高中数学必修3试卷
(新)高中数学必修三期中测试卷及答案
P(E)=1/ 20 =0.05
(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,
P(F)=9 /20 =0.45
(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},
三、解答题:(共75分,解答题应书写合理的解答或推理过程)
14.(6分)为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为 ,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(3)通过该统计图,可以估计该地学生跳绳次数的众数是,中位数是。
15.(14分)下面是计算应纳税所得额的算法过程,其算法如下:
第一步 输入工资x(注x<=5000);
第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);
否则 y=25+0.1(x-1300)
16解:(1)甲网站的极差为:73-8=65;
乙网站的极差为:71-5=66(4分)
(2)甲网站点击量在[10,40]间的频率为4 /14 =2 7
(3)甲网站的点击量集中在茎叶图的下方,
而乙网站的点击量集中在茎叶图的上方.
从数据的分布情况来看,甲网站更受欢迎.
17解:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个
【沪科版】高中数学必修三期末试题附答案
一、选择题1.在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数x,则cos xπ的值介于22与32之间的概率为()A.13B.14C.15D.162.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为()A.13B.49C.59D.233.已知三个村庄,,A B C所处的位置恰好位于三角形的三个顶点处,且6,8,10AB km BC km AC km===.现在ABC∆内任取一点M建一大型的超市,则M点到三个村庄,,A B C的距离都不小于2km的概率为()A 33+B.12πC213-D.1212π-4.质地均匀的正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为( )A.19B.164C.18D.1165.给出一个算法的程序框图如图所示,该程序框图的功能是()A .求出,,a b c 三数中的最小数B .求出,,a b c 三数中的最大数C .将,,a b c 从小到大排列D .将,,a b c 从大到小排列6.在如图所示的程序框图中,若函数12log (),?0()2,?0x x x f x x -<⎧⎪=⎨⎪≥⎩,则输出的结果是( )A .16B .8C .162D .827.执行如图所示的程序框图,输出的S 值为( )A .511B .512C .1022D .10248.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤9.一组数据的平均数为x ,方差为2s ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为x B .这组新数据的平均数为a x + C .这组新数据的方差为2as D .这组新数据的标准差为2a s10.某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12B .14C .16D .1811.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油12.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()A.64 B.96 C.144 D.160二、填空题13.某班共有4个小组,每个小组有2人报名参加志愿者活动.现从这8人中随机选出4人作为正式志愿者,则选出的4人中至少有2人来自同一小组的概率为________.14.马老师从课本上抄录一个随机变量的概率分布列如表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案_______ .15.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________16.执行如下图所示的程序框图,则输出的结果n __________.17.根据如图所示的算法流程图,可知输出的结果S为______.n=,则输出S的值为_____.18.运行如图所示的程序框图,若输入419.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y 4.543 2.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是=-+,则a等于___0.7y x a20.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.三、解答题21.某校从高三年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)估计这次考试的及格率(60分及以上为及格)和平均分;(2)按分层抽样从成绩是80分以上(包括80分)的学生中选取6人,再从这6人中选取两人作为代表参加交流活动,求他们在不同分数段的概率.22.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数;(2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表);(3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.23.下面给出了一个问题的算法:第一步,输入x.第二步,若x≥4,则执行第三步,否则执行第四步.第三步,y=2x-1,输出y.第四步,y=x2-2x+3,输出y.问题:(1)这个算法解决的问题是什么?(2)当输入的x 值为多大时,输出的数值最小?24.已知华氏温度与摄氏温度的转换公式是(华氏温度532)9-⨯=摄氏温度.编写一个程序,输入一个华氏温度,输出其相应的摄氏温度.25.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆybx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑) 26.某城市200户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,280,[)280,300分组的频率分布直方图如图:(1)求直方图中x 的值;(2)在月平均用电量为[)220,240,[)240,260,[)260,280的三组用户中,用分层抽样的方法抽取20户居民,则月平均用电量在[)220,240的用户中应抽取多少户? (3)求月平均用电量的中位数和平均数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据余弦函数的图象和性质,求出cos x π的值介于2之间时,自变量x 的取值范围,代入几何概型概率计算公式,可得答案. 【详解】cos 22x π≤≤,11,22x ⎡⎤∈-⎢⎥⎣⎦ 则:1164x ≤≤或1146x -≤≤- 在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数,cos x π的值介于211214611622P ⎛⎫⨯- ⎪⎝⎭==+ 故选:D. 【点睛】本题主要考查了余弦函数的图象与性质,几何概型,考查了分析问题的能力,属于中档题.2.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C.【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.3.D解析:D 【分析】采用数形结合,计算ABC S ∆,以及“M 点到三个村庄,,A B C 的距离都不小于2km ”这部分区域的面积S ,然后结合几何概型,可得结果. 【详解】由题可知:222AB BC AC += 所以该三角形为直角三角形分别以,,A B C 作为圆心,作半径为2的圆 如图所以则 “M 点到三个村庄,,A B C 的距离都不小于2km ” 该部分即上图阴影部分,记该部分面积为S11682422ABC S AB BC ∆=⨯⨯=⨯⨯=又三角形内角和为π,所以2122422ABC S S ππ∆=-⨯=- 设M 点到三个村庄,,A B C 的距离都不小于2km 的概率为P所以242122412ABCS P S ππ∆--=== 故选:D 【点睛】本题考查面积型几何概型问题,重点在于计算面积,难点在于计算阴影部分面积,考验理解能力,属基础题.4.C解析:C 【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可. 【详解】抛两个正四面体,共有4416⨯=个基本事件,向下数字为1和2的基本事件共有2个,分别是1,2和()2,1, 所以向下数字为1和2的概率21168P ==, 故选:C 【点睛】本题主要考查随机事件概率的计算,难度较低.5.A解析:A 【分析】对a 、b 、c 赋三个不等的值,并根据程序框图写出输出的结果,可得知该程序的功能. 【详解】令2a =,3b =,1c =,则23>不成立,21>成立,则1a =,输出的a 的值为1, 因此,该程序的功能是求出a 、b 、c 三数中的最小数,故选A . 【点睛】本题考查程序框图的功能,解题的关键就是根据题意将每个步骤表示出来,考查分析问题的能力,属于中等题.6.A解析:A 【解析】模拟执行程序框图,可得160a =-≤,执行循环体,12log 1640b ==-<,12log 420a ==-<,不满足条件4a >,执行循环体,12log 210b ==-<,12log 10a ==,不满足条件4a >,执行循环体,0210b ==>,1220a ==>,不满足条件4a >,执行循环体,2240b ==>,4216a ==,满足条件4a >,退出循环,输出a 的值为16.选A.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7.C解析:C 【分析】直接根据程序框图计算得到答案. 【详解】根据程序框图知:92391012222 (2222102212)S -=++++==-=-.故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力,确定程序框图表示的意义是解题的关键.8.C解析:C 【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件. 【详解】解析 当x =-3时,y =3;当x =-2时,y =0; 当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束. 所以y 的最大值为15,可知x ≤3符合题意. 判断框应填:3x ≤ 故选C 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.D解析:D 【分析】根据平均数及方差的定义可知,一组数据的每个数都乘以a 得到一组新数据,平均值变为原来a 倍,方差变为原来2a 倍. 【详解】设一组数据1234,,,,,n x x x x x ⋯的平均数为x ,方差为2s , 则平均值为()12341n ax ax ax ax ax ax n++++⋯+=, ()()()()()22222212341n s x xxxxxxxx x n ⎡⎤=-+-+-+-+⋯+-⎢⎥⎣⎦,()()()()()222222212341n ax axaxaxaxaxaxaxax ax a s n ⎡⎤∴-+-+-+-+⋯+-=⋅⎢⎥⎣⎦【点睛】本题主要考查了方差,平均数的概念,灵活运用公式计算是解题关键,属于中档题.10.A解析:A 【分析】由题,中位数为12,求得4x y +=,再求得平均数,利用总体标准差最小和基本不等式求得x ,y 的值,即可求得答案. 【详解】由题,因为中位数为12,所以242x yx y +=∴+= 数据的平均数为:1(22342019192021)11.410x y ++++++++++= 要使该总体的标准最小,即方差最小,所以222222.8(1011.4)(1011.4)( 1.4)( 1.4)2()0.722x y x y x y +-+-++-=-+-≥= 当且紧当 1.4 1.4x y -=-,取等号,即2x y ==时,总体标准差最小 此时4212x y += 故选A 【点睛】本题考查了茎叶图,熟悉茎叶图,清楚中位数、标准差的求法是解题的关键,属于中档题型.11.D解析:D 【详解】解:对于A ,由图象可知当速度大于40km /h 时,乙车的燃油效率大于5km /L , ∴当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误; 对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误; 对于C ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故C 错误; 对于D ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率, ∴用丙车比用乙车更省油,故D 正确 故选D .考点:1、数学建模能力;2、阅读能力及化归思想.12.D解析:D【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数.【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D.【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题二、填空题13.【分析】先求出从这8人中随机选出4人的选法总数再求出选出的4人中至少有2人来自同一小组的不同选法总数再求概率【详解】从这8人中随机选出4人作为正式志愿者有种不同的选法选出的4人中至少有2人来自同一小解析:27 35【分析】先求出从这8人中随机选出4人的选法总数,再求出选出的4人中至少有2人来自同一小组的不同选法总数,再求概率.【详解】从这8人中随机选出4人作为正式志愿者有4870C=种不同的选法.选出的4人中至少有2人来自同一小组分为下列情况:(1)恰好有2人来自同一小组,有1211432248C C C C=种(2)4个人来自2个不同的小组(每个小组2个人)有246C=所以选出的4人中至少有2人来自同一小组有48654+=种选法.则选出的4人中至少有2人来自同一小组的概率为54277035 P==故选项为:27 35.【点睛】本题考查组合问题,求古典概率的问题,属于中档题.14.2【解析】试题分析:令?的数字是x则!的数值是1-2x所以考点:数学期望点评:数学期望就是平均值要得到随机变量的数学期望则需先写出分布列解析:2试题分析:令?的数字是x ,则!的数值是1-2x ,所以考点:数学期望点评:数学期望就是平均值,要得到随机变量的数学期望,则需先写出分布列.15.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.16.9【解析】模拟程序的运行可得第一次执行循环不满足则返回继续循环;不满足则返回继续循环;不满足则返回继续循环;当时则最小值为此时故答案为点睛:识别运行程序框图和完善程序框图的思路:(1)要明确程序框图解析:9 【解析】模拟程序的运行,可得0S =,1n =,第一次执行循环,20log 21S =+=,12n n =+=,不满足3S >,则返回继续循环;231log 2S =+,13n n =+=,不满足3S >,则返回继续循环;22341log log 11223S =++=+=,14n n =+=,不满足3S >,则返回继续循环;⋅⋅⋅当n k =时,222234111log log log 1log 232k k S k ++=+++⋅⋅⋅+=+,1n k =+则211log 32k S +=+>,8k ≥,k 最小值为8,此时19n k =+=.故答案为9.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.17.【解析】执行循环为点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循环终止条件更要通过循环规律明确流程图研究的解析:3 4【解析】执行循环为1111111131122334223344 S=++=-+-+-=⨯⨯⨯点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.11【解析】试题分析:根据程序框图可知该程序执行的是所以输出的值为11考点:本题考查程序框图容易题点评:程序框图的题目离不开循环结构和条件结构要仔细辨别循环条件弄清楚循环次数避免多执行或少执行一次解析:11【解析】试题分析:根据程序框图可知该程序执行的是1123411S=++++=,所以输出的值为11.考点:本题考查程序框图,容易题.点评:程序框图的题目离不开循环结构和条件结构,要仔细辨别循环条件,弄清楚循环次数,避免多执行或少执行一次.19.【分析】首先求出xy的平均数根据样本中心点满足线性回归方程把样本中心点代入得到关于a的一元一次方程解方程即可【详解】:(1+2+3+4)=25(45+4+3+25)=35将(2535)代入线性回归直解析:21 4【分析】首先求出x,y的平均数,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a的一元一次方程,解方程即可.【详解】:14x=(1+2+3+4)=2.5,14y=(4.5+4+3+2.5)=3.5,将(2.5,3.5)代入线性回归直线方程是ˆy=-0.7x+a,可得3.5=﹣1.75+a,故a=214.故答案为214【点睛】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是基础题20.【解析】【分析】根据系统抽样的特征求出分段间隔即可【详解】根据系统抽样的特征得:从2100名学生中抽取100个学生分段间隔为故答案是21【点睛】该题所考查的是有关系统抽样的组距问题应用总体除以样本容 解析:21【解析】 【分析】根据系统抽样的特征,求出分段间隔即可. 【详解】根据系统抽样的特征,得:从2100名学生中抽取100个学生,分段间隔为210021100=, 故答案是21. 【点睛】该题所考查的是有关系统抽样的组距问题,应用总体除以样本容量等于组距,得到结果,属于简单题目.三、解答题21.(1)及格率是80%;平均分是72分(2)13【分析】(1)由频率分布直方图直接可计算得及格率以及平均分;(2)按分层抽样知[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F ,写出基本事件,事件“不同分数段”所包含的基本事件数5种,利用古典概型即可得到结论. 【详解】(1)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.0200.0300.0250.005)100.80+++⨯=,所以抽样学生成绩的合格率是80%.-利用组中值估算抽样学生的平均分:123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅450.05550.15650.2750.3850.25950.05=⨯+⨯+⨯+⨯+⨯+⨯ 72=.估计这次考试的平均分是72分(2)按分层抽样抽取[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F .,则基本事件(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,事件“不同分数段”所包含的基本事件数5种, 故所求概率为:51153p ==. 【点睛】本题考查利用频率分布直方图求平均数,考查分层抽样的定义,古典概型,属于基础题. 22.(1)300人;(2)72.5;(3)15. 【分析】(1)由直方图知,样本中数据落在[)80,100的频率为0.3,由此能估计全校这次考试中优秀生人数;(2)将每个矩形底边的中点值乘以矩形的面积,再将所得结果相加即可得出样本数据的平均数;(3)由分层抽样可知成绩在[)70,80、[)80,90、[]90,100间分别抽取了3、2、1人,记成绩在[)70,80的3人为a 、b 、c ,在[)80,90的2人为A 、B ,在[]90,100的1人记为C ,列出所有的基本事件,利用古典概型的概率公式可求出所求事件的概率. 【详解】(1)由直方图知,样本中数据落在[)80,100的频率为:0.20.10.3+=, 则估计全校这次考试中优秀生人数为:10000.3300⨯=人; (2)该样本数据的平均数为:450.05550.15650.2750.3850.2950.172.5x =⨯+⨯+⨯+⨯+⨯+⨯=, ∴估计所有参加考试的学生的平均成绩为72.5;(3)由分层抽样可知成绩在[)70,80、[)80,90、[]90,100间分别抽取了3、2、1人, 记成绩在[)70,80的3人为a 、b 、c ,在[)80,90的2人为A 、B ,在[]90,100的1人记为C ,则6人中抽取2人的所有情况有15种,分别为:{},a b 、{},a c 、{},b c 、{},a A 、{},a B 、{},a C 、{},b A 、{},b B 、{},b C 、{},c A 、{},c B 、{},c C 、{},A B 、{},A C 、{},B C ,记抽取2人为优秀生为事件E ,则事件E 包含的基本事件有:{},A B 、{},A C 、{},B C ,共3种,因此,恰好抽中2名优秀生的概率()31155P E ==. 【点睛】本题考查频数、平均数、概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,是基础题.23.(1)见解析(2)当输入的x 的值为1时,输出的数值最小.【解析】试题分析:本题考查了一个条件分支结构的算法,可分为4x ≥和4x <,执行不同的计算,即可得到结论. 试题(1)这个算法解决的问题是求分段函数()()221x 4y x 23x 4x x ⎧-≥⎪=⎨-+<⎪⎩的函数值的问题. (2)本问的实质是求分段函数最小值的问题. 当x≥4时,y =2x -1≥7;当x<4时,y =x 2-2x +3=(x -1)2+2≥2. ∴函数最小值为2,当x =1时取到最小值. ∴当输入x 的值为1时,输出的数值最小.点睛:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键. 24.见解析 【解析】试题分析:输入“华氏温度F =”,计算()325/9C F =-*,输出“相应的摄氏温度C =”即可. 试题根据题意,所求的程序如下: INPUT “华氏温度F =”;F C =(F –32)*5/9PRINT “相应的摄氏温度C =”;C END25.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑122216153 3.67ˆ0.7555310ni ii ni i x y nx yxbx n ==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx =-=-⨯=, 所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =. 所以当15x =时细菌个数为12个. 【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题. 26.(1)0.0075;(2)10户;(3)224a =,225.6x =. 【分析】(1)由频率和为1列出方程求解x ;(2)求出三组用户的月平均用电量的频率推出比例关系,用20乘以月平均用电量在[)220,240的用户所占比例即可得解;(3)根据中位数左边和右边的直方图面积相等列出等式估计中位数,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. 【详解】(1)由直方图的性质可得()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=,解得0.0075x =,所以直方图中x 的值是0.0075.(2)因为月平均用电量为[)220,240,[)240,260,[)260,280的三组用户的频率分别为0.25、0.15、0.1,所以这三组用户的月平均用电量比例为5:3:2, 所以月平均用电量在[)220,240的用户中应抽取5201010⨯=(户). (3)因为()0.0020.00950.011200.450.5++⨯=<, 所以月平均用电量的中位数在[)220,240内,设中位数为a ,则()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=,解得224a =. 平均数1700.041900.192100.222300.252500.152700.12900.05x =⨯+⨯+⨯+⨯+⨯+⨯+⨯225.6=,所以月平均用电量的中位数为224,平均数为225.6. 【点睛】本题考查统计案例、分层抽样、根据频率分布直方图估计总体的数字特征,属于中档题.。
