天然气压缩机能耗效率计算分析软件

合集下载

ARIEL JGD 6型压缩机性能计算与优化运行说明书

ARIEL JGD 6型压缩机性能计算与优化运行说明书

#38#2011年第2期(总226期)参考文献:[1]郁永章.容积式压缩机技术手册[M].北京:机械工业出版社,2000.[2]谢长豪.压缩空气手册[M].上海:阿特拉斯#科普柯(中国/香港)有限公司出版,1998.作者简介:周耘(1977-),男,工程师,1998年毕业于扬州大学,现就职于无锡压缩机股份有限公司技术中心,一直从事压缩机的设计开发和技术管理工作。

文章编号:1006-2971(2011)02-0038-05J GD/6压缩机性能计算与优化运行李彩霞,吴松,孙静伟(中国石油冀东油田油气集输公司,河北唐海,063200)摘要:介绍了美国AR IEL公司J GD/6型压缩机,阐述了该压缩机性能核算的理论依据,并根据现场天然气实际组份和工艺参数,利用性能核算软件对该压缩机进行了不同工况性能核算,总结出了该压缩机的性能规律,又根据核算结果对压缩机运行方案进行优化,为该压缩机的安全、经济运行提供了参考依据。

关键词:压缩机;性能计算;优化运行中图分类号:TH457文献标志码:AThe P erformance Co mputation and Optim izationO peration of J GD/6Co mpressorL I C a-i x ia,WU Song,SUN Jing-w ei(O il and Gas Gathering and T ransferr i ng Co mp any of J i dong O il F ield of P etroch i na,T anghai063200,China)A bstrac t:Th is article has i ntroduced the J GD/6compresso r made i n AR I EL co m pany o fU.S.A.A nd the t heoryfoundati on of perfor m ance check for t h is co m pressor is spec ifi ed.A ccordi ng to t he actua l constituents o f fieldnatura l gas and process para m eters,the perfor m ance check f o r t h i s compresso r is per f o r m ed under d ifferent ope r-a ti on performance by usi ng the perfor m ance check soft w are and the perfor m ance rules are su mm ar i zed.Based ont he check results,t he ope ra ting project o f th i s com pressor i s to be opti m ized,which prov ides reference basis fort he compresso r opera ti ng in safe t y and econom i ca l cond iti on.K ey word s:co m pressor;performance computati on;opti m izati on operati on1原料气压缩机概述冀东南堡联合站的天然气处理装置,设计处理量为135@104m3/d,天然气(原料气)增压压缩机采用美国AR I EL公司的J GD/6型往复式压缩机,电机驱动。

