大楼的顶上有一座电视塔高20米,在地面某处测得塔
顶的仰角为 45.塔底的仰角为 30.求此大楼的高度(结
果保留两位小数,下列各题相同)
练习二
某地某时台风中心在甲地的东偏南 21 方向1171 千米处.经过24小时后,测得台风中心在甲地东偏
正弦定理和余弦定理在专业中的应用

正弦定理和余弦定理在专业中的应用正弦定理和余弦定理是初中数学中的重要定理,但它们在专业中的应用也非常广泛。
本文将从工程、物理、地理、计算机等多个领域的角度,探讨正弦定理和余弦定理的应用。
一、工程领域在工程领域中,正弦定理和余弦定理被广泛应用于测量和设计。
例如,在建筑设计中,需要测量建筑物的高度、角度、距离等参数,这时就需要用到正弦定理和余弦定理。
在测量建筑物高度时,可以利用正弦定理求出建筑物高度与测量仪的距离之比,从而计算出建筑物的高度。
在测量建筑物角度时,可以利用余弦定理求出两条边和它们之间的夹角,从而计算出建筑物的角度。
在测量建筑物距离时,可以利用正弦定理或余弦定理求出两点之间的距离。
另外,在机械设计中,正弦定理和余弦定理也被广泛应用。
例如,在设计机械零件时,需要计算零件的尺寸和角度,这时就需要用到正弦定理和余弦定理。
在计算零件尺寸时,可以利用余弦定理求出两条边和它们之间的夹角,从而计算出零件的尺寸。
在计算零件角度时,可以利用正弦定理或余弦定理求出两条边和它们之间的夹角,从而计算出零件的角度。
二、物理领域在物理领域中,正弦定理和余弦定理被广泛应用于力学、光学等领域。
例如,在力学中,正弦定理和余弦定理被用来计算物体的速度、加速度、力等参数。
在光学中,正弦定理和余弦定理被用来计算光的传播方向、折射角度等参数。
另外,在声学中,正弦定理和余弦定理也被广泛应用。
例如,在计算声波传播方向和声压级时,可以利用正弦定理和余弦定理求出声波的传播方向和声压级。
三、地理领域在地理领域中,正弦定理和余弦定理被广泛应用于地球测量和地图制作。
例如,在地球测量中,可以利用正弦定理和余弦定理求出地球上两点之间的距离和方向。
在地图制作中,可以利用正弦定理和余弦定理将地球上的三维信息转化为二维信息,从而制作出地图。
另外,在天文学中,正弦定理和余弦定理也被广泛应用。
例如,在计算星体的位置和运动轨迹时,可以利用正弦定理和余弦定理求出星体的位置和运动轨迹。
高中数学学习中的正弦定理与余弦定理运用

高中数学学习中的正弦定理与余弦定理运用正弦定理与余弦定理是高中数学学习中重要的几何定理,它们在解决三角形相关问题时起到了关键作用。
正弦定理和余弦定理广泛运用于测量和计算角度、边长和面积等方面。
在高中数学学习中,学生们需要熟练掌握并灵活运用这两个定理,以解决各种数学问题。
首先,正弦定理是描述三角形边与其对应的角之间的关系的定理。
对于任意三角形ABC,边a、b和c分别与角A、B和C对应。
正弦定理的表达式是:a/sinA = b/sinB = c/sinC。
该定理可以用于计算未知边长或角度的数值。
例如,当我们知道三角形的两个角和一个边长时,可以使用正弦定理来计算未知边长。
同样地,当我们知道三角形的两个边长和一个角度时,也可以使用正弦定理来计算未知角度。
正弦定理在解决不规则三角形的测量问题时非常有用。
与正弦定理相似,余弦定理也是用于描述三角形边与其对应的角之间的关系的定理。
对于任意三角形ABC,边a、b和c分别与角A、B和C对应。
余弦定理的表达式为:c² = a² + b² - 2abcosC。
该定理可以用于计算三角形任意边长的平方值,当我们知道边长和夹角时,可以使用余弦定理计算另一边的长度。
正弦定理和余弦定理的应用非常广泛。
在实际生活中,我们经常需要使用这两个定理来解决与三角形相关的问题。
例如,在测量高楼大厦的高度时,我们可以利用正弦定理计算出无法直接测量的高度。
同样地,在测量河流宽度时,我们可以利用余弦定理计算出河的宽度。
这些应用展示了这两个定理的实际价值。
在数学考试中,正弦定理与余弦定理也经常被考查。
题目通常要求学生根据已知条件,使用这两个定理计算未知量。
因此,学生们需要熟练掌握这两个定理的公式和用法。
为了更好地掌握,学生们可以多做相关的练习题,加深对这两个定理的理解和运用能力。
另外,正弦定理和余弦定理还有一些衍生应用。
比如,通过这两个定理,我们可以推导出海伦公式。
海伦公式用于计算任意三角形的面积,根据三边长a、b和c,海伦公式的表达式为:面积 = sqrt(s(s-a)(s-b)(s-c)),其中s是半周长(s=(a+b+c)/2)。
正、余弦定理在实际中的应用应用题