高中数学必修三答案
高中数学必修三答案【篇一:高一数学必修3测试题及答案】ass=txt>数学第一章测试题一.选择题1.下面的结论正确的是()a.一个程序的算法步骤是可逆的b、一个算法可以无止境地运算下去的 c、完成一件事情的算法有且只有一种 d、设计算法要本着简单方便的原则 2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )a、 s1 洗脸刷牙、s2刷水壶、s3 烧水、s4 泡面、s5 吃饭、s6 听广播 b、 s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c、 s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d、 s1吃饭同时听广播、s2泡面、s3烧水同时洗脸刷牙、s4刷水壶 3.算法 s1 m=as2 若bm,则m=b s3 若cm,则m=c s4 若dm,则 m=ds5 输出m,则输出m表示 ( ) a.a,b,c,d中最大值b.a,b,c,d中最小值c.将a,b,c,d由小到大排序d.将a,b,c,d由大到小排序 4.右图输出的是a.2005 b.65 c.64d.635、下列给出的赋值语句中正确的是( )a. 5 = mb. x =-x (第4题)c. b=a=3d. x +y = 06、下列选项那个是正确的()a、input a;bb. input b=3 c. print y=2*x+1d. print 7、以下给出的各数中不可能是八进制数的是() a.123 b.10 110 c.4724 d.7 8578、如果右边程序执行后输出的结果是990,那么在程序until后面的“条件”应为() a.i 10 b. i 8 c. i =9 d.i9 9.读程序甲: i=1 乙:i=1000s=0 s=0 while i=1000 do s=s+i s=s+i i=i+l i=i一1 wend loop until i1 print s prints4*xend end对甲乙两程序和输出结果判断正确的是( )a.程序不同结果不同b.程序不同,结果相同c.程序相同结果不同d.程序相同,结果相同10.在上题条件下,假定能将甲、乙两程序“定格”在i=500,即能输出i=500 时一个值,则输出结果()a.甲大乙小 b.甲乙相同 c.甲小乙大 d.不能判断二.填空题.11、有如下程序框图(如右图所示),则该程序框图表示的算法的功能是第(第11题)( 第12题)12、上面是求解一元二次方程ax?bx?c?0(a?0)的流程图,根据题意填写:(1);(2);(3)。
人教版高中数学必修3第三章测试卷
测试卷一.选择题: (每小题5分,共60分)1. 某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是()A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002. 将两个数a=8,b=17下面语句正确一组是(A. B.3. 给出以下四个问题,①输入一个数x,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c中的最大数.④求函数.1.2{)(≥-<+= xx xxxf的函数值. 其中不需要用条件语句来描述其算法的有( )A. 1个B. 2个C. 3个D. 4个4. 一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )(A)81.2, 4.4 (B)78.8, 4.4 (C)81.2, 84.4 (D)78.8, 75.65.关于频率分布直方图的下列有关说法正确的是( )(A)直方图的高表示取某数的频率(B)直方图的高表示该组上的个体在样本中出现的频率(C)直方图的高表示取某组上的个体在样本中出现的频数与组距的比值(D)直方图的高表示取该组上的个体在样本中出现的频率与组距的比值6. 将389 化成四进位制数的末位是( )A. 1B. 2C. 3D. 07. 下列各数中最小的数是( )A.)9(85 B.)6(210 C.)4(1000 D.)2(1111118. 用秦九韶算法计算多项式1876543)(23456++++++=xxxxxxxf当4.0=x时的值时,需要做乘法和加法的次数分别是( )A. 6 , 6B. 5 , 6C. 5 , 5D. 6 , 59. 某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一,高二,高三各年级抽取的人数分别为()A.45,75,15B.45,45,45C.30,90,15D.45,60,3010. 甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为和,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A.甲B.乙C.甲、乙相同D.不能确定11. 从2 006名学生中选取50名组成参观团,若采用以下方法选取:先用简单随机抽样从2 006名学生中剔除6名,再从2 000名学生中随机抽取50名.则其中学生甲被剔除和被选取的概率分别是( )(A) 311 00340, (B) 311 00040,(C) 3251 0031003, (D) 3251 0001 003,12. 上右程序运行后输出的结果为 ( ) A. 3 4 5 6 B. 4 5 6 7 C. 5 6 7 8 D. 6 7 8 9 二. 填空题.(每小题4分,共16分) 13.. (1)将二进制数(2)101101化为十进制数为______________(2)将十进制1375转化为六进制数为_____________(6) (3)212(8)= (2)14. 在一次实验中,测得(x, y)的四组值分别是 A(1,2),B(2,3),C(3,4),D(4,5).则y 与x 之间的回归直线方程为______________________________15. 下左程序运行后输出的结果为_________________________.16问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有 500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个 容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.其中问题与方法 能配对的是① ② 。
【苏科版】高中数学必修三期末试题(含答案)(2)
一、选择题1.如图所示,已知圆1C 和2C 的半径都为2,且1223C C =,若在圆1C 或2C 中任取一点,则该点取自阴影部分的概率为( )A .233533ππ++B .233533ππ-+C .2331033ππ++D .2331033ππ-+2.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .383.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .164.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为()A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 5.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A.261 B.425 C.179 D.544 6.阅读如图所示的程序框图,当输入5n=时,输出的S=()A.6 B.4615C.7 D.47157.某程序框图如图所示,则该程序运行后输出的值是()A .3-B .32-C .3D .328.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤9.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,810.某产品的广告费用与销售额的统计数据如下表:( ) 广告费用(万元) 销售客(万元)根据上表中的数据可以求得线性回归方程中的为,据此模型预报广告费用为万元时销售额为( ) A .万元B .万元C .万元D .万元11.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30B .25C .20D .1512.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.14.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.15.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______. 16.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =_____17.如图是一个算法流程图,若输入x 的值为2,则输出y 的值为_______. .18.执行如图所示的程序框图,若输入的255a =,68b =,则输出的a 是__________.19.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
高中数学必修3 测试题2
1a = 3b = a a b =+ b a b =-PRINT a ,b必修3 测试题(二)一、选择题(每题5分,共12小题,满分60分)1.计算机执行下面的程序段后,输出的结果是( ).A .1,3B .4,1C .0,0D .6,01.B 解析:把1赋给变量a ,把3赋给变量b ,把4赋给变量a ,把1赋给变量b ,输出,a b .A.9%B.18%C.27%D.82% 2.B 解析:优秀的学生共9人,该班总人数为50人,故优秀率为918%50=.3.下列抽样问题中最适合用系统抽样法抽样的是( ) A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况3.C 解析:A 项,总体容量较小,样本容量也较小,可采用抽签法;B 项,总体中的个体有明显的层次,不适宜用系统抽样法;C 项,总体容量较大,样本容量也较大,可用系统抽样法;D 项,总体容量较大,样本容量较小,可用随机数表法.4.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( ) A .50B .60C .70D .804.C 解析:由分层抽样方法得:33+4+7×n =15,解得n =70.5.若由图中输出的y 值为18,则输入的实数x 的值为( )A.34B.34或3 C.2或3 D. 34或25.A 解析:若输入的实数0x >,则21218x -=,34x =;若0x ≤,则11()28x =,3x =舍去.6. 在长为60m ,宽为40m 的矩形场地上有一个椭圆形草坪,在一次大风后,发现该场地内共落有300片树叶,其中落在椭圆外的树叶数为96片,以此数据为依据可以估计出草坪的面积约为( )A .2768mB .21632mC .21732mD .2868m6.B 解析:根据随机模拟的思想,可以认为树叶落在该场地上是随机的,这样椭圆草坪的面积和整个矩形场地的面积之比就近似地等于落在椭圆草坪上的树叶数目和落在整个矩形场地上的树叶数目之比.23009660401632()300m -⨯⨯=.7.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是A.3000B.6000C.7000D.80007.C 解析:底部周长小于110cm 的树木所占的频率为:(0.010.020.04)100.7++⨯=,则10000株树木底部周长超过110cm 的有7000株.8.某品牌产品,在男士中有10%使用过,女士中有40%的人使用过,若从男女人数相等的人群中任取一人,恰好使用过该产品,则此人是位女士的概率是( ) A.51 B.52 C.53 D.548.D 解析:假设有100男士和100女士,则使用过该品牌的男士有10人,女士有40人,从这些人中选出一人,是女士的概率为40410405=+.9.对一个作直线运动的质点的运动过程观测了8次, 第i 次观测得到的数据为i a ,具体如下表所示:乙甲7518736247954368534321在对上述统计数据的分析中,一部分计算见如图所示的算法流程 图(其中a 是这8个数据的平均数),则输出的S 的值是( )A.8B.7C.6D.59.B 解析:易求22212844,()()()56.a a a a a a a =∴-+-++-= 故输出的结果为7.10.用秦九韶算法计算多项式65432()3456781f x x x x x x x =++++++当0.5x =时的值时,需要做乘法和加法的次数分别是( )A .6,6B .5,6C .5,5D .6,510.A 解析:秦九韶算法计算多项式的值运算特点是通过一次式的反复计算,逐步得出高次多项式的值,对于一个n 次多项式,只需做n 次乘法和n 次加法即可.故选A.11.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是( )A.62B.63C.64D.6511.C 解析:甲的中位数为28,乙的中位数为36. 所以甲、乙两人这几场比赛得分的中位数之和是64.12.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ) A.13125B.16125C.18125D.1912512.D 解析:从1,2,3,4,5中,随机抽取3个数字(允许重复),可以组成5×5×5=125个不同的三位数,其中各位数字之和等于9的三位数可分为以下情形: ①由1,3,5三个数字组成的三位数:135,153,315,351,513,531共6个; ②由1,4,4三个数字组成的三位数:144,414,441,共3个; ③同理由2,3,4三个数字可以组成6个不同的三位数; ④由2,2,5三个数字可以组成3个不同的三位数; ⑤由3,3,3三个数字可以组成1个三位数,即333.故满足条件的三位数共有6+3+6+3+1=19,所求的概率为19125.二、填空题(每题5分,共4小题,满分20分)13.某校按分层抽样方法从高中三个年级抽取部分学生参加社会实践活动:调查当地农村居民收入来源,三个年级抽取人数比例按如图扇形面积比表示,已知高二年级共有学生1200人,抽取了40人,则这个学校共有学生人数为 . 13.120 解析:扇形面积公式3602R n S π=,因为三个扇形半径相同,所以面积比就是圆心角之比.高一、高二、高三三个年级抽取的人数比为150:120:90=5:4:3,高二抽 取了40人,则高一抽取了50人,高三抽取了30人.共抽取了40+50+30=120人. 14. 给出以下程序: 3x =-IF 0x > THEN (2)y x =+*(2)x + END IF IF 0x = THEN4y =ELSE(2)y x =-*(2)x -︒90︒120︒150高一高二高三END IF PRENT yEND则该程序输出的结果是 .14.25 解析:由于30x =-<,故(2)y x =-(2)x -(23)(23)25=++=.15.已知一组数据1210,,,x x x 的方差是2,且2221210(3)(3)(3)x x x -+-++- =120, 则x = ..15.3±解析:由条件可得:222212101210()102()20x x x x x x x x ++++-+++= , ①22212101210()1096()120x x x x x x ++++⨯-⨯+++= ②将②-①得29010(26)10100x x x -+-⨯=,即2610x x --=,解得3x =+3-16.甲,乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且,{1,2,3,4}a b ∈.若||1a b -≤,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为 . 16.58解析:甲随便想一数字,有4种结果,乙随便猜也有4种结果,故总的情况有4×4=16种;符合条件的有(1,1),(1,2),(2,2),(2,3),(3,3),(3,4),(4,4),(4,3),(3,2),(2,1)共10种情况,故概率为105168=.三、解答题(本题共6小题,满分70分)17.(本题满分10分) 移动公司某种通话套餐规定:拨打市内电话时,如果通话时间不超过3分钟,则收取通话费0.22元,如果通话时间超过3分钟,则超过部分以每分钟0.11元收取通话费(通话不足1分钟时按1分钟计),如果拨打一次市话. (Ⅰ)试写出话费y 关于通话时长的函数表达式;(Ⅱ)试编写一个计算通话费用的程序.17.解:(Ⅰ)我们用y(单位:元)表示通话费,t(单位:分钟)表示通话时间, 则依题意有 0.22(03)0.220.11(3)(3)t y t t <≤⎧=⎨+⨯->⎩(Ⅱ)程序如下:INPUT “请输入通话时间(单位:分钟)”, t IF t<= 3 THEN y =0.22 ELSEy =0.22+0.11*(t -3) END IF PRINT y END18.(本题满分12分) 已知x 、y 之间的一组数据如下表:对于表中数据,甲、乙两同学给出的拟合直线分别为y =13x +1与y =12x +12,试利用最小二乘法判断哪条直线拟合程度更好? 18.解:用y =13x +1作为拟合直线时,所得y 值与y 的实际值的差的平方和为s 1=⎝⎛⎭⎫43-12+(2-2)2+(3-3)2+⎝⎛⎭⎫103-42+⎝⎛⎭⎫113-52=73; 用y =12x +12作为拟合直线时,所得y 值与y 的实际值的差的平方和为s 2=(1-1)2+(2-2)2+⎝⎛⎭⎫72-32+(4-4)2+⎝⎛⎭⎫9252=12.∵s 2<s 1,故用直线y =12x +12拟合程度更好.19.(本题满分12分) ,b c 分别是先后抛掷一枚骰子得到的点数.设2{20,}A x x bx c x R =-+<∈求A ≠∅的概率.19.解:∵A ≠∅,即280b c -> ,∴当1c =时,3,4,5,6b =;2c =时,5,6b =; 3c =时,5,6b =; 4c =时,6b =共9种情况,因此A ≠∅的概率为:91364P ==.20.(本题满分12分) 用秦九韶算法求这个多项式8.07.16.25.325)(2345-+-++=x x x x x x f 当5=x 时的值.(Ⅰ)用秦九韶算法的方法分析:计算时需要多少次乘法计算?多少次加法计算? (Ⅱ)试设计一个计算五次多项式在x=x 0值的算法,写出程序框图. 20.解:(Ⅰ)所给多项式可以化为()((((52) 3.5) 2.6) 1.7)0.8f x x x x x x =++-+-从内到外依次计算可知需要进行乘法5次,加法5次.(Ⅱ)可以利用秦九韶算法进行计算,程序框图如图:21.(本题满分12分)某中学高三年级有12个班,要从中选2个班代表学校参加某项活动,由于某种原因,一班必须参加,另外再从二至十二班中选1个班,有人提议用如下方法:掷两个骰子得到的点数和是几就选几班.(Ⅰ)任意投掷两个骰子的点数共有36种情况,请用表格列出所有投掷点数的可能性;(Ⅱ)你认为这种方法公平吗?如果不公平,哪个班被选中的概率最小?(Ⅱ)这种方法是不公平的.任意投掷两个骰子共有36种结果,由上表可以看出,在这36种结果中,点数和为2的只有一种情况,故概率为136,也就是说,选二班的概率只有136;点数和为3的有两种情况,即点数和为3的概率为236,以此类推可知每班被选中的可能性是不同的,其中七班被选中的可能性最大为16;其次是六班和八班为536;可能性最小的是二班和十二班,可能性只有136.22.(本题满分12分)某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩统计结果如下表所示:(Ⅰ)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;(Ⅱ)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;(Ⅲ)作出频率分布直方图,并估计该学校本次考试的数学平均分. 22.解:(Ⅰ)分层抽样中,每个个体被抽到的概率 均为样本容量总体中个体总数,故甲同学被抽到的概率110p =;(Ⅱ)由题意1000(6090300160)390x =-+++=. 故估计该中学达到优秀线的人数12011016039029012090m -=+⨯=-(人);(Ⅲ)频率分布直方图. 该学校本次考试数学平均分6015904530075390105160135100090.x ⨯+⨯+⨯+⨯+⨯==估计该学校本次考试的数学平均分为90分.。
人教A版高中数学必修三试卷概率练习题 (2)
