数学建模--车间作业调度问题
徐文兵队数学建模竞赛b题──天车与冶炼炉的作业调度
徐文兵队数学建模竞赛b题──天车与冶炼炉的作业调度摘要::1.竞赛背景及题目概述2.竞赛题目的难点与解决方法3.竞赛的启示和影响正文:【竞赛背景及题目概述】徐文兵队数学建模竞赛是我国高校间的一项重要数学竞赛,每年举办一次,吸引了大量优秀的学生参加。
该竞赛旨在通过解决实际问题,培养学生的数学建模能力,提高其运用数学知识解决实际问题的综合素质。
在竞赛中,有一道题目是关于天车与冶炼炉的作业调度,被标记为b 题。
这道题目的主要内容是,有一冶炼炉需要进行一系列的冶炼作业,而完成这些作业需要使用到天车。
天车需要在冶炼炉的不同位置进行装料、卸料等作业。
如何合理地安排天车的作业顺序和时间,使得冶炼炉的作业能够高效、顺利地进行,这就是这道题目的主要问题。
【竞赛题目的难点与解决方法】这道题目的难点在于,天车的作业和冶炼炉的作业是相互影响的,天车的作业顺序和时间直接影响到冶炼炉的作业进度。
另外,冶炼炉的作业又有其自身的特点,例如,有些作业需要在特定的温度下进行,有些作业的时间较长等。
因此,如何在满足冶炼炉的作业需求的同时,合理地安排天车的作业,使得整个作业过程能够达到最优化,这是一个具有挑战性的问题。
解决这个问题的方法,首先需要建立一个数学模型,将天车和冶炼炉的作业抽象成数学问题。
然后,通过求解这个数学问题,得到最优的作业顺序和时间。
具体来说,可以采用线性规划、图论等数学方法进行求解。
【竞赛的启示和影响】这道题目的解决过程,对于参赛的学生来说,是一次很好的数学建模实践。
通过解决这个问题,他们可以加深对数学知识的理解,提高其运用数学知识解决实际问题的能力。
同时,他们也可以从中学习到,如何从复杂的实际问题中抽象出数学问题,如何通过数学方法求解实际问题,这些都是他们未来科研和工作中必备的技能。
车间作业调度(JSSP)技术问题简明综述
车间作业调度(JSSP)技术问题简明综述l 引言生产调度是CIMS 研究领域生产管理的核心内容和关键技术,车间作业调度问题(JSSP)是最困难的约束组合优化问题和典型的NP 难问题,其特点是没有一个有效的算法能在多项式时间内求出其最优解. 现代经济日益强化的竞争趋势和不断变化的用户需求要求生产者要重新估价生产制造策略,如更短的产品生产周期和零库存系统等,而JSSP 生产环境最适宜满足现有经济和用户的需求. 利用有限的资源满足被加工任务的各种约束,并确定工件在相关设备上的加工顺序和时间,以保证所选择的性能指标最优,能够潜在地提高企业的经济效益,JSSP 具有很多实际应用背景,开发有效而精确的调度算法是调度和优化领域重要的课题.研究JSSP 问题最初主要采用最优化方法,但计算规模不可能很大,且实用性差.近年来,基于生物学、物理学、人工智能、神经网络、计算机技术及仿真技术的迅速发展,为调度问题的研究开辟了新的思路. 本文根据JSSP 问题的大量文献,对研究理论与方法进行系统的分类并介绍这一领域的最新进展,讨论进一步的研究方向.2 JSSP 问题的一般框架2.1 问题描述JSSP 问题可描述为:m 台机器(用集合()m j j M M 1==表示)加n 个工件(用集合|()ni i J J 1== 表示),每个工件包含由多道工序组成的一个工序集合. 工件有预先确定的加工顺序,每道工序的加工时间t 在给定的时间每个机器只能加工一个工件,并且每个工件只能由一台机器处理. 不同工件的加工顺序无限制,工序不允许中断;要求在可行调度中确定每个工序的开始时间ij s 使总完工时间max C 最小,即(){}M M J J t s C C j i ij ij ∈∈∀+==,:max min )min(max *max 求解满足以上条件的工件加工顺序即构成JSSP 调度问题.流水作业调度问题(FSSP)是JSSP 问题的特殊形式(即所有工件有相同的加工工序). 此外目标函数可选取等待时间、流程时间和延期时间的平均值或者最大值等,或多个目标组合形成的多目标问题.2.2 JSSP 的模型表示2.2.1 整数规划(IP)模型整数规划模型由Baker 提出,需要考虑两类约束:工件工序的前后约束和工序的非堵塞约束. 用jk t 和 jk c 分别表示工件 j 在机器k 上的加工时间和完工时间.如果机器h 上的工件加工工序先于机器K (用k h J J <表示),则有关系式jh jk jk c t c ≥-;反之,如果h k J J <,有jk jh jh c t c ≥-。
