平行四边形综合提高练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
E
D
C
B
A
平行四边形综合提高
一 利用平行四边形的性质进行角度、线段的计算
1、如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60o
,则∠B =_______;若BC =4cm ,AB =3cm
,则AF =___________,□ABCD 的面积为_________. 2 已知
ABCD 的周长为32cm,对角线AC 、BD 交于点O ,△AOB 的周长比△BOC 的周长多4cm ,求
这个四边形的各边长。
二、利用平行四边形的性质证线段相等
3、如图,在□ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .那么OE 与OF 是否相等?为什么?
三 直接利用平行四边形的判定和性质
4、如图在ABCD 中,E 、F 分别是AD 、BC 的中点,AF 与EB 交于点G ,CE 与DF 交于点H ,试说明四边形EGFH 的形状。
5、如图,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于点F ,求证:四边形AECF 为平行四边形。
H
G
A
B
D
C
E
A
B
D
C
E
F
四 构造平行四边形解题
6、如图2-33所示.Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,BG 平分∠ABC ,EF ∥BC 且交AC 于F . 求证:AE=CF .
7、已知,如图,AD 为△ABC 的中线,E 为AC 上一点,连结BE 交AD 于点F ,且AE=FE ,求证:BF=AC
[能力提高]
1、如图2-39所示.在平行四边形ABCD 中,△ABE 和△BCF 都是等边三角形. 求证:△DEF 是等边三角形.
2、如图2-32所示.在ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:EF 与MN 互相平分.
F
B
C E D
3、 如图2-34所示.ABCD 中,DE ⊥AB 于E ,BM=MC=DC .求证:∠EMC=3∠BEM .
4 如图2-35所示.矩形ABCD 中,CE ⊥BD 于E ,AF 平分∠BAD 交EC 延长线于F .求证:CA=CF .
[创新思维]
1、以△ABC 的三条边为边在BC 的同侧作等边△ABP 、等边△ACQ 、等边△BCR , 求证:四边形PAQR 为平行四边形。
2.如图2-40所示.ABCD 中,AF 平分∠BAD 交BC 于F ,DE ⊥AF 交CB 于E .求证:BE=CF .
3、已知:如图4-12,
ABCD 中,AE ⊥BD ,CF ⊥BD ,M ,N 分别是AD ,BC 的中点.
求证:四边形MENF 是平行四边形.
4.已知:如图4-23,P 是等边△ABC 一点,PD ∥AB ,PE ∥BC ,PF ∥AC .求证:PD+PE+PF 为定值.
A F B
C
D
E P
5.在等腰△ABC中,AB=AC,点D是直线BC上一点,DE∥AC交直线AB于E,DF∥AB交直线AC于
点F,解答下列各问:
(1)如图1,当点D在线段BC上时,有DE+DF=AB,请你说明理由;(6分)
(2)如图2,当点D在线段BC的延长线上时,请你参考(1)画出正确的图形,并写出线段DE、DF、AB之间的关系并加以证明.
(图1) (图2)
6.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.
7、已知:如图,在□ABCD中,AE⊥AD交BD于E.若CD=DE
2
1
,求证:∠ADB=
2
1
∠BDC
8、已知:如图4-21,在ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.
1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.
(1)求证:BE=DF;
(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).
D
C
A
B
E
D
A
B
C
F
E
D
C
B
A
2.(2011•)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.
求证:四边形ABCD是平行四边形.
3.(2011•)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.
(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
4.(2011•地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.
5.(2011•)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.
6.(2010•州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.