高等数学B资料:Ch2-曲率习题解答
曲率与曲率半径问题(解析版)-高中数学
曲率与曲率半径问题1.(2024·浙江温州·二模)如图,对于曲线Γ,存在圆C满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 03);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.【解析】(1)记f x =x 2,设抛物线y =x 2在原点的曲率圆的方程为x 2+y -b 2=b 2,其中b 为曲率半径.则f x =2x ,f x =2,故2=f0 =b 2b -03=1b ,2=r 2b 3,即b =12,所以抛物线y =x 2在原点的曲率圆的方程为x 2+y -122=14;(2)设曲线y =f x 在x 0,y 0 的曲率半径为r .则法一:f x 0 =-x 0-ay 0-bfx 0 =r 2b -y 03,由x 0-a 2+y 0-b 2=r 2知,fx 0 2+1=r 2y 0-b 2,所以r =fx0 2+132f x 0,故曲线y =1x在点x 0,y 0 处的曲率半径r =-1x 202+1 322x 30,所以r 2=1x 40+132x 302=14x 20+1x 23≥2,则r 23=2-23x 20+1x 20≥213,则r =12x 20+1x 232≥2,当且仅当x 20=1x 20,即x 20=1时取等号,故r ≥2,曲线y =1x在点1,1 处的曲率半径r =2.法二:-1x 20=-x 0-a y 0-b 2x 30=r 2b -y 0 3,a +bx 20-2x 0x 40+1=r ,所以y 0-b =-x 0⋅r 23213x 0-a =-r 23213x 0,而r 2=x 0-a 2+y 0-b 2=x 20⋅r 43223+r 43223⋅x 20,所以r 23=2-23x 20+1x 20,解方程可得r =12x 20+1x 2032,则r 2=14x 20+1x 203≥2,当且仅当x 20=1x 20,即x 20=1时取等号,故r ≥2,曲线y =1x在点1,1 处的曲率半径r =2.(3)法一:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,故r 23=e 43x +e-23x ,由题意知:e 43x1+e -23x 1=e43x 2+e-23x 2令t 1=e 23x1,t 2=e23x 2,则有t 21+1t 1=t 22+1t 2,所以t 21-t 22=1t 2-1t 1,即t 1-t 2 t 1+t 2 =t 1-t 2t 1t 2,故t 1t 2t 1+t 2 =1.因为x 1≠x 2,所以t 1≠t 2,所以1=t 1t 2t 1+t 2 >t 1t 2⋅2t 1t 2=2t 1t 2 32=2e x 1+x 2,所以x 1+x 2<-ln2.法二:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,有r 2=e 2x +13e 2x=e 4x +3e 2x +3+e -2x令t 1=e 2x 1,t 2=e 2x 2,则有t 21+3t 1+3+1t 1=t 22+3t 2+3+1t 2,则t 1-t 2 t 1+t 2+3-1t 1t 2=0,故t 1+t 2+3-1t 1t 2=0,因为x 1≠x 2,所以t 1≠t 2,所以有0=t 1+t 2+3-1t 1t 2>2t 1t 2+3-1t 1t 2,令t =t 1t 2,则2t +3-1t2<0,即0>2t 3+3t 2-1=(t +1)22t -1 ,故t <12,所以e x 1+x 2=t 1t 2=t <12,即x 1+x 2<-ln2;法三:函数y =e x 的图象在x ,e x处的曲率半径r =e 2x +1 32e x.故r 23=e 43x +e23x 设g x =e 43x +e 23x ,则gx =43e 43x -23e -23x =23e -23x 2e 2x -1 ,所以当x ∈-∞,-12ln2 时g x <0,当x ∈-12ln2,+∞ 时g x >0,所以g x 在-∞,-12ln2 上单调递减,在-12ln2,+∞ 上单调递增,故有x 1<-12ln2<x 2,所以x 1,-ln2-x 2∈-∞,-12ln2 ,要证x 1+x 2<-ln2,即证x 1<-ln2-x 2,即证g x 2 =g x 1 >g -ln2-x 2 将x 1+x 2<-ln2,下证:当x ∈-12ln2,+∞ 时,有g x >g -ln2-x ,设函数G x =g x -g -ln2-x (其中x >-12ln2),则G x =g x +g -ln2-x =232e 2x -1 e 23x -2-13 ⋅e -43x >0,故G x 单调递增,G x >G -12ln2 =0,故g x 2 >g -ln2-x 2 ,所以x 1+x 2<-ln2.法四:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,有r 2=e 2x +13e2x=e 4x +3e 2x +3+e -2x ,设h x =e 4x +3e 2x +3+e -2x .则有h x =4e 4x +6e 2x -2e -2x =2e -2x e 2x +1 22e 2x -1 ,所以当x ∈-∞,-12ln2 时h x <0,当x ∈-12ln2,+∞ 时h x >0,故h x 在-∞,-12ln2 上单调递减,在-12ln2,+∞ 上单调递增.故有x 1<-12ln2<x 2,所以x 1,-ln2-x 2∈-∞,-12ln2 ,要证x 1+x 2<-ln2,即证x 1<-ln2-x 2,即证h x 2 =h x 1 >h -ln2-x 2 .将x 1+x 2<-ln2,下证:当x ∈-12ln2,+∞ 时,有h x >h -ln2-x ,设函数H x =h x -h -ln2-x (其中x >-12ln2),则H x =h x +h -ln2-x =2e 2x -1 21+12e -2x +14e -4x >0,故H x 单调递增,故H x >H -12ln2 =0,故h x 2 >h -ln2-x 2 ,所以x 1+x 2<-ln2.2.有一种速度叫“中国速度”,“中国速度”正在刷新世界对中国高铁的认知.由于地形等原因,在修建高铁、公路、桥隧等基建中,我们常用曲线的曲率(Curvature )来刻画路线弯曲度.如图所示的光滑曲线C 上的曲线段AB ,设其弧长为Δs ,曲线C 在A ,B 两点处的切线分别为l A ,l B ,记l A ,l B 的夹角为ΔθΔθ∈0,π2,定义K =ΔθΔs为曲线段AB 的平均曲率,定义K (x )=lim Δx →0ΔθΔs=f (x )1+f (x ) 232为曲线C :y =f (x )在其上一点A (x ,y )处的曲率.(其中f (x )为f (x )的导函数,f (x )为f (x )的导函数)(1)若f (x )=sin (2x ),求K π4;(2)记圆x 2+y 2=2025上圆心角为π3的圆弧的平均曲率为a .①求a 的值;②设函数g (x )=ln (x +45a )-xe x -1,若方程g (x )=m (m >0)有两个不相等的实数根x 1,x 2,证明:x 2-x 1 <1-(5e -2)m3e -3,其中e 为自然对数的底数,e =2.71828⋯.【解析】(1)f (x )=sin (2x ),f (x )=2cos (2x ),f (x )=-4sin (2x ),所以f π4 =2cos π2=0,f π4 =-4sin π2=-4,因此K π4 =f π4 1+f π4 232=-4 1+0 32=4.(2)①由圆的性质知圆x 2+y 2=2025上圆心角为π3的圆弧的弧长为ΔS =π3⋅R .弧的两端点处的切线对应的夹角Δθ=π3,所以该圆弧的平均曲率K =Δθ ΔS=1R =12025=145,也即a =145.②由于a =145,故g x =ln x +1 -xe x -1,x ∈-1,+∞ ,又g (0)=0,g x =1x +1-x +1 e x -1,g x =-1x +12-x +2 e x -1<0,所以g (x )在-1,+∞ 上单调递减,而g 0 =1-1e >0,g 1 =12-2=-32<0.因此必存在唯一的x 0∈(0,1)使得g (x 0)=0且g (x )在-1,x 0 上为正,在x 0,+∞ 为负,即g (x )在-1,x 0 上单调递增,在x 0,+∞ 上单调递减,而g (0)=0,又g 12 =ln 32-12e>ln 32-13>0∵2e >3⇔e >94,ln 32>13⇔e 13<32⇔e <278,g (1)=ln2-1<0,所以∃t ∈12,1 使得g (t )=0,即g (x )的图象与x 轴有且仅有两个交点(0,0),(t ,0),易得g (x )在(0,0)处的切线方程为l 0:y =1-1e x =e -1ex ,在(t ,0)处的切线方程为l t :y =1t +1-t +1 e t -1 x -t ,下面证明两切线l 0,l t 的图象不在g (x )的图象的下方:令h x =g x -1t +1-t +1 e t -1 x -t =g (x )-g (t )(x -t ),则h (x )=g (x )-g (t ).因为h (x )=g (x )<0,所以h (x )在(-1,+∞)单调递减,而h (t )=0,所以h (t )在(-1,t )上为正,在(t ,+∞)为负,即h (x )在(-1,t )上单调递增,在(t ,+∞)单调递减,因此h (x )≤h (t )=g (t )-0=0,即g x ≤1t +1-t +1 e t -1 x -t ,即g (x )的图象恒在其图象上的点(t ,0)处的切线的下方(当且仅当x =t 时重合).同理可证(将t 视为0即可),g x ≤1-1ex设直线y =m (m >0)与两切线l 0,l 1交点的横坐标分别为X 0,X t ,则易得X 0=me e -1,X t =m1t +1-t +1 e t -1+t 且X 0<x 1<x 2<X t ,因为t ∈12,1,故1t +1-t +1 e t -1∈-32,23-32e⊆-32,0 ,所以X t =m 1t +1-t +1 e t -1+t <m -32+t <1-2m3,因此x 2-x 1 <X t -X 0<1-2m 3-mee -1=1-5e -2 m 3e -3.3.定义:若h (x )是h (x )的导数,h (x )是h (x )的导数,则曲线y =h (x )在点(x ,h (x ))处的曲率K =h (x )1+h(x ) 232;已知函数f (x )=e x sin π2+x,g (x )=x +(2a -1)cos x ,a <12,曲线y =g (x )在点(0,g (0))处的曲率为24;(1)求实数a 的值;(2)对任意x ∈-π2,0,mf (x )≥g (x )恒成立,求实数m 的取值范围;(3)设方程f (x )=g (x )在区间2n π+π3,2n π+π2n ∈N * 内的根为x 1,x 2,⋯,x n ,⋯比较x n +1与x n +2π的大小,并证明.【解析】(1)由已知g (x )=-2a -1 sin x +1,g (x )=-2a -1 cos x ,所以2a -1 1+12 32=24,解得a =0(a =1舍去),所以a =0;(2)由(1)得g (x )=x -cos x ,f (x )=e x sin π2+x=e x cos x ,则g x =1+sin x ,对任意的x ∈-π2,0,mf x -gx ≥0,即me x cos x -sin x -1≥0恒成立,令x =-π2,则m ⋅0+1-1=0≥0,不等式恒成立,当x ∈-π2,0时,cos x >0,原不等式化为m ≥sin x +1e x cos x ,令h x =sin x +1e x cos x,x ∈-π2,0 ,则hx =cos x e x cos x -e xcos x -sin x sin x +1 e x cos x2=1-sin x cos x -cos x +sin xe x cos 2x =1-cos x 1+sin x e x cos 2x≥0,所以h x 在区间-π2,0单调递增,所以h x max =h 0 =1,所以m ≥1,综上所述,实数m 的取值范围为1,+∞ ;(3)x n +1>x n +2π,证明如下:由已知方程f x =g x 可化为e x cos x -sin x -1=0,令φx =e x cos x -sin x -1,则φ x =e x cos x -sin x -cos x ,因为x ∈2n π+π3,2n π+π2,所以cos x <sin x ,cos x >0,所以φ x <0,所以φx 在区间2n π+π3,2n π+π2n ∈N * 上单调递减,故φ2n π+π3 =e 2n π+π3cos 2n π+π3 -sin 2n π+π3 -1=12e 2n π+π3-32-1≥12e 2π+π3-32-1>22×3+1×12-32-1>0,φ2n π+π2=-2<0,所以存在唯一x 0∈2n π+π3,2n π+π2,使得φx 0 =0,又x n ∈2n π+π3,2n π+π2 ,x n +1-2π∈2n π+π3,2n π+π2 ,则φx n +1-2π =e x n +1-2πcos x n +1-2π -sin x n +1-2π -1=e x n +1-2πcos x n +1-sin x n +1-1=ex n +1-2πcos x n +1-e x n +1cos x n +1=ex n +1-2π-ex n +1cos x n +1<0=φx n由φx 单调递减可得x n +1-2π>x n ,所以x n +1>x n +2π.4.(2024·湖北黄冈·二模)第二十五届中国国际高新技术成果交易会(简称“高交会”)在深圳闭幕.会展展出了国产全球首架电动垂直起降载人飞碟.观察它的外观造型,我们会被其优美的曲线折服.现代产品外观特别讲究线条感,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB ,其弧长为Δs ,当动点从A 沿曲线段AB 运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δ→0ΔθΔs=y1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ,y 分别表示y =f x 在点A 处的一阶、二阶导数)(1)已知抛物线x 2=2py (p >0)的焦点到准线的距离为3,则在该抛物线上点3,y 处的曲率是多少?(2)若函数g x =12x +1-12,不等式g e x +e -x 2 ≤g 2-cos ωx 对于x ∈R 恒成立,求ω的取值范围;(3)若动点A 的切线沿曲线f x =2x 2-8运动至点B x n ,f x n 处的切线,点B 的切线与x 轴的交点为x n +1,0 n ∈N * .若x 1=4,b n =x n -2,T n 是数列b n 的前n 项和,证明T n <3.【解析】(1)∵抛物线x 2=2py (p >0)的焦点到准线的距离为3,∴p =3,即抛物线方程为x 2=6y ,即f x =y =16x 2,则f x =13x ,f x =13,又抛物线在点3,y 处的曲率,则K =131+19⋅3232=1322=212,即在该抛物线上点3,y 处的曲率为212;(2)∵g -x =12-x +1-12=2x 2x +1-12=12-12x +1=-g x ,∴g x 在R 上为奇函数,又g x 在R 上为减函数.∴g e x +e -x 2≤g 2-cos ωx 对于x ∈R 恒成立等价于cos ωx ≥2-e x +e -x2对于x ∈R 恒成立.