大规模柔性作业车间调度问题分解建模和求解方法
机械设计与制造68Machinery Design&Manufacture第5期2021年5月大规模柔性作业车间调度问题分解建模和求解方法刘海涛1,邓停铭2,唐健均1,尹慢2(1.航空工业成都飞机工业(集团)有限责任公司,四川成都610000;2.西南交通大学机械工程学院,四川成都610000)摘要:研究在满足既定工序顺序约束的情况下,按序组合工序来分解柔性作业车间大规模调度问题,建立分解调度问题的数学模型,并探索高效求解的方法。
首先基于工序组合与遗传算法,将大规模调度问题进行分解降低问题空间复杂度,形成调度子问题,并建立分解后的调度数学模型;其次将利用组合规则生成高质量的初始解,采用遗传算法与蛙跳算法相结合的混合算法,采用双线程进行并行计算求解,提高全局搜索能力和效率,重组后形成原问题的可行解;最后利用实例证实了模型和算法的可行性。
关键词:柔性作业车间调度问题;数学模型;混合算法;并行运算中图分类号:TH16;TH165文献标识码:A文章编号:1001-3997(2021)05-0068-04Decomposition Modeling and Solving Method for LargeScale Flexible Job Shop Scheduling ProblemLIU Hai-tao1,DENG Ting-ming2,TANGJian-jun1,YIN Man2(1.Avic Chengdu Aircraft Inductrial(Group)Co.,Ltd.,Sichuang Chengdu610000;2.School of Mechanical Engineering,Southwest Jiaotong University,Sichaun Chendu61000,China)Abstract:It studies the decomposition of large-scale flexible job shop scheduling problem by sequential combination of processesunder the condition of satisfyingthe constraints of the specified process sequence,e stablishes a mathematical model of decomposition scheduling problem,and explores an efficient solution method.Firstly,based on the combination of processand the genetic algorithm,the large-scale scheduling problem is decomposed to reduce the space complexity of the problem and to formschedulingsub-problem,fter establishingthe decomposed scheduling mathematical model.Secondly,the high-quality initial solution is generated by using the combination rules.Moreover,t o improve the global search ability and efficiency,a hybrid algorithm combining genetic algorithm with leapfrog algorithm and parallel computing method with two threads are adopted.After recombination,the feasible solution ofthe original problem is formed.Finally,t he feasibility ofthe model and algorithm is verified by an example.Key Words:Flexible Job Shop Scheduling Problem;Mathematical Model;Hybrid Algorithm;Parallel Computation1引言作业车间调度属于NP难题,半个多世纪以来一直是学术界的焦点。