20多种能耗分析软件的比较

20多种能耗分析软件的比较

CONTRASTING THE CAPABILITIES OF BUILDING ENERGY PERFORMANCE SIMULATION PROGRAMSA Joint Report byDrury B. Crawley U S Department of Energy Washington, DC, USA Jon W. Hand Energy Systems Research Unit University of Strathclyde Glasgow, Scotland, UK Michal Kummert University of Wisconsin-Madison Solar Energy Laboratory Madison, Wisconsin, USA Brent T. Griffith National Renewable Energy Laboratory Golden, Colorado, USAVERSION 1.0 JULY 2005NOTICEThis report is sponsored jointly by the United States Department of Energy, University of Strathclyde, and University of Wisconsin. None of the sponsoring organizations, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by any of the sponsoring organizations. The views and opinions of authors expressed herein do not necessarily state or reflect those of the sponsoring organizations.iiContrasting the Capabilities of Building Energy Performance Simulation ProgramsTABLE OF CONTENTSABSTRACT............................................................................................................................................................ 1 OVERVIEW OF THE TWENTY SIMULATION PROGRAMS.......................................................................... 2 BLAST................................................................................................................................................................ 2 BSim ................................................................................................................................................................... 3 DeST ................................................................................................................................................................... 3 DOE-2.1E ........................................................................................................................................................... 4 ECOTECT........................................................................................................................................................... 4 Ener-Win............................................................................................................................................................. 5 Energy Express ................................................................................................................................................... 6 Energy-10............................................................................................................................................................ 6 EnergyPlus .......................................................................................................................................................... 6 eQUEST.............................................................................................................................................................. 7 ESP-r................................................................................................................................................................... 8 HAP .................................................................................................................................................................... 8 HEED.................................................................................................................................................................. 8 IDA ICE.............................................................................................................................................................. 9 IES <VE>.......................................................................................................................................................... 10 PowerDomus..................................................................................................................................................... 10 SUNREL ........................................................................................................................................................... 11 Tas..................................................................................................................................................................... 11 TRACE ............................................................................................................................................................. 12 TRNSYS ........................................................................................................................................................... 12 COMPARISON AMONG THE TOOLS.............................................................................................................. 13 CONCLUSIONS .................................................................................................................................................. 15 ACKNOWLEDGEMENTS.................................................................................................................................. 15 REFERENCES ..................................................................................................................................................... 15 ABBREVIATIONS IN THE TABLES ................................................................................................................ 21LIST OF TABLESTable 1 General Modeling Features..................................................................................................................... 22 Table 2 Zone Loads............................................................................................................................................... 24 Table 3 Building Envelope, Daylighting and Solar .............................................................................................. 26 Table 4 Infiltration, Ventilation, Room Air and Multizone Airflow ...................................................................... 30 Table 5 Renewable Energy Systems...................................................................................................................... 31 Table 6 Electrical Systems and Equipment........................................................................................................... 32 Table 7 HVAC Systems ......................................................................................................................................... 33 Table 8 HVAC Equipment..................................................................................................................................... 36 Table 9 Environmental Emissions ........................................................................................................................ 41 Table 10 Climate Data Availability ...................................................................................................................... 42 Table 11 Economic Evaluation............................................................................................................................. 44 Table 12 Results Reporting................................................................................................................................... 45 Table 13 Validation .............................................................................................................................................. 47 Table 14 User Interface, Links to Other Programs, and Availability................................................................... 49iiiCONTRASTING THE CAPABILITIES OF BUILDING ENERGY PERFORMANCE SIMULATION PROGRAMS Drury B. Crawley1, Jon W. Hand2, Michal Kummert3, and Brent T. Griffith4 U S Department of Energy, Washington, DC, USA Energy Systems Research Unit, University of Strathclyde, Glasgow, Scotland, UK 3 University of Wisconsin-Madison, Solar Energy Laboratory, Madison, Wisconsin, USA 4 National Renewable Energy Laboratory, Golden, Colorado, USA2 1ABSTRACTFor the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced, and are in use throughout the building energy community. This report provides an up-to-date comparison of the features and capabilities of twenty major building energy simulation programs: BLAST, BSim, DeST, DOE2.1E, ECOTECT, Ener-Win, Energy Express, Energy-10, EnergyPlus, eQUEST, ESP-r, IDA ICE, IES <VE>, HAP, HEED, PowerDomus, SUNREL, Tas, TRACE and TRNSYS. This comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope, daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability; results reporting; validation; and user interfaces, links to other programs, and availability.INTRODUCTIONOver the past 50 years, literally hundreds of building energy programs have been developed, enhanced, and are in use throughout the building energy community. The core tools in the building energy field are the whole-building energy simulation programs that provide users with key building performance indicators such as energy use and demand, temperature, humidity, and costs. During that time, a number of comparative surveys of energy programs have been published, including: Building Design Tool Council (BDTC 1984, 1985 and Willman 1985): a procedure for evaluating simulation tools as well as a report on ASEAM, CALPAS3, CIRA, and SERIRES. U.S. Army Construction Engineering Research Laboratory (Lawrie et al. 1984): evaluation of available microcomputer energy programs. International Energy Agency Solar Heating and Cooling Programme (IEA SHC) Task 8, Jorgensen (1983): survey of analysis tools; Rittelmann and Ahmed (1985): survey of design tools specifically for passive and hybrid solar low-energy buildings including summary results on more than 230 tools. Matsuo (1985): a survey of available tools in Japan and Asia. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (Degelman and Andrade 1986): bibliography on programs in the areas of heating, ventilating, airconditioning and refrigeration. Building Environmental Performance Analysis Club (Wiltshire and Wright 1989) and UK Department of Energy (Wiltshire and Wright 1987): comparison of three tools. Bonneville Power Administration: comparison of energy software for the Energy Edge new commercial building program (Corson 1990). Ahmad and Szokolay (1993): comparative study of thermal tools used in Australia. Scientific Computing: a series of reviews from 1993 through 1995 in Engineered Systems Magazine (Amistadi 1993, 1995). Kenny and Lewis (1995): survey of available tools for the European Commission. Lighting Design and Application magazine (1996): survey of lighting design software. Lomas, Eppel, Martin and Bloomfield (1994): IEA SHC Task 12 empirical validation of thermal building simulation programs using test room data. U. S. Department of Energy (Crawley 1996): directory of 50 building energy tools developed by DOE1. Aizlewood and Littlefair (1996): survey of the use of daylight prediction models. This report comprised the initial content of the Building Energy Tools Directory launched in August 1996. This webbased directory now contains information on more than 300 tools: 1Version 1.01July 2005Contrasting the Capabilities of Building Energy Performance Simulation Programs Natural Resources Canada (Khemani 1997): directory of more than 100 tools for energy auditing. Underwood (1997): comparison of the results from two programs. Natural Resources Canada (Zmeureanu 1998, Haltrecht et al 1999): evaluation of capabilities of a broad range of simulation engines. IEA SHC Task 21 (de Boer and Erhorn 1999): survey of simple design tools for daylight in buildings including simple formulas, tables, nomographs, diagrams, protractors, software tools, and scale models. Waltz (2000): summary of contact and other basic information about a variety of building energy, life-cycle costing, and utility rate tools. ARTI 21CR (Jacobs and Henderson 2002): survey of user requirements (architectural designers, engineering practitioners, and design/build contractors), review whole building, building envelope, and HVAC component and system simulation and design tools, evaluate existing tools relative to user requirements, and provide recommendations for further tool development. This paper provides an up-to-date comparison of twenty major building energy simulation programs: BLAST, BSim, DeST, DOE-2.1E, ECOTECT, Energy-10, Energy Express, Ener-Win, EnergyPlus, eQUEST, ESP-r, IDA ICE, IES <VE>, HAP, HEED, PowerDomus, SUNREL, Tas, TRACE and TRNSYS. The developers of these programs provided initial detailed information about their tools, extending an earlier paper by Crawley et al. (2004) comparing DOE-2.1E, BLAST, and EnergyPlus. Because the programs differ substantially from DOE-2, BLAST, or EnergyPlus in structure, solution method, and features, the tables were extensively revised and extended. Readers are reminded that the tables are based on vendor-supplied information and only a limited peer review has been undertaken to verify the information supplied. Some of the descriptions within the table employ vendor specific jargon and thus is somewhat opaque to the broader simulation community. One of the findings of this project is that the simulation community is a long way from having a clear language to describe the facilities offered by tools and the entities that are used to define simulation models. As a result the tables are not yet uniform in their treatment of topics. Some vendors included components as separate entries and others preferred a general description of component types. Clearly there is considerable scope for improvement in both the layout of the table and in the clarity of the entries. It is the authors’ hope that this will become a living document that will evolve over time to reflect the evolution of tools and an evolution of the language the community uses to discuss the facilities within tools. This task is beyond the resources of three or four authors. It requires community input that not only holds vendors to account for the veracity of their entries, but injects additional methodologies into the task of tool comparison. This report first provides a brief overview of each of the programs. This is followed by 14 tables which compare the capabilities for each of the twenty simulation programs in the following areas: General Modeling Features, Zone Loads, Building Envelope and Daylighting, Infiltration, Ventilation and Multizone Airflow, Renewable Energy Systems, Electrical Systems and Equipment, HVAC Systems, HVAC Equipment, Environmental Emissions, Economic Evaluation, Climate Data Availability, Results Reporting, Validation, and User Interface, Links to Other Programs, and Availability. The twenty software programs are listed alphabetically in the tables.OVERVIEW OF THE TWENTY SIMULATION PROGRAMSBLAST Version 3.0 Level 334, August 1998 /BLAST The Building Loads Analysis and System Thermodynamics (BLAST) tool (Building Systems Laboratory 1999) is a comprehensive set of programs for predicting energy consumption and energy system performance and cost in buildings. The BLAST program was developed by the U.S. Army Construction Engineering Research Laboratory (USA CERL) and the University of Illinois. BLAST contains three major subprograms: Space Loads Prediction, Air System Simulation, and Central Plant. The Space Loads Prediction subprogram computes hourly space loads in a building based on weather data and user inputs detailing the building construction and operation. The heart of space loads prediction is the room heat balance. For each hour simulated, BLAST performs a heat balance for each surface of each zone described and a heat balance on the room air. The Air System Simulation subprogram uses the computed space loads, weather data, and user inputs describing the building air-handling system to calculate hot water, steam, gas, chilled