又因为两个函数都是偶函数,记p x =cos ωx ,q x =2-e x +e -x2,则曲线p x 恒在曲线q x 上方,p x =-ωsin ωx ,qx =-e x -e -x 2,又因为p 0 =q 0 =1,所以在x =0处三角函数p x 的曲率不大于曲线q x 的曲率,即p 0 1+p 20 32≤q 01+q 232,又因为p x =-ω2cos ωx ,qx =-e x +e -x 2,p 0 =-ω2,q 0 =-1,所以ω2≤1,解得:-1≤ω≤1,因此,ω的取值范围为-1,1 ;(3)由题可得f x =4x ,所以曲线y =f x 在点x n ,f x n 处的切线方程是y -f x n =f x n x -x n ,即y -2xn 2-8 =4x n x -x n ,令y =0,得-x n 2-4 =2x n x n +1-x n ,即x n 2+4=2x n x n +1,显然x n ≠0,∴x n +1=x n 2+2x n,由x n +1=x n 2+2x n ,知x n +1+2=x n 2+2x n +2=x n +2 22x n ,同理x n +1-2=x n -2 22x n,故x n +1+2x n +1-2=x n +2x n -22,从而lg x n +1+2x n +1-2=2lg x n +2x n -2,设lg x n +2x n -2=a n ,即a n +1=2a n ,所以数列a n 是等比数列,故a n =2n -1a 1=2n -1lg x 1+2x 1-2=2n -1lg3,即lg x n +2x n -2=2n -1lg3,从而x n +2x n -2=32n -1,所以x n =232n -1+132n -1-1,∴b n =x n -2=432n -1-1>0,b n +1b n =32n -1-132n-1=132n -1+1<132n -1≤1321-1=13,当n =1时,显然T 1=b 1=2<3;当n >1时,b n <13b n -1<13 2b n -2<13n -1b 1,∴T n =b 1+b 2+⋯+b n <b 1+13b 1+⋯+13 n -1b 1=b 11-13 n1-13=3-3⋅13n<3,综上,T n <3n ∈N * .5.(2024·高三·浙江宁波·期末)在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs=y1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y1+y 3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.【解析】(1)K =ΔθΔs=π3π3=1.(2)y =1-x 24,y=-x 41-x 24 -12,y =-141-x 24 -12-x 2161-x 24 -32,故y x =3=-32,y x =3=-2,故K =21+3432=16749.(3)fx =ln x -1,fx =1x ,故φy =22y 1+y 3=22x ln x 3=223s ln s3,其中s =3x ,令t 1=3x 1,t 2=3x 2,则t 1ln t 1=t 2ln t 2,则ln t 1=-t ln tt -1,其中t =t 2t 1>1(不妨t 2>t 1)令p x =x ln x ,p x =1+ln x ⇒p x 在0,1e 递减,在1e ,+∞ 递增,故1>t 2>1e>t 1>0;令h t =ln t 1+t 2 =ln t +1 -t ln tt -1,h 't =1t -1 2ln t -2t -1 t +1,令m (t )=ln t -2t -1 t +1(t >1),则m(t )=t -1 2t (t +1),当t >1时,m (t )>0恒成立,故m (t )在(1,+∞)上单调递增,可得m (t )>m (1)=0,即ln t -2t -1t +1>0,故有h t =1t -12ln t -2t -1 t +1>0,则h t 在1,+∞ 递增,又lim t →1h t =ln2-1,lim t →+∞h t =0,故ln t 1+t 2 ∈ln2-1,0 ,故3x 1+3x 2=t 1+t 2∈2e ,1.6.(2024·高三·辽宁·期中)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f x 是f x 的导函数,fx 是fx 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =f (x )1+f (x ) 232.(1)求曲线f x =ln x +x 在1,1 处的曲率K 1的平方;(2)求余弦曲线h x =cos x (x ∈R )曲率K 2的最大值;【解析】(1)因为f x =ln x +x ,则f x =1x +1,f x =-1x 2,所以K 1=f 11+f 1 232=11+2232=1532,故K 1 2=15322=153=1125.(2)因为h x =cos x x ∈R ,则h x =-sin x ,h x =-cos x ,所以K 2=h x 1+hx 2 32=-cos x1+sin 2x 32,则K 22=cos 2x 1+sin 2x 3=cos 2x2-cos 2x3,令t =2-cos 2x ,则t ∈1,2 ,K 22=2-t t3,设p t =2-t t 3,则pt =-t 3-3t 22-t t 6=2t -6t 4,显然当t ∈1,2 时,p t <0,p t 单调递减,所以p (t )max =p 1 =1,则K 22最大值为1,所以K 2的最大值为1.7.曲线的曲率定义如下:若f '(x )是f (x )的导函数,f "(x )是f '(x )的导函数,则曲线y =f (x )在点(x ,f (x ))处的曲率K =|f "(x )|1+[f '(x )]232.已知函数f x =e x cos x ,g x =a cos x +x a <0 ,曲线y =g (x )在点(0,g (0))处的曲率为24.(1)求实数a 的值;(2)对任意的x ∈-π2,0,tf x -g x ≥0恒成立,求实数t 的取值范围;(3)设方程f x =g x 在区间2n π+π3,2n π+π2(n ∈N +)内的根从小到大依次为x 1,x 2,⋯,x n ,⋯,求证:x n +1-x n >2π.【解析】(1)由已知g (x )=-a sin x +1,g (x )=-a cos x ,,所以a 1+1232=24,解方程得a =-1(2)对任意的x ∈-π2,0,tf x -gx ≥0,即te x cos x -sin x -1≥0恒成立,令x =-π2,则t ⋅0+1-1≥0,不等式恒成立当x ∈-π2,0时,cos x >0,原不等式化为t ≥sin x +1e x cos x 令h x =sin x +1e x cos x,则hx =cos x e x cos x -e xcos x -sin x sin x +1 e x cos x2=1-sin x cos x -cos x +sin xe x cos 2x=1-cos x 1+sin xe x cos 2x所以h x 在区间-π2,0单调递增,所以最大值为h 0 =1所以要使不等式恒成立必有t ≥1(3)由已知方程f x =g x 可化为e x cos x -sin x -1=0令φx =e x cos x -sin x -1,则φ x =e x cos x -sin x -cos x因为x ∈2n π+π3,2n π+π2,所以cos x <sin x ,cos x >0所以φ x <0,φx 在区间2n π+π3,2n π+π2(n ∈N +)上单调递减,φ2n π+π3 =e 2n π+π3cos 2n π+π3 -sin 2n π+π3 -1=e 2n π+π312-32-1≥e 2π+π312-32-1>22⋅3+112-32-1>0φ2n π+π2=-2<0所以存在唯一x 0∈2n π+π3,2n π+π2,φx 0 =0x n ∈2n π+π3,2n π+π2 ,x n +1-2π∈2n π+π3,2n π+π2φx n +1-2π =e x n +1-2πcos x n +1-2π -sin x n +1-2π -1=e x n +1-2πcos x n +1-sin x n +1-1=ex n +1-2πcos x n +1-e x n +1cos x n +1=ex n +1-2π-ex n +1cos x n +1<0=φx n由φx 单调递减可得x n +1-2π>x n 即x n +1-x n >2π8.(2024·湖南永州·三模)曲线的曲率定义如下:若f (x )是f (x )的导函数,令φ(x )=f (x ),则曲线y =f (x )在点x ,f x 处的曲率K =φ (x )1+f (x ) 232.已知函数f (x )=x 2a +x (a >0),g (x )=(x +1)ln (x +1),且f (x )在点(0,f (0))处的曲率K =24.(1)求a 的值,并证明:当x >0时,f (x )>g (x );(2)若b n =ln (n +1)n +1,且T n =b 1⋅b 2⋅b 3⋯b n (n ∈N ∗),求证:(n +2)T n <e 1-n 2.【解析】(1)f ′(x )=2x a +1=φ(x ),φ′(x )=2a,f ′(0)=1,a >0,∵f (x )在点(0,f (0))处的曲率K =24,∴2a(1+12)32=24,解得a =2.当x >0时,h (x )=f (x )-g (x )=12x 2+x -(x +1)ln (x +1),h ′(x )=x +1-ln (x +1)-1=x -ln (x +1),令u (x )=x -ln (x +1),则u ′(x )=1-1x +1=xx +1>0,∴u (x )在x >0时单调递增,∴u (x )>u (0)=0,∴h ′(x )>0,∴函数h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,因此f (x )>g (x ).(2)证明:由(1)可得:12x 2+x >(x +1)ln (x +1),∴ln (x +1)x +1<x (x +1)2(x +1)2,x >0,令x =n ∈N *,则:ln (n +1)n +1<n (n +2)2(n +1)2,∴T n =b 1⋅b 2⋅b 3⋅⋯⋅b n <12n ×1×322×2×432×3×542×4×652×⋯⋯×(n -1)(n +1)n 2×n (n +2)(n +1)2=12n ×12×n +2n +1要证明:(n +2)T n <e 1-n 2,只要证明:2ln (n +2)-(n +1)ln2-ln (n +1)-1+n2<0即可,n =1时,左边=2ln3-2ln2-ln2-12<0n ≥2时,令v (x )=2ln (x +2)-(x +1)ln2-ln (x +1)-1+x 2,v ′(x )=2x +2-ln2-1x +1+12=s (x ),s ′(x )=1(x +1)2-2(x +2)2=-x 2+2(x +1)2(x +2)2<0,∴v ′(x )<v ′(2)=23-ln2<0,∴v (x )在(2,+∞)上单调递减,∴v (x )<v (2)=4ln2-3ln2-ln3=ln2-ln3<0,综上可得:(n +2)T n <e1-n2成立.9.曲率是曲线的重要性质,表征了曲线的“弯曲程度”,曲线曲率解释为曲线某点切线方向对弧长的转动率,设曲线C :y =f x 具有连续转动的切线,在点x ,f x 处的曲率K =f x1+f x 232,其中f x为f x 的导函数,f x 为f x 的导函数,已知f x =x 2ln x -a 3x 3-32x 2.(1)a =0时,求f x 在极值点处的曲率;(2)a >0时,f x 是否存在极值点,如存在,求出其极值点处的曲率;(3)g x =2xe x -4e x +a 2x 2,a ∈0,1e,当f x ,g x 曲率均为0时,自变量最小值分别为x 1,x 2,求证:x1ex 2>e 2.【解析】(1)当a =0时,f x =x 2ln x -32x 2,x >0,可得f x =2x ln x +x -3x =2x (ln x -1),令f x =0,可得x =e ,当0<x <e 时,f x <0,当x >e 时,f x >0,所以当x =e 为f x 在极小值点,又f x =2ln x ,所以f e =2ln e =2,所以K =f e 21+f e 2232=2[1+02]32=2;(2)由f x =x 2ln x -a 3x 3-32x 2,可得f x =2x ln x +x -ax 2-3x =2x ln x -2x -ax 2,令h (x )=f x =2x ln x +x -ax 2-3x =2x ln x -2x -ax 2,则h x =2ln x -2ax ,令h x =0时,可得a =ln x x ,令φ(x )=ln x x ,可得φ (x )=1-ln xx 2,当0<x <e 时,φ x >0,φ(x )=ln xx 单调递增,当x >e 时,φ x <0,φ(x )=ln x x 单调递减,则φ(x )max =1e,所以0<a <1e时,f x =2ln x -2ax =0有解,且有两解x 1,x 3且1<x 1<e <x 3,x 1为f x 的极小值点,x 3为f x 的极大值点,当a =1e 时,f x =2ln x -2ax =0有解,且有唯一解,但此解不是f x 极值点,当a >1e时,f x =2ln x -2ax =0无解,所以f x 无极值点,所以当0<a <1e 时,f x 存在极值点,所以K =f x1+f x 2 32=0;(3)由题意可得g x =2xe x -4e x +a 2x 2,可得g x =2(x +1)e x -4e x +2ax ,要g x ,f x 曲率为0,则g x =f (x )=0,即2ln x -2ax =2a +2xe x =0,可得a =ln x x ,a 2=-xe x ,所以0<a <1e 时,φ(x )=ln xx有两解x 1,x 3,1<x 1<e <x 3,可证x 1x 3>e 2,由(2)可得ln x 1-ax 1=0,ln x 3-ax 3=0,可得ln x 1+ln x 3=ax 1+ax 3,ln x 1-ln x 3=ax 1-ax 3.要证明x 1x 3>e 2,即证明ln x 1+ln x 3>2,也就是a (x 1+x 3)>2.因为a =ln x 1-ln x 3x 1-x 3,所以即证明ln x 1-ln x 3x 1-x 3>2x 1+x 3,即ln x 1x 3<2(x 1-x 3)x 1+x 3,令x1x 3=t ,则0<t <1,于是ln t <2(t -1)t +1,令f (t )=ln t -2(t -1)t +1,则f(t )=1t -4(t +1)2=(t -1)2(t +1)2>0,故函数f (t )在(0,1)上是增函数,所以f (t )<f (1)=0,即ln t <2(t -1)t +1成立.所以x 1x 3>e 2成立.又因为a 2<a ,则-x 2e x 2=ln e-x2e-x 2<ln x 3x 3,由(2)可得φ(x )=ln xx在(e ,+∞)上单调递减,因为e -x 2>e ,x 3>e ,所以x 1ex 2=x 1e -x2>x 1x 3>e 2,10.用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇,衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f x 是f x 的导函数,f x 是f x 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =f x1+f x 232.