数学建模___车辆调度问题论文正稿
专业资料2012年西南财经大学数学建模竞赛赛题车辆调度问题说明:1、竞赛于5月2日12:00结束,各参赛队必须在此时间之前提交打印论文及上传论文电子文档,2、请认真阅读“西南财经大学数学建模竞赛章程”、“西南财经大学数学建模竞赛论文格式规范”,并遵照执行,3、打印论文交给经济数学学院办公室(通博楼B302),电子文档发至邮箱gdsxkj@4、选拔参加建模培训的本科参赛队必须提交一份解夏令营问题的论文,各本科参赛队根据自己的校赛状况,提前做好准备,校赛成绩公布后提交:夏令营问题地址5、由于本题目计算量比较大,竞赛期间如果计算不完,也可以提交部分成果。
某校有A、B两个校区,因为工作、学习、生活的需要,师生在两校区之间有乘车需求。
1、在某次会议上,学校租车往返接送参会人员从A校区到B校区。
参会人员数量、车辆类型及费用等已确定(见附录1)。
(1)最省的租车费用为多少?(2)最省费用下,有几种租车方式?2、两校区交通网路及车辆运行速度见数据文件(见附录2)。
试确定两校区车辆的最佳行驶路线及平均行驶时间。
3、学校目前有运输公司经营两校区间日常公共交通,现已收集了近期交通车队的运行数据(见附录3)。
(1)试分析运行数据有哪些规律,(2)运输公司调度方案是根据教师的乘车时间与人数来制定的,若各工作日教师每日乘车的需求是固定的(见附录4),请你根据运行数据确定教师在工作日每个班次的乘车人数,以供运输公司在制定以后数月调度方案时使用。
4、学校准备购买客车,组建交通车队以满足教师两校区间交通需求。
假设:(1)欲购买的车型已确定(见附录5),(2)各工作日教师每日乘车的需求是固定的(见附录4),(3)两校区间车辆运行时间固定为平均行驶时间(见附录2)若不考虑运营成本,请你确定购买方案,使总购价最省。
5、若学校使用8辆客车用于满足教师两校区间交通需求。
假设:(1)8辆客车的车型及相关数据已确定(见附录6),(2)各工作日教师每日乘车的需求是固定的(见附录4),(3)两校区间车辆运行时间固定为平均行驶时间(见附录2),(4)车库设在A校区,客车收班后须停靠在车库内。
调度优化问题建模
调度优化问题建模一、任务定义在定义调度优化问题时,首先需要明确任务的定义和描述。
任务通常是指一项需要完成的工作或者操作,可以包括生产任务、运输任务、维修任务等。
任务定义需要明确任务的类型、内容、目标、约束条件等信息,以便为后续的优化模型建立提供基础。
二、资源分配资源分配是调度优化问题中的重要环节,其目标是在满足任务需求的前提下,合理分配资源,使得资源利用率最大化。
资源包括人力、物力、财力等,需要在任务执行过程中进行合理的分配和调整。
在建立调度优化模型时,需要考虑到资源的约束条件、任务的优先级、资源的可用性等因素。
三、时间表制定时间表制定是指根据任务的需求和资源的分配情况,制定任务执行的时间计划。
时间表制定需要考虑任务的时间约束、资源的可用时间、任务执行的顺序等因素,同时需要考虑到时间表的可调整性和灵活性,以便应对突发情况或任务变更。
在调度优化模型中,时间表制定通常可以通过线性规划、动态规划等方法进行求解。
四、成本优化成本优化是指在满足任务需求的前提下,通过合理分配资源和调整时间表,降低任务执行的总成本。
成本包括人力成本、物资成本、运输成本等,需要在资源分配和时间表制定过程中进行综合考虑。
在建立调度优化模型时,需要将成本作为重要的优化目标,通过比较不同方案的成本效益,选择最优的调度方案。
五、风险管理在调度优化问题中,风险管理是指对可能出现的风险因素进行预测、评估和控制的过程。
这些风险因素可能包括任务执行过程中的不确定性因素、资源可用性的变化等。
通过建立风险管理机制,可以降低风险对调度计划的影响,提高任务执行的稳定性和可靠性。
在调度优化模型中,风险管理通常可以通过概率统计方法进行评估和控制。