water, and electric demands of the building and airhandling system. Once zone loads are calculated, they are translated into hot water, steam, chilled water, gas, and electrical demands on a central plant or utility system. This is done by using basic heat and mass balance principles in the system simulation subprogram of BLAST. Once the hotVersion 1.02July 2005Contrasting the Capabilities of Building Energy Performance Simulation Programswater, steam, chilled water, gas, and electrical demands of the building fan systems are known, the central plant must be simulated to determine the building's final purchased electrical power and/or fuel consumption. The Central Plant Simulation subprogram uses weather data, results of the air distribution system simulation, and user inputs describing the central plant to simulate boilers, chillers, on-site power generating equipment and solar energy systems; it computes monthly and annual fuel and electrical power consumption. BLAST can be used to investigate the energy performance of new or retrofit building design options of almost any type and size. In addition to performing peak load (design day) calculations necessary for mechanical equipment design, BLAST also estimates the annual energy performance of the facility, which is essential for the design of solar and total energy (cogeneration) systems and for determining compliance with design energy budgets. BLAST is no longer under development and no new versions have been released since 1998. BSim Version 4.4.12.11 www.bsim.dk BSim (Danish Building Research Institute 2004) is a user-friendly simulation package that provides means for detailed, combined hygrothermal simulations of buildings and constructions. The package comprise several modules: SimView (graphic model editor and input generator), tsbi5 (hygro-thermal building simulation core), SimLight (tool for analyses of daylight conditions in simple rooms), XSun (graphical tool for analyses of direct sunlight and shadowing), SimPV (a simple tool for calculation of the electrical yield from PV systems), NatVent (analyses of single zone natural ventilation) and SimDxf (a simple tool which makes it possible to import CAD drawings in DXF format). Only the most central modules will be described in the following. For further information see Rode and Grau (2003). BSim has been used extensively over the past 20 years, previously under the name tsbi3. Today BSim is the most commonly used tool in Denmark, and with increasing interest abroad, for energy design of buildings and for moisture analysis. The SimView module offers the user advanced opportunities for creating the building geometry and attributing properties to any object of the building model. SimView has an interface split into five frames, four showing different views of the geometry and one showing the model in a hierarchical tree structure. In this way it is easy for the user to identify any model object and make changes to it. The core of the BSim program package is a combined transient thermal and transient indoor humidity and surface humidity simulation module tsbi5. The transient simulation of indoor humidity conditions takes into account the moisture buffer capacity of building components and furnishings and the supply of humidity from indoor activities. XSun is a tool for detailed analyses and simulation of solar radiation through windows and openings in building constructions. Analyses of shadows from remote objects such as neighboring buildings can also be analyzed by using XSun. During thermal simulations with tsbi5, the routines of XSun are used to distribute solar energy to the exact location in the model. Simulations with XSun can be shown as animations of the movements of sunspots in the spaces of the building model. Animations can be saved as standard Windows video sequences and be shown on a PC where BSim has not been installed. DeST Version 2.0, 2005 (Chinese version only) DeST (Designer’s Simulation Toolkits) is a tool for detailed analysis of building thermal processes and HVAC system performance (Chen and Jiang 1999, Zhu and Jiang 2003). It can provide hourly building thermal performance, energy consumption and ratio of loads satisfied by the HVAC systems, and economic cost results base on the user description. Based on these results, designers can choose the best option at different stages in the design process. Prior to 1995, DeST was called BTP (Building Thermal Performance), mainly for building thermal performance analysis (Jiang and Hong 1993). BTP was validated as part of the IEA BESTEST work in early nineties (Eppel 1993). DeST comprises a number of different modules for handling different functions: Medpha (Meteorological Data Producer for HVAC Analysis) (Hong and Jiang 1993), VentPlus (Module for calculation of natural ventilation), Bshadow (module for external shadowing calculation), Lighting (module for indoor lighting calculation), and CABD (Computer Aided Building Description, provides the user interface for DeST, developed based on AutoCAD). BAS (Building Analysis & Simulation) is the core module for building thermal performance calculation. It performs hourly calculations for indoor air temperatures and cooling/heating loads for buildings. BAS adopted the state space solution method for building thermal heat balance equations (Jiang 1982). For each room, DeST takes into account the thermal process of adjacent rooms. DeST can handle complicated buildings of up to 1000 rooms (Hong and Jiang 1997).Version 1.03July 2005Contrasting the Capabilities of Building Energy Performance Simulation ProgramsScheme is the module for analysis of HVAC scheme, such as zoning method, system type selection (VAV, CAV or etc.). A designer provides his scheme (zoning method, system type, etc.) to DeST, DeST can provide the satisfied ratio and energy consumption of this scheme, based on simulation results. By comparing those different design, Designers can obtain an optimized solution for the buildings. DNA (Duct Network Analysis) is the module in DeST to carry out duct network calculations for both system design and validation. AHU (Air Handling Unit) module can provide sufficient hourly data for the designers to validate the selected air handing equipments. And also it provides data needed by CPS module. CPS (Combined Plant Simulation) is a module to carry out cooling/heating plant and water pipe network calculations for both system design and validation, and it provides the consumption of energy sources. EAM (Economic Analysis Model) is a module to carry out the calculations of initial and operating costs of the designed HVAC system. There are five versions in the DeST family: DeSTh (residential buildings), DeST-c (commercial buildings), DeST-e (building evaluation), DeST-r (building ratings) and DeST-s (solar buildings). DeST has been widely used in China for various prestige large structures such as the State Grand Theatre and the State Swimming Centre. DOE-2.1E Version 121, September 2003 DOE-2.1E (Winkelmann et al. 1993) predicts the hourly energy use and energy cost of a building given hourly weather information, a building geometric and HVAC description, and utility rate structure. Using DOE-2.1E, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort and cost-effectiveness. DOE-2.1E has one subprogram for translation of input (BDL Processor), and four simulation subprograms (LOADS, SYSTEMS, PLANT and ECON). LOADS, SYSTEMS and PLANT are executed in sequence, with the output of LOADS becoming the input of SYSTEMS, etc. The output then becomes the input to ECONOMICS. Each of the simulation subprograms also produces printed reports of the results of its calculations. The Building Description Language (BDL) processor reads input data and calculates response factors for the transient heat flow in walls and weighting factors for the thermal response of building spaces. The LOADS simulation subprogram calculates the sensible and latent components of the hourly heating or cooling load for each constant temperature space taking into account weather andVersion 1.0building use patterns. The SYSTEMS subprogram handles secondary systems; PLANT handles primary systems. SYSTEMS calculates the performance of air-side equipment (fans, coils, and ducts); it corrects the constant-temperature loads calculated by the LOADS subprogram by taking into account outside air requirements, hours of equipment operation, equipment control strategies, and thermostat set points. The output of SYSTEMS is air flow and coil loads. PLANT calculates the behavior of boilers, chillers, cooling towers, storage tanks, etc., in satisfying the secondary systems heating and cooling coil loads. It takes into account the part-load characteristics of the primary equipment in order to calculate the fuel and electrical demands of the building. The ECONOMICS subprogram calculates the cost of energy. It can also be used to compare the costbenefits of different building designs or to calculate savings for retrofits to an existing building. DOE-2.1E has been used extensively for more than 25 years for both building design studies, analysis of retrofit opportunities, and for developing and testing building energy standards in the U.S. and around the world. DOE-2.1E has been used in the design or retrofit of thousands of well-known buildings throughout the world. The private sector has adapted DOE-2.1E by creating more than 20 interfaces that make the program easier to use. ECOTECT Version 5.50, April 2005 ECOTECT (Marsh 1996) is a highly visual and interactive complete building design and analysis tool that links a comprehensive 3D modeller with a wide range of performance analysis functions covering thermal, energy, lighting, shading, acoustics, resource use and cost aspects. Whilst its modelling and analysis capabilities can handle geometry of any size and complexity, its main advantage is a focus on feedback at the conceptual building design stages. The intent is to allow designers to take a holistic approach to the building design process making it easier to create a truly low energy building, rather than simply size a HVAC system to cope with a less than optimal design. ECOTECT aims to provide designers with useful performance feedback both interactively and visually. Thus, in addition to standard graph and table-based reports, analysis results can be mapped over building surfaces or displayed directly within the spaces that generated them, giving the designer the best chance of understanding exactly how their building is performing and from that basis make real design improvements. As well as the broad range of internal calculations that ECOTECT can execute, it also imports/exports to a range of more technical and focussed analysisJuly 20054Contrasting the Capabilities of Building Energy Performance Simulation Programsengines, such as Radiance, EnergyPlus, ESP-r, NIST FDS and others -- and for general data import/export facilities, it includes an array of formats suitable for use alongside most leading CAD programs. The recent addition of a comprehensive scripting engine that provides direct access to model geometry and calculation results has made performance based generative design and optimisation a very real option for the environmental engineer/designer who uses ECOTECT. Scripting allows models to be completely interactive and self-generative, automatically controlling and changing any number of parameters, materials, zone stettings or even geometry during calculations or as the user specifies—and at a more day-to-day level the scripting functions are excellent for automating the more mundane tasks involved in calculation runs, results comparison and report creation. ECOTECT is unique within the field of building analysis in that it is entirely designed and written by architects and intended mainly for use by architects—although the software is quickly gaining popularity through the wider environmental building design community. Ener-Win Version EC, June 2005 /enerwin Ener-Win, originally developed at Texas A&M University, is an hourly energy simulation model for assessing annual energy consumption in buildings. The software produces annual and monthly energy consumption, peak demand charges, peak heating and cooling loads, solar heating fraction through glazing, daylighting contribution, and a life-cycle cost analysis. Design data, tabulated by zones, also show duct sizes and electric power requirements. The Ener-Win software is composed of several modules — an interface module, a weather data retrieval module, a sketching module, and an energy simulation module. Ener-Win requires only three basic inputs: (1) the building type, (2) the building’s location, and (3) the building’s geometrical data. Default data derived from the initial inputs include economics parameters, number of occupied days and holidays, occupancy, hot water usage, lighting power densities, HVAC system types and schedules for hourly temperature settings, lighting use, ventilation and occupancy. Weather data generation is done hour-by-hour (Degelman 1990) based on statistical monthly means and standard deviations derived from the World Meteorological Organization and the National Solar Radiation Data Base from a 30-year period of record. The database currently contains 1280 cities. As an alternative, the user may elect to enter typical weather data from files such as TMY2 or WYEC2. The sketching interface allows the user to sketch the building’s geometry and HVAC zones, floorby-floor, and specify parameters such as number of repetitive floors, floor-to-floor heights, and building orientation. The user can specify up to 25 zones on each floor or a building total of 98 zones. Zones are simply represented in plan by different colors. After the sketching process is complete, a drawing processor will analyze the geometrical conditions, including zone floor, roof and wall areas and how the walls are shaded by adjoining and outside structures. Peak values for occupancy, hot water use, ventilation, lighting, and equipment are also specified and linked to their respective schedule numbers. Adjustments of any of the zone properties can be done by editing the zone description forms. Usually, some adjustments are desirable for occupancy numbers, lighting levels, whether daylighting is to be used and whether natural ventilation is to be specified. The default HVAC efficiencies may also be edited. Load calculations, system simulations, and energy summations are performed each hour of the year (Degelman 1990). The resulting zone air conditioning loads are based on a thermal balance model. Convective gains are translated into loads immediately, while the radiative gains are delayed by weighting factors for each source of heat. Daylighting algorithms are based on a modified Daylight Factor method and support dimmer controls. The program also has the capability of simulating the floating space temperature (passive designs) for comfort analyses in unheated or uncooled spaces. Output from Ener-Win is produced in both tabular and graphic forms. The tabular results include: breakdown of monthly energy loads and utility bills, energy savings from utilizing daylight, peak loads, electric demand charges, 24-hour energy use, temperature, energy and comfort profiles. The Life-Cycle Cost prediction is the final step in the program procedures. First costs for the building are based on the unit costs of walls, windows, and roofs from the assemblies catalog. Additional first costs include the lighting system and the mechanical system. A “Present Worth” analysis is then performed on the future recurring costs of fuel, electric, and maintenance. These calculations are based on fuel price escalation rates and opportunity interest rates.Version 1.05July 2005。