正、余弦定理在实际中的应用应用题正弦定理和余弦定理是三角形中的重要定理,它们在实际问题中有着广泛的应用。
下面将通过几个例子来说明它们在实际问题中的应用。
例1:一座山的高度是100米,从山顶到山脚的水平距离是500米。
现在我们要在山脚处建造一座高塔,使得从山顶到塔顶的视角恰好等于直角的一半(即45度)。
求塔的高度。
h/sin45° = 500/sin90°因为 sin45° = √2/2, sin90° = 1,例2:一座大桥的桥面宽度为 10米,桥下水流的深度为 2米。
为了使桥下水的流速达到每秒 5米,现要在桥边修建一条人行道,要求人行道的宽度为 3米。
问人行道的长度应该是多少?解:设人行道的长度为 L米。
由余弦定理得:L2 = (10 - 3)2 + (2 + 5)2 - 2 ×(10 - 3)×(2 + 5)× cos30°= 9 + 67 - 2 ×(10 - 3)×(2 + 5)× cos30°= 76 - 2 ×(10 - 3)×(2 + 5)×(√3/2)= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (17 ×√3)×(√3/2)× 2答:人行道的长度为 25米。
本节课是介绍余弦定理和正弦定理的内容。
这两个定理是三角学的基本定理,对于理解三角形的属性和解决三角形的问题有着重要的意义。
余弦定理和正弦定理的发现和证明,也体现了数学中普遍存在的一种方法——归纳法。
通过本节课的学习,学生将更好地理解三角形的属性和解三角形的方法,同时也能提高他们的数学思维能力和推理能力。
高中数学教案:余弦定理与正弦定理的应用

高中数学教案:余弦定理与正弦定理的应用一、引言数学是一门重要的科学学科,它在人们的日常生活中有着广泛的应用。
在高中数学教学中,余弦定理和正弦定理是数学的重要内容之一。
它们不仅是解决三角形相关问题的基础,还可以在实际生活中的测量和计算中发挥重要的作用。
本文将详细介绍余弦定理和正弦定理的定义、推导及其在实际应用中的具体运用。
二、余弦定理的应用1. 什么是余弦定理余弦定理是解决三角形的边和角问题的基本工具。
它描述了三角形的边和角之间的关系,可以用来求解未知边长或角度的值。
余弦定理的定义如下:在三角形ABC中,设a、b、c分别为三边的长度,∠A、∠B、∠C分别为三个对应的角度。
则有以下等式成立:c^2 = a^2 + b^2 - 2ab*cosC2. 余弦定理的推导为了更好地理解余弦定理的推导过程,我们来看一个具体的例子:已知三角形ABC,∠ABC为90°,∠CAB为30°,AB=5,BC=8。
我们需要求解边AC的长度。
根据余弦定理,我们可以得到以下等式:AC^2 = AB^2 + BC^2 - 2*AB*BC*cos∠ABC代入已知条件,可得:AC^2 = 5^2 + 8^2 - 2*5*8*cos90化简得到:AC^2 = 25 + 64 - 0AC^2 = 89因此,边AC的长度为√89。
3. 余弦定理的应用案例余弦定理在实际生活中有着广泛的应用。
例如,通过测量两个已知长度的边与它们之间的夹角,可以使用余弦定理来计算第三条边的长度。
此外,当我们需要确定两个物体之间的距离时,也可以使用余弦定理来进行计算。
三、正弦定理的应用1. 什么是正弦定理正弦定理也是解决三角形的边和角问题的重要工具。
它描述了三角形的边和角之间的关系,可以用来求解未知边长或角度的值。
正弦定理的定义如下:在三角形ABC中,设a、b、c分别为三边的长度,∠A、∠B、∠C分别为三个对应的角度。
则有以下等式成立:a/sinA = b/sinB = c/sinC2. 正弦定理的推导我们来展示正弦定理的推导过程,以便更好地理解它的应用。
正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考.一、在不可到达物体高度测量中的应用例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距km 的C 、D 两点高,测得∠ACB=750,∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB.解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴在∆BCD 中,∠CBD=1800-450-750=600由正弦定理可得,在∆ABC 中,由余弦定理,可得2222AB AC BC AC BC COS ACB =+-∙∙∠,2220(27522AB COS =+-⨯⨯=5∴ 2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
解三角形在现实生活中的应用——正,余弦定理