六、反馈与调整反馈与调整是指在任务执行过程中,根据实际情况对调度计划进行及时的调整和改进。
反馈与调整的目的是使得调度计划更加符合实际情况的需求,提高任务执行的效率和质量。
在建立调度优化模型时,需要考虑到反馈与调整的因素,为模型的求解提供参考依据。
数学建模 四大模型总结
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
基于车间作业调度算法发展的概述
基于车间作业调度算法发展的概述一、发展历程车间作业调度算法的发展可以追溯到20世纪40年代,当时主要以流水线作业调度为研究对象。
随着计算机技术的进步,20世纪70年代开始出现了一些基于数学模型的车间作业调度算法,如Graham算法、Johnson算法等。
这些算法主要针对特定的作业调度问题,具有一定的局限性。
随着20世纪80年代离散优化问题的研究热潮,车间作业调度算法也得到了进一步发展。
研究者们开始将车间作业调度问题转化为数学模型,并利用启发式算法、遗传算法、模拟退火算法等进行求解。
这些算法在一定程度上提高了调度效果,但仍然存在求解时间长、解质量难以保证等问题。
随着进化计算和人工智能的发展,21世纪初出现了一些基于智能优化算法的车间作业调度方法,如粒子群算法、人工蜂群算法等。
这些算法能够自动学习和优化,具有较强的全局搜索能力和鲁棒性,为车间作业调度问题的求解带来了新的思路和方法。
二、主要算法模型基于车间作业调度的算法可以分为静态调度和动态调度两大类。
静态调度是在作业到达之前就确定好调度计划,而动态调度是在作业到达后根据实时情况进行调度。
静态调度算法主要包括最早完工时间算法、最优换线算法、遗传算法等。
最早完工时间算法是一种贪心算法,通过选择最早可完成的作业来进行调度。
最优换线算法则是在作业调度的同时尽量减少换线次数。
遗传算法则是通过模拟生物进化的过程来优化调度方案,具有较强的全局搜索能力。
动态调度算法主要包括最短处理时间算法、最早截止时间算法、最小松弛度算法等。
最短处理时间算法是一种贪心算法,通过选择处理时间最短的作业来进行调度。
最早截止时间算法则是在作业调度的同时尽量减少作业的迟滞。
最小松弛度算法则是在作业调度的同时尽量减少作业的松弛度,以提高资源利用率。
三、应用领域基于车间作业调度算法的研究和应用涉及到诸多领域,如制造业、物流配送、交通调度等。
在制造业中,合理的车间作业调度能够提高生产效率和资源利用率,降低生产成本。
作业车间调度
根据性能指标分为:基于调度成本调度问题和 基于调度性能调度问题
根据生产环境的特点分为:确定性车间调度和 不确定性车间调度问题
根据作业的加工特点分为:静态车间调度和动 态车间调度
四、车间调度问题的研究方法
辆调.1车间调度问题的描述 3.2车间调度问题的特点 3.3车间调度问题的分类
3.1车间调度问题的描述
车间调度问题就是对一个可用的制造资源 集在时间上进行加工任务(加工工件)集的分配, 将作业(加工操作)均衡地安排到各机器,并合 理地安排作业的加工次序和开始时间,同时优 化一些性能指标,在执行这些作业或者任务时 需要满足某些限制条件,如作业的到达时间、 完工的限定时间、作业的加工顺序、资源对加 工时间的影响等。从数学规划的角度看,车间 调度问题可表达为在等式或不等式约束下,对 一个或多个目标函数的优化。
2000年,赵伟等人研究了JobShop类型柔性制造 系统的调度问题,其中每个工件都有多个可替 代的工艺计划,并且每个操作均可在多个机器 上选择加工,建立了多目标混合整数规划模型, 利用遗传算法进行求解。
Mati等采用贪婪算法、Loukil和Maqrini等采用 模拟退火算法同时求解FJSP的机器分配和工序 调度两个子问题。
4.1精确求解方法 4.2近似求解方法
4.1精确求解方法
1.数学方法 整数规划 混合整数规划 分解方法 拉格朗日松弛法
2.分支定界法 Balas在 1969 年提出基于析取图的枚
举算法是最早应用于求解调度问题的分支定界 方法。
4.2近似求解方法
1.构造性方法 优先分配规则法 基于瓶颈的启发式方法 插入方法
数学建模中的优化调度问题
数学建模中的优化调度问题在数学建模中,优化调度问题是一个重要的研究领域。
优化调度问题可以通过数学模型和算法来解决,以提高资源利用率、降低成本、提高效率等目标。
