导数及不等式综合题集锦
利用导数解不等式考点与题型归纳
利用导数解不等式考点与题型归纳考点一 f (x )与f ′(x )共存的不等式问题[典例] (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________.[解析] (1)由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).(2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0⇔[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).[答案] (1)(0,10) (2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ). (2)对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).(4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0).[典例] (1)设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x[解析] (1)令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0, ∴g (x )在(0,+∞)上是减函数. ∵f (x )是奇函数,f (-1)=0, ∴f (1)=-f (-1)=0, ∴g (1)=f (1)=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0; 当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0. [答案] (1)A (2)A [解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n-1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )xn +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x,则F ′(x )=xf ′(x )-f (x )x 2>0. [典例] (1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0) B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0) C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0) D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e xf (x )-e 2x >0的解集为________.[解析] (1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0得2⎣⎡⎦⎤12f (x )+f ′(x )>0,可构造函数h (x )=e 2xf (x ),则h ′(x )=12e 2x[f (x )+2f ′(x )]>0,所以函数h (x )=e 2x f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e x f (x )-e 2x >0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e 2x >0的解集为(2,+∞).[答案] (1)D (2)(2,+∞) [解题技法](1)对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.考点二不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x,使得f(x)>0,只需f(x)min>0.类型2:任意x,使得f(x)<0,只需f(x)max<0.类型3:任意x,使得f(x)>k,只需f(x)min>k.类型4:任意x,使得f(x)<k,只需f(x)max<k.类型5:任意x,使得f(x)>g(x),只需h(x)min=[f(x)-g(x)]min>0.类型6:任意x,使得f(x)<g(x),只需h(x)max=[f(x)-g(x)]max<0.[典例]已知函数f(x)=ax+ln x+1,若对任意的x>0,f(x)≤x e2x恒成立,求实数a的取值范围.[解]法一:构造函数法设g(x)=x e2x-ax-ln x-1(x>0),对任意的x>0,f(x)≤x e2x恒成立,等价于g(x)≥0在(0,+∞)上恒成立,则只需g(x)min≥0即可.因为g′(x)=(2x+1)e2x-a-1x,令h(x)=(2x+1)e2x-a-1x(x>0),则h′(x)=4(x+1)e2x+1x2>0,所以h(x)=g′(x)在(0,+∞)上单调递增,因为当x―→0时,h(x)―→-∞,当x―→+∞时,h(x)―→+∞,所以h(x)=g′(x)在(0,+∞)上存在唯一的零点x0,满足(2x0+1)e2x0-a-1x0=0,所以a=(2x0+1)e2x0-1x0,且g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0e2x0-ax0-ln x0-1=-2x20e2x0-ln x0,则由g(x)min≥0,得2x20e2x0+ln x0≤0,此时0<x0<1,e2x0≤-ln x02x20,所以2x0+ln(2x0)≤ln(-ln x0)+(-ln x0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x >0,所以函数S (x )在(0,+∞)上单调递增, 因为S (2x 0)≤S (-ln x 0), 所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2]. 法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x 在(0,+∞)上恒成立.令m (x )=e 2x -ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln xx 2, 再令g (x )=2x 2e 2x +ln x (x >0),则g ′(x )=4(x 2+x )e 2x +1x >0,所以g (x )在(0,+∞)上单调递增,因为g ⎝⎛⎭⎫14=e 8-2ln 2<0,g (1)=2e 2>0, 所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0, 所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0, 所以ln 2+2ln x 0+2x 0=ln(-ln x 0), 即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0), 设s (x )=ln x +x (x >0),则s ′(x )=1x +1>0,所以函数s (x )在(0,+∞)上单调递增, 因为s (2x 0)=s (-ln x 0), 所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2]. [解题技法]求解不等式恒成立问题的方法(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.[题组训练](2019·陕西教学质量检测)设函数f (x )=ln x +kx,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx 2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝⎛⎭⎫x -122+14恒成立, ∴k ≥14.故k 的取值范围是⎣⎡⎭⎫14,+∞. 考点三 可化为不等式恒成立问题可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .[典例] 已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.[解] (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增, ∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-xe x ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,∴实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. [解题技法](1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.[题组训练]已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.解:(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1, 所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0. (2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈⎣⎡⎦⎤13,12, 所以-6x +1∈[-3,-2], 所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ). 因为a <0,所以当x ∈[1,2]时,g ′(x )<0, 所以g (x )在[1,2]上单调递减, 故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3, 即g (x )在[1,2]上的值域为⎣⎡⎦⎤-3,-32a -12. 因为对于任意的x 1∈[1,2] ,总存在x 2∈[1,2], 使得f (x 1)=g (x 2),所以[0,1]⊆⎣⎡⎦⎤-3,-32a -12, 所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].[课时跟踪检测]1.(2019·南昌调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意的x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)解析:选A 根据题意,令g (x )=x 2f (x ),其导函数g ′(x )=2xf (x )+x 2f ′(x ),又对任意的x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x [2f (x )+xf ′(x )]>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).2.f (x )在(0,+∞)上的导函数为f ′(x ),xf ′(x )>2f (x ),则下列不等式成立的是( ) A .2 0182f (2 019)>2 0192f (2 018) B .2 0182f (2 019)<2 0192f (2 018)C .2 018f (2 019)>2 019f (2 018)D .2 018f (2 019)<2 019f (2 018)解析:选A 令g (x )=f (x )x 2,x ∈(0,+∞),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,则g (x )在(0,+∞)上为增函数, 即f (2 019)2 0192>f (2 018)2 0182, ∴2 0182f (2 019)>2 0192f (2 018).3.(2019·郑州质检)若对于任意的正实数x ,y 都有⎝⎛⎭⎫2x -y e ln y x ≤xm e 成立,则实数m 的取值范围为( )A.⎝⎛⎭⎫1e ,1 B.⎝⎛⎦⎤1e 2,1 C.⎝⎛⎦⎤1e 2,eD.⎝⎛⎦⎤0,1e 解析:选D 由⎝⎛⎭⎫2x -y e ln y x ≤xm e , 可得⎝⎛⎭⎫2e -y x ln y x ≤1m . 设yx=t ,令f (t )=(2e -t )·ln t ,t >0, 则f ′(t )=-ln t +2e t -1,令g (t )=-ln t +2e t -1,t >0,则g ′(t )=-1t -2et 2<0,∴g (t )在(0,+∞)上单调递减,即f ′(t )在(0,+∞)上单调递减. ∵f ′(e)=0,∴f (t )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴f (t )max =f (e)=e ,∴e ≤1m ,∴实数m 的取值范围为⎝⎛⎦⎤0,1e . 4.设函数f (x )=e x ⎝⎛⎭⎫x +3x -3-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min .而g ′(x )=e x (x 2-x ),由g ′(x )>0可得 x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1),∴函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e5.(2018·武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.解:(1)∵函数f (x )=x ln x 的定义域是(0,+∞),∴f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e, ∴f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 令f ′(x )>0,得ln x +1>0,解得x >1e, ∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞. 综上,f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)∵g ′(x )=3x 2+2ax -1,2f (x )≤g ′(x )+2恒成立,∴2x ln x ≤3x 2+2ax +1恒成立.∵x >0,∴a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x-32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去). 当x 变化时,h ′(x ),h (x )的变化情况如下表:∴当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,∴若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,故实数a 的取值范围是[-2,+∞).6.(2019·郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在点(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).∵f ′(x )=1x-a ,∴f ′(1)=1-a =0,∴a =1, ∴f ′(x )=1x -1=1-x x, 令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1). 令g (x )=ln x -x 22+x -12-k (x -1)(x >1), 则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x, 令h (x )=-x 2+(1-k )x +1(x >1),则h (x )的对称轴为x =1-k 2. ①当1-k 2≤1,即k ≥-1时,易知h (x )在(1,x 0)上单调递减, ∴h (x )<h (1)=1-k .若k ≥1,则h (x )<0,∴g ′(x )<0,∴g (x )在(1,x 0)上单调递减,∴g (x )<g (1)=0,不合题意;若-1≤k <1,则h (1)>0,∴必存在x 0使得x ∈(1,x 0)时g ′(x )>0,∴g (x )在(1,x 0)上单调递增,∴g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1,即k <-1时,易知必存在x ,使得h (x )在(1,x 0)上单调递增.∴h (x )>h (1)=1-k >0,∴g ′(x )>0,∴g (x )在(1,x 0)上单调递增.∴g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围为(-∞,1).7.已知函数f (x )=x e x +ln x x(e 为自然对数的底数). (1)求证:函数f (x )有唯一零点;(2)若对任意x ∈(0,+∞),x e x -ln x ≥1+kx 恒成立,求实数k 的取值范围.解:(1)证明:f ′(x )=(x +1)e x+1-ln x x 2,x ∈(0,+∞), 易知当0<x <1时,f ′(x )>0,所以f (x )在区间(0,1)上为增函数,又因为f ⎝⎛⎭⎫1e =e 1e -e 2e <0,f (1)=e >0,所以f ⎝⎛⎭⎫1e f (1)<0,即f (x )在区间(0,1)上恰有一个零点,由题可知f (x )>0在(1,+∞)上恒成立,即在(1,+∞)上无零点, 所以f (x )在(0,+∞)上有唯一零点.(2)设f (x )的零点为x 0,即x 0e x 0+ln x 0x 0=0. 原不等式可化为x e x -ln x -1x≥k , 令g (x )=x e x-ln x -1x ,则g ′(x )=x e x +ln x x x , 由(1)可知g (x )在(0,x 0) 上单调递减,在(x 0,+∞)上单调递增, 故g (x 0) 为g (x )的最小值.下面分析x 0e x 0+ln x 0x 0=0, 设x 0e x 0=t ,则ln x 0x 0=-t , 可得⎩⎪⎨⎪⎧ ln x 0=-tx 0,ln x 0+x 0=ln t ,即x 0(1-t )=ln t , 若t >1,等式左负右正不相等;若t <1,等式左正右负不相等,只能t =1.因此g (x 0)=x 0e x 0-ln x 0-1x 0=-ln x 0x 0=1,所以k ≤1. 即实数k 的取值范围为(-∞,1].。