常用热能分析软件简介

常用热能分析软件简介

常用热能分析软件简介在经历了上个世纪70 年代的全球石油危机之后,建筑模拟受到了越来越多的重视,同时随着计算机技术的飞速发展和普及,大量复杂的计算变为可行。

于是在上个世纪70 年代中期,逐渐在美国形成了两个著名的建筑模拟程序:BLAST和DOE-2 。

欧洲也于上个世纪70 年代初开始研究模拟分析的方法,产生的具有代表性的软件是ESP-r。

现在运用比较广泛的计算机热工分析软件有DOE-2、EnergyPlus、ESP-R、ECOTECT、BLAST等。

国外常用的能耗模拟软件见下表:国内常用的能耗模拟软件见下表:1、DOE-2DOE-2是一个在美国能源部的财政支持下由劳伦斯伯克利国立实验室的模拟研究小组开发的,提供建筑设计者,和研究人员使用的计算机软件。

DOE-2功能非常强大,,他在美国已得到成功的运用并且成功地应用于若干个国家的建筑节能标准编制工作。

2、BLAST基于Windows的友好的操作界面,结构化的输入文件,可分析热舒适度,高强度或低强度的辐射换热,变传热系数下能耗分析。

输入文件可由专门模块HBLC在Windows操作环境下输入,也可在记事本中直接编辑。

它可供工业供冷,供热负荷计算,建筑空气处理系统以及电力设备逐时能耗模拟。

3、EnergyPlusEnergyPlus 是美国劳伦斯·伯克利国家实验室(Lawrence Berkeley National Laboratory) 等科研机构新开发的能耗分析软件。

4、ESP-RESP-r由Energy System Research Unit在位于苏格兰格拉斯哥的斯特拉思克莱德大学机械工程系的研究成果基础上开发。

优点是比较接近实际,整体的性的评价。

可模拟和分析当前比较前言的和创新技术。

但需要使用者有较强的专业知识,需对专业知识有较深入的了解。

5、ECOTECTEcotect是由英国Square One公司开发的生态建筑设计软件,它主要应用于方案设计阶段,具有速度快,直观,技术性强等优势,而且可以和一系列精确分析软件相结合作进一步的分析。