本文将介绍数学建模中的优化调度问题,并讨论一些常见的调度算法和应用案例。
一、优化调度问题的定义与形式化描述优化调度问题通常是指在有限的资源和约束条件下,如何合理安排任务和资源的分配,以达到最佳的结果。
优化调度问题可以用数学模型来描述,常见的形式化描述包括:1. 作业调度问题:如何合理安排作业的执行顺序和时间,以最小化总执行时间或最大化作业的完成数量。
2. 机器调度问题:如何安排机器的任务分配和工作时间,以最小化总工作时间或最大化机器的利用率。
3. 运输调度问题:如何合理安排货物的运输路线和车辆的调度,以最小化运输成本或最大化运输效率。
二、常见的调度算法优化调度问题可以借助多种算法来求解,以下是一些常见的调度算法:1. 贪心算法:贪心算法通过每一步的局部最优选择来构建整体最优解。
例如,在作业调度问题中,可以按照作业的执行时间或紧急程度进行排序,然后按顺序进行调度。
2. 动态规划:动态规划通过将问题分解为子问题并记录子问题的最优解,再根据子问题的最优解来求解整体问题的最优解。
例如,在机器调度问题中,可以使用动态规划来确定每个任务在不同机器上的最优执行顺序。
3. 遗传算法:遗传算法是一种模拟进化过程的优化算法,通过模拟自然界的进化过程来寻找问题的最优解。
例如,在运输调度问题中,可以使用遗传算法来优化货物的运输路径和车辆的调度计划。
三、优化调度问题的应用案例优化调度问题广泛应用于生产制造、交通运输、资源分配等领域。
以下是一些优化调度问题的应用案例:1. 生产制造:在工厂生产过程中,如何合理安排设备的使用和任务的执行,以最大化生产效率或最小化成本。
2. 铁路调度:如何安排列车的行动计划和车次的分配,以最大化铁路运输能力和减少列车的延误。
3. 资源分配:如何合理分配有限的资源,如人力、设备和原材料,以最大程度地满足需求和降低成本。
作业车间调度遗传算法python
作业车间调度是优化生产效率和资源利用的重要工作。
在实际工厂生产中,作业车间的调度问题往往十分复杂,需要考虑多个因素和约束条件。
为了解决这一问题,许多研究者提出了多种优化算法,其中遗传算法是一种常用且有效的方法之一。
一、遗传算法概述遗传算法是一种模拟自然选择和遗传机制的优化算法,其核心思想是通过模拟自然界的进化过程,利用交叉、变异、选择等操作不断迭代,最终找到最优解。
遗传算法广泛应用于组合优化、函数优化、机器学习等领域,其灵活性和高效性受到了广泛认可。
二、遗传算法在作业车间调度中的应用1.问题建模作业车间调度问题可以理解为将一组作业分配到多台设备上,并确定它们的顺序和时间安排,以最大化生产效率和资源利用率。
这一问题的复杂性体现在多个方面,例如设备之间的关系、作业的执行时间、优先级约束等。
2.遗传算法解决方案遗传算法作为一种全局搜索算法,能够有效地处理作业车间调度问题中的复杂约束条件和多目标优化。
通过编码、交叉、变异和选择等操作,遗传算法可以逐步优化作业的调度方案,找到最优解或较优解。
三、基于Python的作业车间调度遗传算法实现基于Python语言的遗传算法库有许多,例如DEAP、Pyevolve、GAlib等。
这些库提供了丰富的遗传算法工具和接口,使得作业车间调度问题的求解变得简单且高效。
1.问题建模针对具体的作业车间调度问题,首先需要将问题进行合理的数学建模,包括作业集合、设备集合、作业执行时间、约束条件等。
然后根据问题的具体性质选择适当的遗传算法编码方式和适应度函数。
2.遗传算法实现利用Python的遗传算法库进行实现,首先需要定义遗传算法的相关参数,如种裙大小、迭代次数、交叉概率、变异概率等。
然后通过编码、交叉、变异和选择等操作,逐步优化作业的调度方案,直至达到收敛或达到一定迭代次数。
3.结果评估与分析得到最终的调度方案后,需要对结果进行评估和分析。
可以比较遗传算法得到的调度方案与其他常规方法的效果,如贪婪算法、模拟退火算法等。
典型车间调度问题的分析与研究
典型车间调度问题的分析与研究车间调度问题是制造业中常见的一种问题,在生产管理中起着至关重要的作用。
此问题的核心是如何合理地安排各个车间的生产任务和设备利用率,以达到优化生产效率、缩短生产周期并降低生产成本的目的。
本文旨在从多个方面介绍车间调度问题的分析与研究。
