【中职数学】精品 2020年三校生高考模拟考试数学试卷(一)

合集下载

2020年江西省高职三校生对口高考对口升学考试数学试题高清版附答案解析

2020年江西省高职三校生对口高考对口升学考试数学试题高清版附答案解析

2020年江西省“三校生”对口升学考试数学第Ⅰ卷(选择题70分)一、是非选择题(本大题共10小题,每小题3分,共30分。

对每小题的命题作出判断,对的选A ,错的选B )1.若数列}{a n 的通项公式12-n =a n ,则该数列为等差数列.·····························(A B )2.已知集合-1}>x |{x =A ,则{0}∈A.·······················································(AB )3.函数242-x -x =x f )(与2+x =x g )(表示的是同一函数.······························(AB )4.若10<b <a <,则22b >a .·································································(A B )5.对于非零向量a ,b ,若a+b=0,则a //b.·······················································(A B )6.已知点A (x ,-1)与点B (2,y )关于原点对称,则1-=y +x .····················(A B )7.抛物线082=y +x 的焦点坐标为(2,0).·····················································(A B )8.若3log <a log ..7070,则.>a 3·····································································(A B )9.函数-x =y 2的图像经过点(0,-1).···························································(AB )10.若角θ的顶点在坐标原点,始边为x 轴正半轴,终边经过点(-4,3),则sin θ=53.(AB )二、单项选择题(本大题共8小题,每小题5分,共40分。

中职三校生高考数学试卷

中职三校生高考数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an=()A. 21B. 22C. 23D. 243. 函数f(x) = x^2 - 4x + 4的图像是()A. 抛物线开口向上B. 抛物线开口向下C. 直线D. 没有图像4. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,c=8,则角C的大小为()A. 45°B. 60°C. 90°D. 120°5. 下列方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 4 = 0D. x^2 - 3x + 2 = 06. 已知函数f(x) = 2x + 1,则f(-1)的值为()A. -1B. 0C. 1D. 27. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)8. 已知数列{an}的前n项和为Sn,若a1=2,a2=4,且an+1 = 2an,则S5的值为()A. 62B. 64C. 66D. 689. 下列不等式中,正确的是()A. 2x + 3 > 5B. 2x - 3 < 5C. 2x + 3 < 5D. 2x - 3 > 510. 已知等比数列{an}的首项a1=1,公比q=2,则第n项an=()A. 2nB. 2n-1C. 2n+1D. 2n-2二、填空题(每题5分,共50分)11. 若等差数列{an}的首项a1=1,公差d=2,则第n项an=________。

12. 函数f(x) = x^2 - 4x + 4的顶点坐标为________。

13. 在三角形ABC中,若a=6,b=8,c=10,则三角形ABC的面积S=________。

三校生高考模拟数学试卷

三校生高考模拟数学试卷

一、选择题(本大题共20小题,每小题5分,共100分)1. 下列函数中,在实数域内单调递增的是()A. y = -x^2 + 2xB. y = 2^xC. y = log2xD. y = √x2. 已知等差数列{an}的前n项和为Sn,若S10 = 100,S20 = 300,则第15项a15的值为()A. 10B. 15C. 20D. 253. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是()A. 0B. 1C. -1D. 无法确定4. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减5. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极小值为()A. -1B. 0C. 1D. 26. 下列方程组中,无解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 107. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 4868. 下列函数中,在区间(0,+∞)上为减函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x9. 若复数z满足|z - 1| = |z + 1|,则复数z的虚部是()A. 0B. 1C. -1D. 无法确定10. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减11. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极大值为()A. -1B. 0C. 1D. 212. 下列方程组中,有唯一解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 1013. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 48614. 下列函数中,在区间(0,+∞)上为增函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x15. 若复数z满足|z - 1| = |z + 1|,则复数z的虚部是()A. 0B. 1C. -1D. 无法确定16. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减17. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极大值为()A. -1B. 0C. 1D. 218. 下列方程组中,无解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 1019. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 48620. 下列函数中,在区间(0,+∞)上为减函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x二、填空题(本大题共10小题,每小题5分,共50分)21. 已知等差数列{an}的前n项和为Sn,若S10 = 100,S20 = 300,则第15项a15的值为______。