(1)求曲线f x =ln x +x 在1,1 处的曲率K 1的平方;(2)求余弦曲线h x =cos x x ∈R 曲率K 2的最大值;(3)余弦曲线h x =cos x x ∈R ,若g x =e x h x +xh x ,判断g x 在区间-π2,π2上零点的个数,并写出证明过程.【解析】(1)因为f x =ln x +x ,所以f x =1x +1,f x =-1x2,所以K 1=f 11+f 1 232=11+2232=1532,∴K 1 2=15322=153=1125.(2)因为h x =cos x x ∈R ,h x =-sin x ,h x =-cos x ,所K 2=h x 1+h x 2 32=-cos x 1+sin 2x32,K 22=cos 2x 1+sin 2x 3=cos 2x 2-cos 2x3,令t =2-cos 2x ,则t ∈1,2 ,K 22=2-t t3,设p t =2-t t 3,t ∈1,2 ,则pt =-t 3-3t 22-t t 6=2t -6t4,显然当t ∈1,2 时,p t <0,p t 在1,2 上单调递减,所以p t max =p 1 =1,所以K 22最大值为1,所以K 2的最大值为1.(3)g x 在区间-π2,π2上有且仅有2个零点.证明:g x =e x cos x -x sin x ,所以g x =e x cos x -sin x -x cos x +sin x ,①当x ∈-π2,0时,因为cos x ≥0,sin x ≤0,则cos x -sin x >0,-x cos x +sin x >0,∴g x >0,g x 在-π2,0上单调递增,又g 0 =1>0,g -π2 =-π2<0.∴g x 在-π2,0上有一个零点,②设φx =e x -x ,则φ x =e x -1,当x ∈0,π4时,φx ≥0,φx 单调递增,φx =e x -x ≥φ0 =1,又cos x ≥sin x >0,∴g x =e x cos x -x sin x ≥e x sin x -x sin x =sin x e x -x >0恒成立,∴g x 在0,π4上无零点.③当x ∈π4,π2 时,0<cos x <sin x ,g x =e x cos x -sin x -x cos x +sin x <0,∴g x 在π4,π2 上单调递减,又g π2 =-π2<0,g π4 =22e π4-π4>0.∴g x 在π4,π2上必存在一个零点,综上,g x 在区间-π2,π2上有且仅有2个零点.。
高等数学习题解答
高等数学1C 习题解答习题一一.单项选择题1、A2、D3、C 二.填空题 1、22)1(133-+-x x x 2、(-9,1)三.计算题1、(1)解 函数要有意义,必须满足⎩⎨⎧≥-≠0102x x 即⎩⎨⎧≤≤-≠110x x 定义域为]1,0()0,1(⋃- (2)解 函数要有意义,必须满足⎪⎪⎩⎪⎪⎨⎧≤≤-≠≥-111003x x x 解得1-≤x 或31≤≤x 3.(1)解 由1-=x e y 得 1ln +=y x 交换x 、y 得反函数为1ln +=x y (2)解 由11+-=x x y 得 yy x -+=11 交换x 、y 得反函数为xx y -+=114.(1)解 只有t=0时,能;t 取其它值时,因为 112>+t ,x arcsin 无定义(2)解 不能,因为11≤≤-x ,此时121-=x y 无意义5.解(1)12arccos 2-====x w w v v u ey u(2) 令22y y y += 则11ln 21+=+==x u u v v yx w em m x v vu ey wu2)s i n (32==+===6.解 ⎪⎩⎪⎨⎧-≤+≤<-+->-=1101)1(0)]([22x x x x x x x f g7.解 设c bx ax x f ++=2)(所以⎪⎩⎪⎨⎧==++=++41242c c b a c b a 解得 25214-===b a c习题二一.单项选择题1、A2、B3、D 二.填空题1、>12、单调增加 三.计算题1、(1)解 因为)(sin )sin()(x f x x x x x f ==--=- 所以函数是偶函数(2)解 因为)()1ln(11ln )1ln()(222x f x x xxx x x f -=-+-=-+=++=-所以函数是奇函数(3)解 )(0)1(000)1(010001)(x f x x x x x x x x x x x f -=⎪⎩⎪⎨⎧>+-=<--=⎪⎩⎪⎨⎧<---=->-+-=-所以函数是奇函数 2.解 因为 x x y 2cos 2121sin2-==而x 2cos 的周期为π,所以x y 2sin =是周期函数,周期为π3.解 由h r V 231π=得23rvh π=表面积: )0(919221226224222222≥++=++=+⋅+=r r vr rrrvr r rr h r s πππππππ四 证明 )()1()1(11)(x f ee e e e e xf xxx x xx-=+-=+-=---习题三一.单项选择题1、C2、C3、B4、C 二.填空题1、12、a3、≥4、2,05、1 三.判断正误1、对;2、对;3、错 四.(1) 证明 令12+=n n x nε<=<+=-nnn n n x n 11022只要ε1>n ,取]1[ε=N当N n >时,恒有ε<-0n x 所以01lim2=+∞→n n n(2)证明 因为)0()(lim >=+∞→A A x f x ,对取定的2A =ε,存在M>0,当x>M 时,有2)()(A A x f A x f <-<-故当x>M 时,2)(A x f >习题四一.单项选择题1、B2、B3、B4、D 二.填空题1、a e2、0,63、64、2,-2 三.判断正误1、错;2、错;3、错; 四.计算题 1、原式=2112lim)1)(1()1)(2(lim11=+--=+---→→x x x x x x x x2、原式=01111lim11lim=++=+++∞→+∞→x x xx x x3、原式=2311lim)1)(1()1)(1(lim32313231=+++=-+++-→→xxx x x x x x x x4、原式=31)32(131)32(31lim )32(13233lim1111=-⋅+=-++∞→++++∞→n n n n n nn nn 5、原式=]21)121121(21)5131(21)311[(lim ⋅+--++⋅-+⋅-+∞→n n n21)2112121(lim =⋅+-=∞→n n6、、原式=23232223)12)(1(21lim 3)21(3limnnn n n nnn n n -++=-+++∞→+∞→2132123lim 22=+=∞→nn n n7、因为 0lim =-+∞→xx e1s i n ≤x 所以 0s i n lim =-+∞→x exx习题五一、1.B , 2.A, 3. B 二、1.sin tan x x x << 2.0 三、1.(1)0sin 77limtan 55x x x→=解:(2)0lim sin0x x x π→=解:这是有界函数乘无穷小量,故(3)00sin 5sin 5115sin 55limlimlim1sin 3sin 3sin 31133x x x x x x x x xx x x xxx→→→---===-+++解: (4)0sin 1limlim sin1()x x x x xx++→→+=解:原式=后一项是无穷小量乘有界函数2.(1)22222222222lim (1)lim[(1)]lim (1)1nnn n n e e nnn⨯+→∞→∞→∞=+=++== 原式(2)()1()1111lim (1)lim 1xx x x xx e---∙-→∞→∞⎡⎤⎛⎫-=-=⎢⎥⎪⎝⎭⎢⎥⎣⎦原式=(3)22322(3)3332233lim (1)lim (1)22x x x x ex x -++-∙---→∞→∞⎡⎤-=-=⎢⎥++⎢⎥⎣⎦原式=(4)13330lim (13)x x x e ∙→=+=原式(中间思维过程同前)(5)222222lim ln()lim ln(1)lim ln(1)lim ln(1)1nnn n n n n n n nnnn∙→∞→∞→∞→∞+==+=+=+=原式四. 1.证明:......<+<limlim1,,.n n n n →∞→∞==而故由夹逼准则知原式成立2.证明:只要证明原数列单调有界就可以达到目的()()2211112,110,0,.n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x ++++=-+-=-=-->->> n 即而0<x <1,故即故数列单调递增且有界,极限存在.22212(21)11(1)1lim 1n n n n n n n n x x x x x x x +→∞=-+=--++=--<∴=习题六一、1.B,2.B,3.B,4.B,5。
高等数学-第三章 第7节 曲率
一、曲率及其计算公式
二、曲率圆与曲率半径
1
问 题: 如何定量描述曲线的弯 曲程度 ?
2
一、曲率及其计算公式
1.曲率的定义
曲率是描述曲线局部性质(弯曲程度)的量。
1
M2
M1
2
S 2
M3
M
S1
N
M
S1
S 2 N
(1)当弧长相同时, 转角越大曲线弯曲程 度越大。
5
2、弧微分
y
设函数f ( x )在区间( a , b ) 内具有连续导数 .
A
M
N T R
基点 : A( x0 , y0 ),
M ( x , y )为任意一点 ,
o
x0
x
x x
x
x增大的方向一致 ; 规定:(1) 曲线的正向与
( 2) AM s, 当AM的方向与曲线正向
一致时, s取正号, 相反时, s取负号.
9( x 2 2 xy 8 y 2 2 x 14 y 3) y 0 2 (8 y x 7)
k
y (1 y )
3 2 2
0
所以曲线必为直线 .
14
4
弧段MM 的平均曲率为K . s
注意(1)直线的曲率处处为零。
(2) 圆上各点处的曲率等于半径的 倒数,且半径越小曲率越大.
如图所示 , 有
s R
1 K lim s 0 s R
M s R M
可见: R 愈小, 则K愈大 , 圆弧弯曲得愈厉害 ; R 愈大, 则K愈小 , 圆弧弯曲得愈小 ;
有 arctan y,
y d dx, 2 1 y
高等数学曲率
yxddyxcRss2cin dd
1
R sin3
K
y
3
R
1 sin
3
3
(1 y2 )2 ( 1 cot 2 ) 2
1 csc 2
R
3
(csc 2 ) 2
1 . R
12
例3 抛物y线 ax2bxc上哪一点的曲 ? 率
解 y2a xb, y2a,
D
1
k
yf(x)
在凹的一侧取一点D,使
DM 1 , 以D为圆心, o
K
M
x
为半径作圆(如图),称此圆为曲线在点M处的曲率圆.
D曲率中 , 心 曲率半. 径
15
注意: 1.曲线上一点处的曲率半径与曲线在该点处的
曲率互为倒数.
即
1 K
,K
1
.
2.曲线上一点处的曲率半径越大,曲线在该点
复习
1.判定凹凸性的方法:
如果 f (x) 在 (a,b)内具有二阶导数,若在(a,b)内 (1) f(x)0,则曲线 f (x)在(a,b)内是凹的. (2) f(x)0,则曲线 f (x) 在 (a,b)内是凸的.
说明:拐点的横坐标可能是 y 0的根, 也可能是 y不存在的点.
弧微分公式
4
ds 1 y2dx
y
变形 ds
1
( dy)2 (d x)2
dx
(dx)2(dy)2
M
M0
ds
M
Tdy
R
dx
o
则有 (ds)2(dx)2(dy)2.
x0
x
xx x
弧微分的几何意义:ds 就是曲线 y f(x)上点M(x, y)
高等数学:第六节 曲率
四、作业
作业19
30
5
一、曲率及其计算公式
设曲线光滑的(即对应函数具有连续导数),动点
沿曲线从点M1移动到点M2 , 切线方向从M1T1转到
M2T2 , 切线的转角称为曲线弧M1M2的转角.
可用曲线弧 M1 M 2的转角定量刻画曲线的弯曲:
转角大的弯曲程度大; y
T2
M2
T1
P0
M1
x
6
M1M2与N1 N2的转角相同, 但由于
解
由y
1 得y' x
1 x2 ,
y''
2 x3 .
(1,1)处的曲率为
| y'' |
2
2
k [1 ( y' )2 ]3/ 2 [1 (1)2 ]3/ 2 2 .
x1
13
直角坐标系下:
k= d
ds
| y'' | [1 ( y' )2 ]3/ 2 .
曲线:由参数方程表示: x (t), y (t)
ds
10
容易求出:
圆在每一点处的曲率都等于其平均曲率 1 , R
这与我们的直观感知一致: 圆上各点处的弯曲程度一样; 圆的半径越小,曲率越大,从而 弯曲得越厉害.
11
设曲线C:y f ( x), f 二阶可导,则曲线C在M( x, y)处的
切线斜率为y' tan, (为切线倾斜角),
y'' sec2 d ,
y
(t)
| r 2 2r '2 rr'' | k (r 2 r'2 )3/ 2
极坐标式曲线 r r( )
高等数学典型例题与解法(一)01-第38讲 曲率与曲率半径_38
d 些= 亜
fcsc2t —2sint
孜=无=克赢=一乎毗
d%2 dx
dt
dt
____________
从而,曲率K= 伊〃 I g— 10 g_
3, 10
5 4sin3t"
(1 _|_ y,2)a (4sin2t + 25cos2*)2 (4 + 21cos^)2
当cost = 0即% = 0时曲率最大,当cost = ±1即工=±2时曲率最小.
K="
3,
(1+門2
NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY'
r
国防科学技术大学
第38讲曲率与曲率半径
(3)曲率半径与曲率中心
____
过曲线上。上点M作一个与其相切的圆(即它在
点M处与曲线有公共 切线),使该圆与曲线。 线在在点点MM处处有的相曲同率的圆凹,向其和圆曲心率和,半称径这分个别圆称为曲 为曲线C在点M处的曲率中心和曲率半径.
N«3I Mvtniey of Maw
高等数学典型例题与解法(一)
第38讲曲率与曲率半径
理学院李建平教授
主要内容
第38讲曲率与曲率半径
i弧微分平面光滑曲线的弧长微分(弧微分)在几何上是用切线长 作为曲线长的一种局部线性近似.
⑴平面光滑曲线C\y = y(x)的弧微分
ds = 1 + y,2dx.
国防科学技术大学
第38讲曲率与曲率半径
2、曲率曲率是曲线的切线的转角关于弧长的变化率.
(1)曲率定义 设M是光滑曲线Gy = y(x)上一定点,N是。上
异于M的任意一点.设弧段标力的长度为4s , 设 点M处的切线转动到点N处的切线位置时, 切线 转过的角度为,如果极限
《高等数学》 详细上册答案(一--七)
2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5)(8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。
第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。
高等数学:第六节 曲率
四、作业
作业19
30
21
例4 求曲线y ln x与x轴交点处的曲率半径.
解 曲线y ln x与x轴的交点为M (1, 0). 在交点M处
的曲率为
| y'' |
1
k( x) [1 ( y' )2 ]3/ 2 2
. 2
曲率半径为R 1 2 2. k
22
三、小结
平均曲率 单位弧长的弧段上的切线转角, 即
k .
基点,
点M
是C
上某定点M
的
0
M
•
临近点. 又设M0、M处对应的弧长
M0
C P0 •
和倾斜角分别为s、s s和、 O
x
.
当点M沿曲线C趋于点M0时(此时s 0), 若平均曲率k
的极限存在, 则称此极限为曲线C在M0处的曲率, 记做k, 即
k= lim k lim d .
x0
MM0 s
当曲线y f ( x)在点M( x, y)处的曲率为k(k 0)时, 就可以通过半径为1/ k的圆, 将弯曲程度形象的表示 出来.