概率练习题(2)一、选择题1、下列正确的说法是()(A)互斥事件是独立事件(B)独立事件是互斥事件(C)两个非不可能事件不能同时互斥与独立(D)若事件A与事件B互斥,则A与B独立2、一个口袋中装有3个白球和3个黑球,独立事件是()(A)第一次摸出的是白球与第一次摸出的是黑球(B)摸出后不放回.第一次摸出的是白球,第二次摸出的是黑球(C)摸出后放回,第一次摸出的是白球,第二次摸出的是黑球(D)一次摸两个球,第一次摸出颜色相同的球与第一次摸出颜色不同的球3、一个均匀的正四面体,第一面是红色,第二面是白色,第三面是黑色,而第四面同时有红、白、黑三种颜色,P、Q、R表示投掷一次四面体接触桌面为红、白、黑颜色事件.则下列结论正确的是()(A)P、Q、R不相互独立(B)P、Q、R两两独立(C)P、Q、R不会同时发生(D)P、Q、R的概率是314、甲、乙两人独立答题,甲能解出的概率为p,乙能解出的概率为q,那么两人都能解出此题的概率是()(A)pq(B)p(1-q)(C)(1-p)(1-q)(D)1-(1-p)(1-q)5、推毁敌人一个工事,要命中三发炮弹才行,我炮兵射击的命中率是0.8.为了有95%的把握摧毁工事,需要发射炮弹的个数是()(A)6(B)5(C)4 (D)36、三个人独立地破译一个密码,他们能单独译出的概率分别为15,31,14,假设他们破译密码是彼此独立的,则此密码被译出的概率为()(A)35(B)25(C)160(D)不确定7、有一道竞赛试题,甲生解出它的概率为12,乙生解出它的概率为13,丙生解出它的概率为14,则甲、乙、丙三人独立解答此题,只有1人解出的概率为() (A )124(B )1124(C )1724(D )1 8、10个正四面体的小木块表面上,每一个侧面都分别标有数字1,2,3,4,如果把这10个小木块全部掷出,则恰有3个小木块上标的4因贴在平面上看不见的概率计算式是() (A )3101C (B )3371013()()44C (C )3731013()()44C (D )3101A 9、一射手对同一目标独立地进行四次射击,已知至少命中一次的概率为8081,则此射手的命中率为() (A )13(B )14(C )23(D )2510、假设每一架飞机的引擎在飞行中出现故障率为1-p ,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可成功飞行.若使4引擎飞机比2引擎飞机更为安 全,则p 的取值范围是 ()(A )(1,13)(B )(0,23)(C )(23,1)(D )(0,14)二、填空题11、两雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,则有且仅有1名雷达发现飞行物的概率为 .12、甲、乙两人同时报考某一大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否录取互不影响,则甲、乙两人都被录取的概率是 .13、今有三门高射炮,同时射击一架敌人的侦察机,若每一门高射炮的命中率都是0.60,则至少有一门高射炮击中敌机的概率是 .14、盒中有7个白球和3个黑球,从中连取两次,每次取一球,且第一次取出球后又放回盒中,则两个球都是白球的概率为 .15、一个工人看管三台车床,在一小时内车床不需要工人照管的概率;第一台等于0.9,第二台等于0.8,第三台等于0.7,求在一小时内至少有一台车床需要工人照管的概率为 . 三、解答题16、在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某城市一个投保人能活到75岁的概率为0.60,试问: (1)3个投保人都能活到75岁的概率;(2)3个投保人中只有1人能活到75岁的概率; (3)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)17、某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21.从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是31,出现绿灯的概率是32;若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52.试问:(1)第二次闭合后出现红灯的概率是多少;(2)三次发光中,出现一次红灯、两次绿灯的概率是多少.18、证明“五局三胜”制(即比赛五局,先胜三局者为优胜者)是公平的比赛制度,即如果比赛双方赢得每局是等可能的,各局比赛是独立进行的,则双方获胜的概率相同.19、有10台同样的机器,每台机器的故障率为0.03,各台机器独立工作,今配有2名维修工人,一般情况下,一台机器故障1个人维修即可,问机器故障无人修的概率是多少?20、有甲、乙、丙三批罐头,每100个,其中各1个是不合格的,从三批罐头中各抽出1个,计算:(1)3个中恰有一个不合格的概率; (2)3个中至少有1个不合格的概率.21、张华同学骑自行车上学途中要经过4个交叉路口,在各交叉路口遇到红灯的概率都是1 5(假设各交叉路口遇到红灯的事件是相互独立的).(1)求张华同学某次上学途中恰好遇到3次红灯的概率;(2)求张华同学某次上学时,在途中首次遇到红灯前已经过2个交叉路口的概率.22、如图:用A、B、C、D四类不同的元件连接成系统N,当元件A正常工作且元件B、C都正常工作,或当元件A正常工作且元件D正常工作时,系统N正常工作.已知元件A、B、C、D正常工作的概率依次为2334 ,,, 3445.(1)求元件A不正常工作的概率;(2)求元件A、B、C都正常工作的概率;(3)求系统N正常工作的概率.参考答案11、0.2612、0.4213、0.93614、0.4915、0.496 三、解答题16、(1)22.0)6.0()3(33≈=P ;(2)29.016.06.03)6.01(6.0)1(2133≈⨯⨯=-⨯⨯=C P ;(3)94.0064.01)6.01(13≈-=--=P .17、解(1)如果第一次出现红灯,则接着又出现红灯的概率是3121⨯;如果第一次出现绿灯,则接着出现红灯的概率为5321⨯.综上,第二次出现红灯的概率为3121⨯+1575321=⨯.(2)由题意,三次发光中,出现一次红灯、两次绿灯的情况共有如下三种方式:① 当出现绿、绿、红时的概率为535221⨯⨯;②当出现绿、红、绿时的概率为325321⨯⨯;③当出现红、绿、绿时的概率为523221⨯⨯;所以三次发光中,出现一次红灯、两次绿灯的概率为535221⨯⨯+325321⨯⨯+523221⨯⨯=.753418、证明:将每一局比赛看作一次试验,考察一方,如甲方胜或负(即乙方负或胜),问题归结为n =5的贝努里试验.设A 表示一局比赛中“甲获胜”事件,由题意,P(A)=21,记B k 为“五局比赛中甲胜k 局”事件,k =0、1、2、3、4、5.则P(“甲获胜”)=P(B 3∪B 4∪B 5).则利用概率的加法公式,注意到C 5k =C 55-k即得 P(“甲获胜”)=P(B 3)+P(B 4)+P(B 5)=C 53(21)5+C 54(21)5+C 55(21)5=21. 而P(“乙获胜”)=P(“甲获胜”)=1-21=21.19、解:A 表示机器故障无人修的事件,A 表示机器故障多不超过2,则P(A )=C 100(0.97)10+C 101(0.97)9(0.03)+C 103(0.97)8(0.03)2=0.9972, P(A)=1-P(A )=0.0028.20、解:(1)P 1=P(A ·B ·C)+P(A ·B ·C)+P(A ·B ·C )=P(A )·P(B)·P(C)+P(A)·P(B )·P(C)+P(A)·P(B)·P(C )=3×(0.01×0.992)≈0.03或者P 1=C 31×0.01×(1-0.01)2=3×0.01×0.992≈0.03.(2)1-0.993≈0.03 21、(1)经过各交叉路口遇到红灯,相当于独立重复试验,所以恰好遇到3次红灯的概率为.62516)511()51()3(3344=-=C P(2)记“经过交叉路口遇到红灯”事件A .张华在第1、2个交叉路口末遇到红灯,在第3个交叉路口遇到红灯的概率为)()()()(A P A P A P A A A P P ⋅⋅=⋅⋅==.1251651)511()511(=⨯-⨯-22、(1)元件A 正常工作的概率P (A )=32,它不正常工作的概率)(1)(A P A P -==;31(2)元件A 、B 、C 都正常工作的概率P(A ·B ·C)=P (A )P (B )P (C )2333;3448=⋅⋅=(3)系统N 正常工作可分为A 、B 、C 都正常工作和A 、D 正常工作但B 、C 不都正常工作两种情况,前者概率83,后者的概率为=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅)()()(D C B A P D C B A P D C B A P544141325441433254434132⋅⋅⋅+⋅⋅⋅+⋅⋅⋅730=. 所以系统N 正常工作的概率是3773830120+=.。
最新人教版高中数学必修三测试题及答案全套
最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD A 1B 1C 1D 1中随机取点,则点落在四棱锥O ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。
高中数学必修三期末试题(附答案)
一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( ) A .13B .12C .23D .343.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 5.执行如图所示的程序框图,结果是( )A.11 B.12 C.13 D.14 6.下列赋值语句正确的是 ()A.S=S+i2B.A=-AC.x=2x+1 D.P=7.执行如图所示的程序框图,若输出的结果为48,则输入k的值可以为A.6B.10C.8D.4) 8.执行如图所示程序框图,当输入的x为2019时,输出的y(A .28B .10C .4D .29.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,411.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.15.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.16.执行如图所示的程序框图,输出S 的值为___________.17.用秦九韶算法求多项式()5432357911f x x x x x x =+-+-+当4x =时的值为____________.18.如图是一个算法的流程图,则输出的a 的值是___________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________.三、解答题21.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数。
【高中数学必修3试卷及答案
高中数学必修3测试试卷一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.) 1, 某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 . 2, 抛物线24y x =的准线方程为____________________3, “,x R ∀∈函数()f x 满足()2f x <”的否定是 。
4, 已知变量x 与变量y 之间的一组数据如上表,则y 与x 的线性回归直线y bx a =+必过点____________5, 直线25y x =+与曲线21925x x y +=的交点个数为_____________ 6, 椭圆124322=+y x 的焦点坐标为 ▲ .7,“f (0)=0”是“函数f (x )是R 上的奇函数”的______________条件。
8,给出下列四个命题: ①'1(ln 5)5=② '()ln x xa a a = ③(sinx)’=cosx ④(cosx)’= sinx 其中真命题的序号为9,双曲线C 1:22221x y a b -=与C 2:22221y x b a-=(a >0,b >0)的离心率分别为e 1、e 2,则2212e e + 的最小值为 .10, 半径为1cm 的球的半径以2 cm / s 的速度向外扩张,当半径为9cm 时,球的表面积增加的速度为 ▲ cm 2 / s (球的表面积公式为:24S R π=).11,阅读本题的伪代码,其输出结果应为12,下列命题: (1)每个二次函数的图像都开口向上;(2)有一条直线与两个相交直线都垂直;(3)必有一个实数x 使不等式2360x x -+<成立;(4)菱形的四条边相等。
其中是全称命题且是真命题的结论有______个13, 一质点的运动方程为102+=t s (位移单位:m ,时间单位:s ),则该质点在s t 3=的瞬时速度为_____ 14, (理科)若()x xx x x f x sin 51ln 2)(23+-+∙=,则 )('x f = ▲ .(文科)若()x xx x x f x sin ln 2)(3++∙=,则 )('x f = _ ▲ .二.解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知命题P :方程22141x y t t +=--所表示的曲线为焦点在x 轴上的椭圆;命题q :关于实数t 的不等式2(3)(2)0t a t a -+++< (1) 若命题P 为真,求实数t 的取值范围;(2) 若命题P 是命题q 的充分不必要条件,求实数a 的取值范围。
最新北师大版高中数学必修三测试题全套及答案
最新北师大版高中数学必修三测试题全套及答案章末综合测评(一)统计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民,这个问题中“2 500名城镇居民的寿命的全体”是()A.总体B.个体C.样本D.样本容量【解析】每个人的寿命是个体,抽出的2 500名城镇居民的寿命的全体是从总体中抽取的一个样本.【答案】 C2.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.30C.20D.12【解析】系统抽样也叫间隔抽样,抽多少就分成多少组,总数除以组数=间隔数,即k=1 20040=30.【答案】 B3.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组【解析】根据频率分布表的步骤,极差组距=140-5110=8.9,所以分成9组.【答案】 B4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12C.13 D.14【解析】依据系统抽样的特点分42组,每组20人,区间[481,720]包含25组到36组,每组抽一个,则抽到的人数为12.【答案】 B5.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图1所示,则甲、乙两人在这几场比赛中得分的中位数之和是()图1A.63 B.64C.65 D.66【解析】由茎叶图知甲比赛得分的中位数为36,乙比赛得分的中位数为27,故甲、乙两人得分的中位数之和为27+36=63.【答案】 A6.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2C.3 D.4【解析】因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确,故选D.【答案】 D7.某学校为调查学生的学习情况,对学生的课堂笔记进行了抽样调查,已知某班级一共有56名学生,根据学号(001~056),用系统抽样的方法抽取一个容量为4的样本,已知007号、021号、049号在样本中,那么样本中还有一个学生的学号为()A.014 B.028C.035 D.042【解析】由系统抽样的原理知,抽样的间隔为564=14,故第一组的学号为001~014,所以007为第一组内抽取的学号,所以第二组抽取的学号为021;第三组抽取的学号为035;第四组抽取的学号为049.故选C.【答案】 C8.从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数(随机数表第7行至第9行的数如下),则抽取的第4件产品的编号是()844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954A.169 B.556C.671 D.105【解析】找到第8行第8列的数8,并开始向右读,每次读取三位,凡不在001~800中的数跳过去不读,前面已经读过的也跳过去不读,从而最先抽取的4件产品的编号依次是169,556,671,105.故抽取的第4件产品的编号是105.【答案】 D9.对具有线性相关关系的变量x,Y有一组观测数据(x i,y i)(i=1,2,…,8),其回归直线方程是:y=16x+a,且x1+x2+x3+…+x8=3,y1+y2+y3+…+y8=6,则a=()A.116 B.18C.14D.1116【解析】 因为x 1+x 2+x 3+…+x 8=3,y 1+y 2+y 3+…+y 8=6, 所以x =38,y =34,所以样本中心点的坐标为⎝ ⎛⎭⎪⎫38,34,代入回归直线方程得34=16×38+a ,所以a =1116. 【答案】 D10.(2015·安徽高考)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32【解析】 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16,故选C.【答案】 C11.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【解析】 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元). 【答案】 B12.(2016·日照高一检测)样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定【解析】 由题意知,样本(x 1,…,x n ,y 1,…,y m )的平均数为z =nx +my m +n=nn +m x +m n +m y ,且z =ax +(1-a )y ,所以a =n n +m ,1-a =m n +m .又因为0<a <12,所以0<n n +m<12,解得n <m . 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.(2015·江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______. 【解析】 x -=4+6+5+8+7+66=6.【答案】 614.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):【解析】 由题意,需比较s 2甲与s 2乙的大小.由于x 甲=x 乙=10,s 2甲=0.02,s 2乙=0.244,则s 2甲<s 2乙,因此甲产量比较稳定. 【答案】 甲15.(2015·湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图2所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.图2【解析】(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.【答案】(1)3(2)6 00016.(2016·潍坊高一检测)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,图3是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.图3【解析】因为第一组与第二组共有20人,并且根据图像知第一组与第二组的频率之比=12.又因为第一组与第三组的频率之比是是0.24∶0.16=3∶2,所以第一组的人数为20×350.24∶0.36=2∶3,所以第三组有12÷23=18人.因为第三组中没有疗效的人数为6,所以第三组中有疗效的人数是18-6=12.【答案】 12三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某校高中三年级有503名学生,为了了解他们的身体状况,准备按1∶10的比例抽取一个样本,试用系统抽样方法进行抽取,并写出抽样过程.【解】 (1)用简单随机抽样法从503名学生中剔除3名学生. (2)采用随机的方式将500名学生编号为1,2,3,…,500. (3)确定分段间隔,样本容量为500×110=50, 分段间隔k =50050=10,即将500名学生分成50部分,其中每一部分包括10名学生,即把1,2,3,…,500均分成50段.(4)在第一段用简单随机抽样法确定起始的个体编号l ,例如,l =8.(5)按照事先确定的规则抽取样本:从8号起,每隔10个抽取1个号码,这样得到一个容量为50的样本:8,18,28,38,…,488,498.编号为8,18,28,…,488,498的学生便作为抽取的一个样本参与试验.18.(本小题满分12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2; 乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小? (2)哪台机床的生产状况比较稳定? 【解】 (1)x甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.19.(本小题满分12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图4).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.图4(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解】(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,∴x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=0.9,∴估计该年级学生跳绳测试的达标率为90%.20.(本小题满分12分)为了了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量,结果如下:[157,161)3人;[161,165)4人;[165,169)12人;[169,173)13人;[173,177)12人;[177,181]6人.(1)列出频率分布表;(2)画出频率分布直方图;(3)估计总体在[165,177)间的比例.【解】(1)列出频率分布表:分组频数频率频率组距[157,161)30.060.015[161,165)40.080.02[165,169)120.240.06[169,173)130.260.065[173,177)120.240.06[177,181]60.120.03合计50 1.00(2)画出频率分布直方图如图:(3)因0.24+0.26+0.24=0.74,所以估计总体在[165,177)间的比例为74%.21.(本小题满分12分)(2014·全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门3 5 9440 4 4 89 75 1 2 2 4 5 6 6 7 7 7 8 99 7 6 6 5 3 3 2 1 1 060 1 1 2 3 4 6 8 89 8 8 7 7 7 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1 0 070 0 1 1 3 4 4 96 6 5 5 2 0 0 8 1 2 3 3 4 56 3 2 2 2 090 1 1 4 5 6100 0 0(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【解】(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.22.(本小题满分12分)(2015·广东高考)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图6.图6(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解】(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽取比例为1125+15+10+5=1 5,∴从月平均用电量在[220,240)的用户中应抽取25×15=5(户).章末综合测评(二)算法初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是()A.从北京到海南岛旅游,先坐火车,再坐飞机抵达B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.方程x2-4=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15【解析】算法是解决某类问题的一系列步骤或程序,C只是描述了事实,没有解决问题的步骤.【答案】 C2.用二分法求方程x2-10=0的近似根的算法中要用哪种算法结构()A.顺序结构B.选择结构C.循环结构D.以上都用【解析】由求方程x2-10=0的近似根的算法设计知以上三种结构都用到.【答案】 D3.下列程序中的For语句终止循环时,S等于()S=0For M=1To10S=S+MNext输出S.A.1B.5C.10D.55【解析】S=0+1+2+3+…+10=55.【答案】 D4.下列给出的赋值语句中正确的是()A.0=M B.x=-xC.B=A=-3 D.x+y=0【解析】赋值语句不能计算,不能出现两个或两个以上的“=”且变量在“=”左边.【答案】 B5.当A=1时,下列程序输入A;A=A*2A=A*3A=A*4A=A*5输出A.输出的结果A是()A.5 B.6C.15 D.120【解析】运行A=A*2得A=1×2=2.运行A=A*3得A=2×3=6.运行A=A*4得A=6×4=24.运行A=A*5得A=24×5=120.即A=120.故选D.【答案】 D6.(2014·福建高考)阅读如图1所示的程序框图,运行相应的程序,输出的n的值为()图1A.1 B.2C.3 D.4【解析】当n=1时,21>12成立,执行循环,n=2;当n=2时,22>22不成立,结束循环,输出n=2,故选B.【答案】 B7.(2016·菏泽高一检测)执行如图2所示的算法框图,输出的S值为()图2A.2 B.4C.8 D.16【解析】运行如下:①k=0,S=1;②S=1×20=1,k=1;③S=1×21=2,k=2;④S =2×22=8,k =3.此时输出S .【答案】 C8.(2015·福建高考)阅读如图3所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( )图3A .2B .7C .8D .128【解析】 由程序框图知,y =⎩⎪⎨⎪⎧2x ,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8. 【答案】 C9.(2016·北京高考)执行如图4所示的程序框图,若输入的a 值为1,则输出的k 值为( )图4A .1B .2C .3D .4【解析】 开始a =1,b =1,k =0;第一次循环a=-1,k=1;2第二次循环a=-2,k=2;第三次循环a=1,条件判断为“是”,跳出循环,此时k=2.【答案】 B10.阅读如图5所示的算法框图,若输出s的值为-7,则判断框内可填写()图5A.i≥3 B.i≥4C.i≥5 D.i≥6【解析】此算法框图运行如下:①i=1,s=2;②s=1,i=3;③s=-2,i=5;④s =-7,i=7此时应结束循环.所以i=5时不满足循环条件,i=7时满足循环条件.【答案】 D11.当a=16时,下面的算法输出的结果是()If a<10 Theny=2*aElsey=a *aEnd If输出y.A.9B.32 C .10D .256【解析】 该程序是求分段函数y =⎩⎪⎨⎪⎧2a (a <10),a 2(a ≥10)的函数值,所以当a =16时y =162=256.【答案】 D12.阅读如图6所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =( )图6A .2B .3C .4D .5【解析】 m =2,A =1,B =1,i =0. 