导数题型总结
导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。
题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。
例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。
题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。
求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。
5 函数、导数、不等式的综合问题
1.下面四个图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( ).A.13B .-13 C.73D .-13或53 2.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( ).A .1 B.12 C.52 D.223.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( ).A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝ ⎛⎭⎪⎫32,+∞ C.⎝⎛⎦⎥⎤-∞,32 D.⎝ ⎛⎭⎪⎫-∞,32 4.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于( ).A .1B .2C .0 D. 25.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( ).A .a >-3B .a <-3C .a >-13D .a <-136.(2012·衡阳模拟)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于________.7.函数f (x )=13x 3-x 2+ax -5在区间[-1,2]上不单调,则实数a 的范围是________.8.关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.9.已知函数f (x )=13x 3-a +12x 2+bx +a .(a ,b ∈R )的导函数f ′(x )的图象过原点. (1)当a =1时,求函数f (x )的图象在x =3处的切线方程;(2)若存在x <0,使得f ′(x )=-9,求a 的最大值.10.已知a ,b 为常数,且a ≠0,函数f (x )=-ax +b +ax ln x ,f (e)=2(e =2.718 28…是自然对数的底数).(1)求实数b 的值;(2)求函数f (x )的单调区间;(3)当a =1时,是否同时存在实数m 和M (m <M ),使得对每一个t ∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.11.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)对一切的x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(3)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x.。
导数与不等式常考题型
导数与不等式题型1.已知2()ln ,()3f x x x g x x ax ==-+-.(1) 求函数()f x 在[,2](0)t t t +>上的最小值;(2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围;(3) 证明:对一切(0,)x ∈+∞,都有12ln x x e ex>-成立. 本题是一道函数、导数与不等式证明的综合题,主要考查导数的几何意义、导数的求法以及导数在研究函数的性质和证明不等式等方面的应用,考查等价转化、分类讨论等数学思想方法以及分析问题与解决问题的能力. 对于第(1)问,只要运用导数的方法法研究出函数()f x 的单调性即可,最值就容易确定了;对于第(2)问,是一个不等式恒成立的问题,可通过分离常数,将其转化为求函数的最值问题来处理;对于第(3)问,可以通过构造函数,利用导数研究其函数值的正负来实现不等式的证明.解析: (1) '()ln 1f x x =+, 当1(0,)x e ∈,'()0f x <,()f x 单调递减, 当1(,)x e ∈+∞,'()0f x >,()f x 单调递增. ① 102t t e <<+<,t 无解; ② 102t t e <<<+,即10t e <<时,min 11()()f x f e e==-; ③ 12t t e≤<+,即1t e ≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ==; 所以min 110()1ln t e e f x t t t e ⎧-<<⎪⎪=⎨⎪≥⎪⎩, ,. (2) 22ln 3x x x ax ≥-+-,则32ln a x x x ≤++, 设3()2ln (0)h x x x x x=++>,则2(3)(1)'()x x h x x +-=,(0,1)x ∈,'()0h x <,()h x 单调递减,(1,)x ∈+∞,'()0h x >,()h x 单调递增,所以min ()(1)4h x h ==.因为对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,所以min ()4a h x ≤=.(3) 问题等价于证明2ln ((0,))x x x x x e e>-∈+∞, 由⑴可知()ln ((0,))f x x x x =∈+∞的最小值是1e -,当且仅当1x e =时取到.设2()((0,))x x m x x e e=-∈+∞,则1'()x x m x e -=,易得max 1()(1)m x m e ==-,当且仅当1x =时取到, 从而对一切(0,)x ∈+∞,都有12ln x x e ex >-成立. 2、已知函数ln ()x x k f x e+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意20,()1x g x e -><+.【答案】3、已知函数a N n x a x x f n ,),1ln()1(1)(*∈-+-=其中为常数. (Ⅰ)当n =2时,求函数)(x f 的极值;(Ⅱ)当a =1时,证明:对任意的正整数n ,当2≥x 时,有.1)(-≤x x f【分析及解】(Ⅰ)定义域为),1(+∞,当2=n 时,),1ln()1(1)(2-+-=x a x x f ∴3232)1(22)1(2)1()(--+-=---='x a ax ax x x a x f ① 当0=a 时,3)1(1)(--='x x f , ∵1>x ,∴0)1(3>-x 恒成立,即0)(<'x f 在),1(+∞∈x 上恒成立,故)(x f 在),1(+∞∈x 上为减函数,∴)(x f 无极值。
导数及不等式综合题集锦
导数及不等式综合题集锦1.函数()ln ,f x x a x =+其中a 为常数,且1a ≤-.〔Ⅰ〕当1a =-时,求()f x 在2[e,e ]〔e=2.718 28…〕上的值域; 〔Ⅱ〕假设()e 1f x ≤-对任意2[e,e ]x ∈恒成立,求实数a 的取值范围.2. 函数.,1ln )(R ∈-=a xx a x f 〔I 〕假设曲线)(x f y =在点))1(,1(f 处的切线与直线02=+y x 垂直,求a 的值; 〔II 〕求函数)(x f 的单调区间;〔III 〕当a=1,且2≥x 时,证明:.52)1(-≤-x x f3. 322()69f x x ax a x =-+〔a ∈R 〕.〔Ⅰ〕求函数()f x 的单调递减区间;〔Ⅱ〕当0a >时,假设对[]0,3x ∀∈有()4f x ≤恒成立,求实数a 的取值范围.4.函数).,()1(31)(223R ∈+-+-=b a b x a ax x x f 〔I 〕假设x=1为)(x f 的极值点,求a 的值;〔II 〕假设)(x f y =的图象在点〔1,)1(f 〕处的切线方程为03=-+y x ,〔i 〕求)(x f 在区间[-2,4]上的最大值;〔ii 〕求函数)(])2()('[)(R ∈+++=-m e m x m x f x G x 的单调区间5.函数.ln )(xa x x f += 〔I 〕当a<0时,求函数)(x f 的单调区间;〔II 〕假设函数f 〔x 〕在[1,e]上的最小值是,23求a 的值.6.函数∈-++=b a m x b ax mx x f ,,,)1(3)(223R 〔1〕求函数)(x f 的导函数)(x f ';〔2〕当1=m 时,假设函数)(x f 是R 上的增函数,求b a z +=的最小值;〔3〕当2,1==b a 时,函数)(x f 在〔2,+∞〕上存在单调递增区间,求m 的取值范围.7.函数()2ln .pf x px x x=-- 〔1〕假设2p =,求曲线()(1,(1))f x f 在点处的切线;〔2〕假设函数()f x 在其定义域内为增函数,求正实数p 的取值范围; 〔3〕设函数2(),[1,]eg x e x=若在上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围。
专题一 第5讲 导数与不等式的证明
可得h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h(x)=x-1-ln x≥h(1)=0,即x-1≥ln x.
于是,当a≤1时,ex-a≥x-a+1≥x+a-1≥ln(x+a), 注意到以上三个不等号的取等条件分别为x=a,a=1,x+a=1,它 们无法同时取等, 所以当a≤1时,ex-a>ln(x+a),即f(x)>0.
12
当a=e时,f(x)=ln(e-x)-x+e,
要证 f(e-x)<ex+2xe,即证 ln x+x<ex+2xe,即证lnxx+1<exx+21e.
设
g(x)=lnx
x+1(x>0),则
1-ln g′(x)= x2
x ,
所以当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
当t∈(0,1)时,g′(t)<0,g(t)单调递减, 假设g(1)能取到, 则g(1)=0,故g(t)>g(1)=0; 当t∈(1,+∞)时,g′(t)>0,g(t)单调递增, 假设g(1)能取到,则g(1)=0,故g(t)>g(1)=0,
x+ln1-x 综上所述,g(x)= xln1-x <1 在 x∈(-∞,0)∪(0,1)上恒成立.
方法二 f(x)=ln ex=1-ln x. 欲证 f(x)<1+1x-x2ex,只需证1-elxn x+x2-1x<1,
因为x∈(0,1),所以1-ln x>0,ex>e0=1,
则只需证 1-ln x+x2-1x<1, 只需证 ln x-x2+1x>0, 令 t(x)=ln x-x2+1x,x∈(0,1),
利用导数证明不等式50题(学生版)
利用导数证明不等式1.(本小题满分12分)已知函数()ln 3f x a x ax =--(0a ≠). (1)讨论()f x 的单调性;(2)若()()140f x a x e +++-≤对任意2,x e e ⎡⎤∈⎣⎦恒成立,数a 的取值围(e 为自然常数);(3)求证()()13ln 12ln 22+++()()1ln 14ln 22+++++n !ln 21n +<()*,2Nn n ∈≥(2n ≥,n *∈N ).2.(本小题满分10分)(1)设1x >-,试比较ln(1)x +与x 的大小;(2)是否存在常数N a ∈,使得111(1)1n k k a a n k=<+<+∑对任意大于1的自然数n 都成立?若存在,试求出a 的值并证明你的结论;若不存在,请说明理由.3.(本小题满分14分)已知函数()e x f x ax a =--(其中a ∈R ,e 是自然对数的底数,e =2.71828…). (Ⅰ)当e a =时,求函数()f x 的极值; (Ⅱ)若()0f x ≥恒成立,数a 的取值围;(Ⅲ)求证:对任意正整数n ,都有222221212121en n ⨯⨯⨯>+++. 4.(本小题满分14分)已知函数()1xf x e x =--,x R ∈, 其中,e 是自然对数的底数.函数()1g x xsinx cosx =++,0x >.(Ⅰ)求()f x 的最小值;(Ⅱ)将()g x 的全部零点按照从小到大的顺序排成数列{}n a ,求证:(1)(21)(21)22n n n a ππ-+<<,其中*n N ∈; (2)222212311112ln 1ln 1ln 1ln 13n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.5.(本小题满分12分)已知函数2()ln (0)f x ax x x x a =+->.(1)若函数满足(1)2f =,且在定义域2()2f x bx x ≥+恒成立,数b 的取值围; (2)若函数()f x 在定义域上是单调函数,数a 的取值围;(3)当11x y e<<<时,试比较y x 与1ln 1ln y x ++的大小. 6.已知1ln ()xf x x+=.(1)求函数()y f x =的单调区间;(2)若关于x 的方程2()2f x x x k =-+有实数解,数k 的取值围; (3)当*n N ∈,2n ≥时,求证:111()2231nf n n <+++⋅⋅⋅+- . 7.已知函数2()ln()f x x a x x =+--在0x =处取得极值. (1)数a 的值;(2)若关于x 的方程5()2f x x b =-+在区间[0,2]上恰有两个不同的实数根,数b 的取值围;(3)证明:对任意的正整数n ,不等式34249+++ (21)ln(1)n n n++>+都成立. 8.已知函数x ax x f ln 1)(--=(R a ∈) (1)讨论函数)(x f 的单调性;(2)若函数)(x f 在1=x 处取得极值,不等式2)(-≥bx x f 对任意),0(+∞∈x 恒成立,数b 的取值围;(3)当1->>e y x 时,证明不等式 )1ln()1ln(x e y e yx+⋅>+⋅. 9.已知函数1()1,()ln x x f x g x x x e-=-=-. (1)证明:()1g x ≥; (2)证明:21(ln )()1x x f x e ->-. 10.已知函数f(x)=aln x -ax -3(a ∈R). (1)若a =-1,求函数f(x)的单调区间;(2)若函数y =f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g(x)=x 3+x 2()2m f x ⎡⎤'+⎢⎥⎣⎦(f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m 的取值围; (3)求证:ln 2ln 3ln 4234⨯⨯×…×ln n n <1n (n≥2,n ∈N *). 