20
设曲线y f ( x)在点M(x,y)处的曲率为k(k 0), 在点M处的法线上取线段MC,使 MC =1 / k R. 以C为圆心,R为半径作圆,此圆称为曲线y f ( x) 在点M处的曲率圆. C称为曲线y f ( x)在点M处 的曲率中心. 曲率圆的半径R 1 / k称为曲线y f ( x) 在点M处的曲率半径.
dx
d
y''
y''
dx 1 tan2 1 ( y' )2 ,
转角的微分为d
y'' 1 ( y')2
《高等数学》练习题库及答案,DOC(word版可编辑修改)
A、xarctan1/xB、arctan1/x C、tan1/xD、cos1/x 13、设 f(x)在点 x0 连续,g(x)在点 x0 不连续,则下列结论成立是() A、f(x)+g(x)在点 x0 必不连续 B、f(x)×g(x)在点 x0 必不连续须有 C、复合函数 f[g(x)]在点 x0 必不连续 D、在点 x0 必不连续
C、-1/2D、1
48、两椭圆曲线 x2/4+y2=1 及(x—1)2/9+y2/4=1 之间所围的平面图形面积等于()
A、лB、2лC、4лD、6л
49、曲线 y=x2—2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()
A、лB、6л/15
C、16л/15D、32л/15
50、点(1,0,-1)与(0,-1,1)之间的距离为()
5.下列命题正确的是()
A.发散数列必无界 B.两无界数列之和必无界
C.两发散数列之和必发散 D.两收敛数列之和必收敛
6. lim sin(x2 1) ()
x1 x 1
A.1B。0
C。2D.1/2
7.设 lim(1 k )x e 6 则 k=()
x
x
A。1B.2
C.6D。1/6
8。当 x 1 时,下列与无穷小(x-1)等价的无穷小是()
7、已知ρ=ψsinψ+cosψ/2,求 dρ/dψ|ψ=л/6=()
8、已知 f(x)=3/5x+x2/5,求 f`(0)=()
9、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()
《高等数学》练习题库及答案,DOC(word 版可编辑修改) 10、函数 y=x2-2x+3 的极值是 y(1)=()
高等数学习题册参考答案
《高等数学》习题册参考答案说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错.第一册参考答案第一章 §1.11.⎪⎪⎩⎪⎪⎨⎧+≤≤--<≤<≤+=--. ),(2, , ,0 , 211010101T t T T t a v T t v t at v v a va vv a v v 图形为:2.B.3.)]()([)]()([)(2121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(21x f x f x G --=为奇函数. 4.⎪⎪⎩⎪⎪⎨⎧=<≤-<≤-<≤=.6 ,0,64 ,)4(,42 ,)2(,20 ,)(222x x x x x x x x f 5.⎩⎨⎧.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f6.无界.7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同.§1.21.(1))1 ,0()0 ,1(⋃-=D ;(2)} , ,{2Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.⎪⎩⎪⎨⎧>-=<=,0 ,1,0 ,0 ,0 ,1 )]([x x x x g f ⎪⎪⎩⎪⎪⎨⎧>=<=-.1 ,,1 ,1 ,1 , )]([1x e x x e x f g4.(1)]2 ,0[,)1arcsin(2=-=D x y ; (2)Y ∞=+=+=022),( , )(tan log 1k a k k Dx y πππ. 5.(1)xx x f f 1)]([-=; (2)xx f f 1)(1][=. 6.+∞<<=-h r V rh hr 2 ,23122π.7.(1)a x =)(ϕ; (2)h x x +=2)(ϕ; (3)ha a h x x )1()(-=ϕ.§1.91.1-=e a .2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类);(2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类)(注意:+∞==∞+-→-ee xx x 11lim ,而0lim 11==∞--→+e e xx x );(4))( 2Z ∈+=k k x ππ为无穷间断点(属第Ⅱ类); (5)⎩⎨⎧=≠=+=∞→,0 ,0,0 ,1lim )(12x x nx nx x f xn ∴ 0=x 为无穷间断点(属第Ⅱ类); (6)∵ )(lim , 0)(lim 11+∞==+-→→x f x f x x , ∴ 1=x 为第Ⅱ类间断点,(注意:这类间断点既不叫无穷间断点,也不叫跳跃间断点,不要乱叫); ∵ 1)(lim , 0)(lim -→→==+-e x f x f x x , ∴ 0=x 为跳跃间断点(属第Ⅰ类).3.(1)1 ,0≠=b a ; (2)1 ,≠=a e b .4.(1)21)0(=f ; (2)0)0(=f .5.证:由)()0()0(22x f f x f +=+,得0)0(=f ,于是,再由0)0()(lim )]()()([lim )]()([lim 0==∆=-∆+=-∆+→∆→∆→∆f x f x f x f x f x f x x f x x x ,∴ )(x f 在x 点连续.§1.101.)(x f 在),(+∞-∞内连续,则0≥a ;又0)(lim =-∞→x f x ,则0<b ,故选D.2.) ,2()2 ,3()3 ,(∞+⋃-⋃--∞; 210)0()(lim ==→f x f x (0是连续点), 5858213)2)(3()3()3(3322limlim)(lim -====----→-++-+-→-→x x x x x x x x x x x f (-3是可去间断点), ∞==-++-+→→)2)(3()3()3(222lim )(lim x x x x x x x x f (2是无穷间断点).3.(1)a1; (2)0; (3)2e (提示:原极限x e x xe x x x x x e e )ln(lim)ln(00lim ++→→==,而=+→110 )ln(lim 加分子减x e x x x 2)1(lim )]1(1ln[lim 00==-+-++→→拆分分子等价无穷小代换x e x x e x x x x x ); (4)21-e(提示:原极限xxx e 2sin cos ln 0lim→=,而21cos 11cos 11cos 0cos 1)]1(cos 1ln[0sin cos ln 0lim lim lim lim222-====+-→--→--+→→x x xx x x x x xxx ); 注意:(3)和(4)都用到了等价无穷小代换:□0→时,ln (1+□)~□. (5)1; (6)不存在(左极限2-,右极限2).4.(1)0=a ,e b =; (2)a 任意,1=b .§1.111.令)sin ()(b x a x x f +-=,则)(x f 在] ,0[b a +上连续,且0)0(<-=b f ,=+)(b a f 0)]sin(1[)sin(≥+-=-+-+b a a b b a a b a .若0)(=+b a f ,则b a +就是一个正根;若0)(>+b a f ,则由零点定理,)(x f 在) ,0(b a +内有一正根.总之,)(x f 在],0[b a +内有一正根.2.作辅助函数x x f x F -=)()(,则)(x F 在] ,[b a 上连续,且0)()(<-=a a f a F ,)(b F0)(>-=b b f ,由零点定理,) ,(b a ∈∃ξ,使得0)(=ξF ,即ξξ=)(f .3.由题设:)(x f 在] ,[1n x x 上连续,设m M 、分别为)(x f 在] ,[1n x x 上的最大值和最小值,则M x f x f x f c m n n≤+++=≤)]()()([211Λ,于是,由介值定理可知:) ,() ,(1b a x x n ⊂∈∃ξ,使得c f =)(ξ,即)]()()([)(211n nx f x f x f f +++=Λξ. 4.令)()()(a x f x f x F +-=,则)(x F 在] ,0[a 上连续.若)()0()0(a f a f f =+=,则取 00=x ,命题成立;设)()0(a f f ≠,则由)()0()0(a f f F -=,而)2()()(a f a f a F -= )]()0([)0()(a f f f a f --=-=,所以,)0(F 与)(a F 异号,于是,由零点定理可知:) ,0(a ∈∃ξ,使得0)(=ξF ,即)()(a f f +=ξξ,命题成立.第一章 总复习题1.⎪⎩⎪⎨⎧>≤=+.0,1 ,0 ,)]([211x x x f x ϕ 2.22sin 2x. 3.) ,(∞+e .4.证:∵A x f x x =→)(lim 0,∴对于事先给定的无论多么小的正数ε,都存在正数δ,只要δ<-<00x x ,就必有ε<-A x f )(成立①(这就是函数极限的“δε-定义”); 又∵)( lim 00x x x x n n n ≠=∞→,∴对①中的正数δ(因这样的正数是任意的),必存在自然数N ,只要N n >,就必有δ<-0x x n 成立(这就是数列极限的“N -ε定义”).但对任何n ,0x x n ≠,所以这时也就有δ<-<00x x n 成立②.把①②两步结合起来就是(从②推回到①):对于事先给定的无论多么小的正数ε,(由①,0>∃δ,从而由②)必存在自然数N ,只要N n >,(①②同时成立)就必有 ε<-A x f n )( 成立. 故由极限的定义可知:A x f n n =∞→)(lim .附注:本题是函数极限与数列极限相结合的题目,抽象且有点难,但提供了一个重要的求极限的方法,即数列极限可作为函数极限的特殊情况来处理,比如下面:∵a xa x x e x a x a x x x x ln ln lim 1lim 1lim0ln 00==-=-→→→(用到了□→0时,e □-1~□), ∴a xa naa n x x nn nn ln 1lim 11lim)1(lim 01=-=-=-+→∞→∞→. 5.(1)23-; (2)2011 ,20111; (3)5,531. 6.提示:因)(x f 在],[b a 上连续,而 )(m ax )(m in ],[2)()(2],[x f M m x f b a x d f c f kb a x ∈+∈=≤=≤=,对)(x f 在],[b a 上用介值定理.7.(1)21(提示:每个括号通分,分子因式分解,并与分母约分,再整理得n n 21+); (2)a-11(提示:给极限式子乘)1(a -,打开括号得)1(4na -,并利用一个重要结果)1( 0lim <=∞→q q n n );(3)ab--11(提示:分子、分母都利用等比数列前n 项和公式:1减公比分之首项减去末项乘公比,再利用(2)中的重要结果);(4)21(提示:有理化,分子、分母再同除以n 或利用重要结果:当0 ,000≠≠b a 时,⎪⎩⎪⎨⎧>>∞>=<<==++++++++∞→----∞→.0 ,,0 ,,0 ,0 lim lim 00002211022110m k m k m k n b na b n b n b n b a n a n a n a b a mkn m m m m n k k kn ΛΛ ); (5)t (提示:利用重要极限);(6)2-(提示:分母就是x 2sin -~2x -,再拆分);(7)2b a +(提示:有理化,再利用(4)中重要结果); (8)4(提示:分子减1加1并拆分,再利用等价无穷小代换:□→0时,cos 1-□~21□2); (9)e (提示:原极限e e e x x x x x x ==→+→=22220tan )1ln(0lim lim 等价无穷小代换); (10)2)1(+n n (提示:分子因式分解,先分出个因式)1(-x 并与分母约简,再分出个因式)1(-x 仍可与分母约简,聪明的人一下子就可分出因式2)1(-x ); (11)π2(提示:令x t -=1,则原极限]2 cos sin [lim 20t t t t ππ→=,再利用重要极限). 8.提示:把根号进行放缩得不等式:n n n n n n n n n A nA a a a A ⋅=<+++<Λ21,并注意:1lim=∞→nn n (会推证吗?),再用夹逼定理(或叫夹挤准则,俗称“两头夹”).第二章 §2.61.(1))cos(21sin )cos(2xy x x xy y --; (2))1(2xy e e e e y xyy xxy +-+; (3)y x y x -+; (4)22ln ln xx xy y y xy --(两端取对数);(5)]111[ln )1(x x x x x x ++++(两端取对数或利用一个重要公式:若)()]([x g x f y =,则])()(ln )([)]([)()()(x f x f x g x g x f x g x f y '⋅+'⋅=');(6)])1)(1(2)2()1(2[111222x x x x x x x x x x x x x ++++-+--+++-(利用对数求导法). 2.(1)3222)1(])1()1[(--+--y x x y y ; (2)])1()1(213[2322422+-++y y x y y x . 3.])(arctan )()(arctan )([2222x y x y f y x f y x x y '-+'++-(提示:令xyv v u == ,arctan 而,则原方程变为 y x u f =)(,两端对x 求导得 y x y u f x y x y v '+=⋅⋅'⋅-⋅'+22111)(,再解出y ').4.提示:求出一、二、三阶导数,代入左端化简.5.切线方程:)1(152-=-x y ; 法线方程:)1(125--=-x y . 6.(1)2t; (2)23-. 7.(1)21)1(cos ----t a ; (2)1)]([-'t f .8.)2)(1(1e e t t-+(提示:第二个方程两端对t 求导,得0d d =+t y e e y t ,解出y t e e t y -=d dee e e e e t t t t 22-=--=,并代入 t x t y x y d d d d d d = 之中再约简).9.在时刻t ,甲船所走路程t t s 40)(1=,乙船所走路程t t s 30)(2=,两船间的距离为 t t t t d 50)30()40()(22=+=,两船间的距离增加的速度为50)(='t d .10.设y OP x ON == ,,则由木杆匀速前移知:c tx=d d (为常数), 由题图知:OA MN y x y =-,即 x MN OA OA y -=,从而 txMN OA OA t y d d d d -=. 可见tyd d 为常量,即P 点前移的速度是匀速的.§2.71.(1)增量为-0.09,微分为-0.1;(2)增量为-0.0099,微分为-0.01.评注:①结果表明:x ∆愈小,则y y d 与∆愈接近,这就是微分的数量特征;②微分的几何特征是“以直代曲”.2.(1)C x x ++3; (2)C x +-2cos 21; (3)C e x +--; (4)C x +2arctan 21. 3.(1)x d 2; (2)x a d ; (3)x d 42; (4)x d .4.(1)x x x d 13)]13ln(2sin[3++; (2)t t t t e t t d )52(2)23(332)52ln(323+--⋅+-;(3)x x x x d )21(sec )21tan(8222++. 5.150110+. 第二章 总复习题1.A 、E .2.)(x f 在0=x 处可导必连续.