三校生高考数学模拟试卷

三校生高考数学模拟试卷

数学试卷 一、 单项选择题(每小题3分,共2×12=24分)1.集合{}{}13,15A x x B x x =-<≤=<<则A B ⋃=( )A .{}15x x -<< B.{}35x x << C. {}11x x -<< D. {}13x x <≤2.不等式24210x x --+≥的解集是( )A .(,7][3,)-∞-⋃+∞B .[7,3]-C .(,3][7,)-∞-⋃+∞D .[3,7]-3.下列函数既是奇函数又是增函数的是( )A .3y x =B .1y x =C .22y x =D .13y x =- 4.已知3log 2=则x=( )A .3B .9C .27D .815.已知{}n a 是等比数列,252,6a a ==则8a =( )A . 12B .18C . 24D .366.已知两点坐标A (-1,2),B (1,-2),则下列各式正确的是( )A .5OA OB →→∙= B .OA BO →→=C .(2,4)AB →=-D .10AB →=7.一个袋子中有7个球,其中3个绿球,4个红球,问从中摸出一个球是红球的概率是( )A .14B .13C .112D .478.如右图,O 为正六边形对角线的交点,则与OA →共线的向量有( )个A .2B .3C .7D .99.已知直线2310x y +-=,则斜率和在y 轴上的截距是() A .21,33- B .21,33- C .21,33 D .21,33-- 10.已知球的大圆周长为6π,求该球的表面积和体积( ) A .9,18ππ B .9,36ππ C .18,36ππD .36,36ππ11.甘肃省3家省属单位被安排某县4个材开展“联村联户,为民富民”活动,要求每家单位至少对口帮助其中1个村且每村只受1家单位帮扶,则不同的安排方法总数是 ( )A .7B .12C .36D .7212.如图为1500辆汽车通过某路段 AO40 50 60 70 80时的速度频率分布直方图,在速度为[60,70]的车辆约有( )辆A .450B .600C .800D .1000二、填空题(每小题3分,共12分)12、已知3cos 5θ=,且θ在第四象限,则sin θ= 13、过点()3,1-且垂直于直线032=+-y x 的直线方程为14、在等差数列}{n a 中,已知42=a ,84=a 则该数列的前10项之和等于15、函数lg(4)3x y x -=-的定义域是 ____________________________.三、解答题(共14分,17、18每题4分,19题6分)16.(6分)解不等式358x -<.17.(6分)已知等差数列{}n a 中,3915,9a a ==-求1a 和20S 的值.18.(7分)求经过点M (3,2),圆心在直线2y x = .。

三校生高考数学模拟试卷

三校生高考数学模拟试卷

三校生高考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若sinα=(3)/(5),且α是第二象限角,则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2 = 3(x - 1)B. y+2=3(x + 1)C. y - 2=-3(x - 1)D. y+2=-3(x + 1)5. 二次函数y = x^2+2x - 3的对称轴为()A. x = - 1B. x = 1C. x = 2D. x=-26. 已知向量→a=(1,2),→b=(3,-1),则→a·→b等于()A. 1B. -1C. 5D. -57. 在等差数列{a_n}中,若a_1=1,d = 2,则a_5的值为()A. 9B. 10C. 11D. 128. 若x>0,则函数y = x+(1)/(x)的最小值是()A. 1B. 2C. 3D. 49. 从5名男生和3名女生中选3人参加某项活动,要求既有男生又有女生,则不同的选法有()种。

A. 45B. 30C. 15D. 1010. 若f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2+1,则f(-1)的值为()A. -2B. 2C. -1D. 1二、填空题(本大题共5小题,每小题4分,共20分)11. 计算log_28=_。

12. 椭圆frac{x^2}{16}+frac{y^2}{9}=1的长半轴长a = _。

最新三校生数学高考模拟试卷

最新三校生数学高考模拟试卷

三校生数学高考模拟试卷一、是非选择题。

(对的选A ,错的选B。

每小题3分,共30分)1.如果A={0.1.2.3},B={1},则B ∈A …………………………………………( ) 2.已知直线上两点A (-3,3),B (3,-1),则直线AB 的倾斜角为65π( ) 3.lg 2+lg5=lg7………………………………………………………………………( ) 4.函数f(x)=245x x -+的定义域是【-1,5】…………………………( )5.sin750·sin3750=41-……………………………………………………………( )6.在等比数列{a n }中,a 1=31,a 4=89,则数列的公比为23…………………( )7.若向量32=+,则∥……………………………………( )8.双曲线13422=-y x 的渐近线方程为x y 23±=,焦距为2………………( ) 9.直线l ⊥平面α,直线m ∥平面β,若l ∥m ,则α⊥β………………( )10.二项式1033⎪⎭⎫⎝⎛-x x 展开式中二项式系数最大的项是第五项…………………( )二、选择题(每小题5分,共40分) 11.函数f(x)=lg(x-3)的定义域是 ( )A.RB.(-3,3)C.(-∞,-3)∪(3,+∞)D.【0,+∞) D.112.以点M (-2,3)为圆心且与x 轴相切的圆的方程( )A.(x +2)2+(y -3)2=4 B . (x -2)2+(y +3)2=4C.(x +2)2+(y -3)2=9 D . (x -2)2+(y +3)2=913.10件产品中,3件次品,甲、乙两人依次各取一件产品,按取后放回,求恰有一件次品的概率为( ) A.10021 B. 241 C. 4521 D. 502114.若函数f(x)在定义域R 上是奇函数,且当x ﹥0时,f(x)=2410x x -,则f(-2)=( ).A. -104B.104C. 1D.10-1215.a=2是直线(a 2-2)x +y=0和直线2x +y +1=0互相平行的( ).A.充分条件 B.必要条件 C.充要条件 D.即不充分也不必要条件 16.设数列{a n }的前n 项和为2n s n=,则a 8=()A.64B.49C.16D.1517.在直角坐标系中,设A (-2,3),B (-3,-3),现沿x 轴把直角坐标系折成直二面角,则AB 的长为( )A.6B.5C.19D.118.a =(1,2),b =(x ,5),且b a⊥2,则x= ( )A .10B .-10 C.25 D.25-三、填空题(每题5分,共30分)19.已知x ∈(ππ,-),已知sinx=21, 则x= _ 已知tanx=-1,则x= _20.已知正方形ABCD 的边长为2,AP ⊥平面ABCD ,且AP=4,则点P 到BD 的距离 21.过圆3622=+y x 上一点(4,52)的切线方程为 _ _22.椭圆1422=+y x 的离心率为23.4名男生和2名女生站成一排,其中2名女生站在两端的站法有 种24.函数1422+-=x x y 的值域为 班级: 姓名: 座号:四、解答题(第25、26、题,每小题10分,第27.28题,每小题15分,共50分)255=8=,<b a ,> =32π,求()()b a b a -∙+2。