11.已知函数()x x ln =ϕ (1)若曲线()()1-+=xax x g ϕ在点()()2,2g 处的切线与直线013=-+y x 平行,求a 的值;(2)求证函数()()()112+--=x x x x f ϕ在(0,)+∞上为单调增函数; (3)设m ,n +∈R ,且m n ≠,求证:2ln ln nm n m n m -<+-. 12.设函数()(1)f x x α=+的定义域是[1,)-+∞,其中常数0α>. (1)若1α>,求()y f x =的过原点的切线方程.(2)当2α>时,求最大实数A ,使不等式2()1f x x Ax α>++对0x >恒成立.(3)证明当1α>时,对任何*n N ∈,有12111(())n k k n k kααα+=-<+<∑. 13.函数x x f sin )(=. (1)令)(),()(),()(*'1'1N n x f x f x f x f n n ∈==+,求)(2014x f 的解析式;(2)若x ax x f cos 1)(+≥+在[]π,0上恒成立,数a 的取值围;(3)证明:)12(4)1(23)12)1((...)122()12(++≥+++++++n n n n f n f n f πππ.14.已知21()ln(1),()(,)2f x xg x ax bx a b R =+=+∈. (1)若2()(1)()b h x f x g x ==--且存在单调递减区间,数a 的取值围; (2)若0,1a b ==,求证:当(1,)x ∈-+∞时,()()0f x g x -≤恒成立; (3)利用(2)的结论证明:若0,0x y >>,则ln ln ()ln 2x yx x y y x y ++>+. 15.设函数f (x )=ln x +2a x 2-(a +1)x (a >0,a 为常数). (1)讨论f (x )的单调性;(2)若a =1,证明:当x >1时,f (x )<12x 2-21x x +16.已知a 为实常数,函数()ln 1f x x ax =-+. (1)讨论函数()f x 的单调性;(2)若函数()f x 有两个不同的零点1212,()x x x x <; (Ⅰ)数a 的取值围; (Ⅱ)求证:111x e<<且122x x +>.(注:e 为自然对数的底数)17.已知函数f(x)的导函数为f ′(x),且对任意x >0,都有f ′(x)>()f x x. (Ⅰ)判断函数F(x)=()f x x在(0,+∞)上的单调性; (Ⅱ)设x 1,x 2∈(0,+∞),证明:f(x 1)+f(x 2)<f(x 1+x 2);(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论. 18.已知函数()(1)e x f x x x -=-∈R ,,其中e 是自然对数的底数.(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)若函数()y g x =对任意x 满足()(4)g x f x =-,求证:当2x >时,()()f x g x >; (Ⅲ)若12x x ≠,且12()()f x f x =,求证:12 4.x x +> 19.已知函数x xa ax x f ln 1)(--+= (1)当21≤a 时,试讨论函数)(x f 的单调性; (2)证明:对任意的*∈N n ,有)1(2ln 1)1ln(22ln 11ln 2+<+--+++n n n n n n . 20.已知函数c x b ax x f ++=ln )((c b a ,,是常数)在e x =处的切线方程为0)1(=-+-e ey x e ,且(1)0f =.(Ⅰ)求常数c b a ,,的值;(Ⅱ)若函数)()(2x mf x x g +=(R m ∈)在区间)3,1(不是单调函数,数m 的取值围;(Ⅲ)证明:ln 2ln3ln 4ln 2013123420132013⨯⨯⨯⨯<.21.已知函数21()(2)ln 2x f x a x x a =-+(0a >且1a ≠). (1)当a e ≥时,求证:()f x 在(0,)+∞上单调递增;(2)当21[,][,1)a e e e∈且[1,)t ∈+∞时,求证:2(21)2()3f t f t e --≥-+. 22.已知函数()ln f x x x =-, ()ln a g x x x=+,(0a >). (1)求函数()g x 的极值; (2)已知10x >,函数11()()()f x f x h x x x -=-, 1(,)x x ∈+∞,判断并证明()h x 的单调性;(3)设120x x <<,试比较12()2x x f +与121[()()]2f x f x +,并加以证明. 23.已知)0()(>-=a xax x f ,()2ln g x x =, (1)若对),1[+∞的一切实数x ,不等式)()(x g x f ≥恒成立,数a 的取值围; (2)当1=a 时,求最大的正整数k ,使得对]3,[e ( 2.71828e =⋅⋅⋅是自然对数的底数)的任意k 个实数k x x x ,,,21 都有)(16)()()(121k k x g x f x f x f ≤+++- 成立; (3)求证:)12ln(14412+>-∑=n i ini )(*N n ∈. 24.已知函数)ln()(a x x x f +-=的最小值为0,其中0>a 。
数列导数与不等式综合问题
数列导数与不等式综合问题一、数列与不等式 1、“添舍”放缩通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。
例1.已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈ 证明:111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k kk a k n a +++-==-=-≥-=--+- 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。
由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。
本题在放缩时就舍去了22k-,从而是使和式得到化简. 例2.函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-)(2121)2141211(41*11N n n n n n ∈-+=++++-=+- .此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。
如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
2、分式放缩一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。
例3..数列{}n a 满足11a =-,1(33)46n n n a n a n++++=.(1)求{}n a 通项公式n a ;(2)令132n n n b a -=+,数列{}n b 前n 项和为n S ,求证:当2n ≥时,2322()23n n S S S S n>++⋅⋅⋅+; 解(1)13(1)46n n na n a n +=+++,两边同除以(1)n n +得:∴1223()1n n a a n n+++=⋅+∴2n a n +⎧⎫⎨⎬⎩⎭是首项为1211a +=,公比3q =的等比数列………………4分 ∴123n n a n-+= ∴132n n a n -=⋅-(2)1n b n =,当2n ≥时,11n n n b S S n -=-=,11n n S S n--=………………5分 两边平方得:221221n n n S S S n n --=- …… 相加得:23222211112()()2323n n S S S S n n-=++⋅⋅⋅+-++⋅⋅⋅+又2221111111()1[]231223(1)n n n -++⋅⋅⋅+>-++⋅⋅⋅+⨯⨯-∴2322()23n n S S S S n>++⋅⋅⋅+…………………………………………9分 例4.已知214)(x x f +-=数列}{n a 的前n 项和为n S ,点)1,(1+-n n n a a P 在曲线)(x f y =上)(*N n ∈且0,11>=n a a .(1)求数列}{n a 的通项公式; (2)求证:*,11421N n n S n ∈-+>. 解:(1)014)(121>+-==-+n nn n a a a f a 且∴21141nn a a +=+∴*)(411221N n a a nn ∈=-+ ∴数列}1{2na 是等差数列,首项112=na 公差d=4∴)1(4112-+=n a n∴3412-=n a n∵0>n an a =∴…………(4分)(2)341-=n a n∴143423422++->-=n n n a n∴)59()15(2121-+->+++=n n a a a S *11421N n n ∈=+>……………………12分例5.已知数列{}n a 的首项113a ==2,a ,前n 项和为n S ,且1n S +、n S 、1n S -分别是直线l 上的点A 、B 、C 的横坐标,点B 分AC 所成的比为21n na a +,设11b =12log (1)n n n b a b +=++。
导数与不等式问题专题
导数与不等式问题高考定位导数经常作为高考的压轴题,能力要求非常高.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题、利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.真题感悟(2016·无锡高三期末)已知函数f (x)=ln x+a+e-2x(a>0).(1)当a=2时,求出函数f (x)的单调区间;(2)若不等式f (x)≥a对于x>0的一切值恒成立,求实数a的取值范围. 解(1)由题意知函数f (x)的定义域为(0,+∞).当a=2时,函数f (x)=ln x+e x ,所以f ′(x)=1x-ex2=x-ex2,所以当x∈(0,e)时,f′(x)<0,函数f (x)在(0,e)上单调递减;当x∈(e,+∞)时,f′(x)>0,函数f (x)在(e,+∞)上单调递增.(2)由题意知ln x+a+e-2x≥a恒成立.等价于x ln x+a+e-2-ax≥0在(0,+∞)上恒成立.令g(x)=x ln x+a+e-2-ax,则g′(x)=ln x+1-a,令g′(x)=0,得x=e a-1.列表如下:X (0,e a-1)e a-1(e a-1,+∞)g′(x)-0+g(x)极小值所以g(x)的最小值为g(e a-1)=(a-1)e a-1+a+e-2-a e a-1=a+e-2-e a-1,令t(x)=x+e-2-e x-1(x>0),则t′(x)=1-e x-1,令t′(x)=0,得x=1.列表如下:所以当a∈(0,1)时,g(x)的最小值为t(a)>t(0)=e-2-1e=e(e-2)-1e>0,符合题意;当a∈[1,+∞)时,g(x)的最小值为t(a)=a+e-2-e a-1≥0=t(2),所以a∈[1,2].综上所述,a∈(0,2].考点整合1.解决函数的实际应用题,首先考虑题目考查的函数模型,并要注意定义域,其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.2.利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数后转化为函数最值问题:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f (x)≥a恒成立,只需f (x)min≥a即可;f (x)≤a恒成立,只需f (x)max≤a 即可.(2)转化为含参函数的最值问题:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),伴有对参数的分类讨论,然后构建不等式求解.3.常见构造辅助函数的四种方法(1)直接构造法:证明不等式f (x)>g(x)(f (x)<g(x))的问题转化为证明f (x)-g(x)>0(f (x)-g(x)<0),进而构造辅助函数h(x)=f (x)-g(x).(2)构造“形似”函数:稍作变形后构造.对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)适当放缩后再构造:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.(4)构造双函数:若直接构造函数求导,难以判断符号,导数的零点也不易求得,因此单调性和极值点都不易获得,从而构造f (x)和g(x),利用其最值求解.4.不等式的恒成立与能成立问题(1)f (x)>g(x)对一切x∈[a,b]恒成立⇔[a,b]是f (x)>g(x)的解集的子集⇔[f (x)-g(x)]min>0(x∈[a,b]).(2)f (x)>g(x)对x∈[a,b]能成立⇔[a,b]与f (x)>g(x)的解集的交集不是空集⇔[f (x)-g(x)]max>0(x∈[a,b]).(3)对∀x1,x2∈[a,b]使得f (x1)≤g(x2)⇔f (x)max≤g(x)min.(4)对∀x1∈[a,b],∃x2∈[a,b]使得f (x1)≥g(x2)⇔f (x)min≥g(x)min.热点一利用导数证明不等式【例1】(2017·全国Ⅱ卷)已知函数f (x)=ax2-ax-x ln x,且f (x)≥0.(1)求a;(2)证明:f (x)存在唯一的极大值点x0,且e-2<f (x0)<2-2.(1)解 f (x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f (x)=xg(x),f (x)≥0等价于g(x)≥0,因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-1x,g′(1)=a-1,得a=1.若a=1,则g′(x)=1-1x .当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x =1是g (x )的极小值点,故g (x )≥g (1)=0. 综上,a =1.(2)证明 由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x , 设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0.所以h (x )在⎝⎛⎭⎪⎫0,12上单调递减, 在⎝ ⎛⎭⎪⎫12,+∞上单调递增. 又h (e -2)>0,h ⎝ ⎛⎭⎪⎫12<0,h (1)=0,所以h (x )在⎝ ⎛⎭⎪⎫0,12有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0. 因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈(0,1)得f (x 0)<14.因为x =x 0是f (x )在(0,1)的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.探究提高 (1)证明f (x )≥g (x )或f (x )≤g (x ),可通过构造函数h (x )=f (x )-g (x ),将上述不等式转化为求证h (x )≥0或h (x )≤0,从而利用求h (x )的最小值或最大值来证明不等式.或者,利用f (x )min ≥g (x )max 或f (x )max ≤g (x )min 来证明不等式.(2)在证明不等式时,如果不等式较为复杂,则可以通过不等式的性质把原不等式变换为简单的不等式,再进行证明.【训练1】 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ; (2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e xln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2. (2)证明 由(1)知,f (x )=e x ln x +2xe x -1,从而f (x )>1等价于x ln x >x e -x-2e.设函数g (x )=x ln x ,则g ′(x )=1+ln x . 所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e.综上,当x>0时,g(x)>h(x),即f (x)>1. 热点二利用导数解决不等式恒成立问题【例2】(2017·南京、盐城模拟)已知函数f (x)=axe x在x=0处的切线方程为y=x.(1)求实数a的值;(2)若对任意的x∈(0,2),都有f (x)<1k+2x-x2成立,求实数k的取值范围.