第一次:i =0+1=1,A =1×2=2, B =1×1=1,A >B ;第二次:i =1+1=2,A =2×2=4, B =1×2=2,A >B ;第三次:i =2+1=3,A =4×2=8, B =2×3=6,A >B ;第四次:i =3+1=4,A =8×2=16, B =6×4=24,A <B . 终止循环,输出i =4.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.如图7是求12+22+32+…+1002的值的算法框图,则正整数n=________.图7【解析】由题意知s=12+22+32+…+1002,先计算s=s+i2,i再加1,故n=100.【答案】10014.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.【解析】每循环一次时,x与i均增加1直到i>5时为止,所以输出的结果为6.【答案】 615.如图8给出一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值的集合为________.图8【解析】这个程序框图对应的函数为y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5.当x ≤2时,由x 2=x ,得x =0或1; 当2<x ≤5时,由2x -3=x ,得x =3;当x >5时,由1x =x ,得x =±1(舍),故x =0或1或3.【答案】 {0,1,3} 16.已知程序:【解析】 由程序知,当x >0时, 3x2+3=6.解得x =2; 当x <0时,-3x 2+5=6,解得x =-23, 显然x =0不成立. 【答案】 2或-23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)下面给出了一个问题的算法: 1.输入x .2.若x ≥4,则y =2x -1;否则,y =x 2-2x +3.3.输出y .问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多少时,输出的y 值最小?【解】 (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值.(2)当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2,所以y min =2,此时x =1.即当输入的x 值为1时,输出的y 值最小.18.(本小题满分12分)将某科成绩分为3个等级:85分~100分为“A”;60分~84分为“B”;60分以下为“C”.试用条件语句表示某个成绩等级的程序(分数为整数).【解】 程序:19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧2x +1,x <0,1,x =0,x 2+1,x >0.画出算法框图并编写算法语句,输入自变量x 的值,输出相应的函数值. 【解】 算法框图如图所示:算法语句如下:输入x;If x<0 Theny=2*x+1ElseIf x=0 Theny=1Elsey=x2+1End IfEnd If输出y.20.(本小题满分12分)给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了解决该问题的算法框图(如图9所示),图9(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法.【解】 (1)因为是求30个数的和.故循环体应执行30次,其中i 是计数变量,因此判断框内的条件就是限制计数变量i 的,故应为i >30.算法中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大i -1,第i +1个数比其前一个数大i ,故应有p =p +i .故①处应填p =p +i ;②处应填i >30.(2)根据框图.写出算法如下: i =1 p =1 S =0 Do S =S +p p =p +i i =i +1Loop While i <=30 输出S .21.(本小题满分12分)如图10所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数关系式.并写出算法,画出算法框图,写出程序.图10【解】 函数关系如下 y =⎩⎪⎨⎪⎧2x (0≤x ≤4),8(4<x ≤8),2(12-x )(8<x ≤12).算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4.4.如果8<x≤12,则使y=2(12-x);否则结束.5.输出y.算法框图如图所示:算法语句:输入x;If x>=0And x<=4Theny=2*xElseIf x<=8Theny=8ElseIf x<=12Theny=2*(12-x)End IfEnd IfEnd If输出y.22.(本小题满分12分)设计一个算法,求满足1×2+2×3+…+n×(n+1)<1 000的最大整数n,画出框图,并用循环语句描述.【解】算法框图如下所示:用语句描述为:n=0S=0Don=n+1S=S+n*(n+1)Loop While S<1 000输出n-1.章末综合测评(三)概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a,b是实数,那么b+a=a+b;②某地1月1日刮西北风;③当x是实数时,x2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有() A.1个B.2个C.3个D.4个【解析】由题意可知①③是必然事件,②④是随机事件.【答案】 B2.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n 个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mn D.2mn【解析】分别确定n个数对(x1,y1),(x2,y2),…,(x n,y n)和m 个两数的平方和小于1的数对所在的平面区域,再用随机模拟的方法和几何概型求出圆周率π的近似值.因为x1,x2,…,x n,y1,y2,…,y n都在区间[0,1]内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),…,(x n,y n)都在正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.【答案】 C3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是()A.310 B.112C.4564 D.38【解析】所有子集共8个,其中含有2个元素的为{a,b},{a,c},{b,c},所以概率为38.【答案】 D4.(2016·山东青岛一模)如图1所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()图1A.2-32B.2+32 C.1+32D.1-32【解析】 易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S =4-234=2-32.【答案】 A5.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34【解析】 基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.【答案】 C6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( ) A.23 B.13 C.34D.14【解析】 如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23.【答案】 A7.(2016·东北八校二模)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19 B.29 C.718D.49【解析】 任意找两人玩这个游戏,共有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①a =1,b =1,2;②a =2,b =1,2,3;③a =3,b =2,3,4;④a =4,b =3,4,5;⑤a =5,b =4,5,6;⑥a =6,b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49.【答案】 D8.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π8【解析】 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4.【答案】 B9.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23B.13C.12D.512【解析】 若方程有实根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.【答案】 A10.(2016·石家庄高一检测)有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是( )A.12B.34C.47D.23【解析】 是2的倍数的数有60个,是3的倍数的数有40个,是6的倍数的数有20个,∴P =60+40-20120=23.【答案】 D11.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1D .p 1<12<p 2【解析】 如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.【答案】 D12.如图2所示,在矩形ABCD 中,AB =5,AD =7.现在向该矩形内随机投一点P ,则∠APB >90°的概率为( )图2A.536B.556πC.18πD.18【解析】 由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 为区域Ω.要使得∠APB >90°,需满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A .记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求∠APB >90°的概率转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意,得μA =12π×⎝ ⎛⎭⎪⎫522=25π8,矩形ABCD 的面积μΩ=35,故所求的概率为P (A )=25π835=5π56.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________,________.【解析】 由题意知出现一级品的概率是0.98-0.21=0.77,又由对立事件的概率公式可得出现三级品的概率是1-0.98=0.02.【答案】 0.77 0.0214.如图3的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.图3【解析】 由题意得138300=S 阴5×2,S 阴=235.【答案】 23515.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为________.【解析】 先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P =10100=110.【答案】 11016.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.【解析】 ∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+(5-2)5-0=23.【答案】23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【解】 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.18.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率; (2)求事件“|x -y |=2”的概率.【解】 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件. ∴P (A )=336=112.即事件“x +y ≤3”的概率为112. (2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件. ∴P (B )=836=29.即事件“|x -y |=2”的概率为29.19.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和与标号之积都不小于5的概率.【解】 设从甲、乙两个盒子中各取出1个球,编号分别为x ,y ,用(x ,y )表示抽取的结果,结果有以下25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).(1)取出的两个球上标号为相邻整数的结果有以下8种:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),故所求概率为P =825,即取出的两个球上标号为相邻整数的概率为825.(2)标号之和与标号之积都不小于5的结果有以下17种:(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),故所求概率为P =1725,故取出的两个球上标号之和与标号之积都不小于5的概率是1725.20. (本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎨⎧ ax +by =3,x +2y =2解答下列各题: (1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.【解】 (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎪⎨⎪⎧ a =1,b =2或⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112.(2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得 ⎩⎪⎨⎪⎧ x =6-2b 2a -b ,y =2a -32a -b .当⎩⎪⎨⎪⎧ 2a -b >0,6-2b >0,2a -3>0,或⎩⎪⎨⎪⎧ 2a -b <0,6-2b <0,2a -3<0,且a >0,b >0,。
高中数学必修3一二章试卷月考
参考公式:用最小二乘法求线性回归方程系数公式1221ˆˆˆ,ni ii ni i x y nxyba y bx x nx ==-==--∑∑1、以下给出的各数中不可能是八进制数的是( )A.312B.10 110C.82D.7 4572、把“二进制”数(2)1011001化为“五进制”数是3、用秦九韶算法在计算f(x)=2x 4+3x 3-2x 2+4x-6时,要用到的乘法和加法的次数分别为( ) A.4,3 B.6,4 C.4,4 D.3,44、(1)用辗转相除法或更相减损术求204与85的最大公约数.(2)用秦九韶算法计算函数4x 5x 3x 2)x (f 34-++=当x =2时的函数值.5、阅读右面的流程图,若输入的a 、b 、c 分别是21、32、75,则输出的a 、b 、c 分别是: A .75、21、32 B .21、32、75 C .32、21、75 D .75、32、216、下图给出的是计算201614121++++ 的值的一个程序框图,其中判断框内应填入的条件是( )A 、9<iB 、9≤iC 、10<iD 、10≤i7、某程序框图如图所示,若输出的S=57,则判断框内填入( )A 、k >4?B 、k >5?C 、k >6?D 、k >7?8、如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于A 、720B 、360C 、240D 、1209、(本小题满分14分)给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推.要求计算这50个数的和.先将下面给出的程序框图补充完整:(1)__________________(2)____________________10、一个年级有12个班,每个班有50名同学,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是A、抽签法B、分层抽样法C、随机数表法D、系统抽样法11、某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员各应该抽取多少人A.8,15,7 B.16,2,2 C.16,3,1 D.12,3,512、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号1,2,...,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样 D.①、③都可能为分层抽样13、在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其他10个小长方形的面积的和的14,且样本容量为160,则中间一组有频数为 ( )A. 32B. 0.2C. 40D. 0.2514、一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出_________人.1000 2000 3000 4000 )15、有同一型号的汽车100辆,为了解这种汽车每耗油1L 所行路程的情况,现从中随即抽出10辆在同一条件下进行蚝油1L 所行路程实验,得到如下样本数据(单位:km ):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,其分组如下:(1)完成上面频率分布表;(2)根据上表,在给定坐标系中画出频率分布直方图,并根据样本估计总体数据落在[12.95,13.95)中的概率;16、随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7. (1)哪个班的平均身高较高? (2)计算甲班的样本方差。
人教A版高中数学必修三试卷3.1.3概率的基本性质
高中数学学习材料金戈铁骑整理制作3.1.3概率的基本性质A 组一、选择题1.下列说法正确的是( )A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .互斥事件不一定是对立事件,对立事件一定是互斥事件C .事件B A 、中至少有一个发生的概率一定比B A 、中恰有一个发生的概率大D .事件B A 、同时发生的概率一定比B A 、中恰有一个发生的概率小2.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有一个黒球与都是红球B.至少有一个黒球与都是黒球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.084.把红,黄,蓝,白4张纸牌随机地分发给甲,乙,丙,丁四个人,每人一张,则事件"甲分得红牌"与事件"丁分得红牌"是( )A .不可能事件B .互斥但不对立事件C .对立事件D .以上答案都不对5.从集合{}543,21,,,中随机取出一个数,设事件A 为“取出的数是偶数”, 事件B 为“取出的数是奇数”,则事件A 与B ( )A .是互斥且是对立事件B .是互斥且不对立事件C .不是互斥事件D .不是对立事件6.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥7.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶8.掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是()A. “至少有一个奇数”与“都是奇数”B. “至少有一个奇数”与“至少有一个偶数”C.“至少有一个奇数”与“都是偶数”D.“恰好有一个奇数”与“恰好有两个奇数”9.出下列命题,其中正确命题的个数有()①有一大批产品,已知次品率为010,从中任取100件,必有10件次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③某事件发生的概率是随着试验次数的变化而变化的;④若()()()1P A B P A P B=+=,则,A B是对立事件。
高中数学必修3月考题目
第7题 高二必修3测试题(2)2013-9-16一、选择题:1.下列关于算法的说法中正确的个数有( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果。
A. 1 B. 2 C. 3 D. 42、下列给出的赋值语句中正确的是( )A.4 = MB.M =-MC.B=A -3D.x + y = 03.条件语句的一般形式如右所示,其中B 表示的是 A .条件 B .条件语句 C .满足条件时执行的内容 D .不满足条件时执行的内容4、以下给出的各数中不可能是八进制数的是( ) A.312 B.10 110 C.82 D.7 4575、用秦九韶算法在计算f(x)=2x 4+3x 3-2x 2+4x-6时,要用到的乘法和加法的次数分别为( )A.4,3B.6,4C. 4,4D.3,46、如果右边程序执行后输出的结果是132, 那么在程序until 后面的“条件”应为( )A.i > 11B. i >=11C. i <=11D.i<117.某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员各应该抽取多少人A .8,15,7B .16,2,2C .16,3,1D .12,3,58.下面程序的输出结果为( )程序:的输出结果是:A. 3,4B. 7,7C. 7,8D. 7,119.阅读右面的流程图,若输入的a 、b 、c 分别是21、32、75,则输出的a 、b 、c 分别是:A .75、21、32B .21、32、75C .32、21、75D .75、32、21(2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3)11. 某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号1,2,...,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样12. 观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(]2700,3000的频if A then B else C率为()8. 已知有上面程序,如果程序执行后输出的结果是11880,那么在程序UNTIL后面的“条件”应为( )(A) i > 9 (B) i >= 9(C) i <= 8 (D) i < 8二、填空题:13、将二进制数101 101(2)化为十进制结果为.14、若输入8时,则下列程序执行后输出的结果是.15.某人对一个地区人均工资x与该地区人均消费y进行统计调y与x具有相关关系,且回归直线方程为562.1x66.0y^+=(单位:千元),若该地区人均消费水平为7.675,估计该地区人均消费额占人均工资收入的百分比约为____________。
高中数学必修3