2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题文化综合数学部分1-20套参考答案

2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题文化综合数学部分1-20套参考答案

2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第一套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.C 20.D 21.B 22.C 23.B 24.D五、填空题(本大题共4小题,每小题5分,共20分) 25. 101 -5 26.]2,0031-(),(Y27.100 28.cm 2六、解答题(本大题共3小题,共40分) 29.(1)解析:由任意角的直角函数的定义得m=-1,21cos ,23sin -=-=αα, 原式==---ααααcos sin 3sin cos(2)原式===+--+-++6sin3cos 4tan6cos 6sin )66sin()32cos()42tan()63cos(62-sin πππππππππππππππ)(30. (1)设点A (x, y )则AB =(1-x, 1-y) 又AB (-7,10)b 2-a 3==ϖϖ所以⎩⎨⎧=--=-10171y x 解得⎩⎨⎧-==98y x 点A (8,-9)(2))4,3(+--=+λλλb a ϖϖ又)(b a ϖϖλ+∥AB所以2871030--=--λλ解得32-=λ (3))4,3(μμμ--=-b a ϖϖ因为⊥-)(b a ϖϖμAB所以⋅-)(b a ϖϖμAB 01040721=-+-=μμ 解得1761=μ31.(1)直线1l 的方程可化为0224=+-a y x ,则直线21与l l 的距离 105724)1(222=+--=a d 解得4或3-==a a(2)解析:设过点P 的直线方程为Y-3=k(x-2)即kx-y-2k+3=0,圆心到该直线的距离等于半径即113212=++--k k k 解得43=k 求得切线方程为2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第二套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.C 20.B 21.C 22.C 23.D 24.C 五、填空题(本大题共4小题,每小题5分,共20分) 25. 212- 26. 27. 28.六、解答题(本大题共3小题,共40分) 29.(1)解析:原式=434tan )6sin (3cos 4tan 3cos 4tan6sin)4tan()6sin(32cos()47tan()312cos()43tan()62sin(=-----=--+-+--++-+--+πππππππππππππππππππππ)(2) 原式=1tan 1tan 4cos sin cos 2sin 4-+=-+αααααα由已知得3tan -=α代入原式=30.(1)182)(62)(652616=+=+=a a a a S 解得45=a(2)1254-=a S ①1265-=a S ② 由②-①得565653即2a a a a a =-= 因为{}n a 为等比数列,所以356==a a q 31.(1)联立21与l l 的方程可得交点坐标(-1,3)由题意可设直线l 的方程为03=+-a y x将交点坐标代入即可得6=a 即所求直线方程为063=+-y x (2)因为直线与圆相切,所以圆心P(-3,4)到直线的距离等于半径 即222543=-+-==r d 故圆的标准方程为8)4()3(22=-++y x 转化为一般方程为0178622=+-++y x y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第三套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.A 20.C 21.B 22.B 23.C 24.A五、填空题(本大题共4小题,每小题5分,共20分) 25. 32-31-26. 27.(2,-6) 28.六、解答题(本大题共3小题,共40分) 29.(1)原式=3tan 4cos 23sin )34tan(44-cos 2)33sin(ππππππππα---=--++-+)( =(2)解析由34tan ,53cos 2354sin 54)sin(=-=∴∈-==+ααππαααπ),(又得 原式==-αααcos tan sin 230.(1)因为{}n a 为等差数列,所以⎩⎨⎧=+=+1045342a a a a可转化为⎩⎨⎧=+=+532211d a d a 解得⎩⎨⎧=-=341d a故95291010110=⨯+=d a S (2)因为{}n b 为等比数列,⎩⎨⎧==162652a a所以27253==a a q解得3=q 2a 1= 故132-⨯=n n b31.(1)圆的方程可转化为03213222=+-+++k k y x y x由0)321(4914222>+--+=-+k k F E D可得1或5<>k k (2)圆心(2,-1)到直线0434=+-y x 的距离354)1(324=+-⨯-⨯=d3==r d 所以直线与圆相切2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第四套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.B 20.B 21.D 22.B 23.B 24.D 五、填空题(本大题共4小题,每小题5分,共20分) 25.13426.]322,1,()(Y 27. 28.12π六、解答题(本大题共3小题,共40分)29.(1)解析:原式=02200002260cos 30sin 3tan 4sin )60720cos()30720sin()34(tan )46(sin ++=+-++--+-ππππππ= (2)由已知得94cos sin 31cos sin =-=+-αααα两边平方得 原式=αααααααcos sin sin tan tan )cos (sin 2=--= 30.(1)1),(b a +=+λλλϖϖ 因为a b a ϖϖϖ⊥+)(λ 所以-1得0)(==⋅+λλa b a ϖϖϖ(2)b ϖ因为∥c ϖ所以1262-=⨯-=k2251032,cos -=⋅--=⋅⋅>=<b a b a b a ϖϖϖϖϖϖ因为],0[,π>∈<b a ϖϖ 所以43,π>=<b a ϖϖ31.(1)直线0723=--y x 得斜率为23 则与之垂直直线得斜率为32-点斜式方程为)3(324+-=-x y 即0632=-+y x (2)点P(1,0) 因为直线与圆相切所以1)5(211222=++⨯==r d故圆的标准方程为1)1(22=+-y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第五套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.B 20.D 21.B 22.B 23.C 24.B 五、填空题(本大题共4小题,每小题5分,共20分)25.-7 0 26.]6,3()3,2(Y 27 .3 28 .六、解答题(本大题共3小题,共40分)29.原式12332)3(023130cos 23tan 2cos6cos2sin 3tan2cos 23tan )23cos()64cos()22sin()34tan(222-=--+-=--+-=-+++-+--++πππππππππππππππ(2)原式αααααααα2222cos tan sin )cos (tan tan )cos (sin -=-=-⋅⋅--⋅=30.(1)因为{}n a 为等差数列,所以44543233b a a a a ==++ 即442a b = 242416a b = 所以44=a 84=b(2){}n a 为等差数列 11=a 4314=+=d a a 所以1=d故n d n a a n =-+=)1(1 {}n b 为等比数列 11=b 8314==q b b 所以2=q故1112--==n n n qb b 31.(1)直线平分圆即直线过圆心(1,2)点斜式方程)1(212-=-x y 即032=+-y x (2)因为直线与圆相切 所以圆心(0,3)到直线032=+-y x 的距离 55353320=+⨯-==r d 故圆的标准方程为59)3(22=-+y x 转化为一般方程为0536622=+-+y y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第六套)参考答案四、选择题(本大题共6小题,每小题5分,共30分)19.D (两直线重合) 20.D 21.B 22.B 23.C 24.B (生活常识,冰水共存实例。