由连续有:)0()2sin (lim lim 0f x b e x ax x =+=+-→→,求极限得:1=b ;由可导有:⎪⎩⎪⎨⎧=='=--=''='--+→+→-+-+-,2lim )0(,01lim )0( , )0()0(01)2sin 1(00x x x ax x f a x e f f f 而 所以,2=a . 3.由)0(f '存在,则)0()0(+-''f f 、存在且相等. 而x f x f x x f x f x f )0()(00)0()(0lim lim )0(-→--→+++==', )0(lim lim lim )0()0()(0)0()(0)0()(0+-→----→--→-'-=-==='++-f f xf x f x x f x f x x f x f x , 要使)0()0(+-'='f f ,只有0)0()0()0(='='='+-f f f . 4.(1)222211))((x a x ax axa +++-+; (2)]ln [ln 12xx x x x x x x ++(提示:===xx x x xexy lnxexx e ln ln ⋅,再利用指数复合函数求导;或者利用取对数求导法);(3)⎪⎩⎪⎨⎧≥<=--,1 ,,1 ,)(11x e x e x f x x 则 1<x 时,x e x f --='1)(; 1>x 时,1)(-='x e x f ;1=x 时,)1(lim 11lim )1(11111111+--→--→-'==≠-=='-+--f f x e x x e x x x ,则在1=x 处不可导.(4)4 ,1--; (5)tet t t t t t t t 22222)2sin cos 2()2cos 2(sin 4 , 2sin cos 22sin sin 2-+-+; (6)])6(1)5(1[!100101101+-+x x (提示:分母因式分解,并拆分,再求导). 5.1)0(=g ,11)sin 1(lim 0)0()(lim)0(1200=-++=--='→→xx x x g x g g x x x , 0≠x 时,x x x x x x x g 1112cos sin 21)sin 1()(-+='++='. 6.)0(lim 1lim )0( ,0)0(00)11(000)1ln(0+----+→--+→-'===='=+-f f f x x x x x x x , 所以,函数)(x f 在点0=x 处可导,且1)0(='f ,从而必在0=x 处连续.评注:2、3、4(3)、5、6都涉及函数在一点处的导数,特别是分段函数在分界点处的导数,导数的定义以及左右导数的概念起到关键的作用,务必要高度注意.7.(1)由xy y f x f y x f 2)()()(++=+,得0)0(=f .当0≠y 时,x y y f y x f y x f 2)()()(+=-+. 由已知并由导数定义,得 y y f y y f y f y f k )(0)0()(0lim lim )0(→-→=='=, k x x f y x f y x f y +=='-+→2lim )()()(0.故对一切) ,(∞+-∞∈x ,)(x f 皆可导,且 k x x f +='2)(.(2)由k x x f +='2)(,知C kx x x f ++=2)(,再由0)0(=f ,得kx x x f +=2)(.第三章 §3.31.)0( !2)(32之间与介于x x e x x x f ξξ++=. 2.) 1( )1()1(])1()()(1[)(1212之间与介于x x x x x x f n n n n-+-++++++++-=+++ξξΛ.3.2)1(2)1(76)(-+-+=x x x f .4.(1)61-(提示:分母的x sin ~x ,从而只需把分子的x sin 展开到3x 阶); (2)121-(提示:把分子的x cos 和22xe-都展开到4x 阶).§3.41.(1)) ,0(21∈x 单减,),(21+∞∈x 单增;(2)),(4 3a x -∞∈单增,),(4 3+∞∈a x 单减. 2.(1)证①:利用拉格朗日中值定理.令xe xf =)(,则x x e x f e e f x f x >⋅=-'=-=-ξξ)0)(()0()(0.证②:利用单调性.令1)(--=x e x f x ,则1)(-='xe xf .当0<x 时,0)(<'x f ,从而)(x f 单调减;而当0>x 时,0)(>'x f ,从而)(x f 单调增.故对一切0≠x ,0)0()(=>f x f ,即要证的不等式成立.评注:①虽抽象,但更简洁;②虽通俗,但稍显麻烦.(2)令)1sec 2(sin )( ,2sec cos )( ,2tan sin )(22-=''-+='-+=x x x f x x x f x x x x f .当20π<<x 时,)(0)(x f x f '⇒>''单调增0)0()(='>'⇒f x f )(x f ⇒单调增, 故当20π<<x 时,0)0()(=>f x f ,即要证的不等式成立(好好体会推理过程). 评注:本题与(1)和下面的(3)的不同之处在于:需两次利用单调性.(3)参考上题方法或用泰勒公式:①利用单调性方法:令331tan )(x x x x f --=,则 ))(tan (tan tan 1sec )(2222x x x x x x x x x f -+=-=--=', 当20π<<x 时,0)(>'x f ,所以,)(x f 单调增,故当20π<<x 时,0)0()(=>f x f . ②利用泰勒公式:令x x f tan )(=,则x x f 2sec )(=',x x x x f tan sec sec 2)(='', )1tan 4tan 3(2)sec sec tan 3(2)(24222++=+='''x x x x x x f ,x x x x x x x x f23223)4(sec )tan 2tan 3(8)sec tan 8sec tan 12(2)(+=+=(很麻烦),,之间与介于其中) 0 ( )( !4)(!3)0(!2)0()0()0()(tan 43314)4(32x x R x x x f x f x f x f f x f x ξξ++=+'''+''+'+== 当20π<<x 时,0)(4!4)(4)4(>=x x R f ξ,故 331tan x x x +> 成立. 评注:对本题而言,①似乎简单一些,但对②而言,得到泰勒公式(实际上是麦克劳林公式)后,其结果却更显而易见.擅长泰勒公式(或麦克劳林公式)的同学建议用②,其它几个题目也有类似的情况.总之,此类方法要好好掌握.(4)参考(1)题方法或用泰勒公式:4)1(14132432)1ln(x x x x x ξ+⋅-+-=+,而 0)(4)1(14134>⋅=+x x R ξ(ξ介于0与x 之间),故 3232)1ln(x x x x +-<+. 3.原不等式化为a a x a x a ln )ln(<++,设x xx f ln )(=,则2ln 1)(xx x f -='.所以,当e x >时, 0)(<'x f ,从而)(x f 单调减,故aax a x a ln )ln(<++,即原不等式成立. 评注:把要证的不等式先等价转化再利用单调性的方法会大大简化.4.不一定,例如,x x x f sin )(+=在) ,(∞+-∞内单增,但x x f cos 1)(+='在) ,(∞+-∞内不单调.5.) ,(512-∞∈x 单增,),(512+∞∈x 单减;10205205241m ax 512)(===f f ,无极小. 6.函数)(x f y =处处连续,322232a x x y -⋅=',有一个驻点0=x 和两个不可导点a x ±=;0)(=±a f 为极小值,也是最小值;34)0(a f = 为极大值,但无最大值.7.在]1 ,0[上函数单减,故4)0(π=f 最大,0)1(=f 最小. 8.令x bx x a x f ++=2ln )(,则应有 012)1(=++='b a f ,014)2(2=++='b f a , 求得 32-=a ,61-=b ;而)1(f 极小,)2(f 极大. 9.提示:因函数处处可导,而可导的极值点必为驻点. 但 c bx ax x f ++='23)(2 当0)3(434)2(22<-=⋅⋅-≡∆ac b c a b ,即 032<-ac b 时无零点.§3.51.)1 ,0(∈x 时,凸;) ,1(∞+∈x 时,凹;拐点)7 ,1(-.2.82±=k ,各有两个拐点) ,1(22±±. 3.3 ,0 ,1-===c b a .4.tt y 1143)1(2⋅-='',0=''y 的点 1±=t ,y '' 不存在的点 0=t ;有三个拐点:)2 ,1(11-↔-=t ,)0 ,0(02↔=t ,)4 ,1(13↔=t .§3.61.其图形如下所示:2.点) ,(22ln 22-处曲率半径有最小值233. 4.(1)铅锤渐近线两条:2=x 和3 -=x ;水平渐近线一条:1=y ;(2)铅锤渐近线:ex 1-=;斜渐近线:x y =.第四章 §4.11.(1)x e x 2cos 233+--; (2)C x x x +--33222 ,22; (3)C x x ++441221; (4)1ln +=x y .2.(1)C x x x x ++++22123232;(2)C x x ++-4147474;(3)C x x x ++-arctan 331; (4)C x +7272ln 121; (5)C x x +-arcsin 2arctan 3; (6)C e xxe ++1)5ln(1)5(; (7)C x +-cot 21;(8)C x x +-sec tan ;(9)C x x ++cos sin ;(10)C x x +-cot tan . §4.21.(1)C x x ++++])1[ln(411441; (2)C b ax nn n a n++++1)(2)1(2;(3)C x +)arcsin(tan ; (4)C x x +-ln 1; (5)C x+-10ln 1arccos 22110;(6)C x +2)(arctan; (7)C x+2sin 2212arctan ; (8)C x xe e ++1ln . 2.(1)C x x ++21; (2)C x x+--32arccos 39; (3)C xx +-442;(4)C x x x +++-)21ln()2()2(32323433132; (5)C x x x x +---)1(4arcsin 2222122; (6)提示:令 sin t x =(只需 20π<<t 即可),则 原式]d [d d cos sin )sin (cos d 21cos sin cos sin sin cos 21cos sin cos ⎰⎰⎰⎰++++-+++===t t t t tt tt t t tt tt t t (很巧妙)C x x x Ct t t t +-+++++==]1ln [arcsin ]cos sin ln [22121回代把.第五章 §5.11.提示:把区间n ]1 ,0[等份,每份长都是n1,每个小区间),,2,1( ],[1n i n in i Λ=-都取右端点,则a a a n a a an a a ax a nn n n n n n n ni ninn x ln 1)ln (]1[lim )1(])(1[limlimd 11111111-=--=--==∞→∞→=∞→∑⎰. 附注:其中①利用了分解式 )1)(1(112-++++-=-n n b b b b b Λ(上式中n ab 1=);②利用了等价无穷小代换:□→0时,1-a □~-□ln a .2.(1)极限中的和式相当于:把区间n ]1 ,0[等份,每份长都是n1,每个小区间 ],[1n in i - ),,2,1( n i Λ=都取右端点,函数x x f +=1)(在所取点处的值再乘以小区间的长度并把它们加起来的结果(这种和有个名称,叫“积分和”),于是,按定义:原极限=⎰+1d 1x x ;(2)同理,极限中的和式是函数x x f πsin )(=在区间]1 ,0[上的积分和,于是,按定义: 原极限=⎰1d sin x x π.另外,该极限式子又可变为 ∑=∞→ni n ni n11sinlimπππ,暂不管π1,而这极限中的和式是函数 x x f sin )(= 在区间] ,0[π上的积分和,所以,仍按定义:又有 原极限⎰=ππ 01d sin x x .(同一式子导致两种不同的表示说明:“会看看门道”的道理)3.(1)不可积,无界;(2)可积,连续.4.(1)⎰πd sin x x ; (2)⎰-112d x x .§5.21.(1)2110 152d 2≤≤⎰+x xx (提示:在]1 ,0[上,211522≤≤+x x ,再利用定积分的估值不等式性质); (2)412222d 2---≤≤-⎰e x e e xx(提示:在]2 ,0[上,2241e e e x x ≤≤--,再利用定积分的估值不等式性质,注意:下限大,而上限小).2.(1)反证法:若存在一点] ,[0b a x ∈,使0)(0≠x f ,则由题设可知,必有0)(0>x f ,又因)(x f 连续,从而存在0x 的一个邻域) ,(00δδ+-x x ,在这邻域内0)(>x f .于是,就有0d )(00>⎰+-δδx x x x f ;但另一方面,又由题设可知0d )(d )( 00=≤⎰⎰+-bax x x x f x x f δδ,矛盾. 故对一切] ,[b a x ∈,都有0)(=x f ,即在] ,[b a 上,0)(≡x f .(2)证:由题设可知:存在一点] ,[0b a x ∈,使0)(0>x f ,从而存在0x 的一个邻域) ,(00δδ+-x x ,在这邻域内0)(>x f .于是,就有0d )(00 >⎰+-δδx x x x f ,故0d )(d )(00 >≥⎰⎰+-δδx x bax x f x x f .(3)这是(1)的直接推论. 3.提示:①先对定积分用“积分中值定理”再取极限.②也可以“两头夹”:01sin d sin 01sin sin 01−−→−≤≤⇒≤≤∞→⎰n n n nnx x x .§5.31.(1)0; (2)⎰-xt t e 0 d 2; (3))0()(f x f -; (4)0 ,0 ,0 ,2x xe -; (5)x e ycos --.2.(1)81221213x x x x ++-; (2)x x x x cos )sin cos()sin ()cos cos(22⋅--⋅ππ.3.(1)2(连续用两次洛必达法则,还可先把分母等价无穷小代换后再用洛必达法则);(2)提示:0→x 时,2sin x ~2x ,12-x e ~x 21,x arctan ~x ,所以,原极限=01)1ln(lim 22lim d lim2201)1ln(0221 01)1ln(022002=++⋅→++→++→==⎰x x xx x tx x x x x t t x 约简型洛; (3)原极限21lim 2]1d [lim 2d 2lim202222200 02 0=⋅⋅→→→=⎰=⎰=xx x x t x xx x t x e e xte xe et e 型洛约简型洛; 注意:在极限的运算过程中,极限为1的变量式子21xe 直接“抹掉了”(想想合法吗 ?).(4)原极限)(lim 1)(d )(1 0a f a x f x t t f ax xa=⎰⋅+⋅→=型洛.4.(1)原式4d sin 42 0==⎰πx x ; (2)原式1d )1(210 =-=⎰x x ;(3)原式⎰-++=+=0141121d )3(2πx x x ; (4)原式3821 2211 0d d )1(=++=⎰⎰x x x x . 5.当)1 ,0[∈x 时,231 02d )(x t t x x==Φ⎰; 当]2 ,1[∈x 时,=+=Φ⎰⎰xt t t t x 11 02d d )(61221-x (这一步是关键). 故 ⎪⎩⎪⎨⎧≤≤-≤≤=Φ,21,,10 , )(61221331x x x x x 显然,)(x Φ在]2 ,0[内连续(显然吗?).6.当)0 ,(-∞∈x 时,0d 0 d )()(00 =-==Φ⎰⎰xx t t t f x ;当] ,0[π∈x 时,=Φ)(x )cos 1(d sin 2121x t t x-=⎰; 当) ,(∞+∈πx 时,⎰⎰⎰+==Φxx t t t t t f x 0 210 d 0d sin d )()(ππ1=.故 ⎪⎩⎪⎨⎧>≤≤-<=Φ. , 1 , 0 , )cos 1(,0 , 0 )(21ππx x x x x 7.