几种能耗监测软件对比

几种能耗监测软件对比

1、DOE-2:可以通过提供的实时天气信息、建筑几何结构、HVAC描述等预测建筑物每小时能耗和能源成本。

适用于各种住宅建筑和商业建筑。

由一个用于输入的子系统(BDL处理器)和四个仿真子系统(LOADS、SYSTEMS、PLANT 和ECON )组成。

LOADS的输出信息作为SYSTEMS的输入信息,SYSTEMS的输出信息作为PLANT的输入信息,PLANT的输出信息作为ECON的输入信息,层层相关。

在建筑设计研究和翻新改造分析中应用近20年。

优点:有非常详细的建筑能耗逐时分析报告,可处理结构和功能较为复杂的建筑。

不足:DOS下操作界面,输入较为麻烦;对专业知识要求高。

2、EcoTect:一种连接了3D模具的高视觉性建筑设计和分析工具,具有广泛的分析功能,包括:热量、能源、照明、声学和成本等方面。

其建模和分析能力可以处理各种大小和复杂程度的建筑几何结构。

最主要的优点是专注于反馈建筑设计过程的初期。

可以提供包含输入3D CFD模拟数据的可视化空间分析结果。

随着由于建筑物的几何形状和材料特性变化而不断更新的交互式声学和太阳能射线追踪提供实时动画功能。

优点:可以处理各种复杂程度的建筑结构,简单准确,而且可提供可视化分析报告。

不足:由于其可以执行许多不同类型的分析,用户在输入建筑的相关信息之前需要了解不同的建模和数据要求。

3、EnergyPlus:基于BLAST和DOE-2的最受欢迎的特性和功能的结构化模型,采用文本文件进行输入输出。

在用户设置的时间步长(默认为15分钟) 计算的负荷被传给建筑系统仿真模块在同一时间步长。

根据变化的时间步长,进行加热和冷却系统和电气系统响应的计算。

主要用于多区域气流分析、太阳能利用方案设计和建筑热性能研究。

优点:提供关键词解释,操作相对简单。

通信接口使用IFC标准建筑模型,因此可以从CAD程序获取建筑几何结构。

不足:相比图形文件,文本文件输出不够直观,需要经过电子数据表格作进一步的处理。

离心式压缩机组多变效率的计算模型

离心式压缩机组多变效率的计算模型

离心式压缩机组多变效率的计算模型摘要:离心式压缩机组广泛应用于石油天然气工业领域,而多变效率是衡量该系统运行经济性的重要指标之一。

因此,研究离心式压缩机组多变效率的计算模型,对于保障现有压缩系统安全、高效运行,以及有效地指导设备的维护和更换都具有重大的意义。

为此,以欧洲燃气研究集团(GERG)提出的SGERG一88方程为基础,利用压缩因子、比热比和压缩性函数,建立了计算天然气实际压缩过程多变效率的数学模型,并以Power Station4.0为软件平台,开发了相应的计算程序。

利用该程序计算了某2个压气站压缩系统的多变效率。

与实验数据对比表明,建立的天然气压缩系统多变效率模型是合理可行的,具有较高的计算精度。

此模型既可用于前期的压缩系统验收,又可用于监测压缩系统的运行状况,具有较高的工程实用价值。

关键词:天然气;压缩系统;多变效率;计算模型离心式压缩机组广泛应用于石油天然气工业领域,而在天然气管道输送中,离心压缩机压缩过程的多变效率是衡量其运行经济性的一个重要指标。

因此,建立多变效率的计算模型和编制相应的程序,对离心式压缩机多变效率进行有效计算和评估,对检验机器是否正常运行和提高企业的经济效益具有十分重大的现实意义。

为解决多变效率的求解问题,笔者以SGERG一88方程为基础,利用压缩因子、比热比和压缩性函数,建立了计算天然气实际压缩过程多变效率的数学模型,并开发了相应的计算程序。

利用所开发的计算程序计算了某型压缩系统多变效率,与实验数据对比表明,建模理论和方法是合理有效的。

目前基于该计算方法的软件已在中国石油管道公司某单位的实际工程运用中使用并取得了良好的效果。

一、多变效率计算模型(一)压缩因子的计算模型在离心压缩机组多变效率计算过程中,压缩因子(Z)的准确性将直接影响多变效率的准确性,必须对Z进行精确求解。

然而压缩机组进排气压力都在1MPa以上,天然气的压缩因子与理想气体压缩因子有较大的偏离,为此,欧洲燃气研究集团(GERG)提出利用SGERG一88方程计算天然气压缩因子。

软件介绍

软件介绍

软件介绍1.单相流软件1)SPS(1)软件介绍Stoner Pipeline Simulator (SPS)/Simulator (SPS/仿真器)是一种瞬态流体仿真应用程序,它分为气体和液体两个模块,分别用于模拟管网中天然气或(批量)液体的动态流动。

SPS/仿真器可以模拟任何现有的或规划设计中的管道,可对正常或非正常条件下,诸如管路破裂、设备故障或其它异常工况等,各种不同控制策略的结果作出预测。

SPS/仿真器可用于解决在设计及操作天然气、密相气体或液态烃类管道运输系统时涉及液体、控制系统、液体处理设备的瞬态行为的几乎所有的问题。

使用SPS/仿真器,用户可以:①分析设备的启动及关闭②分析运行稳定性③分析泵/压缩机的运行时间表④研究各种设计及运行方案的经济性⑤分析喘振情况及设计减压系统⑥设计串级控制系统⑦研究气体输送系统的存活期⑧分析对于潜在异常工况的系统响应,评估修正方案⑨研究批量输送、侧线输送或混合供给的效果⑩研究再循环系统的温升,以及由于与管道周围环境的瞬时热交换造成的产品冷却或加热⑪研究气体(特别是非理想气体)的热效应,例如焦耳-汤姆逊冷却、减压冷却及多级压缩机的级间冷却⑫设计最小旁路流量控制,以防止多变压缩机发生喘振⑬研究气体管道的破裂效应及泄放冷却,以评估管道钢材的脆性(2)适用条件本软件气态模块主要适用于气质条件比较好的商品天然气输送管道、尤其是大直径长距离的商品天然气管道,液相模块适用原油、成品油长输管道的计算分析。

2)PIPELINE STUDIO(1)PipelineStudio软件介绍PipelineStudio软件是由英国ESI公司开发的,与Advantica公司的SPS 软件相类似。

①管道设计在集输管道设计过程中,稳态模拟可以帮助工艺设计工程师进行计算确定工艺设计方案;瞬态模拟可以针对不同工艺设计方案进行多种典型工况条件(如调峰,管道发生断裂事故等)下的非稳态工况计算,从而为设计方案优选提供数据。