[2020年三校生高考数学卷] 2020三校生高考数学

[2020年三校生高考数学卷] 2020三校生高考数学

[2020年三校生高考数学卷] 2020三校生高考数学全文结束》》年三校生高考数学卷一、选择题。

1、集合A ={1,2,3,4,5},B ={2,4,5,8,10}, 则A ∩B =:A、 {1,2,3,4,5,8,10}B、{2,4}C、{2,4,5}D、∅2、不等式A、B、C、∪D、3、在内下列函数是增函数的是;A、 y=2x = =x2 =log1x221x4、直线2x−y+5=0的斜率和y轴上的截距分别是;A、2,2B、-2,-5 ,5 ,25、下列计算正确的是A、3=a56、在1,2,3,4四个数中任取两个数,则取到的数都是奇数的概率为;A、6B、6547、直线2x+3y−4=0与3x−2y+1=0的位置关系是、A、直线B、相交但不垂直C、平行D、垂合二、填空题:1、函数y=|5的定义域为__________;4x|−351152、已知 , b 、且a⊥b, 则m=__________;3、在数列{an}中,若a1=16,an+1=2an, 则该数列的通项an=__________;4、一个玩具下半部分是半径为3的半球,上半部是圆锥,如果圆锥母线长为5,圆锥底面与半球截面密合,则该玩具的表面积是__________;三、解答题;,1、求经过直线x+y−2=0和x−y=0的交点,圆心为的圆的方程2、已知sin α=−5,α是第四象限的角,则tan α的值和cos α的值;3、为了参加国际马拉松比赛,某同学给自己制定了10天的训练计划。

第一天跑2000米,以后每天比前一天多跑500米,这位同学第七天跑了多少米,10天总共跑了多长的距离,41。

2020年春季学期三校生摸底考试试卷

2020年春季学期三校生摸底考试试卷

(第 1 页 共 3 页)昆明卫生职业学院昆明校区2020年春季学期三校生考试试卷(数学)(考试专业、班级:护理1-5班、医学1-11班、药学1班)考试方式: 闭卷 考试时量: 120分钟请将答案填写到对应答题卡上,否则成绩无效。