先用一次洛必达法则得 xb xa x x cos lim120-=+→,因分子极限为0,所以分母极限也一定是0(想想为什么?),从而 1=b ;这时分母 x cos 1-~221x ,再一次取极限得 4=a . 8.提示:当) ,(b a x ∈时,2)(d )())(()(a x tt f a x x f xax F ---⎰=',只需证分子 0≤ 即可.于是,若令⎰--=x at t f x f a x x g d )()()()(,则)()()()()()()(x f a x x f x f a x x f x g '-=-'-+=',因在),(b a 内0)(≤'x f ,所以,在),(b a 内0)(≤'x g ,从而在),(b a 内0)()(=<a g x g .§5.71.(1)22ωω+p (连续两次分部积分,并注意会出现循环现象,再移项求解); (2)2π. 2.1>k 收敛;1≤k 发散; 当1>k 时,11)2(ln 1112)(ln 1112)(ln 1d --⋅=⋅=-∞+-∞+⎰k k kk x k x x x ,而函数 )0( )()2(ln 1>=x x f xx 当 2ln ln 1-=x 时取得它在) ,0(∞+内的最小值=m in f 12ln ln 1)2ln (ln +-,所以,当2ln ln 11-=-=k x ,即 2ln ln 11-=k 时广义积分的值最小.3.左c x cx c x e 22)1(lim =+=-∞→, 右⎰⎰∞-∞-∞--==ct ctct t e te e t 221221 221d )(dc c c tc c e e e 241224122)(-=-=∞-, 应有 1412=-c ,所以 25=c . 第五章 总复习题1.(1)A ; (2)C ;(3)提示:0=M 是奇函数在对称区间上的积分;P 的第一部分积分为0,第二部分积分为负,所以,0<P ;而N 的第一部分积分为0,第二部分积分为正(很容易算出,等于几呢?),所以,0>N ,故选D ;(4)提示:⎰⎰-=x xt t f t t t f xx F 02 02d )(d )()(,则⎰='xt t f x x F 0d )(2)(,而极限10 0 00d )(2lim d )(2lim )(lim -→→→⎰⎰=='k xx k x x k x x t t f x t t f x x x F 2000)1()(2lim-→-=k x x k x f 型洛0)0()(lim0 3 ≠'=→==f x x f x k 时当才会存在,故选C ;(5)提示:如图所示,由题设可知:)(x f 的图形在x 轴的上方单调下降且是凹的,2S 是下边小矩形的面积,最小;3S 是梯形的面积,最大;而1S 是阴影的面积,介于其间,故选B ;(6)提示:利用周期函数的积分性质:若)()(t f T t f =+,则对任意的常数a ,积分⎰⎰=+TTa at t f t t f 0 d )(d )( 与a 无关,现在t e t f t sin )(sin = 的 π2=T ,可知:⎰⎰⎰⎰+===πππππ2 sin 0sin 2 0sin 2 0d sin d sin d sin d )()(t te t t et t et t f x F t tt,对第二个积分令 π+=u t 换元而化为 ⎰⎰-=--ππsin 0sin d sin d )sin (t etu u e t u , 故可知:0d sin ]1[)( 0sin sin >-=⎰πt t ee x F tt 为正常数,故选A ;(7)提示:先通过换元把被积函数符号)(22t x f -中的x “拿出来”,再求导.=⎰=⎰-=-⋅---换凑22)()(d )( d )( 21 02222 0 22t x u xxtx t x f t t xf t⎰⎰=-=2221021d )(d )(x x u u f u u f ,故选A. (评注:本题的关键是换元)2.(1)0; (2)a 2sec ; (3)0; (4)0; (5)0;(6)x x f 3sin )3(cos 3-; (7)2sin x ; (8)8π; (9)3ln ; (10)π1231+. 3.(1)证①:⎰⎰⎰⎰--=-11 0d )(d )()1(d )(d )(λλλλλλx x f x x f x x f x x f (积分中值定理))10( 0)]()()[1()1)(()()1(≤≤≤≤≥--=--⋅-=ηλξηξλλληλλξλf f f f .证②:⎰⎰⎰⎰--=-11 0d )(d )()1(d )(d )(λλλλλλx x f x x f x x f x x f0)()1()()1(=---≥λλλλλλf f .评注:两种证法仅是考虑问题出发点不同:①的核心是积分中值定理与单调性的结合;②的核心是积分的不等式性质与单调性的结合.(2)提示:分部积分,得原式⎰⎰----+=⋅-=πππππππππ 0)( 0sin 0d sin )( d )(x x f x x x xf xx x x2)( d sin )( d d sin )( 00 sin 0=-+=-+=⎰⎰⎰-πππππππππππf x x f x x x f xx ;评注:本题的特点是含有“积不出”的积分 ⎰-xt tt 0 sin d π,但并不影响要求的定积分. (3))32ln(23++-(提示:令xet 21--=,则原积分⎰-=231d 22t t t ,再拆分); (4))()](2)([42222t f t f t t f ''+'(特点是参数方程,但含有变限积分);(5)令xt u =,则u t xd d 1=,xu t 010↔,⎰=x x u u f x 01d )()(ϕ,由A xx f x =→)(0lim及)(x f连续知:0)0(=f ,A f =')0(;由 ===→⎰→→=)0(limlim)(lim 1)(0d )(00 0f x x f x xt t f x x x型洛ϕ0)0(d )0(1==⎰ϕt f ,知)(x ϕ在点0=x 处连续;==='→--→xx x x x x )(00)0()(0lim lim )0(ϕϕϕϕ 22)(0d )(0lim lim 02 0 Ax x f x x tt f x x=→⎰→=型洛; 0≠x 时,20 d )()()(x tt f x f x x x ⎰-='ϕ,且因)0(][lim lim)(lim 22d )()(0d )()(02 0 2ϕϕ'==-=⎰-⎰='→-→→=A A x tt f x x f x x t t f x f x x x A x xx拆分,故可知)(x ϕ'在点0=x 处连续,从而处处连续.评注:本题是属于对变限积分所定义的函数的可导性的研究的题目.核心是导数的定义.(6)π2(提示:先放缩分母得不等式 ∑∑∑===+<+<ni n n i i n i ni n ni n n i 1111111sinsin sin πππ, 而左端的极限(利用定积分)πππππ2111 0 111111d sin sin lim ]sin [lim sin lim ===⋅=∑∑⎰∑==∞→+∞→=+∞→n i n i n n n n n n ni n n x x n i n i n i , 右端的极限(利用定积分)πππ21 0 11d sin sin lim ==⎰∑=∞→x x n i ni nn ,再利用夹逼定理); 评注:本题是利用夹逼准则和定积分相结合的方法而求和式极限的题目,加大了难度. (7)首先,因分子极限为0,所以,分母极限也一定是0,于是得0=b ;由洛必达法则得 20)1ln(0cos limcos lim 3x x a xa c x x x x --=→+→=分母等价无穷小代换,可知 1=a ;进而知21=c ; (8)原式⎰⎰--+=23 1)1(1121 )1(1d d x x x x x x ,第一个积分令2x x t -=,则012121t x ↔, )411(221t x -+=,所以,221)2(110214121 21)1(1)d(2d d 22π===⎰⎰⎰----t t x t tx x ;而对第二个积分令x x t -=2,则2323tx ↔,)411(221t x ++=,所以, ⎰⎰+-=23412231)1(1d d 2t x t x x 2320223)2(11))2(12ln()d(2t t t t ++==⎰+)32ln(+=, 故原式)32ln(2++=π.评注:本题中所作的两个换元虽有相似,但却本质不同,因此,相当于两个不同的积分. (9)提示:⎰∑⎰⎰∑--=-=-+-=-=nn n k n nnk n x x f n f x x f k f x x f k f a 1111111d )()(]d )()([d )()()](d )([ 11n f x x f a nn n --=⎰--,因)(x f 单调减,则)1(d )()( 1-≤≤⎰-n f x x f n f n n ,从而 0)](d )([1 ≥-⎰-n f x x f nn ,所以 1-≤n n a a ,即n a 单调减;另一方面,对一切n ,)(]d )()([d )()(11111n f x x f k f x x f k f a n k k knnk n +-=-=∑⎰⎰∑-=+=0)()()]()([11>=+-≥∑-=n f n f k f k f n k ,即n a 有下界. 综上:n a 单调递减有下界,故由单调有界准则(或原理)可知:A a n n =∞→lim 存在. 评注:上述分析推到过程中,积分的不等式性质起到关键作用. (10)] )( )([ )( )(22222222d 1d 21 12d 1d 2⎰⎰⎰=⎰+++=++=a auuu a auuu a a uuu a u x axxx a u f u f u f x f 令 而上式右端第二个积分⎰=⎰-⋅++=1d )d ()( )(2222222a t a a t ta u a au u ua t t f u f ta 令⎰⎰+=+=au u u a a t t t a u f t f 1d 1 d )( )(22(恰与第一个积分相等). ∴ ⎰+a x x x ax f 1 d 2 )(22⎰+=a u uu a u f 1 d )(2⎰+=a x x x a x f 1d )(2. 评注:通过两次不同的换元才最终达到目的是本题的特点.第六章 §6.51.由虎克定律:kx x F =)((x 为弹簧伸长厘米数),由5=x 时,100=F ,即k 5100=,得 20=k ,于是,x x F 20)(=,故 2250d 20d )(150 15===⎰⎰x x x x F W (克厘米).2.如图所示,沙堆母线AB 的方程为 1=+hyr x ,即)1(h yr x -=.沙的比重2000=ρ公斤/米3.对应于薄层]d ,[y y y +,则y yr y x y V y W h y d )1( d d d 222-===πρρπρ,故 22350022 d )1( h r y yr W hh y ππρ=-=⎰. 3.(1)660d )8(10 ,d )8(10d 6=+=+=⎰x x F x x F (吨);(2)设应升h 米,则 )11(60d )8(10 2 ,d )8(10d 60 +=++=++=⎰h x h x F x h x F ,于是,应有 )11(606602+=⋅h ,故 11=h (米).4.(1)AB 的线密度为l M,)(d )( 0 2a l a kmM x a x l kmM F l +=+=⎰(k 为引力常数); (2)引力分解为两个分力,由对称性,x x a l kmMF F x d )(d ,022+==,x x a l kmMax x a l kmM F y d )(cos d )(d 232222+=⋅+=ϕ, 222 2 232242d )(la a kmMx x a l kmMa F l l y +=+=⎰-. §6.61.232211d 2 e x x xe y -==⎰-. 2.12d )23( 3231=+=⎰t t t v (m/s ).3.mT T I t t i 21 021d )(I ==⎰. 第六章 总复习题1.23+-=x y ; )3 ,( , )1 ,(2921-; 31613 22123d ])[(=--=⎰-y y y A . 2.) , 2(4πa ;⎰⎰+2 42214 0221d )cos 2( d )sin 2( πππθθθθa a ; 22)1(a -π. 3.4ln 141+-=x y (提示:曲线]6 ,2[ ln ∈=t x y 在处的切线 方程为)(ln 1t x t y t -=-,即1ln 1-+=t x y t.题设中所指的 面积为⎰--+=-=62 8d ln )2ln 2(2)(x x t S S t S t曲边梯形梯形6ln 62ln 2ln 416-++=t t. 令0)(4162=+-='ttt S ,求得唯一驻点为]6 ,2[4∈=t ,从而曲线上的点为)4ln ,4().4.)32ln(6++(提示:抛物线221x y =与圆322=+y x 的右交点为)1 ,2(A ,如图:由对称性,所求的弧长为⎰⎰⎰+='+==2220 2 d 12d 12d 2x x x y s l OA).5.222342 , ab ab ππ(提示:椭圆绕直线b y =旋转所得的 立体与把椭圆向上平移b 个单位再绕x 轴旋转所得的立体一样大小.如图所示:所求的体积为⎰--=aax y y V 2221d ])()[(π⎰-----+=aaa x a x xb b b b 22d ])1()1[(2222π⎰⎰-⋅⋅=-=-aabaa a x x x a xb 022 2d 42d 14222ππ 2 8 222412ab a a b πππ=⋅⋅=). 6.0 , 2 , 35==-=c b a (提示:因抛物线过原点,∴0=c .如图:由题意,得图中阴影的面积为231 0294d )(ba x bx ax +=+=⎰ ①;此阴影绕x 轴旋转所得的立体的体积为)(d )(23121251122b ab a x bx ax V ++=+=⎰ππ.由①得)(2394a b -=,并代入V 的表达式而转化为求)(a V 的最小值问题,令0)(='a V ,可得唯一驻点35-=a ,从而2=b ). 7.提示:与曲线221-+=x x y 关于点)2 ,(p p 对称的曲线方程,是从21211-+=x x y 以及p x x =+)(121 和p y y 2)( 121=+中消去1y 和1x 而得到的,即 224)14(222++-++-=p p x p x y .设1y 与2y 的交点横坐标为)( βαβα<、,则所围面积为33112)(d )()(αββα-=-=⎰x y y p S .令21y y 、右端相等,得022222=--+-p p px x ,解之得βα、,并令判别式大于0解得 21<<-p ,23231])12(9[)(--=p p S ,21=p 时,)(p S 取最大值9.8.如图所示,设球的比重1≡ρ,半径为r ,则对应于 薄层]d ,[x x x +上的体积微元V d 上的功的微元为,d ])([1d d d 222x r x r gx x g x y x g V W --=⋅⋅⋅=⋅⋅=ππρ∴=-=⎰r x x rx x g W 2 02d )2(π)s /m 8.9( 2434=g g r π. 9.如图所示,水深x 处宽为x d 的面积微元x y A d 2d =上所受的压力微元为 x x gxA gx F d 2d d 22ρρ==,∴ ===⎰g x x x g F ρρ5162 0d 2N 31360; 设压力加倍时闸门下降m h , 则⎰+=2d )(22x x h x g F ρh g F ρ38+=,即 51638=h ,∴ =h m 2.1.其中ρ为水的比重. 定积分应用总评住:对所有专业而言,面积、体积和弧长应是最基本的;力学、物理方面的应用因专业而异;限于篇幅,未涉及经济和其它方面的应用.第二册参考答案第一章 §1.31.(1)B ;(2)C ;(3)C ;(4)A .2.(1)证:∵a x n n =∞→lim ,∴对于事先给定的无论多么小的正数ε(简记为0>∀ε),都存在自然数N (记为N ∃),只要N n >,就必有不等式ε<-a x n 成立,从而对任一自然数k ,当N k n >+(即k N n ->)时,不等式ε<-+a x k n 仍成立,故由数列极限的定义可知:a x k n n =+∞→lim .