解(1)由题意得f ′(x)=a(1-x)e x,因为函数在x=0处的切线方程为y=x,所以f ′(0)=1,解得a=1.(2)由题知f (x)=xe x<1k+2x-x2对任意x∈(0,2)都成立,所以k+2x-x2>0,即k>x2-2x对任意x∈(0,2)都成立,从而k≥0.不等式整理可得k<e xx+x2-2x,令g(x)=e xx+x2-2x,所以g′(x)=e x(x-1)x2+2(x-1)=(x-1)⎝⎛⎭⎪⎫e xx2+2=0,解得x=1,当x∈(1,2)时,g′(x)>0,函数g(x)在(1,2)上单调递增,同理可得函数g(x)在(0,1)上单调递减.所以k<g(x)min=g(1)=e-1,综上所述,实数k的取值范围是[0,e-1).探究提高(1)利用最值法解决恒成立问题的基本思路是:先找到准确范围,再说明“此范围之外”不适合题意(着眼于“恒”字,寻找反例即可).(2)对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.【训练2】(2014·江苏卷)已知函数f (x)=e x+e-x,其中e是自然对数的底数.(1)证明:f (x)是R上的偶函数;(2)若关于x的不等式mf (x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f (x0)<a(-x30+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.(1)证明因为对任意x∈R,都有f (-x)=e-x+e-(-x)=e-x+e x=f (x),所以f (x)是R上的偶函数.(2)解由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,所以m≤-t-1 t2-t+1=-1t-1+1t-1+1对任意t>1成立.因为t-1+1t-1+1≥2(t-1)·1t-1+1=3,所以-1t-1+1t-1+1≥-13,当且仅当t=2,即x=ln 2时等号成立.因此实数m的取值范围是(-∞,-13 ].(3)解令函数g(x)=e x+1e x-a(-x3+3x),则g′(x)=e x-1e x+3a(x2-1).当x≥1时,e x-1e x>0,x2-1≥0,又a >0,故g ′(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0.故e +e -1-2a <0,即a >e +e-12.令函数h (x )=x -(e -1)ln x -1, 则h ′(x )=1-e -1x.令h ′(x )=0,得x =e -1,当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0.当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0. 所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0, 即a -1<(e -1)ln a ,从而e a -1<a e -1; ②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0, 即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1; 当a =e 时,e a -1=a e -1; 当a ∈(e ,+∞)时,e a -1>a e -1. 热点三 利用导数解决能成立问题【例3】 (2017·南通模拟)已知函数f (x )=x -(a +1)ln x -ax(a ∈R),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.① 若a ≤1,当x ∈[1,e]时,f ′(x )≥0,则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a . ② 若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; 当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数. 所以f (x )min =f (a )=a -(a +1)ln a -1.③ 若a ≥e,当x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上为减函数,f (x )min=f (e)=e -(a +1)-ae .综上,当a ≤1时,f (x )min =1-a ;当1<a <e 时,f (x )min =a -(a +1)ln a -1; 当a ≥e 时,f (x )min =e -(a +1)-ae.(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae.g ′(x )=(1-e x )x .当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数,g (x )min =g (0)=1,所以e -(a +1)-ae<1,即a >e 2-2e e +1,所以a 的取值范围为⎝⎛⎭⎪⎫e 2-2e e +1,1. 探究提高 存在性问题和恒成立问题的区别与联系存在性问题和恒成立问题容易混淆,它们既有区别又有联系:若g (x )≤m 恒成立,则g (x )max ≤m ;若g (x )≥m 恒成立,则g (x )min ≥m ;若g (x )≤m 有解,则g (x )min ≤m ;若g (x )≥m 有解,则g (x )max ≥m .【训练3】 (2016·四川卷)设函数f (x )=ax 2-a -ln x ,其中a ∈R. (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数). 解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0, 所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a>1.由(1)有f ⎝ ⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h (x )在区间(1,+∞)上单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.1.不等式恒成立、能成立问题常用解法有:(1)分离参数后转化为最值,不等式恒成立问题在变量与参数易于分离的情况下,采用分离参数转化为函数的最值问题,形如a >f (x )max 或a <f (x )min . (2)直接转化为函数的最值问题,在参数难于分离的情况下,直接转化为含参函数的最值问题,伴有对参数的分类讨论. (3)数形结合.2.利用导数证明不等式的基本步骤 (1)作差或变形. (2)构造新的函数h (x ).(3)利用导数研究h (x )的单调性或最值. (4)根据单调性及最值,得到所证不等式. 3.导数在综合应用中转化与化归思想的常见类型 (1)把不等式恒成立问题转化为求函数的最值问题; (2)把证明不等式问题转化为函数的单调性问题; (3)把方程解的问题转化为函数的零点问题.一、填空题1.设f (x )是定义在R 上的奇函数,当x <0时,f ′(x )>0,且f (0)=0,f ⎝ ⎛⎭⎪⎫-12=0,则不等式f (x )<0的解集为________. 解析 如图所示,根据图象得不等式f (x )<0的解集为⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,12.答案 ⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,122.(2017·苏北四市调研)若不等式2x ln x ≥-x 2+ax -3恒成立,则实数a 的取值范围为________.解析 条件可转化为a ≤2ln x +x +3x恒成立.设f (x )=2ln x +x +3x,则f ′(x )=(x +3)(x -1)x 2(x >0).当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增, 所以f (x )min =f (1)=4.所以a ≤4. 答案 (-∞,4]3.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________. 解析 ∵2x(x -a )<1,∴a >x -12x .令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0.∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞). 答案 (-1,+∞)4.(2015·全国Ⅱ卷改编)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 解析 令F (x )=f (x )x,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=x f ′(x )-f (x )x 2,当x >0时,x f ′(x )-f (x )<0,所以F (x )=f (x )x在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x 在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪ (0,1).答案 (-∞,-1)∪(0,1)5.已知不等式e x -x >ax 的解集为P ,若[0,2]⊆P ,则实数a 的取值范围是________.解析 由题意知不等式e x -x >ax 在x ∈[0,2]上恒成立. 当x =0时,显然对任意实数a ,该不等式都成立. 当x ∈(0,2]时,原不等式即a <e xx-1,令g (x )=e xx-1,则g ′(x )=e x (x -1)x 2,当0<x <1时,g ′(x )<0,g (x )单调递减, 当1<x <2时,g ′(x )>0,g (x )单调递增,故g (x )在(0,2]上的最小值为g (1)=e -1, 故a 的取值范围为(-∞,e -1). 答案 (-∞,e -1) 6.设函数f (x )=3sinπxm.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是________. 解析 ∵f (x )=3sinπxm的极值为±3,即[f (x 0)]2=3.又|x 0|≥|m |2, ∴x 20+[f (x 0)]2≥m 24+3,∴m 24+3<m 2, 解得m >2或m <-2.答案 (-∞,-2)∪(2,+∞)7.已知函数f (x )=ln x -a ,若f (x )<x 2在(1,+∞)上恒成立,则实数a 的取值范围是________.解析 ∵函数f (x )=ln x -a ,且f (x )<x 2在(1,+∞)上恒成立,∴a >ln x -x 2,x ∈(1,+∞).令h (x )=ln x -x 2,有h ′(x )=1x-2x .∵x >1,∴1x-2x <0,∴h (x )在(1,+∞)上为减函数,∴当x ∈(1,+∞)时,h (x )<h (1)=-1,∴a ≥-1. 答案 [-1,+∞)8.(2017·泰州模拟)已知函数f (x )=13x 3-x 2-3x +43,直线l :9x +2y +c =0,若当x ∈[-2,2]时,函数y =f (x )的图象恒在直线l 下方,则c 的取值范围是________.解析根据题意知13x3-x2-3x+43<-92x-c2在x∈[-2,2]上恒成立,则-c2>1 3x3-x2+32x+43,设g(x)=13x3-x2+32x+43,则g′(x)=x2-2x+32,则g′(x)>0恒成立,所以g(x)在[-2,2]上单调递增,所以g(x)max=g(2)=3,则c<-6.答案(-∞,-6)二、解答题9.(2016·全国Ⅲ卷)设函数f (x)=ln x-x+1.(1)讨论函数f (x)的单调性;(2)证明当x∈(1,+∞)时,1<x-1ln x<x;(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>c x.(1)解由f (x)=ln x-x+1(x>0),得f ′(x)=1x-1.令f ′(x)=0,解得x=1.当0<x<1时,f ′(x)>0,f (x)单调递增.当x>1时,f ′(x)<0,f (x)单调递减.因此f (x)在(0,1)上是增函数,在x∈(1,+∞)上为减函数.(2)证明由(1)知,函数f (x)在x=1处取得最大值f (1)=0. ∴当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln 1x<1x-1,即1<x-1ln x<x.(3)证明由题设c>1,设g(x)=1+(c-1)x-c x,则g′(x)=c-1-c x ln c.令g ′(x )=0,解得x 0=lnc -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减. 由(2)知1<c -1ln c<c ,故0<x 0<1. 又g (0)=g (1)=0,故当0<x <1时,g (x )>0. ∴当x ∈(0,1)时,1+(c -1)x >c x. 10.(2017·衡水中学质检)已知函数f (x )=x +a e x.(1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围; (2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证:f (x )≤g (x ).(1)解 易知f ′(x )=-x -(1-a )ex,由已知得f ′(x )≥0对x ∈(-∞,2)恒成立, 故x ≤1-a 对x ∈(-∞,2)恒成立, ∴1-a ≥2,∴a ≤-1.即实数a 的取值范围为(-∞,-1]. (2)证明 a =0,则f (x )=xex .函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),x ∈R , 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e x 0=(1-x )e x 0-(1-x 0)e x e x +x 0.设φ(x )=(1-x )e x 0-(1-x 0)e x ,x ∈R ,则φ′(x )=-e x 0-(1-x 0)e x ,∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,而φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴x ∈R 时,h (x )≤h (x 0)=0, ∴f (x )≤g (x ).11.(2017·南通调研)已知函数f (x )=ln x +x 2-ax (a 为常数). (1)若x =1是函数f (x )的一个极值点,求a 的值; (2)当0<a ≤2时,试判断f (x )的单调性;(3)若对任意的a ∈(1,2),x 0∈[1,2],不等式f (x 0)>m ln a 恒成立,求实数m 的取值范围. 解 f ′(x )=1x+2x -a .(1)由已知得:f ′(1)=0,所以1+2-a =0,所以a =3,经验证符合题意. (2)当0<a ≤2时,f ′(x )=1x +2x -a =2x 2-ax +1x=2⎝⎛⎭⎪⎫x -a 42+1-a 28x.因为0<a ≤2,所以1-a 28>0,而x >0,即f ′(x )=2x 2-ax +1x>0,故f (x )在(0,+∞)上是增函数.(3)当a ∈(1,2)时,由(2)知,f (x )在[1,2]上的最小值为f (1)=1-a , 故问题等价于:对任意的a ∈(1,2), 不等式1-a >m ln a 恒成立,即m <1-aln a恒成立.记g(a)=1-aln a (1<a<2),则g′(a)=-a ln a-1+aa(ln a)2.令M(a)=-a ln a-1+a,则M′(a)=-ln a<0,所以M(a)在(1,2)上单调递减,所以M(a)<M(1)=0,故g′(a)<0,所以g(a)=1-aln a在a∈(1,2)上单调递减,所以m≤g(2)=1-2ln 2=-log2e,即实数m的取值范围为(-∞,-log2e].。
利用导数证明不等式50题(学生版)
(Ⅲ)求证:对任意正整数 n,都有
. 2 22 2n 1
2 1 22 1
2n 1 e
试卷第 2 页,总 16 页
4.(本小题满分 14 分)已知函数 f (x) ex x 1,
xR, 其中, e是自然对数的底数.函数
g(x) xsinx cosx 1, x 0 .