一、选择题(本大题共20小题,每小题2分,共40分) 1.如果b <0<a ,那么下列不等式正确的是( )A.22bc ac< B.a −b >a +b C.cb ca > D .a b>1 2.若410,310==y x,则=−yx 10( )A.43 B.34C.12D.43 3.已知命题p :b 2=ac ,命题q :“三个非零实数a,b,c 成等比数列”,那么命题p 是q 的( )A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.设集合{}{}0301M >,>+−=+=x x N x x ,则=⋂N M ( ) A.{}1->x x B.{}3-<x xC.{}31-<<x x D.{}31-<或>x x x5.奇函数()f x 在(,0)−∞上是增函数,则正确的是( )A.)2()3()1(f f f <<B.(1)(2)(3)f f f <<C.(2)(3)(1)f f f <<D.(3)(2)(1)f f f << 6.函数)2lg(2−−=x x y 的定义域是( )A.),1(+∞−B.(−∞,−1)∪(2,+∞)C.)2,(−∞D. φ 7.下列与x y =表示为同一函数的是( )A.xx y 2= B.x y = C.2x y = D.33x y =8.(1)−是角α终边上一点,则cos α=( )A.12 B .21- C.23 D.2−9.已知cos 0,tan 0αα<>,则α是第几象限的角( )A.一B.二C.三D.四10.若a ⃗=(4,2),b ⃗⃗=(1,5),则a ⃗∙b ⃗⃗=( ) A.13 B.14 C.15 D.1611.在ABC ∆中,已知,38,8,30==︒=∠b a A 则=ABC S △( ) A. 332 B.16 C.16332或 D.316332或 12.设向量)5,2(−=→AB ,且)2,1(B ,则A 点的坐标为( ) A.)3,2(− B.)7,2(− C.)3,2( D.)3,3(− 13.通过点(3,1)且与直线x +y =1垂直的直线方程是( )A. x −y +2=0B. 3x −y −8=0C. x −3y +2=0D. x −y −2=014.两直线3430x y −−=和68190x y −+=之间的距离为( )A.52B. 23C.2D.315.若直线经过(1,3),(1,1)A B −,则此直线在y 轴上的截距为( )(第 2 页 共 3 页)A.2B.1.3C.1.5D. 2.5 16.若直线03=++ay x 与直线013=++y x 相互垂直,则=a ( ) A.3=a B. 3-=a C.31=a D.31-17.如果正方体的对角线长为a ,那么这个正方体的体积为( ) A.√3a 3 B. 13a 3 C.√39a 3D. 23a 3 18.函数f (x )=2sinx −1的最小值是( )A.-1B.-2C.-3D.-4 19.函数cos )y x x =+的最大值为( )A.2B.22C.6D.220.在等比数列{a n }中,如果a 4∙a 7+a 5∙a 6=20,则此数列前10项积为( )A.50B.2010C.1010D.105 二、填空题 (本大题共5小题,每小题3分,共15分) 21.不等式35≥−x 的解集是 22.已知f (x )={e x ,x >0x +1,x ≤0 ,则f (2)=23.函数1222+−=x x y 的最小值是24.过点(2,1)与直线2x +3y +4=0平行的直线方程是 25.设函数f (t −1)=t 2−2t +2,则函数f (x )= . 三、简答题(本大题共5小题,每小题9分,共45分) 26.解不等式:|x+1x+2|≥127.已知函数f (x )=x 2+2xa +3,x ∈[−4,6] (1)当a =−2时,求f (x )的最值。