解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
正弦定理与余弦定理的应用

正弦定理与余弦定理的应用正弦定理与余弦定理是中学数学中常见且常用的公式之一。
这两个公式的应用非常广泛,从三角形的测量和构建到机械工程和电子学都可以看到它们的身影。
本文将介绍正弦定理和余弦定理的概念及其应用。
一、正弦定理正弦定理用于求三角形中的一个角的正弦值,通常用于确定三角形的大小和形状。
正弦定理说:一个三角形的任何一条边与该边所对面的角的正弦成比例。
也就是说,如果一个三角形有三个边a、b和c,分别对应的角为A、B和C,则有:sin A / a = sin B / b = sin C / c现在我们考虑一个具体的示例。
假设我们想找到一个三角形中的一个角,已知它所对面的边为10,另外两条边分别为8和6。
我们可以通过正弦定理来解决这个问题:sin A / 10 = sin B / 8 = sin C / 6我们知道,正弦函数的值是相对边与斜边的比值。
因此,我们可以用三角形的边长长度和正弦函数的值来解出角A、B和C的值。
具体操作方法可以参考三角函数表。
正弦定理的应用不仅仅限于求解角的大小,还可以用于确定三角形的面积。
面积等于1/2ab sin C。
因此,如果我们知道三角形的三个边长,则可以通过正弦定理来计算它的面积。
二、余弦定理该定理源于海伦定理(三角形面积公式),后被欧拉称之为余弦定理。
它通常用于确定三角形中的一个角的余弦值。
与正弦定理不同的是,余弦定理提供了一种更加通用的方法来计算三角形中的一个角的大小。
余弦定理说:一个三角形的每个角的余弦都等于在该角的两条边的平方和与这两条边所对的夹角的余弦乘积,再用它们的和减去这个余弦乘积。
即:cos A = (b² + c² - a²) / 2bc 或者 a² = b² + c² - 2bc cos A。
如果我们知道三角形的三个边长,则可以使用余弦定理来计算其各角的大小。
与正弦定理一样,余弦定理同样可用于计算面积。
【说明文】生活中的数学公式