(Ⅰ)求 f (x) 的最小值;
. f (x) ax2 x x ln x(a 0) (1)若函数满足 f (1)2,且在定义域内 f (x)bx2 2x恒 成立,求实数 b 的取值范围;
(2)若函数 f (x) 在定义域上是单调函数,求实 数 a 的取值范围;
(3)当 1 x y 1时,试比较 y 与1 ln y 的大小.
(1)求函数 g(x) 的极值;
(2)已知 x1 0 ,函数 h(x)
, ,判 f (x) f (x1) x x1
x (x1, )
断并证明 h(x) 的单调性;
(3)设 0
x1
x2 ,试比较
f
( x1
2
x2
)
与
1 [
2
f
(x1 )
f
(x2 )] ,并
加以证明.
23.已知 f (x) x a (a 0) , g(x) 2ln x , x
i1 2i 1
25.已知函数 f (x) kx , g(x) ln x x
(1)求函数 g(x) ln x 的单调递增区间; x
(2)若不等式 f (x) g(x)在区间(0,+ )上恒成立 ,求k 的取值范围;
(3)求证: ln 2 ln 3 ln n 1
24 34
n4 2e
26.(本题满分 14 分)
高考函数与导数,不等式综合题库3
1 mx 2 2m 2 x 4 (m 为常数,且 2
m>0)有极大值
5 , 2
(Ⅰ)求 m 的值; (Ⅱ)求曲线 y f ( x) 的斜率为 2 的切线方程. 解: (Ⅰ) f ( x) 3x mx 2m ( x m)(3x 2m) 0
(II)由 | a ln x | ln[ f ( x) 3x] 0 得
a ln x ln
3 3 或a ln x ln , „„„„① 2 3x 2 3x
设 h( x) ln x ln
3 2 x 3x 2 ln , 2 3x 3
3 3x ln , 2 3x 2 3x 1 1 依题意知 a h( x)或a g ( x)在x [ , ] 上恒成立, 6 3 g ( x) ln x ln
f ( x) x3 3x2 4
3、(江苏省启东中学高三综合测试三)已知函数 f(x)=x3+ax2+b 的图象在点 P(1,0)处的切线与直 线 3x+y=0 平行, (1)求常数 a、b 的值; (2)求函数 f(x)在区间[0,t]上的最小值和最大值。 (t>0) 解: (1)a=-3,b=2; (2)当 2<t≤3 时,f(x)的最大值为 f(0)=2;当 t>3 时,f(x)的最大值为 3 2 f(t)=t -3t +2;当 x=2 时,f(x)的最小值为 f(2)=-2。
(2) f (1) 1 b d
0
f (2) 0
d 8 46且b 3 f (1) 1 b 8 46 7 3b
导数、函数、不等式综合题
导数、函数、不等式综合题1. 函数的单调性与导数的关系一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减。
2. 判别f (x 0)是极大、极小值的方法若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值。
3. 求函数的极值的步骤:(1)确定函数的定义区间,求导数f '(x )。
(2)求方程f '(x )=0的根。
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格。
检查f '(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。
4. 求函数最值的步骤:(1)求出()f x 在(,)a b 上的极值。
(2)求出端点函数值(),()f a f b 。
(3)比较极值和端点值,确定最大值或最小值。
例题1 已知函数f (x )=1-m +ln x x,m ∈R 。
(1)求f (x )的极值;(2)若lnx -ax<0在(0,+∞)上恒成立,求a 的取值范围。
解析:(1)由导数运算法则知,f '(x )=m -lnx x 2。
令f '(x )=0,得x =e m 。
当x ∈(0,e m )时,f′(x )>0,f (x )单调递增;当x ∈(e m ,+∞)时,f′(x )<0,f (x )单调递减。
高考数学导数的综合应用问题解答题专题练习
高考数学导数的综合应用问题解答题专题练习一、归类解析题型一:证明不等式【解题指导】(1)证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性.(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数.【例】 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e 2. 【变式训练】已知函数f (x )=x ln x -e x +1.(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)证明:f (x )<sin x 在(0,+∞)上恒成立.题型二:不等式恒成立或有解问题【解题指导】利用导数解决不等式的恒成立问题的策略(1)首先要构造函数,利用导数求出最值,求出参数的取值范围.(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题.【例 】已知函数f (x )=1+ln x x. (1)若函数f (x )在区间)21,( a a 上存在极值,求正实数a 的取值范围;(2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围. 【变式训练】已知函数f (x )=e x -1-x -ax 2.(1)当a =0时,求证:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围. 题型三:求函数零点个数【解题指导】(1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.【例】已知函数f (x )=2a 2ln x -x 2(a >0).(1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数).【变式训练】设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3的零点的个数. 题型四:根据函数零点情况求参数范围【解题指导】函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.【例】 已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2. 【变式训练】【例】已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间],1[e e上有两个不等实根,求实数a 的取值范围. 二、专题突破训练1.已知函数f (x )=ln x +x ,g (x )=x ·e x -1,求证f (x )≤g (x ).2.已知函数f (x )=ax 2+bx +x ln x 的图象在(1,f (1))处的切线方程为3x -y -2=0.(1)求实数a ,b 的值;(2)设g (x )=x 2-x ,若k ∈Z ,且k (x -2)<f (x )-g (x )对任意的x >2恒成立,求k 的最大值.3.已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x. (1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.4.设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.5.已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).设g (x )=x 2-2bx +4,当a =14时,若∀x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.6.已知函数f (x )为偶函数,当x ≥0时,f (x )=2e x ,若存在实数m ,对任意的x ∈[1,k ](k >1),都有f (x +m )≤2e x ,求整数k 的最小值.7.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数.8.已知f (x )=1x +e x e -3,F (x )=ln x +e x e-3x +2. (1)判断f (x )在(0,+∞)上的单调性;(2)判断函数F (x )在(0,+∞)上零点的个数.9.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.10.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.11.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.12.已知函数f (x )=(3-a )x -2ln x +a -3在)41,0(上无零点,求实数a 的取值范围.。
函数导数与不等式专题(可编辑修改word版)
函数导数与不等式专题一.利用切线与导数之间的联系解决不等式有关问题⎧x2+ 2x +a, x < 01.(2013年高考四川)已知函数 f (x) =⎨,其中a 是实数.⎩ln x, x > 0设A(x1 , f (x1 )) ,B(x2 , f (x2 )) 为该函数图象上的两点,且x1 <x2 .(1)指出函数f (x) 的单调区间;(2)若函数f (x) 的图象在点A, B 处的切线互相垂直,且x2 < 0 ,证明: x2 -x1 ≥ 1 ;(3)若函数f (x) 的图象在点A, B 处的切线重合,求a 的取值范围.2.(2014 届江西省新余)已知函数f(x)b ln x,g( x ) ax 2x (a R) .(1)若曲线f ( x) 与g( x) 在公共点A(1 , 0) 处有相同的切线,求实数a 、b 的值;(2)当b 1 时,若曲线f ( x) 与g( x) 在公共点P 处有相同的切线,求证:点P 唯一;(3)若a 0 ,b 1 ,且曲线f ( x) 与g( x) 总存在公切线,求正实数a 的最小值.二.利用函数的单调性、极值与导数的联系解决有关不等式问题3.(2014 届云南省师大附中)已知函数f (x) =x2-ax ,g(x) = ln x .(1)若f (x) ≥g(x) 对于定义域内的x 恒成立,求实数a 的取值范围;(2)设h(x)=f(x)+g(x)有两个极值点x , x ,且x∈⎛0,1⎫,求证:h(x)-h(x)>3-ln2;1 2 1 2 ⎪ 1 2 4⎝⎭4.(2014 届湖北省部分重点中学)已知函数f (x) =2x3+x2+ax +1 在(-1, 0)上有3两个极值点 x1 , x2 ,且 x1 <x2(1)求实数a 的取值范围;11(2)证明:f (x2 )12 .>三、灵活应用导数解决函数与不等式的有关综合问题5.(2014 届浙江省杭州市)设函数 f ( x ) = e x + sin x , g ( x ) = x - 2 ;(1) 求证:函数 y = f ( x ) 在[0,+∞) 上单调递增;(2)设 P ( x 1 , f ( x 1 )) , Q ( x 2 , g ( x 2 )) ( x 1 ≥ 0, x 2 > 0) ,若直线 PQ // x 轴,求 P , Q两点间的最短距离.6. (2014 届江西省师大附中)设 f (x ) = e x - a (x +1) .(1) 若 a > 0, f (x ) ≥ 0 对一切 x ∈ R 恒成立,求 a 的最大值.a(2) 设 g (x ) = f (x ) + ,且 A (x , y ), B (x , y )(x ≠ x ) 是曲线 y = g (x ) 上任意ex1 12 2 1 2 两点,若对任意的 a ≤ -1 ,直线 AB 的斜率恒大于常数 m ,求 m 的取值范围;(3)求证:1n + 3n + + (2n -1)n <e -1(2n )n (n ∈ N *) . e1课后强化训练1. (2014 届河北省邯郸市 )设函数 f (x ) = x (e x -1) + ax 2(1) 当 a = - 时,求 f (x ) 的单调区间;2(2)若当 x ≥ 0 时, f (x ) ≥ 0 恒成立,求 a 的取值范围.(x ) =2、(2014 届湖北省黄冈中学)已知函数a = 9ax +1 , a 为常数.(1) 若 f (x ) = ln x +(x ) ,且 2 ,求函数 f (x ) 的单调区间; g (x ) = ln x +(x )x , x ∈(0, 2] x ≠ x( 2) 若g (x 2 ) - g (x 1 ) < -1x 2 - x 1, 且 对 任 意 1 2,求 a 的取值范围., 1 2 , 都 有⎩ 1函数导数与不等式专题参考答案1 解:(1)函数 f (x ) 的单调减区间为(-∞,-1) ,单调增区间为(-1, 0) , (0, +∞)(2) 由导数的几何意义知,点 A 处的切线斜率为 f '(x 1 ) ,点 B 处的切线斜率为 f '(x 2 ) ,故当点 A , B 处的切线互相垂直时,有 f '(x 1 ) ⋅ f '(x 2 ) = -1 ,当 x <0 时, f (x ) = 2x + 2因为 x 1 < x 2 < 0 ,所以 (2x 1 + 2) ⋅ (2x 2 + 2) = -1 ,所以2x 1 + 2 < 0 , 2x 2 + 2 > 0 ,因此 x - x = 1[-(2x + 2) + (2x+ 2)] ≥ = 1 ,2 1 212(当且仅当- (2x 1 + 2) = 2x 2 + 2 = 1,即 x 1 = - 3 且 x 2 2= - 1 时等号成立) 2所以函数 f (x ) 的图象在点 A , B 处的切线互相垂直时有 x 2 - x 1 ≥ 1 .