最新三校生数学高考模拟试卷教学内容

最新三校生数学高考模拟试卷教学内容

三校生数学高考模拟试卷一、是非选择题。

(对的选A ,错的选B。

每小题3分,共30分)1.如果A={0.1.2.3},B={1},则B ∈A …………………………………………( ) 2.已知直线上两点A (-3,3),B (3,-1),则直线AB 的倾斜角为65π( ) 3.lg 2+lg5=lg7………………………………………………………………………( ) 4.函数f(x)=245x x -+的定义域是【-1,5】…………………………( )5.sin750·sin3750=41-……………………………………………………………( )6.在等比数列{a n }中,a 1=31,a 4=89,则数列的公比为23…………………( )7.若向量32=+,则∥……………………………………( )8.双曲线13422=-y x 的渐近线方程为x y 23±=,焦距为2………………( ) 9.直线l ⊥平面α,直线m ∥平面β,若l ∥m ,则α⊥β………………( )10.二项式1033⎪⎭⎫⎝⎛-x x 展开式中二项式系数最大的项是第五项…………………( )二、选择题(每小题5分,共40分) 11.函数f(x)=lg(x-3)的定义域是 ( )A.RB.(-3,3)C.(-∞,-3)∪(3,+∞)D.【0,+∞) D.112.以点M (-2,3)为圆心且与x 轴相切的圆的方程( )A.(x +2)2+(y -3)2=4 B . (x -2)2+(y +3)2=4C.(x +2)2+(y -3)2=9 D . (x -2)2+(y +3)2=913.10件产品中,3件次品,甲、乙两人依次各取一件产品,按取后放回,求恰有一件次品的概率为( ) A.10021 B. 241 C. 4521 D. 502114.若函数f(x)在定义域R 上是奇函数,且当x ﹥0时,f(x)=2410x x -,则f(-2)=( ).A. -104B.104C. 1D.10-1215.a=2是直线(a 2-2)x +y=0和直线2x +y +1=0互相平行的( ).A.充分条件 B.必要条件 C.充要条件 D.即不充分也不必要条件 16.设数列{a n }的前n 项和为2n s n=,则a 8=()A.64B.49C.16D.1517.在直角坐标系中,设A (-2,3),B (-3,-3),现沿x 轴把直角坐标系折成直二面角,则AB 的长为( )A.6B.5C.19D.118.a =(1,2),b =(x ,5),且b a⊥2,则x= ( )A .10B .-10 C.25 D.25-三、填空题(每题5分,共30分)19.已知x ∈(ππ,-),已知sinx=21, 则x= _ 已知tanx=-1,则x= _20.已知正方形ABCD 的边长为2,AP ⊥平面ABCD ,且AP=4,则点P 到BD 的距离 21.过圆3622=+y x 上一点(4,52)的切线方程为 _ _22.椭圆1422=+y x 的离心率为23.4名男生和2名女生站成一排,其中2名女生站在两端的站法有 种24.函数1422+-=x x y 的值域为 班级: 姓名: 座号:四、解答题(第25、26、题,每小题10分,第27.28题,每小题15分,共50分) 255=8=,<b a ,> =32π,求()()b a b a -•+2。

中职对口升学-高考数学模拟考试卷

中职对口升学-高考数学模拟考试卷

岑 溪 市 中 等 专 业 学 校 2020春季期高考《数学》模拟试卷班级: 学号: 姓名:一、单项选择:(把正确答案填入下列表格中.每小题5分)1.下列数学表达式正确的是( ).A.(){}200,∈ B.φ∈0 C.{}20,⊆φ D.{}34>⊆x x 2.函数21)(-=x x f 的定义域是( ). A.2≠xB.2=xC.{}22><x x x 或D.)(+∞∞-,3.已知函数12)(2++=x x x f ,则=)2(f ( ).A.)(+∞∞-,B.5C.7D.94.已知21sin =α,且α是第二象限的角,则=αcos ( ),=αtan ( ). A.3323, B.3323--, C.3323,-D.3323-, 5.经过点)1,1(A ,且与直线0132=-+y x 平行的直线是( ).A. 3132+-=x y B.0532=-+y x C.032=+y x D.无法确定 6.已知圆的方程为06422=-++y x y x ,则这个圆的圆心是( ),半径是( ).A.1332;,- B.13)32(;,- C.1332);,(- D.1332;,- 7.已知)410(,-=→a ,)6(xb ,=→,且→→⊥b a ,则x 的值为( ). A.25 B.20 C.15 D.20-8.等比数列Λ,,,331中,327 是( ). A.第6项 B.第7项 C.第8项 D.第9项二、 填空题:(每小题5分)1.设{}2-≥=x x A ,{}10<=x x B ,求=B A I,=B A Y .2. 已知)42(,-=→a ,)13(-=→,b ,求=+→→b a 32 . 3. 已知56=x,86=y ,则=-yx 26.4. 直线12321=+y x l :与直线422=-y x l :的交点是 ,该点到直线124=+y x 的距离是 .三、解答题:(本大题共3小题,共40分)解答时要有符号格式,要有相应的文字说明有步骤,有过程,符合逻辑,只写结果不得分。

中职对口升学-2020年高考数学模拟试卷大题试集

中职对口升学-2020年高考数学模拟试卷大题试集

第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。

(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。

()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。

(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。

在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。

三校生数学模拟试卷一

三校生数学模拟试卷一
29.已知集合 A x | x2 x 6 0 , B x | 0 x a 4 ,若 A B ,求 a 的取值范围。
26.已知 A 0, 4, B x | x2 px q 0 ,若 A B A ,求 p 、 q 的值。
27.设 a (x 1)2 ,b 2x2 2x 1 ,比较 a 与 b 的大小。
A.2, 5
B.2
C.5
14.设全集U x | 4 x 10, x N, A 4, 6,8,10,则 U A =
A.5
B.5, 7
C.7, 9
D.
D.5, 7, 9
15.下列各题中正确的是
A. 若 a b c b ,则 a c C. 若 ab bc ,则 a c
B. 若
a b
30.设U R, A
x | x2 16 0
,
B
x
|
x3 x 1
CU A , CU B 。
学号
21.不等式 2x 3 4 的整数解的解集是
班级
…………………………………………………………………………………………………………
姓名
………………………………………………密…………封…………线………………………………………………
22.已知 A x | x 3, B x | 2 x 7,则 A B
9. p (x 2)(x 3), q x(x 1) ,则 p q …………………………………………( A B )
10.空集是任意集合的真子集 ……………………………………………………………( A B )
二、单项选择题:本大题共 8 题,每小题 5 分,共计 40 分。
11.已知集合 A 1,3,5,7, B 2,3, 4,5,6 ,则 A B