【说明文】生活中的数学公式数学是一门很重要的学科,它的应用涵盖了许多领域,从物理学到金融到生物学,数学都在其中发挥着重要的作用。
数学中的公式是数学思想的体现,是解决数学问题的工具。
本文将介绍生活中常见的数学公式及其应用。
1.勾股定理勾股定理又称毕达哥拉斯定理,它是三角形中最基本的公式之一。
勾股定理指的是直角三角形的两条直角边平方和等于该三角形斜边平方:a^2 + b^2 = c^2其中a,b为直角边,c为斜边。
勾股定理在建筑工程中非常有用。
以房屋为例,墙壁的长度与高度可以用勾股定理来计算,确保房屋的每个角度都是90度。
2.正弦定理正弦定理也是解决三角形问题的基本公式之一,它可以用于计算三角形的边长和角度。
正弦定理表达式如下:a/sinA = b/sinB = c/sinC其中a,b,c为三角形的三个边长,A,B,C为三角形的对应角度。
正弦定理在建筑与工程设计中有很多应用,例如镜面效果设计和计算金属管的长度等。
余弦定理可用于计算三角测量和导弹制导等方面。
4.二次方程二次方程是指形如ax^2 + bx + c = 0的方程。
在这个公式中,a,b,c是实数,并且a不等于0。
二次方程的解可以使用公式:x = (-b±√b^2-4ac)/2a二次方程的应用非常广泛。
在物理学中,它可用于计算运动物体的路径,飞行器的轨迹,以及各种机械装置的频率和振动等。
5.指数函数指数函数的表达式为y=a^x(a大于0,且a不等于1),其中a表示底数,x表示指数,y表示底数a的x次幂。
指数函数在数学应用方面很广泛,经常用于解决复杂的统计和计算问题,例如复利计算,成长率和人口增长率等。
对数函数的表达式为y=loga(x)(x大于0,且a大于0且不等于1)。
对数函数与指数函数成对出现,用于表示底数为a的指数函数中,幂次为x的值。
对数函数在计算机科学、通信和数学建模领域中有广泛的应用。
例如,在计算机计算中,对数函数可以通过将数值转换为更可管理的2或10进制表达式来简化计算过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得
BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶
A 的仰角为θ,求塔高A
B .
分析:本题是一个高度测量问题,在∆BCD 中,先求
出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出
塔高AB.
解析:在BCD △中,CBD ∠=παβ--.
由正弦定理得
sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD
∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=
tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.
二、在测量不可到达的两点间距离中的应用
例2某工程队在修筑公路时,遇到一个小山
包,需要打一条隧道,设山两侧隧道口分别为A 、B ,
为了测得隧道的长度,在小山的一侧选取相距3km
的C 、D 两点高,测得∠ACB=750, ∠BCD=450
,
∠ADC=300,∠ADC=450(A 、B 、C 、D )
,试求隧道的长度.
分析:根据题意作出平面示意图,在四边形
ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB. 解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3.
在∆BCD 中,∠CBD==600
由正弦定理可得,BC=003sin 75sin 60=26)2
+
在∆ABC 中,由余弦定理,可得 2222AB AC BC AC BC COS ACB =+-••∠,
22202626)(3)()2237522
AB COS ++=+-⨯⨯⨯=5 ∴AB=5≈2.236km,即隧道长为2.236km.
点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
实际问题应求出近似值.
三、在航行中的应用
例3在海岸A 处 ,发现北偏东45
0方向,距A 处31-海里B 处有一艘走私船,
在A 处北偏西750方向,距A 处2海里的C
处的缉私船奉命以103海里/小时的速度
追截走私船,此时走私船正以10海里/小时
的速度从B 处向北偏东0
30方向航行,问缉
私船沿什么方向能最快追上走私船,并求出所需时间.
分析:根据题意作出平面示意图,设在D 处追上走私船,由图知,要求追截方向和时间即求∠DCB 及CD 长度,先用余弦定理求BC 及∠CBA ,从而求出∠ABD ,列出关于追截时间的方程,求出时间,再用余弦定理求出∠DCB.
解析:设在D 处追上走私船,所需时间为t 小时,则CD=103t ,BD=10t
在ABC ∆中,∵BAC ∠=007545+=0120,AB=31-,BC=2,
由余弦定理得 2BC =2222(31)2(31)cos120+--⨯-=6, cos CBA ∠=2222AB BC AC AB BC +-•=22(6)(31)226(31)
+--⨯⨯-=22 又∵0<∠CBA π<,则∠CBA=450
,则BC 为正东西方向, 在BCD ∆中,0
120CBD ∠=,由余弦定理得 2222cos CD BC BD BC CD CBD =+-⨯∠,即
2220(103)(10)(6)2106cos120t t t =+-⨯⨯,解得,6t =或6t =-(舍), ∴BD=6,CD=32,∴BD=BC ,∴030DCB BDC ∠=∠=,
.
故缉私船沿东偏北300方向追截,所需时间为
10
点评:处理航行问题,一要理解方向角、方位角等概念,二要根据题意画出示意图,根据图将问题转化为三角形边或角的计算问题,利用正余弦定理计算之.
在利用正余弦定理解决实际问题时,一要熟悉仰角、俯角、方向角、方位角等概念,二要能根据题意画出示意图,将问题转化为三角形的边角计算问题,利用正弦定理或余弦定理计算之,注意要为近似值.。