(2)证:∵a a n n =∞→lim ,∴N n N >∃>∀ , , 0ε时,ε<-a a n ,这时也必有ε<-≤-a a a a n n ,故a a n n =∞→lim .反例:n n a )1(-=,则1)1(lim lim =-=∞→∞→n n n n a 存在,但nn n n a )1(lim lim -=∞→∞→不存在(即n n a )1(-=发散).(3)证:∵0lim =∞→n n x ,∴N n N >∃>∀ , , 0ε时,ε<-0n x ε<-⇔0n x 成立,故0lim =∞→n n x .(4)证:∵)2( 112)12(232231232223222>=<==--+-+-+n nn n nn n n n nn ,∴][ , 01εε=∃>∀N (取整)只要N n > (从而ε1>n ),必有ε<><--+)2( 12312322n n n nn 成立,故2312322lim =-+∞→n n n n . 3.证:∵数列}{n x 有界,∴0>∃M ,使得对一切N ∈n ,都有M x n ≤成立①;又∵0lim =∞→n n y ,∴N n N >∃>∀ , ,0ε时,Mn n y y ε<=-0②. 于是,0>∀ε,对②中的N ,当N n >时,①②同时成立,所以这时εε=⋅<⋅<=-M n n n n n n M y x y x y x 0,故 0lim =∞→n n n y x .§1.41.(1)分析:因为22)2)(2(42-+=-+=-x x x x x ,而2→x ,所以可设31<<x ,于是,252242-<-+=-x x x x ,对于给定的0>ε,为了ε<-42x ,则只要δε=<-52x 即可,于是有如下的证明: 证:对于事先给定的无论多么小的正数ε,取5εδ=,只要δ<-<20x ,就必有 ε<-42x 成立,所以,4lim 22=→x x .(2)分析:因为)4)(2(2)106(2--=-+-x x x x ,而2→x ,所以可设31<<x ,于是,234)2(2)106(2-<--=-+-x x x x x ,对0>∀ε,为了ε<-+-2)106(2x x ,只要δε=<-32x 即可,从而证明如下:证:0>∀ε,03>=∃εδ,只要δ<-<20x ,就必有ε<-+-2)106(2x x成立,故 2)106(lim 22=+-→x x x .评注:以上的证法就是函数极限的“δε-论证法”,虽然抽象,但很严密,望认真体会.2.(1)证:∵21211212222x xxx x ≤=-++-,∴0>∀ε,取2εδ=,只要δ<-<00x ,就必有ε<≤=-++-21211212222x xxx x 成立,故 1lim 22110=+-→x x x . (2)证:∵34312221++-=-x x x ,∴0>∀ε,取34-=εX (10<<ε),则当X x >时,必有ε<=-++-34312221x x x 成立,故 1lim 3122=+-∞→x x x . 当01.0=ε时,397=X .评注:(2)的证法就是函数∞→x x f )(当时极限的“X -ε论证法”,望认真体会.3.(1)1)00( ,1)00(=+-=-f f ,所以,)(lim 0x f x →不存在;(2)0)00( ,1)00(=+=-f f ,所以,)(lim 0x f x →不存在; 而 1)(lim 1=→x f x .4.⎪⎩⎪⎨⎧>-><-=. 0 ,1, 0 ,1 ,0 ,1)(为无理数且为有理数且x x x x x x f。
高等数学大一教材答案第二版
高等数学大一教材答案第二版---【Chapter 1】概述高等数学是大一学生必修的一门重要数学课程,它是数学基础教育的核心内容之一。
本教材旨在提供高等数学课程第二版的答案,帮助学生更好地理解和掌握数学知识,提高解题能力。
以下是该教材第二版中各章节的答案概述。
---【Chapter 2】函数与极限2.1 函数和映射- 习题解答:- 1. 函数的定义是...- 2. 映射的概念是...- ...2.2 一元函数的极限与连续性- 习题解答:- 1. 极限的定义是...- 2. 函数连续的条件是...- ...2.3 极限运算与极限的性质- 习题解答:- 1. 极限运算的性质有...- 2. 极限的唯一性原理是... - ...2.4 无穷小量与无穷大量- 习题解答:- 1. 无穷小量的定义是...- 2. 无穷大量的定义是...- ...2.5 函数的连续性- 习题解答:- 1. 函数连续的判定方法有... - 2. 连续函数的性质是...---【Chapter 3】导数与微分3.1 导数的概念和几何意义- 习题解答:- 1. 导数的定义是...- 2. 导数的几何意义是...- ...3.2 函数的求导法则- 习题解答:- 1. 基本函数的导数是...- 2. 导数的四则运算法则是... - ...3.3 高阶导数与莱布尼茨公式- 习题解答:- 1. 高阶导数的定义是...- 2. 莱布尼茨公式是...- ...3.4 隐函数与参数方程的导数- 习题解答:- 1. 隐函数求导的方法是... - 2. 参数方程的导数计算是...- ...3.5 微分的概念和微分形式不变性- 习题解答:- 1. 微分的定义是...- 2. 微分形式不变性的原因是...- ...---【Chapter 4】微分中值定理与导数的应用4.1 极值与最值- 习题解答:- 1. 函数极值的判断方法是...- 2. 最值的概念与求解方法是...- ...4.2 微分中值定理- 习题解答:- 1. 罗尔定理的条件是...- 2. 拉格朗日中值定理的条件是...- ...4.3 函数的凹凸性与曲率- 习题解答:- 1. 函数凹凸的判定方法是...- 2. 曲率的定义与计算方法是...- ...4.4 导数求曲线的弧长与曲面的面积- 习题解答:- 1. 曲线弧长的计算公式是...- 2. 曲面面积的计算公式是...- ...---【Chapter 5】定积分与不定积分5.1 定积分的概念和性质- 习题解答:- 1. 定积分的定义是...- 2. 定积分的性质有...- ...5.2 定积分的计算方法- 习题解答:- 1. 换元积分法的步骤是...- 2. 分部积分法的公式是...- ...5.3 定积分的应用- 习题解答:- 1. 平均值定理的含义是...- 2. 积分中值定理的条件是...- ...5.4 不定积分的概念与性质- 习题解答:- 1. 不定积分的定义是...- 2. 不定积分的性质有...- ...5.5 不定积分的基本公式- 习题解答:- 1. 基本积分公式是...- 2. 函数的原函数的计算方法是...- ...---【Chapter 6】微分方程6.1 微分方程的概念和解的存在唯一性- 习题解答:- 1. 微分方程的定义是...- 2. 解的存在唯一性的条件是...- ...6.2 一阶微分方程的解法- 习题解答:- 1. 可分离变量方程的求解步骤是...- 2. 齐次方程的解法是...- ...6.3 高阶线性微分方程的解法- 习题解答:- 1. 齐次线性微分方程的通解形式是...- 2. 非齐次线性微分方程的特解求解方法是... - ...6.4 常系数线性微分方程及其特殊解法- 习题解答:- 1. 齐次常系数线性微分方程的特征方程求解方法是... - 2. 非齐次常系数线性微分方程的特殊解求解方法是... - ...---【Chapter 7】重积分7.1 二重积分的概念和性质- 习题解答:- 1. 二重积分的定义是...- 2. 二重积分的性质有...- ...7.2 二重积分的计算方法- 习题解答:- 1. 直角坐标系下二重积分的计算公式是...- 2. 极坐标系下二重积分的计算公式是...- ...7.3 二重积分的应用- 习题解答:- 1. 二重积分求面积的计算步骤是...- 2. 二重积分求质量的计算方法是...- ...7.4 三重积分的概念和性质- 习题解答:- 1. 三重积分的定义是...- 2. 三重积分的性质有...- ...7.5 三重积分的计算方法- 习题解答:- 1. 笛卡尔坐标系下三重积分的计算公式是...- 2. 柱面坐标系下三重积分的计算公式是...- ...---通过以上章节答案的讲解,希望读者能更好地理解和掌握高等数学的相关知识。
高等数学教材习题及答案
高等数学教材习题及答案导言:高等数学是大学学习中的重要一门课程,对于培养学生的分析思维和问题解决能力具有重要作用。
习题是学生巩固知识、提高技能的重要方式之一。
本文将为大家提供一些常见高等数学习题及答案,以帮助各位同学更好地理解和掌握相关知识。
1. 一元函数与极限1.1 求函数$f(x)=\frac{1}{x}$的极限$\lim_{x\to+\infty}f(x)$。
解答:我们知道,当$x$趋向于正无穷时,分母$1/x$趋于0,所以函数$f(x)$的极限为0。
1.2 设函数$f(x)$满足$\lim_{x\to a} f(x) = A$,则下列哪个结论必定成立?A. $\lim_{x\to a} |f(x)| = |A|$B. $\lim_{x\to a} [f(x)]^2 = [A]^2$C. $\lim_{x\to a} [f(x)]^3 = [A]^3$D. $\lim_{x\to a} \sqrt{f(x)} = \sqrt{A}$答案:B. $\lim_{x\to a} [f(x)]^2 = [A]^2$2. 多元函数与偏导数2.1 函数$f(x, y) = x^2 + y^2$的偏导数$\frac{\partial f}{\partial x}$是多少?解答:对$x$求偏导数,保持$y$不变,即将$y^2$看作常数,所以$\frac{\partial f}{\partial x} = 2x$。
2.2 求函数$z = e^x \sin y$的偏导数$\frac{\partial^2 z}{\partial x\partial y}$。
解答:对$x$求偏导数得到$\frac{\partial z}{\partial x} = e^x \sin y$,再对$y$求偏导数得到$\frac{\partial^2 z}{\partial x \partial y} = e^x \cosy$。
3. 微分中值定理和泰勒公式3.1 利用微分中值定理证明:对于任意$x > 0$,恒有$\ln(1 + x) < x$。
高等数学 二 b教材答案
高等数学二 b教材答案第一章:极限与连续1. 极限的概念与性质- 极限的定义- 极限的唯一性和局部有界性- 极限的四则运算法则2. 函数的极限- 函数极限的定义和性质- 无穷大与无穷小3. 连续与间断- 连续函数的定义和性质- 间断点的分类与判定第二章:导数与微分1. 导数的概念与性质- 导数的定义和几何意义- 导数与函数的连续性、可导性的关系2. 求导法则- 基本初等函数的导数- 和差、积、商的导数法则- 复合函数的求导法则3. 高阶导数与隐函数求导- 高阶导数的定义和性质- 隐函数求导的方法第三章:微分中值定理与导数应用1. 微分中值定理- 罗尔定理- 拉格朗日中值定理- 函数单调性与极值点2. 泰勒公式与应用- 泰勒公式的定义和性质- 求函数的近似值3. 线性近似与牛顿法- 线性近似的定义和性质- 牛顿法的基本思想与应用第四章:定积分1. 定积分的概念与性质- 定积分的定义和几何意义- 定积分的性质和基本定理2. 定积分的计算- 基本初等函数的定积分- 积分的换元法和分部积分法3. 定积分的应用- 曲线长度与曲面面积的计算- 物理中的定积分应用第五章:多元函数微分学1. 多元函数的极限与连续- 多元函数的极限的定义和性质- 多元函数的连续性定义和性质2. 偏导数与全微分- 偏导数的定义和计算- 全微分的定义和应用3. 隐函数与方向导数- 隐函数的存在与求导- 方向导数的定义和计算第六章:多元函数的积分学1. 二重积分- 二重积分的定义和性质- 二重积分的计算方法2. 三重积分- 三重积分的定义和性质- 三重积分的计算方法3. 曲线曲面积分- 第一、第二类曲线积分的定义和性质- 曲面积分的定义和计算方法总结:通过学习高等数学二B教材,我们了解了极限与连续、导数与微分、微分中值定理与导数应用、定积分、多元函数微分学以及多元函数的积分学等内容。
这些知识点对我们深入理解数学的基本概念和运算规则,以及应用数学解决实际问题具有重要意义。
在线MOOC教材《高等数学》教材课后习题参考解答
第一本在线课程配套教材,“十三五”普通高等教育本科国家级规划教材,国防科技大学朱健民、李建平主编,高等教育出版社出版的 《高等数学》教材课后习题解答.这些课后习题都是非常经典的,学习高数课程应知应会,必须熟练掌握的基本典型练习题,不管是对于课程学习、还是考研、竞赛等相关内容的学习、复习、备考,都应该逐题过关!参考习题解答列表第一章 映射与函数习题1.1 《集合与映射》部分练习参考解答习题1.2 《函数》部分练习参考解答习题1.3 《曲线的参数方程与极坐标方程》部分练习参考解答第二章 数列极限与数值级数习题2.1 《数列极限的概念与性质》部分练习参考解答习题2.2 《数列收敛的判定方法》部分练习参考解答习题2.3 《数值级数的基本概念与性质》部分练习参考解答习题2.4-《同号级数的敛散性判别方法》部分习题参考解答习题2.5-《变号级数收敛性判别方法》部分习题参考解答第三章 函数极限与连续习题3.1-《函数极限的概念》部分习题参考解答习题3.2-《函数极限运算法则及存在性的判定准则》部分习题及参考解答 习题3.3-《无穷小的比较与渐近线》练习题及参考解答习题3.4-《函数的连续性与间断点》练习题及参考解答第四章 导数与不定积分习题4.1 《导数的概念及基本性质》练习题及参考解答习题4.2-《导数的计算》专题练习及参考解答习题4.3-《一元函数的微分》专题练习与参考解答习题4.4-《变化率与相关变化率》专题练习与参考解答习题4.5-《不定积分基本概念、性质和基本计算》专题练习与参考解答 第五章 导数的应用习题5.1-《极值与最优化》专题练习专题练习与参考解答习题5.2-《微分中值定理及其应用》专题练习专题练习与参考解答习题5.3-《泰勒公式及其应用》专题练习与参考解答习题5.4-《函数单调性与凹凸性及其应用》专题练习及参考解答习题5.5-《曲率》专题练习及参考解答第六章 定积分及其应用习题6.1-《定积分基本概念与性质》专题练习及参考解答习题6.2-《变限积分及其应用》专题练习及参考解答习题6.3-《不定积分与定积分》专题练习及参考解析习题6.4 -《定积分的应用》专题练习及其参考解析习题6.5 -《反常积分》专题练习及其参考解析第七章 常微分方程习题7.1-《微分方程的基本概念》专题练习与参考解答习题7.2-《一阶微分方程》专题练习及参考解答习题7.3 -《可降阶微分方程》专题练习及参考解答习题7.4 -《线性微分方程》专题练习及参考解答第八章 空间解析几何习题08-01 《向量及其运算》专题练习与参考解答习题08-02 《空间平面与直线》专题练习与参考解答习题08-03-《空间曲面及其方程》专题练习与参考解答习题08-04-《空间曲线及其方程》专题练习与参考解答第九章 向量值函数的导数与积分习题09-123-《向量值函数》专题练习与参考解析第十章 多元函数的导数及其应用习题10-01-《多元函数基本概念与性质》专题练习与参考解答习题10-02《偏导数与全微分》专题练习与参考解答习题10-03 《多元复合函数和隐函数求偏导》专题练习与参考解答习题10-04 《方向导数与梯度、泰勒公式》专题练习与参考解析习题10-05《多元函数的极值与最值》专题练习,知识点与典型习题视频解析 第十一章 重积分习题11-01 《重积分基本概念与性质》专题练习与参考解答习题11-02 《重积分直角坐标计算法》专题练习及典型习题视频解析习题11-03 《重积分的柱坐标、球坐标、换元法》专题练习与参考解答 习题11-04 《重积分的应用》专题练习与参考解答第十二章 曲线积分与曲面积分习题12-01《曲线积分的基本概念与计算》专题练习及参考解答习题12-02《格林公式、积分与曲线无关》专题练习与参考解答习题12-03 《曲面积分的基本概念、基本计算》专题练习与参考解答习题12-04 《高斯公式与斯托克斯公式》专题练习与参考解答第十三章 幂级数与傅里叶级数习题13-01《幂级数及其展开》专题练习与参考解答习题13-02 《傅里叶级数及其收敛性》内容总结、视频解析与专题练习。
曲率及其计算公式-高数中曲率的计算公式
K|2a| .