3-2-1古典概型一、选择题1.为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型3个兴趣小组,小明要选报其中的2个,则基本事件有( )A.1个B.2个C.3个D.4个[答案] C[解析]基本事件有{数学,计算机},{数学,航空模型},{计算机,航空模型},共3个,故选C.2.下列试验中,是古典概型的为( )A.种下一粒花生,观察它是否发芽B.向正方形ABCD内,任意投掷一点P,观察点P是否与正方形的中心O重合C.从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率D.在区间[0,5]内任取一点,求此点小于2的概率[答案] C[解析]对于A,发芽与不发芽的概率一般不相等,不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的点有无限多个,不满足有限性,故选C.3.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为( )A.{正好2个红球} B.{正好2个黑球}C.{正好2个白球} D.{至少1个红球}[答案] D[解析]至少1个红球包含,一红一白或一红一黑或2个红球,所以{至少1个红球}不是基本事件,其他项中的事件都是基本事件.4.在200瓶饮料中,有4瓶已过保质期,从中任取一瓶,则取到的是已过保质期的概率是( )A.0.2 B.0.02C.0.1 D.0.01[答案] B[解析]所求概率为4200=0.02.5.下列对古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个②每个事件出现的可能性相等③每个基本事件出现的可能性相等④基本事件总数为n,随机事件A若包含k个基本事件,则P(A)=knA.②④B.①③④C .①④D .③④[答案] B[解析] ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.6.投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数,我们称其为正实验;若第二次面向上的点数小于第一次面向上的点数,我们称其为负实验;若两次面向上的点数相等,我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是( )A.136 B.112 C.16 D.12 [答案] C[解析] 连续抛一枚骰子两次向上的点数记为(x ,y ),则有 (1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个基本事件,设无效为事件A ,则事件A 有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个基本事件, 则P (A )=636=16. 7.某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,现选出的两人中有中国人的概率为( )A.14 B.13 C.12 D .1[答案] C[解析] 用列举法可知,共6个基本事件,有中国人的基本事件有3个.8.(2012·安徽卷)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45[答案] B[解析] 1个红球,2个白球和3个黑球记为a 1,b 1,b 2,c 1,c 2,c 3从袋中任取两球共有a 1,b 1;a 1,b 2;a 1,c 1;a 1,c 2;a 1,c 3;b 1,b 2;b 1,c 1;b 1,c 2;b 1,c 3;b 2,c 1;b 2;c 2;b 2,c 3;c 1,c 2;c 1,c 3;c 2,c 315种;满足两球颜色为一白一黑有6种,概率等于615=25. 9.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( ) A.13 B.14 C.16 D.112 [答案] D[解析] 由题意知(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6).共36种情况.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112,故选D.10.若自然数n 使得作竖式加法n +(n +1)+(n +2)产生进位现象,则称n 为“先进数”.例如:4是“先进数”,因4+5+6产生进位现象.2不是“先进数”,因2+3+4不产生进位现象.那么,小于100的自然数是“先进数”的概率为( )A .0.10B .0.90C .0.89D .0.88[答案] D[解析] 一位数中不是“先进数”有0,1,2共3个;两位数中不是“先进数”其个位数可以取0,1,2,十位数可取1,2,3,共有9个,则小于100的数中不是“先进数”的数共有12个,所以小于100的“先进数”的概率为P =1-1299≈0.88,故应选D.本题考查了新定义概念题及古典概型的求解问题,此题解决的关键在于找出所有的对立事件的个数.二、填空题11.袋子中有大小相同的四个小球,分别涂以红、白、黑、黄颜色. (1)从中任取1球,取出白球的概率为________.(2)从中任取2球,取出的是红球、白球的概率为________. [答案] (1)14 (2)16[解析] (1)任取一球有4种等可能结果,而取出的是白球只有一个结果, ∴P =14.(2)取出2球有6种等可能结果,而取出的是红球、白球的结果只有一种,∴概率P =16.12.在两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中任取一张卡片,则两数之和等于5和概率为________.[答案]16[解析] 两个袋内分别任取一张卡片包含的基本事件有 (0,0),(0,1),(0,2),(0,3),(0,4),(0,5), (1,0),(1,1),(1,2),(1,3),(1,4),(1,5), (2,0),(2,1),(2,2),(2,3),(2,4),(2,5), (3,0),(3,1),(3,2),(3,3),(3,4),(3,5), (4,0),(4,1),(4,2),(4,3),(4,4),(4,5), (5,0),(5,1),(5,2),(5,3),(5,4),(5,5),共有36个基本事件,设两数之和等于5为事件A ,则事件A 包含的基本事件有(0,5),(1,4),(2,3),(3,2),(4,1),(5,0),共有6个基本事件,则P (A )=636=16. 13.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为a ,b ,则log 2a b =1的概率为________. [答案]112[解析] 基本事件有36个, 当log 2a b =1时,有2a =b ,则a =1,b =2或a =2,b =4或a =3,b =6. 所以log 2a b =1的概率为336=112.14.某学校共有2 000名学生,各年级男、女生人数如下表:80名学生,则三年级应抽取的学生人数为________人.[答案] 20[解析] 由题意知,抽到二年级女生的概率为0.19,则x2 000=0.19,解得x =380,则y +z =2 000-(369+381+370+380)=500,则三年级学生人数为500,又分层抽样的抽样比为802 000=125,所以从全校学生中抽取80名学生中,三年级应抽取的学生人数为500×125=20.三、解答题15.一枚硬币连掷3次,观察向上面的情况,(1)写出所有的基本事件,并计算总数;(2)求仅有2次正面向上的概率.[解析](1)所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个基本事件.(2)由(1)知,仅有2次正面向上的有(正,正,反),(正,反,正),(反,正,正),共3个.设仅有2次正面向上为事件A,则P(A)=38.16.随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:(1)这3人的值班顺序共有多少种不同的排列方法?(2)这3人的值班顺序中,甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?[解析](1)3个人值班的顺序所有可能的情况如下图所示.甲乙丙丙乙乙甲丙丙甲丙甲乙乙甲由图知,所有不同的排列顺序共有6种.(2)由图知,甲排在乙之前的排法有3种.(3)记“甲排在乙之前”为事件A,则P(A)=36=12.17.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.[解析](1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P=3 10 .(2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P=8 15 .18.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:(1)求这5(2)求这5天的平均发芽率;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m ,后面一天发芽的种子数为n ,用(m ,n )的形式列出所有基本事件,并求满足“⎩⎨⎧25≤m ≤3025≤n ≤30”的概率.[解析] (1)因为16<23<25<26<30,所以这5天发芽数的中位数是25. (2)这5天的平均发芽率为 23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(x ,y )表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16).共有10个基本事件.记“⎩⎨⎧25≤m ≤30,25≤n ≤30”为事件A ,则事件A 包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P (A )=310,即事件“⎩⎨⎧25≤m ≤30,25≤n ≤30”的概率为310.3-2-2(整数值)随机数(random numbers)的产生一、选择题1.抛掷两枚均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每几个数字为一组( )A .1B .2C .10D .12[答案] B2.下列不能产生随机数的是( )A.抛掷骰子试验B.抛硬币C.计算器D.正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体[答案] D[解析]D项中,出现2的概率为25,出现1,3,4,5的概率均是15,则D项不能产生随机数.3.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( )A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x,如果x=2,我们认为出现2点B.我们通常用计数器n记录做了多少次掷骰子试验,用计数器m记录其中有多少次出现2点,置n=0,m=0C.出现2点,则m的值加1,即m=m+1;否则m的值保持不变D.程序结束.出现2点的频率作为概率的近似值[答案] A4.已知某运动员每次投篮命中的概率为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示没有命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A.0.35 B.0.25C.0.20 D.0.15[答案] B[解析]恰有两次命中的有191,271,932,812,393,共有5组,则该运动员三次投篮恰有两次命中的概率近似为520=0.25.5.袋子中有四个小球,分别写有“世、纪、金、榜”四个字,从中任取一个小球,取到“金”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“世、纪、金、榜”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止概率为( )A.15B.14C.13D.12[答案] B6.从{1,2,3,4,5)中随机选取一个数为a ,从{1,2,3)中随机选取一个数为b ,则使方程x 2-ax +b =0有根的概率是( ) A.15 B.25 C.35 D.45[答案] C7.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )A .一定不会淋雨B .淋雨机会为34C .淋雨机会为12D .淋雨机会为14[[答案] D[解析] 用A 、B 分别表示下雨和不下雨,用a 、b 表示帐篷运到和运不到,则所有可能情形为(A ,a ),(A ,b ),(B ,a ),(B ,b ),则当(A ,b )发生时就会被雨淋到,∴淋雨的概率为P =14.8.一个袋内装有大小相同的6个白球和5个黑球,从中随意抽取2个球,抽到白球、黑球各一个的概率为( ) A.611 B.15 C.211 D.110 [答案] A[解析] 将6个白球编号为白1、白2、白3、白4、白5、白6,把5个黑球编号为黑1、黑2、黑3、黑4、黑5.从中任取两球都是白球有基本事件15种,都是黑球有基本事件10种,一白一黑有基本事件30种,∴基本事件共有15+10+30=55个,∴事件A =“抽到白球、黑球各一个”的概率P (A )=3055=611,∴选A.9.已知集合A ={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A 中选取不相同的两个数,构成平面直角坐标系中的点,观察点的位置,则事件“点落在x 轴上”包含的基本事件个数及其概率分别为( )A .10和0.1B .9和0.09C .9和0.1D .10和0.09[答案] C[解析] 基本事件构成集合为Ω={(x ,y )|x ∈A ,y ∈A ,x ≠y },共有90个基本事件,其中y =0的有9个,其概率为990=0.1,∴选C.10.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y =5下方的概率为( ) A.16 B.14 C.112 D.19[答案] A[解析] 如图,试验是连掷两次骰子.共包含6×6=36个基本事件,如图知,事件“点P 在直线x +y =5下方”,共包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个基本事件,故P =636=16.二、填空题11.利用骰子等随机装置产生的随机数________伪随机数,利用计算机产生的随机数________伪随机数(填“是”或“不是”). [答案] 不是 是12.通过模拟试验,产生了20组随机数6830 3013 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 59299768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰,有三次击中目标的概率约为________.[答案]1 4[解析]这20组随机数中,恰有3个数在1,2,3,4,5,6中的有3013,2604,5725,6576,6754,共5组,则四次射击中恰有三次击中目标的概率均为1 4 .13.在利用整数随机数进行随机模拟试验中,整数a到整数b之间的每个整数出现的可能性是________.[答案]1b-a+1[解析][a,b]中共有b-a+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b-a+1.[14.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为______.[答案]0.2[解析]由5根竹竿一次随机抽取2根竹竿的种数为4+3+2+1=10,它们的长度恰好相差0.3m的是2.5和2.8、2.6和2.9两种,则它们的长度恰好相差0.3m的概率为P=210=0.2.三、解答题15.掷三枚骰子,利用Excel软件进行随机模拟,试验20次,计算出现点数之和是9的概率.[解析]操作步骤:(1)打开Excel软件,在表格中选择一格比如A1,在菜单下的“=”后键入“=RANDBETWEEN(1,6)”,按Enter键,则在此格中的数是随机产生的1~6中的数.(2)选定A1这个格,按Ctrl+C快捷键,然后选定要随机产生1~6的格,如A1至T3,按Ctrl+V快捷键,则在A1至T3的数均为随机产生的1~6的数.(3)对产生随机数的各列求和,填入A4至T4中.(4)统计和为9的个数S;最后,计算频率S/20.16.同时抛掷两枚均匀的正方体骰子,用随机模拟方法计算上面都是1点的概率.[分析] 抛掷两枚均匀的正方体骰子相当于产生两个1到6的随机数,因而我们可以产生整数随机数.然后以两个一组分组,每组第1个数表示第一枚骰子的点数,第2个数表示第二枚骰子的点数.[解析]步骤:(1)利用计算器或计算机产生1到6的整数随机数,然后以两个一组分组,每组第1个数表示第一枚骰子向上的点数.第2个数表示另一枚骰子向上的点数.两个随机数作为一组共组成n组数;(2)统计这n组数中两个整数随机数字都是1的组数m;(3)则抛掷两枚骰子上面都是1点的概率估计为m n.17.某射击运动员每次击中目标的概率都是80%,若该运动员连续射击10次,用随机模拟方法估计其恰好有5次击中目标的概率.[分析] 用整数随机数来表示每次击中目标的概率.由于射击了10次.故每次取10个随机数作为一组. [解析] 步骤:(1)用1,2,3,4,5,6,7,8表示击中目标,用9,0表示未击中目标,这样可以体现击中的概率为80%; (2)利用计算机或计算器产生0到9之间的整数随机数,每10个作为一组分组,统计组数n ; (3)统计这n 组数中恰有5个数在1,2,3,4,5,6,7,8中的组数m ; (4)则连续射击10次恰有5次击中目标的概率的近似值是m n.18.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.[解析] 利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数(可借助教材103页的随机数表).034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367.3-3-1几何概型一、选择题1.面积为S 的△ABC ,D 是BC 的中点,向△ABC 内部投一点,那么点落在△ABD 内的概率为( ) A.13 B.12 C.14 D.16[答案] B[解析] 向△ABC 内部投一点的结果有无限个,属于几何概型.设点落在△ABD 内为事件M ,则P (M )=△ABD 的面积△ABC 的面积=12.2.某公共汽车站每隔5分钟有一辆汽车到达,乘客到达汽车站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为( ) A.15B.25[答案] C[解析] 把汽车到站的间隔时间分为[0,5]上的实数,其中乘客候车时间不超过3分钟时应在[0,3]内取值,所以发生的概率为35.3.取一根长度为5 m 的绳子,拉直后在任意位置剪断,那么剪得的两段长度都不小于2 m 的概率是( ) A.12 B.15C.13 D .不能确定[答案] B[解析] 如图所示,拉直后的绳子看成线段AB ,且C 、D 是线段AB 上的点,AC =2m ,BD =2m ,由于剪断绳子的位置是等可能的且有无限个位置,属于几何模型.设剪得两段的长度都不小于2 m 为事件E ,设M 是事件E 的一个剪断点,则M ∈CD ,则事件E 构成线段CD ,则P (E )=CD AB=5-2-25=15. 4.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为( )A .7.68B .8.68C .16.32D .17.32[答案] C[解析] 矩形的面积S =6×4=24,设椭圆的面积为S 1,在矩形内随机地撒黄豆,黄豆落在椭圆内为事件A ,则P (A )=S 1S=S 124=300-96300,解得S 1=16.32.5.在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个数x ,则事件“0≤sin x ≤1”发生的概率为( )C.12D.23[答案] C[解析] 由于x ∈⎣⎢⎡⎦⎥⎤-π2,π2,若0≤sin x ≤1,则0≤x ≤π2,设“0≤sin x ≤1”为事件A ,则P (A )=π2-0π2--π2=π2π=12. 6.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12B .1-π12C.π6 D .1-π6[答案] B[解析] 正方体的体积为:2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为:12×43πr 3=12×43π×13=23π,则点P 到点O 的距离小于或等于1的概率为:23π8=π12,故点P 到点O 的距离大于1的概率为:1-π12.7.在△ABC 中,E 、F 、G 为三边的中点,若向该三角形内投点,且点不会落在三角形ABC 外,则落在三角形EFG 内的概率为( )A.18B.14C.34D.12[来源 [答案] B8.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABC D 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13[答案] C9.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.13C.34D.23[答案] C10.如图,分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A.4-π2B.π-22C.4-π4D.π-24[答案] B二、填空题11.在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为________. [答案]13[解析] [-1,2]的长度为3,[0,1]的长度为1,所以所求概率是13.12.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.[答案]0.005[解析]大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A,则事件A构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P(A)=2400=0.005.13.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.[答案]3π6[分析] 解答本题从正面考试较繁琐,所以从反面来解答,先计算事件“使点P到三个顶点的距离都大于1”的概率,利用对立事件的概率公式计算.[解析]边长为2的正三角形ABC内,到顶点A的距离等于或小于1的点的集合为以点A为圆心,1为半径,圆心角为∠A=60°的扇形内.同理可知到顶点B、C的距离等于或小于1的点的集合.故使点P到三个顶点的距离都大于1的概率为12×2×3-3×16×π×1212×2×3=1-3π6,故所求的概率为1-(1-3π6)=3π6.14.在一个球内挖去一个几何体,其三视图如图.在球内任取一点P,则点P落在剩余几何体上的概率为______.[答案]53125[解析] 由三视图可知,该几何体是球与圆柱的组合体,球半径R =5,圆柱底面半径r =4,高h =6,故球体积V =43πR 3=500π3,圆柱体积V 1=πr 2·h =96π,∴所求概率P =500π3-96π500π3=53125.三、解答题15.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒(没有两灯同时亮),当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯;(2)黄灯;(3)不是红灯.[解析] 在75秒内,每一时刻到达路口是等可能的,属于几何概型. (1)P =亮红灯的时间全部时间=3030+40+5=25;(2)P =亮黄灯的时间全部时间=575=115;(3)P =不是红灯亮的时间全部时间=黄灯或绿灯亮的时间全部时间=4575=35. 16.在1万平方千米的海域中有40平方千米的大陆架贮藏石油,假设在这个海域里随意选定一点钻探,则钻到油层面的概率是多少?[分析] 石油在1万平方千米的海域大陆架中的分布可以看作是随机的,而40平方千米可看作事件的区域面积,由几何概型公式可求得概率.[解析] 记事件C ={钻到油层面},在这1万平方千米的海域中任意一点钻探的结果有无限个,故属于几何概型. 事件C 构成的区域面积是40平方千米, 全部试验结果构成的区域面积是1万平方千米, 则P (C )=贮藏石油的大陆架面积所有海域大陆架的面积=4010 000=0.004.17.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,求使四棱锥M -ABCD 的体积小于16的概率.[分析] 由题目可获取以下主要信息:①正方体ABCD -A 1B 1C 1D 1的棱长为1,M 为其内一点; ②求四棱锥M -ABCD 的体积小于16的概率.解答本题的关键是结合几何图形分析出概率模型.[解析] 如图,正方体ABCD -A 1B 1C 1D 1,设M -ABCD 的高为h ,则13×S 四边形ABCD ×h <16, 又S 四边形ABCD =1,则h <12,即点M 在正方体的下半部分.故所求概率P =12V 正方体V 正方体=12.18.(1)在半径为1的圆的一条直径上任取一点,过该点作垂直于直径的弦,其长度超过该圆内接正三角形的边长3的概率是多少?(2)在半径为1的圆内任取一点,以该点为中点作弦,问其长超过该圆内接正三角形的边长3的概率是多少?(3)在半径为1的圆周上任取两点,连成一条弦,其长超过该圆内接正三角形边长3的概率是多少?[解析] (1)设事件A =“弦长超过3”,弦长只与它跟圆心的距离有关,∵弦垂直于直径,∴当且仅当它与圆心的距离小于12时才能满足条件,由几何概率公式知P (A )=12.