全年负荷计算及能耗分析软件

全年负荷计算及能耗分析软件

全年负荷计算及能耗分析软件目录一、项目概述 (2)1. 项目背景介绍 (3)2. 项目目标及重要性 (4)二、软件功能介绍 (5)三、软件操作流程 (7)1. 用户登录与注册流程 (8)2. 数据导入与导出流程 (8)3. 功能模块操作流程 (9)4. 结果查看与报表生成流程 (10)四、技术架构与设计 (11)1. 软件技术架构设计 (12)2. 数据库设计与管理 (14)3. 系统安全性设计 (15)4. 界面设计与用户体验优化 (17)五、数据输入与输出格式规范 (18)1. 数据输入格式要求 (19)2. 数据输出格式标准 (20)3. 数据接口及文件类型说明 (21)4. 数据备份与恢复策略 (22)六、性能指标与优化策略 (23)1. 软件性能指标评估方法 (25)2. 性能优化策略与建议方案 (25)3. 系统运行稳定性测试与保障措施 (27)4. 系统响应速度优化措施及案例分析 (28)一、项目概述随着全球能源需求的不断增长,节能减排已成为各国政府和企业的共同目标。

为了实现这一目标,我们提出了开发“全年负荷计算及能耗分析软件”的项目。

该软件旨在帮助企业和个人更好地了解和管理能源消耗,降低能源成本,提高能源利用效率。

全年负荷计算:根据用户的用电设备、用电时间等信息,计算出全年的用电负荷,为用户提供科学的用电规划建议。

能耗分析:通过对用户用电数据的分析,找出能耗较高的设备和使用时段,为用户提供节能建议和措施。

数据可视化:将用电数据以图表、曲线等形式展示,方便用户更直观地了解能源消耗情况。

预测与预警:根据历史数据和实时数据,预测未来一段时间内的用电需求和能耗情况,为用户提供预警信息,帮助用户提前做好应对措施。

智能控制:通过与智能家居系统的集成,实现对用电设备的智能控制,提高能源利用效率。

本项目的实施将有助于推动节能减排事业的发展,为企业和个人带来经济效益和环境效益。

在各级政府和企业的大力支持下,本项目一定能够取得圆满成功。

PLStudio for Gas 水力计算软件在天然气工程设计中的应用

PLStudio for Gas 水力计算软件在天然气工程设计中的应用

摘要本文介绍了英国ESI公司的PLStudio for Gas水力计算软件的特点以及在燃气工程设计中的实际应用情况。

PLStudio for Gas是经过使用证明的,历史悠久的输气管道离线模拟软件,能够对输气管道中的单相流进行稳态模拟和动态模拟,已经在全世界得到了广泛的应用。

本软件具有全功能的图形界面、稳定的数字求解技术、完备的设备模拟、灵活实用的理想化的控制方式和多约束条件设定、温度跟踪、气体属性跟踪、详尽的默认值集合、既能以批处理方式又能以交互(互动)方式运作等特点。

使用本软件可以对输气管道的正常工况和事故工况进行分析,测试和评价输气管道的设计或操作参数的设置,最终获得优化的系统性能。

使用本软件还可以为实时模拟软件的组态提供建模数据。

本文通过具体的工程实例,分别介绍了此软件在典型的枝状燃气管网、环状复杂燃气管网以及在分析动态燃气管网中的具体应用情况,对计算过程、计算结果及如何根据计算结果分析管网情况,确定合理的供气方案作了具体说明。

关键词:天然气;管网;稳态;动态;模拟绪论天然气输配系统的工艺设计过程中,为了合理确定管道系统的设计方案和改造方案、分析各种事故工况及进行有效的调峰和运营管理,借助水力计算软件对燃气输配系统进行仿真模拟是非常必要的。

PLStudio for Gas 水力计算软件具有强大的稳态和动态模拟计算功能,能够模拟管网的运行工况,是用于城市输、配气管网设计的较好软件之一,广泛的应用于天然气利用工程的设计中。

设计人员可以利用软件对输气管道的工艺设计方案进行任何工况下的模拟,从而对方案的可行性、可靠性、灵活性和合理性做出更客观的评价,并根据对多种方案的比选和评价结果选出较好的方案。

一、软件简介PLStudio for Gas是英国ESI公司推出的天然气输配管网模拟计算软件,该软件为离线型天然气管道系统稳态/动态工艺计算和运行计划模拟软件,可用于管道水力计算、运行计划安排、动态过程模拟分析等。

超级好的Aspen-Energy-Analyzer教程

超级好的Aspen-Energy-Analyzer教程
aspen-energy-analyzer适用于各种能源领域,如石油、化 工、电力、钢铁等,为能源企业、科研机构和高校提供强大 的技术支持。
为何学习aspen-energy-analyzer
aspen-energy-analyzer是能源行业的标准软件,掌握它有助于提高在能 源领域的竞争力。
通过学习aspen-energy-analyzer,可以深入了解能源系统的运行机制和 优化方法,提高能源利用效率和降低能耗。
数据调整
用户可以对数据进行调整,以适应不同的分析需求,提高分析的准确性和可靠性。
04
常见问题与解决方案
常见问题汇总
问题1
无法安装aspen-energy-analyzer。
问题2
运行aspen-energy-analyzer时出现 错误。
问题3
无法导入数据到aspen-energyanalyzer。
自定义模型与流程
自定义模型
用户可以根据自己的需求,创建自定义模型,对特定类型的能源进行分析。
自定义流程
用户可以自定义分析流程,包括数据导入、处理、分析和结果输出等步骤,以 满足个性化需求。
实时数据监控与调整
实时数据监控
aspen-energy-analyzer支持实时数据监控,可以实时获取能源数据并进行实时分析,帮助用户及时了解能源市 场的变化。
数据导入与导
导入
aspen-energy-analyzer支持多种数据格式的导入,如Excel、CSV、TXT等,用 户可以通过软件自带的导入向导或API接口实现数据的批量导入。
导出
aspen-energy-analyzer支持将分析结果导出为多种格式,如Excel、PDF、 PNG等,方便用户进行数据分析和汇报。同时,aspen-energy-analyzer还支持 导出为API接口,方便与其他软件进行集成。

TGNET及SPS软件在天然气管道稳态计算中的差异分析和比较

TGNET及SPS软件在天然气管道稳态计算中的差异分析和比较
动量 守 恒 和 能 量守 恒来 说 ,两 个 软 件 的 水 力 模 型 实
理论上 , 无论是 T N T还是 S S GE P ,均将 流体模 型 、管段 模 型 、压 缩 机 模 型 、各类 阀模 型 、气 源 、
用 户 等结 合 到 一起 ,联 立 形 成 一个 大 型 的方 程 组 ,
不 同 计 算 模 型 :IO HE MAL 模 式 ,等 温 模 式 ; ST R