讨论: 1.直线上任一点的曲率等于什么? 提示:设直线方程为y=ax+b,则y =a, y = 0.于是 | y | K 0. 2 3 2 (1 y ) x j (t ) 2.若曲线由参数方程 给出,那么曲率如何计算? y (t ) 提示:
§3.9 曲 率
一、弧微分
有向弧段的值、弧微分公式
二、曲率及其计算公式
曲率、曲率的计算公式
三、曲率圆与曲率半径
曲率圆曲率半径
一、弧微分
有向弧段 M0 M 的值 s(简称为弧s) : s 的绝对值等于这弧段的长度,当有向弧段的方向与曲线的
正向一致时s>0,相反时s<0. 显然,弧 s 是 x 的函数:ss(x),而且s(x)是x的单调增加函 数. y y (
(
Dy | MM | | MM | y, lim 因为 lim 1, 又 lim Dx0 Dx Dx 0 | MM | M M | MM | ds 2 因此 1 y . dx ds ds 1 y2 . 由于ss(x)是单调增加函数,从而 >0, dx dx
Da 为弧段 MM 的平均曲率. 我们称 K Ds 曲率: Da 为曲线C在点M处的曲率. 我们称 K lim Ds 0 Ds da Da da K lim 在 存在的条件下 . Ds 0 Ds ds ds
C M Ds Da a+Da x
题目:曲率的判定与性质 专题练习题
题目:曲率的判定与性质专题练习题
问题一
什么是曲率?
曲率是用来衡量曲线在某一点处弯曲程度的物理量。
在数学中,曲率可以通过计算曲线在该点处的曲率半径来确定。
问题二
如何判定曲线的曲率?
判定曲线的曲率通常有两种方法:
1.利用微分几何的知识,通过求曲线在某一点处的曲率半径来
判定曲线的曲率。
2.利用微积分的知识,通过求曲线在某一点处的切线与曲线的
夹角来判定曲线的曲率。
问题三
曲率具有什么性质?
曲率具有以下性质:
曲率越大,曲线在该点处的弯曲程度越大。
曲率为正表示曲线在该点处向外凸,曲率为负表示曲线在该点处向内凹。
曲线的直线段的曲率为0.
问题四
可以举一个具体的例子来说明曲率的应用吗?
举例来说,对于一个平面上的圆,其曲率在任意一点处都是相等的,且为圆的半径。
因此,我们可以利用曲率来判定一个曲线是否是圆。
以上是关于曲率的判定与性质的专题练习题。
希望能对您有所帮助!。
高数AB练习册答案详解习题0307
习题3-7 曲率1.求椭圆2244x y +=在点()0,2处的曲率. 解.()0,28200x yy y ''+=⇒=,()20,282202y yy y '''''++=⇒=-,故 ()32221y K y ''=='+.2.对数曲线ln y x =上哪一点的曲率半径最小?求出该曲率半径. 解.1y x '=,21y x -''=,()()33222211y x K y x ''=='++,由()()()224221201x x K x -'==+,得2x =,且当2x <时()20K '>,当2x >时()20K '<,故当2x =时K最大,即在,ln 22⎛⎫ ⎪ ⎪⎝⎭处曲率半径R =3.求摆线()()()sin 021cos x a t t t y a t π=-⎧⎪<<⎨=-⎪⎩的曲率,问t 为何值时曲率最小, 并求最小曲率以及相应的曲率半径. 解.()1cos x a t '=-,sin x a t ''=,sin y a t '=,cos y a t ''=,故 ()3222x y x y K x y ''''''-==''+,当t π=时min 14K a =,曲率半径4R a =.4.设抛物线2y ax bx c =++在0x =处与曲线x y e =相切,且有相同的 曲率半径,求,,a b c .解.1c =,1b =12a =⇒=±.5.飞机沿抛物线路径20.0001y x =作俯冲飞行,设在原点处速度为 200m/s ,飞行员体重70kg ,求此时座椅对飞行员的反力F .解.原点处曲率0.0002K =,曲率半径5000R =,于是向心力为22mv mv F mg F mg R R -=⇒=+,得()270200709.81246N 5000F ⋅=+⋅=.6.一辆重5吨的汽车以每小时21.6公里的速度在跨度10米,拱高 0.25米的抛物线型拱桥上行驶,求它越过桥顶时对桥面的压力. 解.设桥面的方程为2y ax =,代入5x =,0.25y =-,得0.01a =-,桥顶 处曲率20.02K a ==,曲率半径150R K ==米,于是向心力为2mv mg F R -=,得()245400N mv F mg R =-=.。
高数--曲率
山东农业大学
高等数学
主讲人: 苏本堂
例5 设工件表面的截线为抛物线y0.4x2. 现在要用
砂轮磨削其内表面. 问用直径多大的砂轮才比较合适?
解 砂轮的半径不应大于抛物线顶点处的曲率半径
y0.8x y0.8
y|x00 y|x00.8 把它们代入曲率公式 得
K
| y| (1 y2)3 2
转角为 D , 定义
弧段 Ds上的平均曲率
K D
Ds
点 M 处的曲率
K lim D d
Ds0 Ds
ds
注: 直线上任意点处的曲率为 0 !
山东农业大学
高等数学
主讲人: 苏本堂
例1. 求半径为R 的圆上任意点处的曲率 .
解: 如图所示 ,
Ds RD K lim D 1
( (
有向弧段 M0M 的值 对曲线上任一点 M(x y)
规定有向弧段M0M 的值 s (简称
弧)如下 s 的绝对值等于这弧段
的长度 当有向弧段的方向与曲
s<0
线的正向一致时s>0 相反时s<0
山东农业大学
高等数学
主讲人: 苏本堂
弧微分公式
设x xDx为(a b)内两个邻近的点 它们在曲线yf(x) 上的对应点为M N 并设对应于x的增量Dx 弧 s 的增量
故曲率为
ab
(t) (t) (t) (t)
K
3
[2 (t) 2 (t)]2
(a
2
sin
2
t
b2
cos
2
t
)
3 2
在t=0处,即在点(a,0)的曲率为
K
微分几何答案
微分几何答案微分几何是数学中重要的分支之一,它探索了空间曲线、曲面、流形以及它们之间的关系。
这个领域的研究涉及到很多复杂的概念和理论,需要进行深入的思考和理解。
本文将针对微分几何中常见的问题,进行答案的探究和解析。
问题1:什么是曲率?曲率是描述曲线和曲面弯曲性质的数值。
在微分几何中,曲率被定义为曲线或曲面任意一点处切线与法向量的偏转率。
具体来说,曲率可以分为两种类型:正曲率和负曲率。
正曲率表示曲线或曲面在该点的弯曲向上,而负曲率则表示弯曲向下。
曲率的计算可以通过微积分的方法来实现。
问题2:什么是黎曼度量?黎曼度量是描述曲面上曲线长度、角度和面积的数学工具。
在微分几何中,曲面上的任意两点之间的距离可以由黎曼度量来计算。
这个度量可以描述曲面上的所有欧几里得几何性质,包括切向量和法向量之间的内积,这个内积可以形成一个内积空间。
黎曼度量是微分几何理论中重要的基础,它也为后续研究提供了更为深入的基础。
问题3:什么是曲面的高斯曲率?曲面的高斯曲率是指曲面的弯曲程度。
在微分几何中,高斯曲率可以描述曲面上每个点的局部几何特性。
如果一个曲面的高斯曲率在某个点处为正,则该点表明曲面向外凸起;如果高斯曲率为负,则相应点表明曲面向内凹陷。
一个平面的高斯曲率始终为0。
曲面的高斯曲率在微分几何中有着广泛的应用,它可以被用于计算曲面的局部变形和弯曲性质。
问题4:什么是黎曼流形?黎曼流形是含有黎曼度量的流形。
在流形上,每个切空间都被与一个黎曼内积空间对应。
这个黎曼内积空间可以描述流形上的曲线长度和曲面的曲率。
黎曼流形广泛应用于数学物理学、广义相对论和量子场论等问题的研究中,是微分几何理论的核心内容之一。
通过黎曼流形的研究,人们可以更好地理解和描述空间的几何性质。
总之,微分几何是研究空间曲线、曲面、流形等数学对象的理论。
其中包含了很多复杂的概念和理论,需要进行深入的思考和理解。
本文中,我们就微分几何中的一些常见问题进行了解答和探讨。
高等数学高数07第七节曲率
第七节 曲率在生产实践和工程技术中,常常需要研究曲线的弯曲程度,例如,设计铁路、高速公路的弯道时,就需要根据最高限速来确定弯道的弯曲程度. 为此,本节我们介绍曲率的概念及曲率的计算公式.分布图示★ 弧微分★ 曲率的定义 ★ 曲率的计算公式★ 直线与圆的曲率 ★ 例1 ★ 例2★ 曲率圆与曲率半径 ★ 例3★ 例4 ★ 例5 ★ 例6★ 内容小结 ★ 课堂练习★ 习题3-7 ★ 返回内容要点一、弧微分22)()(dy dx ds +=二、曲率及其计算公式.)1(232y y K '+''=三、曲率圆 曲率半径 曲率中心;例题选讲曲率的计算与应用例1 (E01) 抛物线c bx ax y ++=2上哪一点的曲率最大? 解 ,2b ax y +=',2a y =''∴.])2(1[|2|232b ax a K ++=显然,当abx 2-=时,K 最大. 又 ⎪⎪⎭⎫⎝⎛---a ac b a b 44,22为抛物线的顶点,故抛物线在顶点处的曲率最大.例2(E02) 在修筑铁路时,常需根据地形的特点和最高限速的要求来设计铁轨的圆弧弯道. 铁轨由直道转入圆弧弯道时, 若接头处的曲率突然改变, 容易发生事故, 为了行使平稳,往往在直道和圆弧弯道之间接入一段缓冲段A O(图3-7-7), 使轨道曲线的曲率由零连续地过渡到圆弧的曲率R 1, 其中R 为圆弧轨道的半径.证 根据分析,在缓冲段OA 上,,212x Rl y ='.1x Rly ='' 故在缓冲段始端0=x 处的曲率为.00=K )0,0(=''='y y 题意实际要求,0x l ≈,1⎪⎭⎫⎝⎛<<R l 故 0x x y ='Rl x 220=Rl l 22≈,2Rl =0x x y =''Rl x 0=Rl l ≈.1R= 故在终端A 的曲率为A K ()2321||x x y y ='+''=2322411⎪⎪⎭⎫ ⎝⎛+≈R l R ,1R≈).1(<<R l例3 (E03) 求曲线x y tan =在点)1,4(π处的曲率与曲率半径.解 ,sec 2x y ='x x y tan sec 22='',cos sin 23xx=曲率K 及曲率半径R 分别为 K ,)1(||2/32y y '+''=R K 1=.||)1(2/32y y '''+= 由24/='=πx y 及,44/=''=πx y 得点⎪⎭⎫⎝⎛1,4π处的曲率与曲率半径分别为 ,2554=K .455=R例4 求椭圆⎩⎨⎧==t b y ta x sin cos 在),0(b 点处的曲率及曲率半径.解 点),0(b 对应的参数,2π=t 由于,sin )(t a dtdxt -=='ϕ,cos )(t a t -=''ϕ ,cos )(t b dtdyt =='ψt b t sin )(-=''ψ 故将2π=t 代入得 ,2a dt dx -==⎪⎭⎫ ⎝⎛'πϕ,02=⎪⎭⎫ ⎝⎛''πϕ ,02==⎪⎭⎫ ⎝⎛'dtdy πψ,2b -=⎪⎭⎫ ⎝⎛''πψ由曲率公式, 有2/2/322)]()([|)()()()(|πψϕψϕψϕ='+''''-'''=t t t t t t t K 2a b =所求曲率半径为.2ba R =例5 (E04) 飞机沿抛物线4000/2x y =(单位为米)俯冲飞行, 在原点处速度为,/400秒米=v 飞行员体重70千克. 求俯冲到原点时,飞行员对座椅的压力.解 飞行员对座椅的压力(kg) ,P F Q += 其中飞行员的体重70=P (kg),离心力,2ρmv F =由40002x y =⇒0='x y 02000==x x ,0=0=''x y .20001=则曲线在原点处曲率为.20001=K 曲率半径为2000=ρ米. F ∴2000400702⨯=)(5600牛=),(4.571千克≈Q ∴)(4.571)(70千克力千克力+=).(4.641千克力=即:飞行员对座椅的压力为 641.4 千克力.例6 设)(x f y =为过原点的一条曲线, )0(),0(f f '''存在, 又知有一条抛物线)(x g y =与曲线)(x f y =在原点相切, 在该点处有相同的曲率, 且在该点附近此二曲线有相同的凹向, 求).(x g解 设.)(2c bx ax x g ++=依题可得),0()0(f g =),0()0(f g '=').0()0(f g ''='' 由0)0()0(==f g ⇒,0=c 由)0()0(f g '='⇒),0(f b '= 由)0()0(f g ''=''⇒),0(2f a ''=即),0(21f a ''= 因此所求函数为.)0()0(21)(2x f x f x g '+''=课堂练习1. 椭圆t x cos 2=, t y sin 3=上哪些点处曲率最大?。