(2)设事件B =“弦长超过3”,弦被其中点惟一确定,当且仅当其中点在半径为12的同心圆内时,才能满足条件,由几何概率公式知P (B )=14.(3)设事件C =“弦长超过3”,固定一点A 于圆周上,以此点为顶点作内接正三角形ABC ,显然只有当弦的另一端点D 落在BC ︵上时,才有|AD |>|AB |=3,由几何概率公式知P (C )=13.3-3-2均匀随机数的产生一、选择题1.下列关于几何概型的说法中,错误的是( )A.几何概型是古典概型的一种,基本事件都具有等可能性B.几何概型中事件发生的概率与它的位置或形状无关C.几何概型在一次试验中可能出现的结果有无限多个D.几何概型中每个结果的发一都具有等可能性[答案] A[解析]几何概型和古典概型是两种不同的概率模型.几何概型中的基本事件有无限多个,古典概型中的基本事件有有限个.2.用均匀随机数进行随机模拟,可以解决( )A.只能求几何概型的概率,不能解决其他问题B.不仅能求几何概型的概率,还能计算图形的面积C.不但能估计几何概型的概率,还能估计图形的面积D.最适合估计古典概型的概率[答案]C[解析]很明显用均匀随机数进行随机模拟,不但能估计几何概型的概率,还能估计图形的面积,但得到的是近似值,不是精确值,用均匀随机数进行随机模拟,不适合估计古典概型的概率.3.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则( )A.m>n B.m<nC.m=n D.m是n的近似值[答案] D4.如下四个游戏盘(各正方形边长和圆的直径都是单位1),如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,则应选择的游戏盘是( )[答案] A[解析] P (A )=38,P (B )=26=13,P (C )=1-π41=1-π4,P (D )=1π.5.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )[答案] C[解析] 将[0,1]内的随机数转化为[a ,b ]内的随机数,需进行的变换为a =a 1]6.设x 是[0,1]内的一个均匀随机数,经过变换y =2x +3,则x =12对应变换成的均匀随机数是( )A .0B .2C .4D .5[答案] C[解析] 当x =12时,y =2×12+3=4.7.在矩形ABCD 中,长AB =4,宽BC =2(如图所示),随机向矩形内丢一粒豆子,则豆子落入圆内的概率是( )A.14 B.12 C.π4 D.π8[答案] D8.把[0,1]内的均匀随机数分别转化为[0,4]和[-4,1]内的均匀随机数,需实施的变换分别为( )A .y =-4x ,y =5-4B .y =4x -4,y =4x +3C .y =4x ,y =5x -4D .y =4x ,y =4x +3[答案] C9.一个路口的红绿灯,红灯亮的时间为30 s ,黄灯亮的时间为5 s ,绿灯亮的时间为40 s ,当你到达路口时,事件A 为“看见绿灯”、事件B 为“看见黄灯”、事件C 为“看见不是绿灯”的概率大小关系为( )A .P (A )>P (B )>P (C ) B .P (A )>P (C )>P (B ) C .P (C )>P (B )>P (A )D .P (C )>P (A )>P (B )[答案] B10.如图所示,在墙上挂着一块边长为16cm 的正方形木块,上面画了小、中、大三个同心圆,半径分别为2cm,4cm,6cm ,某人站在3 m 之外向此板投镖,设镖击中线上或没有投中木板时不算,可重投,记事件A ={投中大圆内},事件B ={投中小圆与中圆形成的圆环内}, 事件C ={投中大圆之外}.(1)用计算机产生两组[0,1]内的均匀随机数,a 1=RAND ,b 1=RNAD.(2)经过伸缩和平移变换,a =16a 1-8,b =16b 1-8,得到两组[-8,8]内的均匀随机数.(3)统计投在大圆内的次数N 1(即满足a 2+b 2<36的点(a ,b )的个数),投中小圆与中圆形成的圆环次数N 2(即满足4<a 2+b 2<16的点(a ,b )的个数),投中木板的总次数N (即满足上述-8<a <8,-8<b <8的点(a ,b )的个数).则概率P (A )、P (B )、P (C )的近似值分别是( ) A.N 1N,N 2N,N -N 1NB.N 2N,N 1N,N -N 2NC.N 1N,N 2-N 1N ,N 2ND.N 2N,N 1N,N 1-N 2N[答案] A[解析] P (A )的近似值为N 1N,P (B )的近似值为N 2N,P (C )的近似值为N -N 1N.二、填空题。
(必考题)高中数学必修三第一章《统计》测试(包含答案解析)(1)
一、选择题1.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元2.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万) 月份x 2 3 4 5 口罩数y4.5432.5口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.753.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.54.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .815. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日6.网上大型汽车销售某品牌A 型汽车,在2017年“双十一”期间,进行了降价促销,该型汽车的价格与月销量之间有如下关系 价格(万元) 25 23.5 22 20.5 销售量(辆)30333639已知A 型汽车的购买量y 与价格x 符合如下线性回归方程:8ˆ0ˆybx =+,若A 型汽车价格降到19万元,预测月销量大约是( ) A .39 B .42C .45D .507.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和928.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64 B .96C .144D .1609.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9110.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变11.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表: 温度℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115ii x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元. 14.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________15.某次测试共有100名考生参加,测试成绩的频率分布直方图如下图所示,则成绩在80分以上的人数为__________.16.已知一组数据为2,3,4,5,6,则这组数据的方差为______.17.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________. 18.变量X 与Y 相对应的5组数据和变量U 与V 相对应的5组数据统计如表:X 1011.3 11.8 12.5 13 U 10 11.3 11.8 12.5 13 Y12345V54321用b 1表示变量Y 与X 之间的回归系数,b 2表示变量V 与U 之间的回归系数,则b 1与b 2的大小关系是___.19.某中学调查了400名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这400名学生中每周的自习时间不少于22.5小时的人数是__________人.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号x 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9x (2)预测该地区2015年农村居民家庭人均纯收入. 附:77211134.4,140i ii i i x yx ====∑∑.回归直线的斜率和截距的最小二乘法估计公式分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-22.随着人民生活水平的日益提高,某小区拥有私家车的数量与日俱增,物业公司统计了近六年小区私家车的数量,数据如下: 年份 2014 2015 20162017 2018 2019 编号x 1 2 3 4 5 6 数量y (辆)4196116190218275(1)若该小区私家车的数量y 与年份编号x 的关系可用线性回归模型来拟合,请求出y 关于x 的线性回归方程,并用相关指数2R 分析其拟合效果(2R 精确到0.01);(2)由于该小区没有配套停车位,车辆无序停放易造成交通拥堵,因此物业公司预在小区内划定一定数量的停车位,若要求在2022年小区停车位数量仍可满足需要,则至少需要规划多少个停车位. 参考数据:61936ii y==∑,614081i i i x y ==∑,62191ii x ==∑,()62137586i i y y=-=∑.附:回归方程中斜率和截距的最小二乘估计公式分别为:1221ni ii nii x y nx yb xnx==-⋅=-∑∑,a y bx =-,相关指数()()221211ni ii n ii y y R yy==-=--∑∑,残差e y y =-.23.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.025 0.010 0.005 0.001 0k5.0246.6357.87910.82824.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆybx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑) 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:s =(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如22⨯下列联表:(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数X ,试求随机变量X 的分布列和数学期望;(2)若在犯错误的概率不超过P 的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的P 的值应为多少?请说明理由.附:独立性检验统计量22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b cd =+++.独立性检验临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.2.C解析:C 【分析】求得 3.5x y ==,得到样本中心点(3.5,3.5),再把样本中心点代入回归直线方程得解. 【详解】由表可得 3.5x y ==,带入线性回归方程中有 3.50.7 3.5 5.95=+⨯=a , 故选:C . 【点睛】本题考查利用线性相关关系求回归直线方程,属于基础题.3.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.4.A解析:A 【解析】利用茎叶图、平均数的性质直接求解. 【详解】由一组数据的茎叶图得: 该组数据的平均数为:1(7581858995)855++++=. 故选:A . 【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.5.C解析:C 【分析】认真观察题中所给的折线图,对照选项逐一分析,求得结果. 【详解】这10天中第一天,第三天和第四天共3天空气质量为一级,所以A 正确; 从图可知从6日到9日 2.5PM 日均值逐渐降低,所以B 正确; 从图可知,这10天中 2.5PM 日均值最高的是12月6日,所以D 正确; 由图可知,这10天中 2.5PM 日均值的中位数是4145432+=,所以C 不正确; 故选C. 【点睛】该题考查的是有关利用题中所给的折线图,描述对应变量所满足的特征,在解题的过程中,需要逐一对选项进行分析,正确理解题意是解题的关键.6.B解析:B 【解析】分析:先求均值,确定ˆb,再求自变量为19对应函数值得结果. 详解:因为2523.52220.5330333639122,344442x y ++++++====,所以1348022,3224ˆb-==- 所以19(2)8042y =⨯-+=选B.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .7.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.58.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题9.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.10.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,,所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.12.A解析:A 【解析】分析:先观察表中数据的规律,确定回归系数b 的符号,再计算x 和y ,代入选项确定正确答案.详解:由表中数据规律发现:热饮杯数y 随当天气温x 升高而减少,则0b <,排除C 、D. 计算1169=(504712151923273136)1111x -++++++++++= 11228=(15615013212813011610489937654)111.641111y ++++++++++=≈ 将x 代入选项A ,得1692.352147.767111.6311ˆy=-⨯+= 将x 代入选项B ,得1692.352127.76591.6311ˆy=-⨯+= 所以选项A 正确. 故选A.点睛:本题考查线性回归方程的求法与应用,一次项系数b 符号的判断和回归直线过样本中心点(,)x y 是解题关键.二、填空题13.75【解析】【分析】计算然后将代入回归直线得从而得回归方程然后令x=5解得y 即为所求【详解】∵∴∵∴∴样本中心点为(3)又回归直线过(3)即3=06×+解得=所以回归直线方程为y =06x+令x =5时解析:75 【解析】 【分析】计算x ,y ,然后将x ,y 代入回归直线得a ,从而得回归方程,然后令x =5解得y 即为所求. 【详解】 ∵4115i i x ==∑,∴154x =, ∵4112i i y ==∑,∴1234y ==, ∴样本中心点为(154,3), 又回归直线0.6ˆyx a =+过(154,3),即3=0.6×154+a ,解得a =34, 所以回归直线方程为y =0.6x +34, 令x =5时,y =0.6×5+34=3.75万元 故答案为:3.75. 【点睛】本题考查线性回归方程的应用,以及利用线性回归方程进行预测,要注意回归直线必过样本中心点.14.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18 【解析】 【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得. 【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =. 【点睛】本题主要考查了系统抽样,属于中档题.15.25【解析】分析:先求成绩在80分以上的概率再根据频数等于总数与对应概率乘积求结果详解:因为成绩在80分以下的概率为所以成绩在80分以上的概率为因此成绩在80分以上的人数为点睛:频率分布直方图中小长解析:25 【解析】分析:先求成绩在80分以上的概率,再根据频数等于总数与对应概率乘积求结果.详解:因为成绩在80分以下的概率为(0.0050.03+0.0410=0.75+⨯),所以成绩在80分以上的概率为10.750.25-=,因此成绩在80分以上的人数为0.25100=25.⨯点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1; 频率分布直方图中组中值与对应区间概率乘积的和为平均数; 频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.16.2【解析】分析:根据方差的计算公式先算出数据的平均数然后代入公式计算即可得到结果详解:平均数为:即答案为2点睛:本题考查了方差的计算解题的关键是方差的计算公式的识记它反映了一组数据的波动大小方差越大解析:2 【解析】分析:根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果. 详解:平均数为:2345645+++++=,()22222211[2434445464]4114255s =⨯-+-+-+-+-=⨯+++=()()()()().即答案为2.点睛:本题考查了方差的计算,解题的关键是方差的计算公式的识记.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.1【解析】分析:先利用平均数公式求出平均数再利用方差公式即可得结果详解:的平均数为的方差为故答案为点睛:本题考查主要考查平均数公式与方差公式属于基础题样本数据的算术平均数公式;样本方差公式标准差解析:1 【解析】分析:先利用平均数公式求出平均数,再利用方差公式即可得结果. 详解:5.7,5.8,6.1,6.4,6.5的平均数为5.7+5.8+6.1+6.4+6.56.15=,5.7,5.8,6.1,6.4,6.5∴的方差为()()()()()222225.76.1+5.8 6.1+6.1 6.1+6.4 6.1+6.5 6.10.15-----=,故答案为0.1.点睛:本题考查主要考查平均数公式与方差公式,属于基础题. 样本数据的算术平均数公式12n 1(x +x +...+x )x n =;样本方差公式2222121[()()...()]n s x x x x x x n =-+-++-,标准差s =18.【解析】分析:根据回归系数几何意义得详解:因为Y 与X 之间正增长所以因为V 与U 之间负增长所以因此点睛:函数关系是一种确定的关系相关关系是一种非确定的关系事实上函数关系是两个非随机变量的关系而相关关系是解析:12b b >. 【解析】分析:根据回归系数几何意义得120b b >> 详解:因为Y 与X 之间正增长,所以10b > 因为V 与U 之间负增长,所以20b < 因此120b b >>,点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .b 的正负,决定正相关与负相关.19.280【解析】由频率分布直方图得这名大学生中每周的自习时间不少于小时的频率为这名大学生中每周的自习时间不少于小时的人数为故答案为解析:280 【解析】由频率分布直方图得这400名大学生中每周的自习时间不少于22.5小时的频率为()0.16+0.080.04 2.50.7,+⨯=∴这400名大学生中每周的自习时间不少于22.5小时的人数为4000.7280⨯=,故答案为280.20.2【解析】由茎叶图及10个班级的得分的平均数是90可得∴当且仅当即时取等号故答案为2解析:2 【解析】由茎叶图及10个班级的得分的平均数是90可得8a b += ∴1911919191()()(19)(10)(1023)28888b a b a a b a b a b a b a b +=⨯++=+++=++≥+⨯=,当且仅当9b aa b=,即36b a ==时,取等号 故答案为2三、解答题21.(1)0.5 2.3y x =+;(2)6800元. 【分析】(1)根据表中数据计算出4x =, 4.3y =,再结合参考数据利用公式即可计算出,b a ,进而得出线性回归方程; (2)将9x =代入即可预测. 【详解】解:(1)由表可得:123456747++++++==x ,2.93.3 3.64.4 4.85.2 5.9 4.37y ++++++==,又77211134.4,140i ii i i x yx ====∑∑,71722217134.474 4.30.5140747i ii i i x y x yb x x==--⨯⨯∴===-⨯-∑∑ 4.30.54 2.3a y bx ∴=-=-⨯=y ∴关于x 的线性回归方程为0.5 2.3y x =+;(2)由(1)可得:0.5 2.3y x =+,∴当9x =时,0.59 2.3 6.8y =⨯+=,即该地区2015年农村居民家庭人均纯收入约为6800元. 【点睛】本题考查线性回归方程的求法,考查由线性回归方程进行预测,属于基础题. 22.(1)ˆ465yx =-;拟合效果较好;(2)至少需要规划409个停车位 【分析】(1)由已知数据求得ˆb与ˆa 的值,则线性回归方程可求,再求出残差平方和,代入相关指数公式求得2R ,根据与1的接近程度分析拟合效果;(2)在(1)中求得的线性回归方程中,取9x =求得y 值即可. 【详解】 解:(1)1(123456) 3.56x =+++++=,19361566y =⨯=.6162221640816 3.5156ˆ46916356i ii ii x yxy bxx ==--⨯⨯===-⨯-∑∑,ˆˆ15646 3.55ay bx =-=-⨯=-. y ∴关于x 的线性回归方程为ˆ465y x =-.1x =时,ˆ41y=,2x =时,ˆ87y =,3x =时,ˆ133y =, 4x =时,ˆ179y=,5x =时,ˆ225y =,6x =时,ˆ271y =. 621()556ii i yy =-=∑.6221621()556110.9737586()ii i ii yy R yy ==-=-=-≈-∑∑, 相关指数2R 近似为0.97,接近1,说明拟合效果较好; (2)在(1)中求得的线性回归方程中,取9x =, 可得ˆ4695409y=⨯-=. 故若要求在2022年小区停车位数量仍可满足需要,则至少需要规划409个停车位. 【点睛】本题考查线性回归方程与相关指数的求法,考查运算求解能力,属于中档题. 23.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45, 设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅=⎪⎝⎭; ()()()()()2012224321*********555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅=⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅=⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭. 故所求ξ的分布列为()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时. 【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑122216153 3.67ˆ0.7555310ni ii ni i x y nx yxbx n ==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx =-=-⨯=, 所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =. 所以当15x =时细菌个数为12个. 【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题.25.(1)中位数为71.4;平均数为71;(2)平均数为90;标准差为53)3700元.【分析】(1)利用频率分布直方图能求出中位数、平均分;(2)由题意,求出剩余8个分数的平均值,由10个分数的标准差,能求出剩余8个分数的标准差;(3)求出将3座教学楼完全包裹的球的最小直径、将一座教学楼完全包裹的球的最小直径和将1号教学楼与2号教学楼完全包裹的球的最小直径,由此能求出让各教学楼均被屏蔽仪信号完全覆盖的最小花费. 【详解】(1)因为0.050.150.250.450.5++=<0.050.150.250.350.80.5+++=> 所以中位数为x 满足7080x <<由80()0.350.10.10.510x -⨯++=,解得608071.47x =-≈ 设平均分为y ,则0.05450.15550.25650.35750.1850.19571y =⨯+⨯+⨯+⨯+⨯+⨯=(2)由题意,剩余8个分数的平均值为01010080908x x --==因为10个分数的标准差6s ==所以2222110...10(6)10(90)81360x x ++=⨯+⨯=所以剩余8个分数的标准差为0s ===(3)将3座教学楼完全包裹的球的最小直径为:210=<=因此若用一个覆盖半径为105米的屏蔽仪则总费用为4100元;70<= 因此若用3个覆盖半径为35米的屏蔽仪则总费用为4800元; 将1号教学楼与2号教学楼完全包裹的球的最小直径为:110=<=70>=因此若用1个覆盖半径为55米和1个覆盖半径为35米的屏蔽仪则总费用为3700元; 所以,让各教学楼均被屏蔽仪信号完全覆盖的最小花费为3700元. 【点睛】本题考查中位数、平均数、标准差、最小费用的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是中档题.26.(1)分布列见解析,1;(2)0.10=P ,理由见解析. 【分析】(1)按照分层抽样计算“科学用眼”和“不科学用眼”的抽取人数,随机变量X 的取值可能为0,1,2,然后计算概率得出分布列及其数学期望; (2)按照公式计算2K 的值,然后由临界值表得出结果即可. 【详解】(1)“科学用眼”抽156245⨯=人,“不科学用眼”抽306445⨯=人,则随机变量X0=,1,2,∴343641(0)205====CP XC,122436123(1)205C CP XC====,21243641(2)205C CP XC====,分布列为:0120121555EX=⨯+⨯+⨯=;(2)22100(45153010)3.03075255545⨯-⨯=≈⨯⨯⨯K,由表可知2.706 3.030 3.840<<,∴0.10=P.【点睛】本题考查随机变量的分布列和数学期望,考查独立性检验,考查逻辑思维能力和计算能力,考查学生分析解决问题的能力,属于常考题.。