一、问题描述和分类车间调度问题主要涉及下列问题:1. 单机调度问题该问题是考虑一个单一机器或单一设备的调度问题。
其目标是找到一种机器的调度方案,以使得所有的工作任务在规定的期间内完成,同时,最大限度地利用该机器的生产能力。
单机调度问题通常指能够独立完成的作业。
该问题是考虑由多个机器或设备构成的制造系统的调度问题。
通常情况下,多机调度问题是被分成原始、车间和制造流水线的三个不同的问题进行研究,以应对各自的特点。
3. 制造流水线调度问题生产流水线通常由许多具有不同功能的机器或工作站组成。
优化流水线生产效率的调度问题,在一定程度上依赖于流水线的布局和排列顺序。
通过对每个工作站的工序进行优化,可以达到减少生产周期和提高生产效率的目的。
4. 调度与规划问题此问题是在给定的资源限制下,设计制造系统的调度策略。
制造过程的规划和调度策略在许多情况下都是并存的,因为它们需要相互配合以实现最佳生产效率。
二、常用的调度算法为了解决车间调度问题,通常需要使用一些数学模型和算法进行优化。
下面介绍一些常见的调度算法:1. 遗传算法遗传算法是一种进化算法,通过建立基因编码对调度方案进行进化,以最大限度地优化计划和排程。
该算法通常用于求解复杂的车间调度问题。
2. 蚁群算法蚁群算法是一种模拟蚂蚁走路搜索食物的算法。
该算法是用来优化复杂问题的一种有效的方式。
在车间调度问题中,它被认为是一种有效的算法,因为它具有收敛快、精度高、适应性强等特点。
3. 模拟退火算法模拟退火算法是一种优化算法,通过在较难达到的目标函数中寻找全局最优解,达到优化的效果。
该算法不容易陷入局部最优解,因此在多机调度问题和车间调度问题中得到了广泛的应用。
作业车间调度问题的几种模型
作业车间调度问题是指如何合理地安排工件在不同工序间的加工顺序,以达到最优的生产效率和成本控制。
针对这一主题,我将从几种常见的模型出发,深入探讨作业车间调度问题,旨在为您提供一篇有价值的文章。
一、传统作业车间调度模型1.1 单机调度模型在单机调度模型中,工件依次经过一个加工机器的加工过程。
我们需要考虑如何安排加工顺序、加工时间等因素,以最大程度地减少工件的等待时间和加工时间,提高生产效率。
1.2 流水车间调度模型流水车间调度模型是指在多台加工机器之间,工件按照特定的加工顺序依次进行加工。
我们需要考虑如何合理安排工件的加工顺序,以减少生产中的瓶颈和待机时间,提高整个流水线的生产效率。
1.3 作业车间调度的经典排序问题这种模型主要关注如何将待加工的工件按照特定的规则进行排序,以便在加工过程中最大程度地降低总加工时间和成本。
以上是传统作业车间调度问题的一些经典模型,它们都是针对不同的生产场景和加工流程所提出的解决方案。
接下来,我将对每种模型进行更深入的探讨,以便更好地理解作业车间调度问题。
二、作业车间调度问题的多种解决方法2.1 基于启发式算法的调度方法启发式算法是一种基于经验和规则的算法,它能够快速、高效地求解作业车间调度问题。
常见的启发式算法包括遗传算法、模拟退火算法等,它们能够在短时间内找到较优的解,并且适用于各种不同规模和复杂度的生产场景。
2.2 基于数学规划的调度方法数学规划方法是指利用数学建模和优化理论,对作业车间调度问题进行严格的数学求解。
通过建立数学模型,我们可以利用线性规划、整数规划等方法,对作业车间调度问题进行最优化求解,得到最优的生产调度方案。
2.3 基于仿真的调度方法仿真方法是指利用计算机模拟生产场景,通过模拟实际的生产过程,找到最优的调度方案。
通过仿真,我们可以更加真实地模拟生产现场的情况,找到最优的生产调度策略,提高生产效率和降低成本。
以上是作业车间调度问题的多种解决方法,它们都能够根据不同的生产场景和需求,找到最优的调度方案。
车间调度优化算法
车间调度优化算法1. 背景介绍车间调度是指在生产过程中,根据工序、设备和人力资源等因素进行合理安排和优化,以最大程度地提高生产效率和资源利用率。
优化车间调度可以实现减少生产时间、降低成本、提高产品质量等目标,对企业的竞争力具有重要影响。
2. 车间调度问题车间调度问题是一类非常经典和复杂的组合优化问题。
它涉及到多个任务在有限的资源和时间约束下的安排顺序和分配资源的问题。
常见的车间调度问题包括作业车间调度问题、流水车间调度问题、多车间调度问题等。