(Ⅲ)当 x 1 < x 2 < 0 或 x 2 > x 1 > 0 时, f '(x 1 ) ≠ f '(x 2 ) ,故 x 1 < 0 < x 2 .当 x 1 < 0 时, f (x ) 的图象在点(x 1 , f (x 1 )) 处的切线方程为y - (x 2 + 2x + a ) = (2x + 2) ⋅ (x - x ) 即 y = (2x + 2) x - x 2 + a .111111当 x 2 > 0 时, f (x ) 的图象在点(x 2 , f (x 2 )) 处的切线方程为y - ln x 2 =2⋅ (x - x 2 ) 即 y = 1 x 2 ⋅ x + ln x 2 - 1 .⎧ 1 两切线重合的充要条件是⎪ x = 2x 1 + 2① , ⎨ 2⎪ln x - 1 = -x 2 + a ①- (2x 1 + 2) ⋅ (2x 2+ 2) 1x 22由①及 x1< 0 <x2知, 0 <1x < 2 ,由①、②得2a = ln x + (1-1) 2-1 =- ln1+1(1 - 2) 2- 1 ,22x x 4 x2 2令t =1x 2,则0 <t < 2 ,且 a =1t 2-t - ln t4设h (t) =1t 24-t - ln t (0 <t < 2) ,则 h'(t) =1t -1-1=2t(t - 1) 2- 32 t所以h(t) (0 <t < 2) 为减函数,则 h(t) >h(2) =-1 - ln 2 , 所以 a >-1 - ln 2 , 而当t ∈(0, 2) 且 t 趋向于 0 时,h(t) 无限增大 , 所以a 的取值范围是(-1 - ln 2, +∞) .故当函数 f (x) 的图象在点A, B 处的切线重合时,a 的取值范围是(-1 - ln 2, +∞) .2 解:(1)fb,g 2ax 1.∵曲线与在公共点Ax,0处f b ln 1 0有相同的切线∴ a 1 0 ,解得,a 1. .......................... 3 分b 12a 1(2)设P (x0,y0),则由题设有ln x0ax x0…①2又在点P 有共同的切线f '(x )=g '(x )⇒1 = 2ax-1 ⇒a =1+x0 代入①得ln x 1 1 x……5 分0 0 x 02x20 2 2 00 0设ln x1 1x ,则h1 10,2 2 x 2<∴h(x)在(0 ,+∞)上单调递增,所以h (x)=0 最多只有1个实根,从而,结合(Ⅰ)可知,满足题设的点 P 只能是 P (1, 0)……………7 分(3)当 a 0 , b 1 时, f ln x , f1 , x 曲线 f 在点 ① l n处的切线方程为 y ln t 1 x t ,即 y 1x ln t 1 . ty 1 x ln t 11 由t,得 ax 2 1 ln t 1 0 . y ax 2x t∵曲 线与总 存 在 公 切 线 , ∴ 关 于 t0 的 方 程Δ 1 1 24tn t10 ,即 1 1 24tl n(*)总有解.………9 分若 t e ,则1 ln t 0 ,而1 1 2t0 ,显然(*)不成立,所以0 t e …10 分从而,方程(*)可化为4a. t ln令t e ,则 hln tt.tl ntln∴ 当0 < t < 1时, h0 ;当1 t e 时, h0 ,即在 , 上单调递减,在 , e 上单调递增.∴在 , e的最小值为4 ,所以,要使方程(*)有解,只须4a ≥ 4 ,即 a ≥ 1. ................................ 13 分3 解:(1)f (x )≥g (x ) ∴a ≤x - ln x(x > 0), x ,设(x ) = x - ln x,'(x ) = x 2+ ln x - 1xx 2当 x ∈(0, 1) 时,'(x ) < 0 ,当 x ∈(1,+ ∞) 时,'(x ) > 0,…(2 分)1 2 ∴(x )≥(1) = 1, ∴ a ∈(-∞, 1] . ......................................................................... (5 分)(2)h (x ) = x 2 - ax + ln x , ∴ h '(x ) =2x 2 - ax + 1x(x > 0),∴x x = 1 , ∵x ∈⎛0,1 ⎫, ∴x ∈(1, + ∞), 且ax = 2x2 + 1(i = 1, 2)1 2 21 2 ⎪ 2 i i⎝ ⎭ ,∴h (x ) - h (x ) = (x 2 - ax + ln x ) - (x 2 - ax + ln x )12111222= (-x 2 - 1 + ln x ) - (-x 2 - 1 + ln x ) = x 2 - x 2 + ln x 1 = x 2 - 1- ln 2x 2 (x> 1)1 12 2 2 1 x 2 4x 22 2 2 1 22 2' (2x 2 - 1)2…(9 分) 设(x ) = x - - ln 2x (x > 1), (x ) = 4x 22x 3 ≥0,∴(x ) > (1) = 3 - ln 2, 即h (x ) - h (x ) > 3- ln 2.4 1 24 …………………………(13 分)4.(1) f '(x ) = 2x 2 + 2x + a ,由题意知方程2x 2 + 2x + a = 0 在(-1, 0) 上有两不等 实根,设 g (x ) = 2x 2 + 2x + a ,其图象的对称轴为直线 x = - 1,故有2⎧ ⎪ ⎪ ⎨⎪ ⎪g (- ⎩g (-1) = a > 0 g (0) = a > 0 1 ) = 1+ (-1) + a < 0 2 2,解得0 < a < ..............(6 分) 2( a = -2x 2 - 2x 构造 g (x ) = -2x 2 - 2x 利用图象解照样给分)(2)由题意知 x 是方程2x 2+ 2x + a = 0 的大根,从而 x ∈⎛ - 1 , 0 ⎫且有2x 2 + 2x + a = 0 ,即 a = -2x 2 - 2x , 2 2 ⎪ 2 2 2 2⎝ ⎭ 这样 f (x ) = 2 x 3 + x 2 + ax +1 = 2 x 3 + x 2 + (-2x 2 - 2x )x +1 = - 4x 3 - x 2 +12 3 2 2 2 3 2 2 2 2 23 2 2 设(x ) = -4 x 3 - x 2 +1,'(x ) = -4x 2 - 2x =0,解得 x = - 1, x = 0 ,3 1 221 > 由 x ∈⎛-∞, - 1 ⎫,'(x ) < 0 ;x ∈⎛ - 1 , 0 ⎫,(' x ) > 0 ; 2 ⎪ 2 ⎪ ⎝⎭ ⎝ ⎭x ∈(0, +∞) ,'(x ) < 0 知,(x ) = - 4 x 3 - x 2 +1在(- 1 , 0) 单调递增,又Q - 1< x < 0 ,3 2 2 21 11 11从而(x 2 ) >(- 2) = 12 ,即 f (x 2 ) > 12成立。
(完整版)导数证明不等式题型全
导数题型一:证明不等式不等式的证明问题是中学数学教学的一个难点,传统证明不等式的方法技巧性强,多数学生不易想到,并且各类不等式的证明没有通性通法.随着新教材中引入导数,这为我们处理不等式的证明问题又提供了一条新的途径,并且在近年高考题中使用导数证明不等式也时有出现,但现行教材对这一问题没有展开研究,使得学生对这一简便方法并不了解.利用导数证明不等式思路清晰,方法简捷,操作性强,易被学生掌握。
下面介绍利用单调性、极值、最值证明不等式的基本思路,并通过构造辅助函数,证明一些不等式。
一.构造形似函数型例1.求证下列不等式(1))1(2)1ln(222x x x x x x +-<+<- ),0(∞+∈x (相减)(2)πx x 2sin > )2,0(π∈x (相除两边同除以x 得π2sin >x x )(3)x x x x -<-tan sin )2,0(π∈x(4)已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+;(换元:设x x t 1+=)(5)已知函数()ln(1)f x x x =+-,1x >-,证明:11ln(1)1x x x -≤+≤+巩固练习:1.证明1>x 时,不等式xx 132-> 2.0≠x ,证明:x e x +>13.0>x 时,求证:)1ln(22x x x +<- 4.证明: ).11(,32)1ln(32<<-+-≤+x x x x x 5.证明: 331an x x x t +>,)2,0(π∈x .二、需要多次求导例2.当)1,0(∈x 时,证明:22)1(ln )1(x x x <++例3.求证:x >0时,211x 2x e x ->+例4.设函数f (x )=ln x +2a x 2-(a +1)x (a >0,a 为常数).若a =1,证明:当x >1时,f (x )<12x 2-21x x +三、作辅助函数型例5.已知:a 、b 为实数,且b >a >e ,其中e 为自然对数的底,求证:a b >b a .例6.已知函数f(x)=ln(1+x)-x,g(x)=xlnx,(i)求函数f(x)的最大值;(ii)设0<a<b,证明0<g(a)+g(b)-2g(2b a +)<(b-a)ln2.巩固练习6、证明 (1) )0(ln b a a ab a bb ab <<-<<-(2)0,0>>b a ,证明b a b a b a b a ≤++)2((3)若2021π<<<x x ,证明:1212tan tan x x x x >四、同增与不同增例7.证明:对任意21ln 0,1e e x x x x x ---><+.例8.已知函数1()1,()ln x x f x g x x x e-=-=-证明:21(ln )()1x x f x e ->-.五、极值点偏移(理科)例9.已知函数.如果且证明.例10.已知函数()(1)e x f x x x -=-∈R ,,其中e 是自然对数的底数.若12x x ≠,且12()()f x f x =,求证:12 4.x x +>六、放缩法例11.已知:2≥∈n N n 且,求证:11211ln 13121-+++<<+++n n n 。
大题限时练(二) 函数、导数、不等式综合题
大题规范练(二) 函数、导数、不等式综合题(限时:60分钟)1.(2013·高考新课标全国卷)已知函数f (x )=e x(ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.2.已知函数f (x )=f ′(1)e ·e x-f (0)·x +12x 2(e 是自然对数的底数).(1)求函数f (x )的解析式和单调区间;(2)若函数g (x )=12x 2+a 与函数f (x )的图象在区间[-1,2]上恰有两个不同的交点,求实数a 的取值范围.3.(2013·高考湖北卷)设a >0,b >0,已知函数f (x )=ax +bx +1. (1)当a ≠b 时,讨论函数f (x )的单调性.(2)当x >0时,称f (x )为a 、b 关于x 的加权平均数. ①判断f (1),f ⎝⎛⎭⎪⎫b a ,f ⎝ ⎛⎭⎪⎫b a 是否成等比数列,并证明f ⎝ ⎛⎭⎪⎫b a ≤f ⎝ ⎛⎭⎪⎫b a ; ②a 、b 的几何平均数记为G ,称2aba +b为a 、b 的调和平均数,记为H ,若H ≤f (x )≤G ,求x 的取值范围.4.(2013·高考天津卷)已知函数f (x )=x 2ln x .(1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g (t )ln t <12.5.(2014·山西省质检)已知函数f (x )=12m (x -1)2-2x +3+ln x ,m ≥1.(1)当m =32时,求函数f (x )在区间[1,3]上的极小值;(2)求证:函数f (x )存在单调递减区间[a ,b ];(3)是否存在实数m ,使曲线C :y =f (x )在点P (1,1)处的切线l 与曲线C 有且只有一个公共点?若存在,求出实数m 的值;若不存在,请说明理由.6.(2014·荆州市高中毕业班质量检查Ⅰ)已知f 0(x )=x e x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n (x )=f ′n -1(x ),n ∈N *.(1)请写出f n (x )的表达式(不需要证明); (2)求f n (x )的极小值;(3)设g n (x )=-x 2-2(n +1)x -8n +8,g n (x )的最大值为a ,f n (x )的最小值为b ,证明:a -b ≥e -4.大题规范练(二)1.解:(1)f ′(x )=e x(ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8. 从而a =4,b =4.(4分)(2)由(1)知,f (x )=4e x(x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·⎝⎛⎭⎪⎫e x-12.(6分)令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;(8分) 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).(12分) 2.解:(1)由已知得f ′(x )=f ′(1)ee x-f (0)+x ,∴f ′(1)=f ′(1)-f (0)+1,即f (0)=1.