【沪科版】高中数学必修三期末试题(及答案)(4)
一、选择题1.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率( ) A .110B .310C .12D .7102.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .4133.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I 卷,全国II 卷,全国III 卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为( )A .184B .142 C .128 D .1144.在编号分别为(0,1,2,,1)i i n =⋅⋅⋅-的n 名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n 所得的余数如果恰好为i ,则选编号为i 的同学.下列哪种情况是不公平的挑选方法( ) A .2n =B .3n =C .4n =D .6n =5.执行如图所示的程序框图,则输出的S =( )A .1-B .2-C.2D.1 26.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.25 B.18 C.11 D.37.执行如图所示的程序框图,输出a的值为118,则 的值可以是()A.0.06B.0.03C.0.2D.0.048.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x ,则一开始输入的x的值为( )A.34B.78C.1516D.31329.某校举行演讲比赛,9位评委给选手A打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若统计员计算无误,则数字x应该是()A.5 B.4 C.3 D.210.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()A.成绩B.视力C.智商D.阅读量11.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176, 196的5个人中有1个没有抽到,则这个编号是()A.006 B.041 C.176 D.19612.已知x,y的取值如表:x2678y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 488 932 812 458 989 431 257 390 024 556 734 113 537 569 683 907 966 191 925 271据此估计,这三天中恰有两天下雨的概率近似为__________. 15.已知函数2()22f x x =-M ,(())y f f x =的定义域为P ,在M 上随机取一个数x ,则x P ∈的概率是____________.16.如图是一个算法流程图,若输入x 的值为2,则输出y 的值为_______. .17.根据如图所示的伪代码可知,输出的结果为______.18.执行如图所示的算法框图,若输入的x的值为2,则输出的n的值为__________.19.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约30%的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的13%,只有5%的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.20.一个容量为40的样本,分成若干组,在它的频率分布直方图中,某一组相应的小长方形的面积为0.4,则该组的频数是__________.三、解答题21.在流行病学调查中,潜伏期指自病原体侵入机体至最早临床症状出现之间的一段时间.某地区一研究团队从该地区500名A病毒患者中,按照年龄是否超过60岁进行分层抽样,抽取50人的相关数据,得到如下表格:潜伏期(单位:天)[]0,2(]2,4(]4,6(]6,8(]8,10(]10,12(]12,14人数60岁及以上258752160岁以下0224921(2)以各组的区间中点值为代表,计算50名患者的平均潜伏期(精确到0.1);(3)从样本潜伏期超过10天的患者中随机抽取两人,求这两人中恰好一人潜伏期超过12天的概率.22.某大学综合评价面试测试中,共设置两类考题:A类题有4个不同的小题,B类题有3个不同的小题.某考生从中任抽取3个不同的小题解答.(1)求该考生至少抽取到2个A类题的概率;(2)设所抽取的3个小题中B类题的个数为X,求随机变量X的分布列与均值. 23.设计程序求使1210000n⨯⨯⨯<成立的最大正整数n,并画出程序框图.24.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.25.某地级市共有200000中学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元.经济学家调查发现,当地人均可支配年收入较上一年每增加%n ,一般困难的学生中有3%n 会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有2%n 转为一般困难学生,特别困难的学生中有%n 转为很困难学生.现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x 取13时代表2013年,x 取14时代表2014年,……依此类推,且x 与y (单位:万元)近似满足关系式y x βα=+.(2013年至2019年该市中学生人数大致保持不变)y521()ii yy =-∑51()()iii x x y y =--∑0.8 3.11(1)估计该市2018年人均可支配年收入为多少万元?(2)试问该市2018年的“专项教育基金”的财政预算大约为多少万元?附:对于一组具有线性相关关系的数据11(,)u υ,22(,)u υ,…,(,)n n u υ,其回归直线方程u υβα=+的斜率和截距的最小二乘估计分别为121()()()niii nii u u uu υυβ==--=-∑∑,u αυβ=-.26.某土特产销售总公司为了解其经营状况,调查了其下属各分公司月销售额和利润,得到数据如下表: 分公司名称 雅雨 雅雨 雅女 雅竹 雅茶 月销售额(x 万元35679在统计中发现月销售额x 和月利润额y 具有线性相关关系.(Ⅰ)根据如下的参考公式与参考数据,求月利润y 与月销售额x 之间的线性回归方程; (Ⅱ)若该总公司还有一个分公司“雅果”月销售额为10万元,试求估计它的月利润额是多少?(参考公式:1221ni i i n i i x y nx y b x nx==-⋅=-∑∑,a y b x =-,其中:1112ni ii x y ==∑,21200)nii x==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()1,3,5、()1,3,7、()1,3,9、()1,5,7、()1,5,9、()1,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故选:B . 【点睛】本题考查古典概型的概率计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.2.A解析:A 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即BC =,设DEF 的面积为1S ,ABC 的面积为2S因为DEF 与ABC 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A 【点睛】1.本题考查的是几何概型中的面积型,较简单2.相似三角形的面积之比等于相似比的平方.3.D解析:D 【分析】先计算出9套题中选出3套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案. 【详解】通过题意,可知从这9套题中选出3套试卷共有39=84C 种可能,而3套题年份和编号都各不相同共有336A =种可能,于是所求概率为61=8414.选D. 【点睛】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大.4.C解析:C 【分析】首先求出两枚骰子的点数之和可能的取值对应的概率,再分别讨论四个选项中n 的取值对应的余数的概率,若每一个余数的概率都相等则是公平的,若不相等则不公平,即可得正确选项. 【详解】由题意知两枚骰子的点数之和为X ,则X 可能为2,3,4,5,6,7,8,9,10,11,12,()1236P X ==, ()2336P X ==,()3436P X ==,()4536P X ==,()5636P X == ()6736P X ==,()5836P X ==,()4936P X ==,()31036P X ==,()21136P X ==,()11236P X ==, 对于选项A :2n =时,0,1,i = ()1351023636362P i ⎛⎫==++⨯= ⎪⎝⎭,()246421136363636362P i ==++++=,所以2n =是公平的,故选项A 不正确; 对于选项B :3n =时,0,1,2i =,()254110363636363P i ==+++=,()363113636363P i ==++=, ()145212363636363P i ==+++=,所以3n =是公平的,故选项B 不正确; 对于选项C :4n =时,0,1,2,3i = ()351103636364P i ==++=,()442136369P i ==+=, ()153123636364P i ==++=,()2625336363618P i ==++= 因为概率不相等,所以4n =不公平,故选项C 正确; 对于选项D :6n =时,0,1,2,3,4,5i = ()511036366P i ==+=,()611366P i ===,()151236366P i ==+=, ()241336366P i ==+=,()331436366P i ==+=,()421536366P i ==+=, 所以6n =是公平的,故选项D 不正确, 故选:C 【点睛】关键点点睛:本题解题的关键点是理解题意,对于所给n 的值的每一个余数出现的概率相等即为公平,不相等即为不公平.5.D解析:D 【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值. 【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=;第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D. 【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.6.C解析:C 【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案. 【详解】模拟执行程序框图,可得:1,1,1a b n ===, 第1次循环,可得3,1,3,2S a b n ====; 第2次循环,可得5,3,5,3S a b n ====; 第3次循环,可得11,5,11,4S a b n ====, 满足判断条件,输出11S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题.7.C解析:C 【分析】该程序是二分法求方程的近似解的方法,模拟执行程序框图,计算端点处的函数值,再由中点处的函数值,结合函数零点存在定理,即可得到所求值. 【详解】解:该程序是二分法求方程的近似根的方法, 由流程图可得()1120g =-<,()20f >,可得32m =,302f ⎛⎫< ⎪⎝⎭, 可得方程的根介于(1,2),进而介于31,2⎛⎫⎪⎝⎭,由52520416f ⎛⎫=-< ⎪⎝⎭,可得方程的根介于5(4,3)2, 由118m =,1112120864f ⎛⎫=-< ⎪⎝⎭,可得方程的根介于11(8,3)2,由31110.2288-=<,可得输出的值为118, 故选:C . 【点睛】本题主要考查了程序框图和算法的应用,模拟执行程序框图,考查二分法求方程近似值的方法,属于基础题.8.B解析:B 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案. 【详解】本题由于已知输出时x 的值,因此可以逆向求解: 输出0x =,此时4i =; 上一步:1210,2x x -==,此时3i =; 上一步:1321,24x x -==,此时2i =; 上一步:3721,48x x -==,此时1i =; 故选:B . 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.9.D解析:D 【解析】记分员在去掉一个最高分94和一个最低分87后,余下的7个数字的平均数是91,()89889290939291791x +++++++÷=,635=917=6372x x ,∴+⨯∴=,故选D.10.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确. 考点:独立性检验.11.B解析:B 【解析】 【分析】求得抽样的间隔为10,得出若在第1组中抽取的数字为6,则抽取的号码满足104n -,即可出判定,得到答案. 【详解】由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为2001020=, 若在第1组中抽取的数字为006,则抽取的号码满足6(1)10104n n +-⨯=-,其中n N +∈,其中当4n =时,抽取的号码为36;当18n =时,抽取的号码为176;当20n =时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B. 【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的抽取方法是解答的关键,着重考查了运算与求解能力,属于基础题.12.B解析:B 【解析】 【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标. 【详解】 根据题意可得,,由线性回归方程一定过样本中心点,.故选:B . 【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.二、填空题13.②④【分析】根据题意结合古典概型的概率计算公式逐项进行判定即可求解【详解】设申请法学院的男生人数为女生人数为则法学院的录取率为设申请商学院的男生人数为女生人数为则商学院的录取率为由该值的正负不确定所解析:②④ 【分析】根据题意,结合古典概型的概率计算公式,逐项进行判定,即可求解. 【详解】设申请法学院的男生人数为x ,女生人数为y ,则200x y +=,法学院的录取率为0.50.70.50.7(200)0.70.001200200x y x x x ++⨯-==-,设申请商学院的男生人数为m ,女生人数为n ,则300m n +=,商学院的录取率为0.60.90.60.9(300)0.90.001200200m n m m m ++⨯-==-,由()()0.90.0010.70.0010.20.001()0.001(200)m x m x m x ---=--=-+, 该值的正负不确定,所以①错误,④正确; 这两个学院所有男生的录取率为0.50.6x mx m++,这两个学院所有女生的录取率为0.70.9y ny n++,因为0.50.60.70.90.20.40.10.30()()x m y n xy xn my nmx m y n x m y n +++++-=<++++,所以②正确;③错误. 故答案为:②④. 【点睛】本题主要考查了古典概型的概率公式的应用,其中解答中正确理解题意,结合古典概型的概率计算公式求得相应的概率是解答的关键,着重考查数学阅读能力,属于基础题.14.3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数根据概率公式得到结果【详解】由题意知模拟三天的下雨情况经随机模拟产生了20组随机数在20组随机数中表示三天中恰有两天下雨解析:3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数,根据概率公式,得到结果. 【详解】由题意知模拟三天的下雨情况,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:932、812、024、734、191、271,共6组随机数,∴所求概率为60.320P ==. 故答案为:0.3 【点睛】本题主要考查了模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用,属于中档题.15.【分析】根据函数解析式可求得定义域和的定义域即可由几何概型概率求解【详解】函数的定义域为则的定义域为即解得即根据几何概型的概率计算公式得故答案为:【点睛】本题考查了函数定义域的求法复合函数定义域的求解析:22- 【分析】根据函数解析式,可求得()f x 定义域M 和(())y f f x =的定义域P ,即可由几何概型概率求解. 【详解】函数()f x =M ,则[1,1]M =-,(())y f f x =的定义域为P[]1,1-,解得1,22x ⎡⎤∈--⋃⎢⎥⎣⎦⎣⎦,即1,P ⎡⎤=-⋃⎢⎥⎣⎦⎣⎦.根据几何概型的概率计算公式得21222⎛⨯- ⎝⎭=.故答案为:22-. 【点睛】本题考查了函数定义域的求法,复合函数定义域的求法,几何概型概率求法,属于中档题.16.5【分析】直接模拟程序即可得结论【详解】输入的值为2不满足所以故答案是:5【点睛】该题考查的是有关程序框图的问题涉及到的知识点有程序框图的输出结果的求解属于简单题目解析:5 【分析】直接模拟程序即可得结论. 【详解】输入x 的值为2,不满足1x ≤,所以3325y x =+=+=, 故答案是:5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有程序框图的输出结果的求解,属于简单题目.17.72【分析】模拟程序的运行依次写出每次循环得到的的值可得当时不满足条件退出循环输出的值为72【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循环体;满足条件执行循环体;满足条件执行循环体;不解析:72 【分析】模拟程序的运行,依次写出每次循环得到的S i ,的值,可得当9i = 时不满足条件8i <,退出循环,输出S 的值为72. 【详解】模拟程序的运行,可得10,i S ==, 满足条件8i <,执行循环体,39;i S ==,满足条件8i <,执行循环体,524i S ==, ; 满足条件8i <,执行循环体,745i S ==, ; 满足条件8i <,执行循环体,9i =,72S =; 不满足条件8i <,退出循环,输出S 的值为72, 故答案为72 【点睛】本题考查循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟执行程序的方法解决,属于基础题.18.2【解析】当x=2时x2﹣4x+3=﹣1<0满足继续循环的条件故x=3n=1;当x=3时x2﹣4x+3=0满足继续循环的条件故x=4n=2;当x=4时x2﹣4x+3=3>0不满足继续循环的条件故输出解析:2 【解析】当x=2时,x 2﹣4x+3=﹣1<0,满足继续循环的条件,故x=3,n=1; 当x=3时,x 2﹣4x+3=0,满足继续循环的条件,故x=4,n=2; 当x=4时,x 2﹣4x+3=3>0,不满足继续循环的条件, 故输出的n 值为2; 故答案为2.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.19.20【分析】设美国学者认为的一代为年然后可得出寿命在的家族企业的频率分别为然后利用平均数公式列方程解出的值即可得出所求结果【详解】设美国学者认为的一代为年然后可得出寿命在的家族企业的频率分别为则家族解析:20 【分析】设美国学者认为的一代为x 年,然后可得出寿命在(]0,x 、(],2x x 、(]2,3x x 、(]3,4x x 的家族企业的频率分别为0.52、0.3、0.13、0.05,然后利用平均数公式列方程解出x 的值,即可得出所求结果. 【详解】设美国学者认为的一代为x 年,然后可得出寿命在(]0,x 、(],2x x 、(]2,3x x 、(]3,4x x 的家族企业的频率分别为0.52、0.3、0.13、0.05, 则家族企业的平均寿命为0.5(10.30.130.05) 1.50.3 2.50.13 3.50.0512.124x x x x x ⨯---+⨯+⨯+⨯==,解得20x ≈,因此,美国学者认为“一代”应为20年,故答案为20. 【点睛】本题考查平均数公式的应用,解题的关键要审清题意,将题中一些关键信息和数据收集起来,结合相应的条件或公式列等式或代数式进行求解,考查运算求解能力,属于中等题.20.16【解析】根据频率直方图的含义每组小矩形的面积就是该组数据在总体中出现的频率所以该组频数为故填16解析:16 【解析】根据频率直方图的含义,每组小矩形的面积就是该组数据在总体中出现的频率,所以该组频数为400.4=16⨯,故填16.三、解答题21.(1)200(2)10.4(天)(3)815【分析】(1)求出调查的50名A 病毒患者中,年龄在60岁以下的有20人,即得解; (2)利用平均数公式计算即得解;(3)利用古典概型的概率公式求解即可. 【详解】(1)调查的50名A 病毒患者中,年龄在60岁以下的有20人, 因此该地区A 病毒患者中,60岁以下的人数估计有2050020050⨯=人.(2)()11123751071191411413251810.45050x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=(天)(3)样本潜伏期超过10天的患者共六人,其中潜伏期在10~12天的四人编号为:1,2,3,4,潜伏期超过12天的两人编号为:5,6,从六人中抽取两人包括15个基本事件:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.记事件“恰好一人潜伏期超过12天”为事件A ,则事件A 包括8个, 所以8()15P A =. 【点睛】本题主要考查古典概型的概率公式,考查平均数的计算,意在考查学生对这些知识的理解掌握水平. 22.(1)2235;(2)分布列见解析,97EX = 【分析】(1)利用古典概率与互斥事件概率计算公式即可得出.(2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.利用超几何分布列计算公式即可得出. 【详解】(1)该考生至少抽取到2个A 类题的概率213434372235P +==. (2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.34374(0)35P X ===, 21433718(1)35P X ===, 12433712(2)35P X ===, 33371(3)35P X ===, ∴随机变量X 的分布列为:均值0123353535357EX =⨯+⨯+⨯+⨯=.