2.1 作业车间调度问题作业车间调度问题是指在一个车间中,有多个作业需要在不同的设备上加工完成,且每个作业都有不同的加工时间和顺序限制。
目标是使得所有作业完成时间最短或最早。
2.2 流水车间调度问题流水车间调度问题是指在一个车间中,多个作业需要按照一定的顺序在不同的设备上进行加工。
每个作业只能按照顺序流水加工,即前一个作业在设备上加工完成后,才能开始下一个作业的加工。
2.3 多车间调度问题多车间调度问题是指在多个车间中,多个作业需要在不同的车间和设备上进行加工。
每个车间有不同的资源限制和时间窗口。
目标是使得所有作业完成时间最短或最早,同时满足车间资源和时间窗口的约束。
3. 车间调度优化算法3.1 车间调度算法分类车间调度优化算法主要包括启发式算法和精确算法两类。
3.1.1 启发式算法启发式算法是通过设定一些规则和策略来寻找近似最优解的方法。
常见的启发式算法包括遗传算法、模拟退火算法、蚁群算法等。
这些算法基于一些启发性的搜索策略,在较短时间内找到较优解,并具有较好的可扩展性。
3.1.2 精确算法精确算法是通过穷举所有可能的解空间,找到全局最优解的方法。
常见的精确算法包括动态规划、整数规划、分支定界等。
这些算法可以通过逐步优化和约束条件的剪枝,找到最优解,但计算复杂度较高。
3.2 车间调度算法选择和调优选择合适的车间调度算法取决于问题的规模、约束条件和求解目标。
作业车间调度问题 例题
作业车间调度问题例题作业车间调度问题是生产调度中常见的一个重要问题,其目的是合理安排生产作业车间的生产任务,以最大化生产效率,降低生产成本,提高生产质量。
在实际生产中,作业车间调度问题通常涉及到多台机器和多个作业任务,需要合理分配资源,调度作业顺序,以确保生产计划的顺利执行。
一般来说,作业车间调度问题可以分为单机调度和多机调度两种情况。
单机调度是指在一个作业车间只有一台机器的情况下,需要合理安排作业任务的顺序,以最小化总生产时间或最大化生产效率。
而多机调度则是在一个作业车间有多台机器的情况下,需要合理分配作业任务到不同的机器,以最小化总生产时间或最大化生产效率。
在实际生产中,作业车间调度问题通常受到多种约束条件的限制,如作业任务之间的先后关系、机器之间的技术约束、作业任务的优先级等。
因此,对作业车间调度问题的求解需要综合考虑这些约束条件,设计合适的调度算法来优化生产计划。
一种常见的求解作业车间调度问题的方法是利用启发式算法,如遗传算法、蚁群算法、模拟退火算法等。
这些算法可以在较短的时间内找到较优的调度方案,帮助生产企业提高生产效率,降低生产成本。
除了启发式算法,还有一些经典的作业车间调度问题的求解方法,如Johnson算法、NEH算法、SAW算法等。
这些算法在特定的作业车间调度问题中有较好的表现,可以帮助生产企业解决实际生产中的调度问题。
总的来说,作业车间调度问题在生产调度中扮演着重要的角色,合理的调度方案可以帮助企业提高生产效率,降低生产成本,提高生产质量。
通过合适的算法求解作业车间调度问题,可以为生产企业创造更大的价值,提升竞争力。
因此,对作业车间调度问题的研究和求解具有重要的实际意义,值得生产企业重视和关注。
典型车间调度问题的分析与研究
典型车间调度问题的分析与研究【摘要】现代车间调度问题在制造业中起着至关重要的作用。
本文通过对典型车间调度问题的分析与研究,探讨了流水车间和作业车间的调度问题,并介绍了车间调度的优化算法。
在实际案例分析中,我们从不同角度展示了车间调度问题的复杂性和挑战性。
通过总结研究成果,明确了未来研究方向并提出对车间调度实践的启示。
本研究旨在为车间调度问题提供更有效的解决方案,提高生产效率和降低生产成本,对于提升制造业竞争力具有重要意义。
【关键词】车间调度、典型问题、流水车间、作业车间、优化算法、实际案例、研究成果、未来方向、实践启示1. 引言1.1 研究背景在工业生产中,车间调度问题是一个重要且具有挑战性的问题。
随着生产规模的不断扩大和生产任务的复杂化,有效的车间调度对于提高生产效率、降低生产成本至关重要。
随着信息技术的发展和智能制造的兴起,车间调度问题也得到了更多的关注和研究。
车间调度问题涉及到生产作业的安排和调度,以实现资源的合理利用和生产计划的顺利执行。
典型的车间调度问题包括流水车间调度问题和作业车间调度问题。