中职对口升学-2020年高考数学模拟试卷大题试集

中职对口升学-2020年高考数学模拟试卷大题试集

第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。

(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。

()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。

(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。

在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。

中职对口升学资料-2020年高考数学模拟试卷-4份-20

中职对口升学资料-2020年高考数学模拟试卷-4份-20

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin =α,则α=( ) A .300 B .600 C .1200 D .300 或15005.下列相互平行的向量是( )A.→a =(4,-5),→b =(-4,5)B.→a =(2,4),→b =(8,4)C.→a =(1,-2),→b =(4,2)D.→a =(3,-4),→b =(-4,3) 6.在平面直角坐标中,已知点A (-1,2),点B (2,-2),则AB 的距离是( )A .5B .10C .25D .37.下列命题错误的是( );A .不共线的三点一定能够确定一个平面。

B .两条相交直线一定能确定一个平面。

C .一条直线与一个平面内无数条直线垂直,则这条直线垂直与这个平面。

D .若两条直线同时垂直于同一个平面,那么这二条直线平行。

8. 在10000张奖券中,有1张一等奖,5张二等奖,2000张三等奖,某人从中任意摸出一张,那么他中三等奖的概率是( )A .110B .51C .201D .100016 二、填空题(本大题共5小题,每小题6分,共30分)9.已知y =1-8cosα,则y 的最小值是 ,最大值是 ;10.若直线2x -ay +1=0与3x +2y -1=0互相垂直,那么a = ;11.已知一个圆柱体的底面半径是8cm ,高是3cm ,则这个圆柱体的表面积是;12.由数字1,2,3,4,5可以组成个没有重复数字的三位奇数;13.若某学校高三一班有25个男生,30个女生,要从中选拔出一个同学作为学校代表参加比赛,共有种选法。

三校生高考数学模拟试卷.pdf

三校生高考数学模拟试卷.pdf

(A B)
A. -1
B. 0 C. 2 D. 3
15. 三个数cos(- ),cos ,cos 3 的大小关系是 ( )
8
5
5
A. cos(− ) cos( ) cos(3 )
8
5
5
B. cos(3 ) cos( ) cos−
5
5 8
B.C. cos(3 ) cos(− ) cos
21. 若双曲线 x2 − x2 = 1右支上一点 p到右焦点的距离为 3,则点p到右焦点的距离为 9 16
22. 已知一个圆柱的底面半径为 1,高为 2,则该圆柱的全面积为
23. 已知向量 a = (−1,1),b = (2,−1), 则a + b =
24.甲乙两人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,用甲、乙训练
5
8
5
D. cos(− ) cos(3 ) cos
8
5
5
16. 不等式 若是直线与平面所成的角,则的取值范围是( )
A.0, )
B. (0, ) C. [0, )
2
2
17. 如果a b,那么下列说法正确的是( )
D.[0, ] 2
A. a 1 b
B. a2 b2 C. 1 1 D. a3 b3 ab
学海无涯
三校生高考数学模拟试卷
14. 不等式函数y = −x2 + 3, x −1,2的最小值为 ( )
班级
姓名
学号
得分
第 I 卷(选择题 70 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
答案
(请将是非选择题、单项选择题答案写到表格中) 一、是非选择题:本大题共 10 小题,每小题 3 分,共 30 分.对每小题的命题作出选择,

中职数学2020年高三年级第一次数学模拟测试题

中职数学2020年高三年级第一次数学模拟测试题

中职数学2020年高三年级第一次数学模拟测试题一、选择题(本大题共12小题,每小题5分,共60分。

)}{}{}{()()=⋂===B C A B A U U ,则,,,,已知全集5,4,3,5,316,5,4,3,21.1A.{3,5} B.{1} C.{1,3,4,5} D.{1,2,3,4,5,6}()的解集是已知一元二次不等式04.22>-x x (][)+∞⋃∞-,40,.A []4,0.B ()()+∞⋃∞-,40,.C ()4,0.D ()=∈=αππααtan ),,2(,54sin .3则已知34.-A 34.B 32.C 54.D ()()的夹角大小为与则向量且已知向量→→→→→→=⋅==b a b a b a ,2,2,0,1||.46.πA 4.πB 3.πC 2.πD ()()的大小关系为与,则的最小值为已知二次函数b a b x a y 51.52---=A.a>b B.a<b C.a=b D.不能确定()()=≥==-511,2,2,3}{.6a n a a a a n n n 那么满足如果数列6.A 12.B 24.C 48.D ()的离心率为椭圆159.722=+y x 31.A 32.B 23.C 23.D 8.从1,2,3,4,5这5个数中任取两个数,则这两个数的和为偶数的概率为()103.A 107.B 31.C 21.D 班级:姓名:考号:[]系式中成立的是上单调递减,则下列关在区间偶函数3,4)(.9--x f )2()3(.-<-f f A )2()3(.f f B <)()3(.π-<-f f C )1()2(.-<-f f D ()列命题中正确的表示不同的平面,则下,表示不同的直线,已知βαn m ,.10A.n m n m //,//,//则ααB .βαβα//,//,//则m m C.nm n m //,,αα⊥⊥ D.βα//,//,n n m m ⊥()的图像大致是与函数时,函数当在同一直角坐标系中,x y x a y a a log 2)1(10.112=-=<<,则抛物线的方程为到焦点的距离为点的横坐标为轴,抛物线上一点对称轴是为顶点已知抛物线以坐标原点5P 3-P ,12.x yx A 4.2-=yx B 4.2=xy C 8.2-=xy D 8.2=二、填空题(本大题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省2020年三校生高考模拟考试数学试卷(一)
注意事项:本试卷分是非选择题、选择题和填空、解答题两部分,满分为150分,考试时间为120分钟,试题答案请写在答题卡上,不能超出答题卡边界,解答题必须有解题过程。