【点睛】本题考查古典概率与互斥事件概率计算公式、超几何分布列计算公式及其数学期望计算公式,考查推理能力与计算能力.23.见解析【分析】根据题目要求,设计出对应的程序框图,并写出程序.【详解】程序框图如图所示:程序如下:S=1n=1WHILE S<10000S=S*nn=n+1WENDPRINT n–2END【点睛】本小题主要考查设计程序框图并写出对应的程序,属于基础题.24.(1) ①处应填;②处应填 (2)见解析【解析】分析:(1)由已知中程序的功能是给出个数,其规律是:第个数是;第个数是;第个数比第个数大,第个数比第大,,依次类推,要计算区间个数的和,可以根据循环此时,循环变量的初值、步长计算出循环变量的终值,得到①中的条件;再根据累加的变化规律,得到②中累加通项的表达式;(2)利用直到型循环结构,写出程序.详解:(1)因为是求30个数的和,故循环体应执行30次,其中是计数变量,因此判断框内的条件就是限制计数变量的,故应为,算法中的变量实质是表示参与求和的各个数,由于它也是变化的,且满足第个数比其前一个数大,第个数比其前一个数大,故应有,故①处应填;②处应填. (2)根据框图,写出算法如下:点睛:本题主要考查了直到型的循环结构的算法框图,解答中循环体的循环次数=(循环终值-初值)+步长+1,确定循环的次数,其中循环次数、终值、初值、步长中,能知道其中的三个可求解另一个,对于循环结构的程序框图,判断框内的内容容易出错,做题时要注意,同时注意循环点所在的位置.25.(1) 0.10.7y x =-;(2)1624万元.【解析】分析:(1)根据表中数据,求出x ,代入公式求值,从而得到回归直线方程,代入18x =即可;(2)通过由题意知2017年时该市享受“国家精准扶贫”政策的学生共2000007%14000⨯=人.一般困难、很困难、特别困难的中学生依次有7000人、4200人、2800人,按照增长比例关系求解2017年时该市享受“国家精准扶贫”政策的学生,即可得财政预算.详解:(1)因为()11314151617155x =++++=,所以()()5222221()211210i i x x =-=-+-++=∑. 所以()()()515210ˆ.1i ii i i x x y y x x β==--==-∑∑, 0.80.1150.ˆ7ˆy x αβ=-=-⨯=-,所以0.1.7ˆ0y x =-. 当18x =时,2018年人均可支配年收入0.1180.7ˆ 1.1y=⨯-=(万元). (2)由题意知2017年时该市享受“国家精准扶贫”政策的学生共2000007%14000⨯=人. 一般困难、很困难、特别困难的中学生依次有7000人、4200人、2800人,2018年人均可支配收入比2017年增长()()0.1180.70.1170.70.110%0.1170.7⨯--⨯-==⨯-. 所以2018年该市特别困难的中学生有()2800110%2520⨯-=人,很困难的学生有()4200120%280010%3640⨯-+⨯=人,一般困难的学生有()7000130%420020%5740⨯-+⨯=人.所以2018年的“专项教育基金”的财政预算大约为57400.136400.1525200.21624⨯+⨯+⨯=(万元).点睛:本题考查了线性回归方程的求法及应用.26.(1)ˆ0.50.4yx =+(2)5.4万元 【解析】试题分析:(1)首先由题意求得平均数6, 3.4x y ==,然后利用系数公式计算可得回归方程为0.5.4ˆ0yx =+ . (2)由题意结合(1)中的结论预测可得“雅果”分公司的月利润额是5.4万元. 试题(Ⅰ) 由已知数据计算得:5n =,6, 3.4x y ==1221511256 3.40.5,20056653.40.560.4n i ii n i i x y xy b x x a ==--⨯⨯===-⨯⨯-=-⨯=∑∑∴线性回归方程为0.5.4ˆ0yx =+ (Ⅱ)将x =10代入线性回归方程中得到0.5100.4ˆ 5.4y=⨯+=(万元) ∴估计“雅果”分公司的月利润额是5.4万元。
高中数学必修三全册练习题
本册综合素能检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各项中最小的数是( ) A .111111(2) B .20106 C .1000(4) D .101(8)[答案] A[解析] 111111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63,210(6)=2×62+1×61+0×60=78,1000(4)=1×43+0×42+0×41+0×40=64,101(8)=1×82+0×81+1×80=65,故最小的数为111111(2).2.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样抽取,则不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,则n 的值为( )A .6B .12C .18D .3 [答案] A[解析] 由于要用分层抽样三层之比为123,因此,凡为6的整倍数,又样本容量增加1时需要删除1人,所以35n +1为整数,因此n =6,故选A.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色’’与“乙分得红色”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件[答案] C[解析] 甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.4.在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概( )A.16B.13C.23D.45[答案] C[解析] 设AC =x cm ,则BC =(12-x )cm(0<x <12).面积S =x ·(12-x )>20,解得2<x <10,∴矩形面积大于20 cm 2的概率为10-212=23.故选C.5.某程序框图如图所示,现输入选项中的四个函数,则可以输出的是( )A .f (x )=|x |xB .f (x )=ln(x 2+1-x )C .f (x )=e x +e -xe x -e -xD .f (x )=x 21+x 4[答案] B[解析] 由框图知f (x )应满足:奇函数,有零点.A 中的函数不能输出,因为此函数没班级:_________姓名:_________学号:______-----------------------------密--------------------------------------封-----------------------------------线-------------------------------有零点;B 中函数可以输出;C 中函数不存在零点,故不能输出;D 中函数为偶函数,也不能输出,故选B.6.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别a 1,a 2,则一定有( )A .a 1>a 2B .a 1<a 2C .a 1=a 2D .a 1,a 2的大小与m 的值有关 [答案] B[解析] 去掉一个最高分和一个最低分后,甲选手得分是81,85,85,84,85,则平均数是a 1=15(81+85+85+84+85)=84;乙选后得分是84,84,86,84,87,则平均数是a 2=15(84+84+86+84+87)=85>84,所以a 1<a 2.7.(2014·浙江)在3张奖卷中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是( )A.16B.13C.12D.23[答案] B[解析] 设三张卷分别用A ,B ,C 代替,A 一等奖;B 二等奖;C 无奖,甲、乙各抽一张共包括(A ,B ),(A ,C ),(B ,A ),(B ,C ),(C ,A ),(C ,B )6种基本事件,其中甲、乙都中奖包括两种,P =26=13,故选B.8.(2015·江苏卷)根据如图所示的伪代码,可知输出的结果S 为( )A .7B .5C .9D .11[答案] A[解析] 第一次循环:S =3,I =4;第二次循环:S =5,I =7;第三次循环:S =7,I=10;结束循环,输出S =7.9.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A.x ,s 2 B .5x +2,s 2 C .5x +2,25s 2 D.x ,25s 2[答案] C[解析] 本题考查平均数与方差的计算公式.由平均数与方差的计算公式分析可得5x 1+2,5x 2+2,…,5x n +2的平均数为5x +2,方差为25s 2,故选C.10.(2015·广东佛山高三教学质量检测(一))某程序框图如下图所示,该程序运行后输出的S 的值是( )A .-3B .-12C.13 D .2[答案] A[解析] 该程序框图的运行过程是: S =2,i =1,i =1≤2 010成立, S =1+21-2=-3; i =1+1=2,i =2≤2 010成立, S =1+(-3)1-(-3)=-12;i =2+1=3,i =3≤2010成立, S =1+(-12)1-(-12)=13;i =3+1=4, i =4≤2 010成立; S =1+131-13=2;i =4+1=5, …….对于判断框内i 的值,n ∈N ,当i =4n +1时,S =2;当i =4n +2时,S =-3;当i =4n +3时,S =-12;当i =4n +4时,S =13.由于2 010=4×502+2,则S =-3.该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止,即i =2 011时开始不成立,输出S =-3.11.(2015·石家庄模拟)从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高 x (cm) 160 165 170 175 180 体重y (kg)6366707274根据上表可得回归直线方程y ^=0.56x +a ^,据此模型预报身高为172 cm 的高三男生的体重为( )A .70.09B .70.12C .70.55D .71.05[答案] B[解析] 由表中数据得x =160+165+170+175+1805=170,y =63+66+70+72+745=69.将(x ,y )代入y ^=0.56x +a ^,∴69=0.56×170+a ^,∴a ^=-26.2,∴y ^=0.56x -26.2. ∴当x =172时,y =70.12,故选B.12.(2015·全国卷)根据下面给出的2004年至2003年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 [答案] D[解析] 由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2012·江苏高考卷)某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[答案]15[解析]由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.102,238的最大公约数是________.[答案]34[解析]利用辗转相除法或更相减损术可得最大公约数是34.15.(2014·福建高考)如右图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.[答案]0.18[解析]由题意知,这是个几何概型问题,S阴影S正方形=1801000=0.18.∵S正方形=1,∴S阴影=0.18.16.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员12345 6三分球个数a1a2a3a4a5a6下图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填________,输出的s=________.[答案]i≤6?(i<7?)a1+a2+a3+a4+a5+a6[解析]由题意可知,程序框图是要统计6名队员投进的三分球的总数,由程序框图的循环逻辑知识可知,判断框应填i≤6?,输出的结果就是6名队员投进的三分球的总数,而6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6,故输出的s=a1+a2+…+a6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2014·山东)海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50150100(1)求这6件样品中来自A、B、C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.[解析](1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品的比例为:AB C=50150100=13 2各地区抽取的商品数分别别为A:6×16=1;B:6×36=3;C:6×26=2.(2)设各地商品分别为A、B1、B2、B3、C1、C2所以所含基本事件共有(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2)15种不同情况,样本事件包括(B1,B2),(B1,B3),(B2,B3),(C1,C2)4种情况.所以,这两件商品来自同一地区的概率为P =415.18.(本小题满分12分)高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.[解析](1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数为20.08=25.分数在[80,90)之间的频数为25-2-7-10-2=4,频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(2)设“至少有1人分数在[90,100]之间”为事件A,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,根据古典概型概率的计算公式,得P(A)=915=35.[易错点拨]在茎叶图的基础上,计算频率分布直方图中某个小矩形的高是较新颖的命题方式,计算时,要注意理解小矩形的高的意义.对于古典概型的概率的求解很重要的一步是列举基本事件,此时,要注意避免重复与迹漏.19.(本小题满分12分)某城市理论预测2014年到2018年人口总数(单位:十万)与年份的关系如下表所示:年份2014+x 0123 4人口总数y 5781119(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程y^=b^x+a^;(3)据此估计2019年该城市人口总数.(参考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)[解析](1)概据题中数表画出数据的散点图如下图所示.(2)由题中数表,知x=15(0+1+2+3+4)=2,y=15(5+7+8+11+19)=10.所以b=5i=1x i y i-5x-y5i=1x2i-5x-2=3.2,a ^=y -b ^x =3.6.所以回归方程为y ^=3.2x +3.6.(3)当x =5时,y ^=3.2×5+3.6=19.6(十万)=196(万). 答:估计2019年该城市人口总数约为196万.20.(本小题满分12分)(2014·福建)根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085元为中等偏下收入国家;人均GDP 为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:行政区 区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000 E20%10000(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.[解析] (1)设城市人口总数为a ,该城市人均GDP 为:8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10000×0.20aa =6400因为6400∈[4085,12616)所以该城市人均GDP 达到了中等偏上国家标准.(2)从“5个行政区中随机抽取2个”所有的基本事件是:{A ,B },{A ,C },{A ,D },{A ,E },{B ,C },{B ,D },{B ,E },{C ,D },{C ,E },{D ,E },共10种情况,其中2个行政区都达到中等以上国家标准的有{A ,C },{A ,E },{C ,E },共3种情况因此P =310. 21.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.[探究] (1)茎叶图中的数据越集中在上部,则说明该班的平均身高较高;(2)先求出平均数,再代入方差公式即可;(3)写出所有基本事件,再统计基本事件的总数和所求事件包含的基本事件的个数,利用古典概型计算概率.[解析] (1)由题中茎叶图可知:甲班身高集中于160~179 cm 之间,而乙班身高集中于170~180 cm 之间,因此乙班平均身高高于甲班.(2)甲班的平均身高为x =110(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为 s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)设“身高为176 cm 的同学被抽中”的事件为A ,用(x ,y )表示从乙班10名同学中抽中两名身高不低于173 cm 的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有(181,176),(179,176),(178,176),(176,173),共4个基本事件,故P (A )=410=25.22.(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计 1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a 、b 、c ,其中a >0,a +b +c =600.当数据a 、b 、c 的方差s 2最大时,写出a 、b 、c 的值(结论不要求证明),并求出此时s 2的值.[解析] (1)厨余垃圾投放正确的概率为P =“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设“生活垃圾投放错误”为事件A ,则事件A 表示“生活垃圾投放正确”.事件A 的概率为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )=400+240+601 000=710,所以P (A )=1-P (A )=1-710=310.(3)当a =600,b =0,c =0时,方差s 2取得最大值. 因为x =13(a +b +c )=200,所以s 2=13[(600-200)2+(0-200)2+(0-200)2]=80 000.[名题点睛] 本题结合一个特殊设计的表格给出各类数据,显然,可用的与不可用的数据均在表中,合理应用表中的数据是求解本题的关键.在求解事件的概率时,可考虑利用对立事件求解题.在限定条件下,可根据条件及方差公式判断何时“方差最大”,抓住这一关键性的条件,问题就容易解决了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013学年第二学期高一年级数学第一次月考测试
时间:120分钟 满分:120分)
班级: 姓名:
题目 一 二 三 总分 得分
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中只有一个是符合题目要求的)
1.下列说法错误的是 ( ) A.在统计里,把所需考察对象的全体叫做总体 B.一组数据的平均数一定大于这组数据中的每个数
C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势
D.一组数据的标准差越大,说明这组数据的波动越大
2.下列对古典概型的说法中正确的个数是 ( ) ①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等; ③基本事件的总数为n,随机事件A 包含k 个基本事件,则()k P A n
=
; ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4. 3.阅读下面的程序框图,若输入a =6,b =1,则输出的结果是 ( )
A .0
B .1
C .2
D .3
4.执行下面的程序框图,输出的T =( )
A .28
B .29
C .30
D .31
第3题 第4题
5.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为 ( ) A.5,10,15,20 B.2,6,10,14 C.2,4,6,8 D.5,8,11,14
6.某校高一年级教师160人,其中老教师64人,青年教师72人,后勤人员24人。
现从中抽取一个容量为20的样本以了解教师的生活状况,用分层抽样方法抽取的后勤人员数为 A.3人 B.4人 C.7人 D.12人
7.一组数据X 1,X 2,…,X n 的平均数是3,方差是5,则数据3X 1+2,3X 2+2,…,3X n +2 的平均数和方差分别是
A.3 ,5
B.5 ,15
C.11 ,45
D.5 ,45
8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( ) ⑴至少有一个白球,都是白球; ⑵至少有一个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球; ⑷至少有一个白球,都是红球. A.0 B.1 C.2 D.3
9.某产品分一、二、三级,其中只有一级是正品,若生产中出现一级品的概率是0.97,出现二级品的概率是0.02,那么出现二级品或三级品的概率是 ( )
A .0.01
B .0.02
C .0.03
D .0.04
10.四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为 A .4π B .14π- C .8π D .18π-
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 11.把二进制数110110转化为十进制数为____________.
12.已知回归直线方程为y =0.50x-0.801,则x=25时,y 的估计值为__________.
13.具有A 、B 、C 三种性质的总体,其容量为63,将A 、B 、C 三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A 、B 、C 三种元素分别抽取 ___________ .
14.若以连续掷两颗骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2
=16内的概率是______.
三.计算题
15.(本题12分)从高一7、8两个班级中各随机抽取10名学生,他们上个学期末的数学成绩如下:
通过作茎叶图,分析两个班级学生的数学学习情况,并求各组的平均数和众数。
16.(本题15分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:
(1)画出频率分布表,并画出频率分布直方图;
(2)估计纤度落在[1.381.50)
,中的概率及纤度小于1.40的概率是多少?
(3)从频率分布直方图估计出纤度的中位数和平均数.17.(本题13分)为积极配合深圳2011年第26届世界大运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的4名同学中恰有1名男同学的概率;
(2)求当选的4名同学中至少有3名女同学的概率.
18.(本题10分)一只海豚在水池中游弋,水池为长30m,宽20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率.
2012—2013学年第二学期第一次月考测试
高一年级数学试题答题卡
16.(本题15分)
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出
的四个选项中只有一个是符合题目要求的)
在题中横线上)
11. 12.
13. 14.
三、解答题(本大题共4个大题,共50分,解答应写出文字说明,证明
过程或演算步骤)
15.(本题12分)
17.(本题13分)18.(本题10分)。