Y =1 11 . +0. x 04 c:
T E M L模式 ,热力模式 ; R N T E M L HR A T A S H R A ,传 热模 式 ( 细计 算 管道 各 层 温 度 ) 详 。 对 于 T NE G T和 S S 等温 计 算 的处 理 方 法 是 相 P , 同的。对于换热 的情况 , G E T N T和 S S P 计算方法存 在差异 ,但计算结果表 明 ,二者的差异较小。 23 压 缩 机 模 型 .
了广 泛 应 用 。同 时 ,T E GN T具 有 图形 界 面友 好 、数
刘 定 智 ,男 ,工 程师 。2 0 年毕 业 于西 南石 油 大学储 运 专业 ,获 硕士 学位 。现在 中 国石油 天然 气股 份有 限公 司 规划 总院从 事 油气 管道 ’ 型前期 规 划 03 研 究 工 作 。地址 :北 京 市海 淀 区志新 西路 3 ,108 。E 'a .1 d gh@ e ohn . 埘 号 00 3  ̄ i i d zi pt ciac n l un r 0
TGNET。
1 T GN盯 和 S S软 件 简介 P
11 T N T软 件 . GE
12 S S软件 . P S S( tn r Pp l e Smuao )软 件 是 一 套 先 P So e iei i lt n r 一

当前国内外几款主要建筑节能软件分析

当前国内外几款主要建筑节能软件分析

当前国内外几款主要建筑节能软件分析建筑的能耗分析对建筑节能设计非常重要,设计人员需要根据计算的结果进行设计方案的调整和优化。

当前,国内外对建筑能耗计算方法的研究和软件的开发也屡见不鲜。

计算方法已经非常成熟,比较知名的软件也非常多。

比如国外的DOE-2、EnergyPlu,国内的CHEC、DEST等。

DOE-2DOE-2是美国劳伦斯伯克力国家实验室开发的能耗分析模拟软件,包括负荷计算模块、空气系统模块、机房模块、经济分析模块。

它可以提供整幢建筑物每小时的能量消耗分析,用于计算系统运行过程中的能效和总费用,也可以用来分析围护结构(包括屋顶、外墙、外窗、地面、楼板、内墙等)、空调系统,电器设备和照明对能耗的影响。

Doe-2的功能非常全面而强大,经过了无数工程的实践检验,是国际上都公认的比较准确的能耗分析软件,并且该软件是免费软件,使用人数和范围非常广泛。

ViualDOE是一款基于DOE-2开发的标准的建筑能耗模拟软件。

这款软件可以帮助建筑师或者设备工程师进行建筑的能耗模拟,设计方案的选择,还可以进行美国绿色建筑标准中能耗分析部分的评价。

ViualDOE可以模拟包括照明,太阳辐射,暖通系统,热水供暖等建筑所有主要的能耗。

并可以从DOE-2输出文件中自动提取计算结果。

相对与DOE-2来说,用户可以比较容易的上手使用。

但是软件的输人格式DOE-2的输入语言,因此用户需要了解一些DOE-2输入文件的格式规则,对于需要模拟复杂的高级用户,用户需要手动修改输入文件。

目前软件为全英文版,尚未出现比较成熟的汉化版本。

eQUESTeQUEST同样是一款基于DOE-2基础上开发的建筑能耗分析软件,它允许设计者进行多种类型的建筑能耗模拟,并且也向设计者提供了建筑物能耗经济分析、日照和照明系统的控制以及通过从列表中选择合适的测定方法自动完成能源利用效率。

这款软件的主要特点是为DOE-2输入文件的写入提供了向导。

用户可以根据向导的指引写入建筑描述的输入文件。

5 能源管理软件

5 能源管理软件

5 能源管理软件能源管理软件是一种专门用于监测、分析和优化能源使用的工具。

随着全球对能源消耗和环境影响的日益关注,越来越多的组织开始使用能源管理软件来帮助他们管理和控制能源消耗。

本文将探讨能源管理软件的定义、功能和优势,并介绍几款常用的能源管理软件。

一、定义能源管理软件是指通过数据采集、监测和分析,为组织提供能源消耗的全面视图,并帮助他们制定和实施能源管理计划的一种软件工具。

这些软件通常与能源监测设备、传感器和其他数据源集成,以获取实时的能源使用数据,并提供可视化报告和分析功能。

二、功能1. 数据采集与监测:能源管理软件可以与各种能源监测设备和传感器连接,实时采集能源使用数据,并将其可视化展示,帮助用户了解能源的实际消耗情况。

2. 分析与报告:能源管理软件可以对采集到的能源数据进行深入分析,识别能源消耗的模式和趋势,并生成详细的报告,为用户提供决策支持。

3. 能源计划与优化:基于能源数据分析,能源管理软件可以帮助用户制定和实施能源管理计划,优化能源使用,减少浪费,降低能源成本。

4. 预警与提醒:能源管理软件可以设定能源消耗的警戒线,一旦超过设定值,会提醒用户及时采取措施,防止能源浪费。

三、优势1. 节约能源成本:通过对能源消耗数据进行实时监测和分析,能源管理软件可以帮助用户识别能源浪费和低效的领域,并通过调整能源使用策略来实现节能减排,降低能源成本。

2. 环保减排:能源管理软件的优化能源利用功能可以提高能源利用效率,减少能源的消耗,降低对环境的影响,实现可持续发展。

3. 提高能源管理效率:能源管理软件提供全面的能源数据分析和报告功能,帮助用户快速了解能源使用情况,及时采取措施,提高能源管理的效率和响应速度。

四、常用能源管理软件1. EnergyCAP:EnergyCAP是一款功能强大的能源管理软件,适用于各种规模的组织。

它提供实时数据监测、分析报告、能源计划优化等功能,并支持多种数据源的集成。

2. Schneider Electric EcoStruxure:EcoStruxure是施耐德电气推出的一套综合能源管理解决方案,其中包括能源监控、数据分析、策略制定等功能,帮助用户实现能源高效管理。

天然气压缩机能耗效率计算分析软件

天然气压缩机能耗效率计算分析软件

附录一:现场测试计算分析根据课题组研究成果[1][2][3][4][5][6],天然气压缩机能耗效率计算分析软件,具有以下功能:(1)可完成整体式、分体式天然气压缩机能效计算,(2)可完成燃气发动机系列、电动机系列天然气压缩机能效计算。

(3)可完成一级、二级压缩的增压站压缩机能效计算。

重要特点:(1)对于燃气发动机系列,可以利用正平衡、反平衡进行能耗效率计算。

(2)对于压缩机,通过对多变指数建立数据库并对相邻点进行拟合,避免了人为因素影响,保证了计算精度。

(3)建立增压站冷却部分能效计算方法。

(4)自动生成测试报告,包含测试参数与中间参数。

报告可为评价能耗性能、制定节能措施、评估节能效果提供基础数据。

1.1FS-1#附录图1 天然气压缩机能耗效率计算分析COMECA1.0启动界面附录图2 FS-1#现场测试基本情况输入附录图3 FS-1#现场测试气质分析输入附录图4 FS-1#现场测试参数输入附录图5 FS-1#压缩机能效计算附录图6 FS-1#燃气发动机能效计算附录图7 FS-1#冷却部分能效计算附录图8 FS-1#系统能效计算附录图9 FS-1#生成测试报告附录图10 FS-1#测试报告-1附录图11 FS-1#测试报告-21.2FS-5#附录图12 FS-5#现场测试基本情况输入附录图13 FS-5#现场测试气质分析输入附录图14 FS-5#现场测试参数输入附录图15 FS-5#压缩机能效计算附录图16 FS-5#电动机能效计算附录图17 FS-5#冷却部分能效计算附录图18 FS-5#系统能效计算附录图19 FS-5#生成测试报告附录图20 FS-5#测试报告-1附录图21 FS-5#测试报告-2[1] 田家林,梁政,杨琳,董超群,李双双,范哲,庞小林. 整体式天然气压缩机能效计算反平衡方法[J].石油学报. 2013, 34(4): 787-791./CN/abstract/abstract4364.shtml[2] 田家林,朱永豪,杨琳,等. 燃气发动机动力缸压力计算方法与测试分析[J]. 西南石油大学学报, 20140115录用,排版中.http://118.145.16.219/Jwk_xnsy_zk/CN/volumn/current.shtml[3] 田家林, 梁政, 赵洪瑞等.整体式燃气压缩机能效监测软件. 中国, 2012SR060802[P], 2012-07-09。