第Ⅰ卷(选择题
共70分)
一、是非选择题(本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A,错的选
B,请把答案填涂在答题卡上)
1、设集合A ={-3,0,3},B ={0},则A B ⊆…………………………………………………………………(A B )
2、02=-x 是0)3)(2(=+-x x 的必要但不充分条件……………………………………………………(A B )
3、函数x y 2sin 2
1
=
的最小正周期是π………………………………………………………………………(A B )4、在等差数列}{n a 中,33=a ,125=a ,则1562=+a a ……………………………………………(A
B )5、已知向量)1,3(=a
,)5,2(-=b ,则)6,1(=-b a ………………………………………………………(A
B )6、已知函数2)1(2
+-=+x x x f ,则4)3(=f ……………………………………………………………(A B )7、二项式5
)1(+x 的展开式的项数为5………………………………………………………………………(A B )8、夹在两个平行平面间的平行线段相等……………………………………………………………………(A B )9、从1,2,3,4,5中任选两个数,恰好都是奇数的是奇数的概率是
10
3
………………………………(A B )
10、椭圆15922=+y x 的离心率为3
2………………………………………………………………………(A B )
二、单项选择题(本大题共8小题,每小题5分,共40分,请把答案填涂在答题卡上)
11、集合{}
21<<=x x A ,集合{}
1>=x x B ,则=B A ().
A .())
2,1(1,⋃-∞-B .()
+∞,1C .(1,2)
D .[)
,2+∞12、已知b a >,则下列不等式成立的是().
A .2
2
b
a >B .
b
a 1
1>C .2
2
bc ac >D .0<-a b 13、设}{n a 是等比数列,如果12,442==a a ,则=6a ().
A .36
B .12
C .16
D .48
14、若2log 4x =,则12
x =().
A .4
B .4
±C .8D .16
15、函数x
y ⎪⎭

⎝⎛-=311的定义域为(
).
A .[0,+∞)
B .(-∞,+∞)
C .[-1,1]
D .(-∞,0)
16、已知ABC ∆的三边分别为7=a ,10=b ,6=c 则ABC ∆为().A .锐角三角形
B .直角三角形
C .钝角三角形
D .无法确定
17、已知直线b a //,⊆b 平面M ,下列结论中正确的是().
A .//a 平面M
B .//a 平面M 或⊆a 平面M
C .⊆a 平面M
D .以上都不对
18、平面上到两定点)0,6(-和)0,6(的距离之差的绝对值等于8的点的轨迹方程为(
).
A .1
16202
2=-y x B .1
20162
2=+y x C .1
20162
2=-y x D .1
16
202
2=+y x 第Ⅱ卷(非选择题
共80分)
三、填空题:本大题共6小题,每小题5分,共30分.
19、723≤-x 的解集为___________________(用区间表示).20、=o
750tan _______________.
21、5本不同的书分给4个同学,每个同学至少一本,共有___________种分法.22、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为.
23、若4
π
βα=
+,则=++)tan 1)(tan 1(βα.
24、轴截面为正方形的圆柱,其侧面积和表面积之比为_______________.
四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出
过程或步骤.
25、若)2,1(=a
,)1,1(-=b ,求:(1)b a +2;(2)b a -.
26、已知等比数列1,2,4,8,16,…求10a 和10S .
27、已知直线l 经过抛物线y x 82
-=的焦点,且与直线012=-+y x 平行,求直线l 的方程.
28、已知函数f (x )=2sin x cos x +cos2x .(1)求)4
(πf 的值;(2)求)(x f 的值域.
29、已知动圆过定点)0,1(,且与直线1-=x 相切.
(1)求动圆的圆心C 的轨迹方程;
(2)直线l 过点)0,1(,且斜率2-=k ,与圆心C 的轨迹方程交于A 、B 两点,求A 、B 两点间的距离.
30、已知⊥PA 正方形ABCD 所在平面,AB PA =,M 、N 分别是AB 、PC 的中点.
(1)求证://MN 平面PAD ;(2)求证:⊥MN 平面PCD .。

相关文档
最新文档