(2分)又f (0)=f ′(1)e,∴f ′(1)=e.从而f (x )=e x-x +12x 2.(4分)显然f ′(x )=e x-1+x 在R 上单调递增且f ′(0)=0,故当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.∴f (x )的单调递减区间是(-∞,0),单调递增区间是(0,+∞).(7分) (2)由f (x )=g (x )得a =e x-x .令h (x )=e x-x , 则h ′(x )=e x-1.由h ′(x )=0得x =0.(9分)当x ∈(-1,0)时,h ′(x )<0;当x ∈(0,2)时,h ′(x )>0. ∴h (x )在(-1,0)上单调递减,在(0,2)上单调递增, 又h (0)=1,h (-1)=1+1e,h (2)=e 2-2且h (-1)<h (2),∴两个图象恰有两个不同的交点时,实数a 的取值范围是⎝ ⎛⎦⎥⎤1,1+1e .(13分) 3.解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.(2分)当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增; 当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(4分)(2)①计算得f (1)=a +b2>0,f ⎝ ⎛⎭⎪⎫b a =2ab a +b >0,f ⎝⎛⎭⎪⎫b a =ab >0,故f (1)f ⎝ ⎛⎭⎪⎫b a =a +b 2·2aba +b =ab =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫b a 2,①所以f (1),f ⎝⎛⎭⎪⎫b a ,f ⎝ ⎛⎭⎪⎫b a 成等比数列.(6分)因为a +b2≥ab ,即f (1)≥f ⎝⎛⎭⎪⎫b a . 由①得f ⎝ ⎛⎭⎪⎫b a ≤f ⎝⎛⎭⎪⎫b a . ②由①知f ⎝ ⎛⎭⎪⎫b a =H ,f ⎝⎛⎭⎪⎫b a =G , 故由H ≤f (x )≤G ,得f ⎝ ⎛⎭⎪⎫b a ≤f (x )≤f ⎝ ⎛⎭⎪⎫b a .② 当a =b 时,f ⎝ ⎛⎭⎪⎫b a=f (x )=f ⎝ ⎛⎭⎪⎫b a =a .(8分) 这时,x 的取值范围为(0,+∞); 当a >b 时,0<b a <1,从而b a <b a, 由f (x )在(0,+∞)上单调递增与②式,得b a≤x ≤b a, 即x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a ;(10分) 当a <b 时,b a >1,从而b a>b a, 由f (x )在(0,+∞)上单调递减与②式,得b a ≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .(12分) 4.解:(1)函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x =1e.(2分)当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递减区间是⎝⎭⎪⎫0,e ,单调递增区间是⎝ ⎛⎭⎪e ,+∞. (4分)(2)证明:当0<x ≤1时,f (x )≤0.t >0,令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)内单调递增.(6分)h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f (s )成立.(8分) (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1,从而ln g (t )ln t =ln s ln f (s )=ln sln (s 2ln s )=ln s 2ln s +ln (ln s )=u2u +ln u,其中u =ln s .要使25<ln g (t )ln t <12成立,只需0<ln u <u 2.(10分)当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e)=e 2,矛盾.所以s >e ,即u >1,从而ln u >0成立.另一方面,令F (u )=ln u -u 2,u >1,F ′(u )=1u -12,令F ′(u )=0,得u =2.当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0. 故对u >1,F (u )≤F (2)<0,因此ln u <u2成立.综上,当t >e 2时,有25<ln g (t )ln t <12.(12分)5.解:(1)f ′(x )=m (x -1)-2+1x(x >0).当m =32时,f ′(x )=3(x -2)⎝ ⎛⎭⎪⎫x -132x ,令f ′(x )=0,得x 1=2,x 2=13.(2分)f (x ),f ′(x )在x ∈(0,+∞)上的变化情况如下表:所以当x =2时,函数f (x )在x ∈[1,3]上取到极小值,且极小值为f (2)=ln 2-4.(4分)(2)令f ′(x )=0,得mx 2-(m +2)x +1=0.(*)因为Δ=(m +2)2-4m =m 2+4>0,所以方程(*)存在两个不等实根,记为a ,b (a <b ).因为m ≥1,所以⎩⎪⎨⎪⎧a +b =m +2m>0ab =1m >0,(6分)所以a >0,b >0,即方程(*)有两个不等的正根,因此f ′(x )<0的解为(a ,b ). 故函数f (x )存在单调递减区间[a ,b ].(8分)(3)因为f ′(1)=-1,所以曲线C :y =f (x )在点P (1,1)处的切线l 的方程为y =-x +2.若切线l 与曲线C有且只有一个公共点,则方程12m (x -1)2-2x +3+ln x =-x +2有且只有一个实根.显然x =1是该方程的一个根. 令g (x )=12m (x -1)2-x +1+ln x ,则g ′(x )=m (x -1)-1+1x =m (x -1)⎝ ⎛⎭⎪⎫x -1m x.当m =1时,有g ′(x )≥0恒成立,所以g (x )在(0,+∞)上单调递增,所以x =1是方程的唯一解,m =1符合题意.(10分)当m >1时,由g ′(x )=0,得x 1=1,x 2=1m,则x 2∈(0,1),易得g (x )在x 1处取到极小值,在x 2处取到极大值.所以g (x 2)>g (x 1)=0,又当x 趋近0时,g (x )趋近-∞,所以函数g (x )在⎝⎛⎭⎪⎫0,1m 内也有一个解,m >1不符合题意.综上,存在实数m =1使得曲线C :y =f (x )在点P (1,1)处的切线l 与曲线C 有且只有一个公共点.(12分) 6.解:(1)f n (x )=(x +n )·e x (n ∈N *).(3分) (2)因为f n (x )=(x +n )·e x, 所以f ′n (x )=(x +n +1)·e x.因为x >-(n +1)时,f ′n (x )>0;x <-(n +1)时,f ′n (x )<0, 所以当x =-(n +1)时,f n (x )取得极小值f n (-(n +1))=-e-(n +1).(6分) (3)依题意,a =g n (-n +1)=(n -3)2,又b =f n (-(n +1))=-e -(n +1),所以a -b =(n -3)2+e -(n +1).令h (x )=(x -3)2+e-(x +1)(x ≥0),(8分) 则h ′(x )=2(x -3)-e-(x +1),又h ′(x )在区间[0,+∞)上单调递增, 所以h ′(x )≥h ′(0)=-6-e -1.又h ′(3)=-e -4<0,h ′(4)=2-e -5>0, 所以存在x 0∈(3,4)使得h ′(x 0)=0.(11分)所以当0≤x <x 0时,h ′(x )<0;当x >x 0时,h ′(x )>0. 即h (x )在区间[x 0,+∞)上单调递增,在区间[0,x 0)上单调递减, 所以h (x )min =h (x 0).(12分)又h (3)=e -4,h (4)=1+e -5,h (4)>h (3), 所以当n =3时,a -b 取得最小值e -4, 即a -b ≥e -4.(14分)。
导函数不等式题目
导函数不等式题目1. 求函数 f(x) = x^2 - 3x + 2 的导函数,并求解不等式 f"(x) > 0 的解集。
解:首先,求导函数:f"(x) = 2x - 3然后,解不等式 f"(x) > 0:2x - 3 > 02x > 3x > 3/2因此,不等式 f"(x) > 0 的解集为 x > 3/2。
2. 求函数 f(x) = 2x^3 - 9x^2 + 12x - 4 的导函数,并求解不等式 f"(x) < 0 的解集。
解:首先,求导函数:f"(x) = 6x^2 - 18x + 12然后,解不等式 f"(x) < 0:6x^2 - 18x + 12 < 0x^2 - 3x + 2 < 0(x - 2)(x - 1) < 0求解这个二次方程的解集,注意找到函数的零点,即 x = 1 和 x = 2。
然后,可以利用数轴上的符号法来确定不等式的解集。
将数轴分成三个区间:(-∞, 1), (1, 2), (2, +∞)。
在第一个区间 (-∞, 1) 中选择一个测试点 x = 0,代入不等式f"(x) < 0,得到结果 6(0)^2 - 18(0) + 12 = 12 > 0,所以第一个区间不满足不等式。
在第二个区间 (1, 2) 中选择一个测试点 x = 1.5,代入不等式f"(x) < 0,得到结果 6(1.5)^2 - 18(1.5) + 12 = -1.5 < 0,所以第二个区间满足不等式。
在第三个区间 (2, +∞) 中选择一个测试点 x = 3,代入不等式f"(x) < 0,得到结果 6(3)^2 - 18(3) + 12 = 12 > 0,所以第三个区间不满足不等式。
因此,不等式 f"(x) < 0 的解集为 1 < x < 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及不等式综合题集锦1.已知函数()ln ,f x x a x =+其中a 为常数,且1a ≤-.(Ⅰ)当1a =-时,求()f x 在2[e,e ](e=2.718 28…)上的值域; (Ⅱ)若()e 1f x ≤-对任意2[e,e ]x ∈恒成立,求实数a 的取值范围.2. 已知函数.,1ln )(R ∈-=a xx a x f (I )若曲线)(x f y =在点))1(,1(f 处的切线与直线02=+y x 垂直,求a 的值; (II )求函数)(x f 的单调区间;(III )当a=1,且2≥x 时,证明:.52)1(-≤-x x f3. 已知322()69f x x ax a x =-+(a ∈R ).(Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)当0a >时,若对[]0,3x ∀∈有()4f x ≤恒成立,求实数a 的取值范围.4.已知函数).,()1(31)(223R ∈+-+-=b a b x a ax x x f (I )若x=1为)(x f 的极值点,求a 的值;(II )若)(x f y =的图象在点(1,)1(f )处的切线方程为03=-+y x ,(i )求)(x f 在区间[-2,4]上的最大值;(ii )求函数)(])2()('[)(R ∈+++=-m e m x m x f x G x 的单调区间5.已知函数.ln )(xa x x f += (I )当a<0时,求函数)(x f 的单调区间;(II )若函数f (x )在[1,e]上的最小值是,23求a 的值.6.已知函数∈-++=b a m x b ax mx x f ,,,)1(3)(223R (1)求函数)(x f 的导函数)(x f ';(2)当1=m 时,若函数)(x f 是R 上的增函数,求b a z +=的最小值;(3)当2,1==b a 时,函数)(x f 在(2,+∞)上存在单调递增区间,求m 的取值范围.7.已知函数()2ln .pf x px x x=-- (1)若2p =,求曲线()(1,(1))f x f 在点处的切线;(2)若函数()f x 在其定义域内为增函数,求正实数p 的取值范围; (3)设函数2(),[1,]eg x e x=若在上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围。
8.设函数21()()2ln ,().f x p x x g x x x=--=(I )若直线l 与函数)(),(x g x f 的图象都相切,且与函数)(x f 的图象相切于点(1,0),求实数p 的值;(II )若)(x f 在其定义域内为单调函数,求实数p 的取值范围。
9. 已知函数为常数其中且a a a x x g x x x f a ),1,0(log )(,221)(2≠>=-=,如果)()()(x g x f x h +=在其定义域上是增函数,且()h x '存在零点(()()h x h x '为的导函数)。
(I )求a 的值;(II )设(,()),(,())()A m g m B n g n m n <是函数()y g x =的图象上两点,0()()()g n g m g x n m-'=-0(()()),:.g x g x m x n '<<为的导函数证明10. 设函数2()ln f x x m x =,2()h x x x a =-+。