Java在能源消耗分析软件中的应用

Java在能源消耗分析软件中的应用

Java在能源消耗分析软件中的应用随着全球能源消耗和环境问题的日益加剧,能源消耗分析成为了一个重要的研究领域。

为了更好地分析和管理能源消耗,计算机软件在能源领域的应用变得越来越普遍。

Java作为一种高级编程语言,以其跨平台性和易于扩展性而在能源消耗分析软件中发挥着重要的作用。

一、Java在数据处理方面的应用Java在能源消耗分析软件中,能够对大量的能源消耗数据进行高效、准确的处理和分析。

通过Java编程语言的强大功能,开发人员可以使用各种数据处理算法和模型来对能源消耗数据进行统计分析、图表展示和预测模拟等。

Java提供了丰富的数据处理工具和库,例如Apache Commons Math库、JFreeChart库等,这些工具和库可以极大地提高能源数据的处理效率和分析精度。

二、Java在用户界面设计方面的应用Java在能源消耗分析软件中的一个重要应用是用户界面的设计。

一个好的用户界面既要能够直观地展示能源消耗数据,又要提供丰富的交互功能,使用户能够方便地进行数据查询、分析和管理。

Java提供了Swing和JavaFX等图形界面库,这些库能够帮助开发人员设计出美观、直观的用户界面。

同时,Java还支持多线程编程,在界面设计中可以实现数据的实时更新和异步操作,提升用户体验。

三、Java在数据通信方面的应用能源消耗分析软件通常需要与各个能源设备进行数据通信,实时获取能源消耗数据。

Java提供了多种网络编程接口和协议,可以实现软件与能源设备之间的数据通信,例如TCP/IP协议、HTTP协议等。

开发人员可以利用Java Socket编程技术,通过网络传输数据进行实时监测和控制,实现能源消耗分析软件与能源设备的无缝对接。

四、Java在数据安全方面的应用能源消耗数据往往具有较高的安全级别要求,因此在能源消耗分析软件中,数据安全是一个关键考虑因素。

Java提供了许多数据加密和权限控制的功能和库,可以帮助开发人员保护能源消耗数据的安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录一:现场测试计算分析
根据课题组研究成果[1][2][3][4][5][6],天然气压缩机能耗效率计算分析软件,具有以下功能:
(1)可完成整体式、分体式天然气压缩机能效计算,
(2)可完成燃气发动机系列、电动机系列天然气压缩机能效计算。

(3)可完成一级、二级压缩的增压站压缩机能效计算。

重要特点:
(1)对于燃气发动机系列,可以利用正平衡、反平衡进行能耗效率计算。

(2)对于压缩机,通过对多变指数建立数据库并对相邻点进行拟合,避免了人为因素影响,保证
了计算精度。

(3)建立增压站冷却部分能效计算方法。

(4)自动生成测试报告,包含测试参数与中间参数。

报告可为评价能耗性能、制定节能措施、评
估节能效果提供基础数据。

1.1FS-1#
附录图1 天然气压缩机能耗效率计算分析COMECA1.0启动界面
附录图2 FS-1#现场测试基本情况输入
附录图3 FS-1#现场测试气质分析输入
附录图4 FS-1#现场测试参数输入
附录图5 FS-1#压缩机能效计算
附录图6 FS-1#燃气发动机能效计算
附录图7 FS-1#冷却部分能效计算
附录图8 FS-1#系统能效计算
附录图9 FS-1#生成测试报告
附录图10 FS-1#测试报告-1
附录图11 FS-1#测试报告-2
1.2FS-5#
附录图12 FS-5#现场测试基本情况输入
附录图13 FS-5#现场测试气质分析输入
附录图14 FS-5#现场测试参数输入
附录图15 FS-5#压缩机能效计算
附录图16 FS-5#电动机能效计算
附录图17 FS-5#冷却部分能效计算
附录图18 FS-5#系统能效计算
附录图19 FS-5#生成测试报告
附录图20 FS-5#测试报告-1
附录图21 FS-5#测试报告-2
[1] 田家林,梁政,杨琳,董超群,李双双,范哲,庞小林. 整体式天然气压缩机能效计算反平衡方法[J].石油学报. 2013, 34(4): 787-791.
/CN/abstract/abstract4364.shtml
[2] 田家林,朱永豪,杨琳,等. 燃气发动机动力缸压力计算方法与测试分析[J]. 西南石油大学学报, 20140115录用,排版中.
http://118.145.16.219/Jwk_xnsy_zk/CN/volumn/current.shtml
[3] 田家林, 梁政, 赵洪瑞等.整体式燃气压缩机能效监测软件. 中国, 2012SR060802[P], 2012-07-09。

Tian jialin, Liang zheng, Zhao hongrui, et al. Integral Natural Gas Engine-compressor Energy Efficiency C alculation Software V1.0. China, 2012SR060802[P], 2012-07-09.
[4] 田家林, 等. 天然气压缩机能耗效率计算分析COMECA软件.中国, 2014SR017082[P], 2014-02-13。

Tian jialin, et al. Natural Gas Compressor Energy Efficiency Calculation and Analysis Software V1.0. Chi na, 2014SR017082[P], 2014-02-13.
[5] 田家林, 梁政, 杨琳.生产实习过程油气集输现场安全问题分析[J].西南石油大学学报:社会科学版,2011,13 (7):75-77.
Tian Jialin, Liang Zheng, Yang Lin. Security Issues analysis during visiting Oil and Gas Production and T ransportation process[J]. Journal of Southwest Petroleum University: Social sciences Edition, 2011,13(7):75-77.
[6] 梁政,李双双,田家林等. CNG压缩机节能技术与试验分析[J]. 天然气工业, 2013, 33(2): 95-98.
Liang Zheng,Li Shuangshuang,Tian Jialin et al. An experimental study of technical measures for energy sa ving of CNG compressors[J]. NATURAL GAS INDUSTRY, 2013, 33(2): 95-98..。

相关文档
最新文档