(Ⅰ)当a=0时,()()f x h x ≥在(1,+∞)上恒成立,求实数m 的取值范围;(Ⅱ)当m=2时,若函数()()()k x f x h x =-在[1,3]上恰有两个不同零点,求实数 a 的取值范围; (Ⅲ)是否存在实数m ,使函数()f x 和函数()h x 在公共定义域上具有相同的单调性?若存在,求出m 的值,若不存在,说明理由.11. 已知函数.)(,)2(),2](,2[)33()(2n t f m f t t e x x x f x ==-->-⋅+-=设定义域为 (I )试确定t 的取值范围,使得函数],2[)(t x f -在上为单调函数; (II )求证:m n >;(III )求证:对于任意的200)1(32)(),,2(,20-='-∈->t e x f t x t x 满足总存在,并确定这样的0x 的个数。
12. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数.(1)求)(x f 、)(x g 的表达式;(2)求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (3)当1->b 时,若212)(xbx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围.13. 已知函数R x f f 在且0)(',0)1('≥=上恒成立.(1)求d c a ,,的值; (2)若;0)()(',41243)(2<+-+-=x h x f b bx x x h 解不等式 (3)是否存在实数m ,使函数]2,[)(')(+-=m m mx x f x g 在区间上有最小值-5?若存在,请求出实数m 的值;若不存在,请说明理由.14. 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.15. 设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f(x)的单调区间和极值; (Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.1.解:(Ⅰ)当1a =-时,()ln ,f x x x =- 得1()1,f x x '=- ………2分令()0f x '>,即110x->,解得1x >,所以函数()f x 在(1,)+∞上为增函数, 据此,函数()f x 在2[e,e ]上为增函数,…………4分而(e)e 1f =-,22(e )e 2f =-,所以函数()f x 在2[e,e ]上的值域为2[e 1,e 2]--……6分(Ⅱ)由()1,a f x x '=+令()0f x '=,得10,ax+=即,x a =-当(0,)x a ∈-时,()0f x '<,函数()f x 在(0,)a -上单调递减;当(,)x a ∈-+∞时,()0f x '>,函数()f x 在(,)a -+∞上单调递增; ……………7分 若1e a ≤-≤,即e 1a -≤≤-,易得函数()f x 在2[e,e ]上为增函数,此时,2max ()(e )f x f =,要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需2(e )e 1f ≤-即可,所以有2e 2e 1a +≤-,即2e e 12a -+-≤而22e e 1(e 3e 1)(e)022-+---+--=<,即2e e 1e 2-+-<-,所以此时无解.………8分若2e e a <-<,即2e e a ->>-,易知函数()f x 在[e,]a -上为减函数,在2[,e ]a -上为增函数, 要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需2(e)e 1(e )e 1f f ≤-⎧⎨≤-⎩,即21e e 12a a ≤-⎧⎪⎨-+-≤⎪⎩, 由22e e 1e e 1(1)022-+--++--=<和222e e 1e e 1(e )022-+-+---=>得22e e 1e 2a -+--<≤.…10分 若2e a -≥,即2e a ≤-,易得函数()f x 在2[e,e ]上为减函数,此时,max ()(e)f x f =,要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需(e)e 1f ≤-即可,所以有e e 1a +≤-,即1a ≤-,又因为2e a ≤-,所以2e a ≤-.……………12分 综合上述,实数a 的取值范围是2e e 1(,]2-+--∞.……………13分2. 解:(I )函数}0|{)(>x x x f 的定义域为,.1)(2x x a x f +='………2分又曲线))1(,1()(f x f y 在点=处的切线与直线02=+y x 垂直,所以.21)1(=+='a f 即a =1…4分 (II )由于.1)(2xax x f +='当0≥a 时,对于0)(),,0(>'+∞∈x f x 有在定义域上恒成立,即),0()(+∞在x f 上是增函数.当).,0(1,0)(,0+∞∈-=='<a x x f a 得由时 当)(,0)(,)1,0(x f x f ax >'-∈时单调递增;当)(,0)(,),1(x f x f ax <'+∞-∈时单调递减.…………………………8分 (III )当a =1时,).,2[,11)1ln()1(+∞∈---=-x x x x f 令.5211)1ln()(+----=x x x x g.)1()2)(12(2)1(111)(22---=--+-='x x x x x x g ………………10分 当),2()(,0)(,2+∞<'>在时x g x x g x 单调递减. 又.0)(,)(,0)2(≤=x g x g g 时所以 即.05211)1ln(≤+----x x x故当a =1,且52)1(,2-≤-≥x x f x 时成立.……………………13分3解:(Ⅰ)22'()31293()(3)0f x x ax a x a x a =-+=--< (1)当3a a =,即0a =时,2'()30f x x =>,不成立.(2)当3a a >,即0a <时,单调减区间为(3,)a a .(3)当3a a <,即0a >时,单调减区间为(,3)a a .-------------------5分 (Ⅱ)22'()31293()(3)f x x ax a x a x a =-+=--,()f x 在(0,)a 上递增,在(,3)a a 上递减,在(3,)a +∞上递增.(1)当3a ≥时,函数()f x 在[0,3]上递增,所以函数()f x 在[0,3]上的最大值是(3)f , 若对[]0,3x ∀∈有()4f x ≤恒成立,需要有(3)4,3,f a ≤⎧⎨≥⎩解得a ∈∅.(2)当13a ≤<时,有33a a <≤,此时函数()f x 在[0,]a 上递增,在[,3]a 上递减,所以函数()f x 在[0,3]上的最大值是()f a ,若对[]0,3x ∀∈有()4f x ≤恒成立,需要有()4,13,f a a ≤⎧⎨≤<⎩ 解得1a =.(3)当1a <时,有33a >,此时函数()f x 在[,3]a a 上递减,在[3,3]a 上递增,所以函数()f x 在[0,3]上的最大值是()f a 或者是(3)f . 由2()(3)(3)(43)f a f a a -=--,①304a <≤时,()(3)f a f ≤,若对[]0,3x ∀∈有()4f x ≤恒成立, 需要有(3)4,30,4f a ≤⎧⎪⎨<≤⎪⎩ 解得233[1]4a ∈. ②314a <<时,()(3)f a f >, 若对[]0,3x ∀∈有()4f x ≤恒成立, 需要有()4,31,4f a a ≤⎧⎪⎨<<⎪⎩ 解得3(,1)4a ∈. 综上所述,23[1a ∈. -----------14分4.解:(1).12)(22-+-='a ax x x f 1=x 是极值点 0)1(='∴f ,即022=-a a0=∴x 或2. …3分(2)))1(,1(f 在03=-+y x 上. 2)1(=∴f ∵(1,2)在)(x f y =上 b a a +-+-=∴13122 又11211)1(2-=-+-∴-=='a a k f 38,10122===+-∴b a a a.2)(,3831)(222x x x f x x x f -='+-=∴(i )由0)(='x f 可知x =0和x =2是)(x f 的极值点. ,8)4(,4)2(,34)2(,38)0(=-=-==f f f f)(x f ∴在区间[-2,4]上的最大值为8.…………………………8分 (ii )xe m mx x x G -++=)()(2])2([)()2()(22x m x e m mx x e em x x G x x x-+-=++-+='---令0)(='x G ,得m x x -==2,0当m =2时,0)(≤'x G ,此时)(x G 在),(+∞-∞单调递减 当2>m 时:x (-∞,2,-m)2-m (2-m ,0)0 (0,+∞)G ′(x ) - 0 + 0 - G (x )减增减当时G (x )在(-∞,2,-m ),(0,+∞)单调递减,在(2-m ,0)单调递增. 当2<m 时:x (-∞,0)0 (0,2-m )2-m (2-m+∞)G ′(x ) - 0 + 0 - G (x )减增减此时G (x )在(-∞,0),(2-m ,+∞)单调递减,在(0,2-m )单调递增,综上所述:当m=2时,G (x )在(-∞,+∞)单调递减; 2>m 时,G (x )在(-∞,2-m ),(0,+∞)单调递减,在(2-m ,0)单调递增; 2<m 时,G (x )在(-∞,0),(2-m ,+∞)单调递减,在(0,2-m )单调递增. 5.解:函数xax x f +=ln )(的定义域为),0(+∞ …………1分 221)('xax x a x x f -=-=…………3分(1).0)(',0>∴<x f a 故函数在其定义域),0(+∞上是单调递增的.…………5分 (II )在[1,e]上,发如下情况讨论:①当a<1时,,0)('>x f 函数)(x f 单调递增,其最小值为,1)1(<=a f 这与函数在[1,e]上的最小值是3相矛盾;…………6分②当a=1时,函数(]e x f ,1)(在单调递增,其最小值为,1)1(=f 同样与最小值是23相矛盾;…7分 ③当e a <<1时,函数[)a x f ,1)(在上有0)('<x f ,单调递减,在(]e a ,上有,0)('>x f 单调递增,所以,函数)(x f 满足最小值为1ln )(+=a a f 由,,231ln e a a ==+得 …………9分④当a=e 时,函数[),0)(',1)(<x f e x f 上有在单调递减,其最小值为,2)(=e f 还与最小值是23相矛盾;…10分 ⑤当a>e 时,显然函数],1[)(e x f 在上单调递减,其最小值为,21)(>+=eae f 仍与最小值是23相矛盾; …………12分 综上所述,a 的值为.e…………13分6.(I )解:22()2(1).f x mx ax b '=++- ……3分(II )因为函数()f x 是R 上的增函数,所以()0f x '≥在R 上恒成立,则有222244(1)0, 1.a b a b ∆=--≤+≤即设cos ,(,01).sin a r r b r θθθ=⎧≤≤⎨=⎩为参数则)4sin(2)sin (cos πθθθ+=+=+=r r b a z当,1)4sin(-=+πθ且r =1时,b a z +=取得最小值2-.(可用圆面的几何意义解得b a z +=的最小值2-)…………………………8分(Ⅲ)①当0>m 时12)(2-+='x mx m f 是开口向上的抛物线,显然)(x f '在(2,+∞)上存在子区间使得0)(>'x f ,所以m 的取值范围是(0,+∞). ②当m =0时,显然成立.③当0<m 时,12)(2-+='x mx m f 是开口向下的抛物线,要使)(x f '在(2,+∞)上存在子区间使0)(>'x f ,应满足⎪⎪⎪⎩⎪⎪⎪⎨⎧>-'≥-<,0)1(,210m f m m 或⎪⎪⎩⎪⎪⎨⎧>'<-<.0)2(,21,0f m m解得,021<≤-m 或2143-<-m ,所以m 的取值范围是).0,43(- 则m 的取值范围是).,43(+∞-……………………………………………………13分7.解:(1)当2p =时,函数2()22ln ,(1)222ln10f x x x f x =--=--=222()2f x x x=+-曲线()f x 在点(1,(1))f 处的切线的斜率为(1)222 2.f ''=+-= 1分从而曲线()f x 在点(1,(1))f 处的切线方程为02(1),y x -=- 即22y x =-(2)22222().p px x pf x p x x x -+'=+-=3分令2()2h x px x p =-+,要使()f x 在定义域(0,∞)内是增函数 只需()0h x ≥在(0,+∞)内恒成立 4分由题意20,()2p h x px x p >=-+的图象为开口向上的抛物线,对称轴方程为1(0,)x p=∈+∞,min 1(),h x p p ∴=-只需10,1p p p-≥≥即时,()0,()0h x f x '≥≥()f x ∴在(0,+∞)内为增函数,正实数p 的取值范围是[)1,+∞ 6分(3)2()[1,]eg x e x=在上是减函数, x e ∴=时,min ()2;g x =min 1,()2x g x e ==时,即()[2,2]g x e ∈ 1分①当0p <时,2()2h x px x p =-+其图象为开口向下的抛物线,对称轴1x p=在y 车的左侧, 且(0)0h <,所以()[1,]f x x e ∈在内是减函数。