流水车间调度问题主要涉及到不同作业之间的先后顺序安排,以最大限度地减少作业的等待时间和生产周期。
作业车间调度问题则着重于工序之间的协调和任务分配,以提高生产效率和减少资源浪费。
在当前的工业生产环境中,车间调度优化算法的研究和应用已经成为提高生产效率和保障生产质量的重要手段。
通过引入智能算法和数据分析技术,可以提高车间调度的精准度和效率,从而实现生产过程的优化和提升。
深入研究典型车间调度问题及其解决方案,对于提高工业生产的效率和质量具有重要的意义和价值。
本文将对典型车间调度问题进行详细分析和研究,以期为实际生产中的车间调度提供有益的参考和借鉴。
1.2 研究目的车间调度问题是生产制造中一个常见的挑战,影响着整个生产过程的效率和成本。
为了提高生产效率和降低生产成本,对车间调度问题进行深入研究具有重要意义。
典型车间调度问题的分析与研究
典型车间调度问题的分析与研究车间调度问题是生产管理中的一项重要工作,它主要涉及到如何合理安排生产设备和人力资源,以达到生产效率最大化、生产成本最小化的目标。
针对这一问题,研究并应用优秀的调度方法成为了不少企业的重要工作。
本文将就车间调度问题进行分析与研究。
一、车间调度问题的概述车间调度问题是指在生产过程中,按照一定的生产计划安排生产设备和人力资源,使生产任务按照优先级、数量、时间等条件得到合理分配和完成的问题。
为了保证车间的运转效率,减少生产成本,车间调度问题研究至关重要。
车间调度问题又可分为离线调度和在线调度两种。
离线调度是指在生产开始前,根据生产计划和生产任务要求进行生产设备和人力资源的优化调度。
车间调度专家一般使用数学规划、综合评估等方法,对不同的生产任务进行优化分配,并得出最优方案。
这种方法需要详细的数据和具体的生产计划。
但是,离线调度方法对于生产任务的变化响应速度较慢,只适合对于进口、出口生产任务较少或没有的企业或工厂。
在线调度是指在生产过程中,根据得到的实时数据和应急情况进行生产设备和人力资源的优化调度。
在线调度是适用范围最广的调度方式,但对调度操作员和调度模型的要求都较高。
在线调度不仅需要高效的调度模型,还需要实时准确的数据支持。
但在线调度的优点在于具备较高的灵活性,能够快速调整生产流程,满足不同时间段内的需求。
二、车间调度问题的研究内容车间调度问题的研究内容主要包括生产任务的优化分配问题、生产设备调度问题、人力资源调度问题及不同生产任务之间的冲突问题等。
生产任务的优化分配问题是指在生产过程中,根据不同的生产任务的优先级、数量、时间等条件,合理分配不同的生产任务,并选择合适的车间设备和人力资源来协调任务的完成。
甚至需要在紧急任务出现时,能够对现有生产任务进行及时调整。
生产设备调度问题是指在生产过程中,根据车间的生产需求来合理分配生产设备,使设备能够满足不同的生产任务要求。
生产设备的调度方法一般有两种:静态调度与动态调度。
数学建模实际问题的数学解决方案
数学建模实际问题的数学解决方案在现实生活中,我们经常会遇到各种各样的问题,而数学建模就是一种将现实问题转化为数学模型,并通过数学工具和方法来解决问题的方法。
数学建模可以应用到诸如经济学、物理学、生物学等各个领域,为实际问题提供了可行的解决方案。
本文将介绍数学建模在实际问题中的应用,并展示一些常用的数学解决方案。
一、交通流量优化问题交通流量优化一直是城市管理中的难题之一。
通过数学建模,我们可以将交通流量问题转化为网络流问题,并通过求解最小割-最大流问题来得到最优的交通流量方案。
这样可以有效减少交通拥堵,提高交通效率。
二、资源分配问题在资源有限的情况下,如何合理地进行资源分配是一个重要的问题。
通过数学建模,我们可以将资源分配问题抽象为线性规划问题,并通过线性规划的求解方法得到最佳的资源分配方案。
这样可以最大限度地提高资源利用效率,满足不同领域的需求。
三、生产调度问题生产调度是企业管理中的关键问题之一。
通过数学建模,我们可以将生产调度问题转化为作业车间调度问题,并通过调度算法来对作业顺序进行优化,以达到最短的生产时间和最高的生产效率。
四、投资组合问题在金融领域,如何进行投资组合是一个重要的问题。
通过数学建模,我们可以将投资组合问题转化为线性规划问题,并通过求解最优解来选择最佳的投资组合,以最大化收益或者最小化风险。
五、物流路径规划问题对于物流公司来说,如何选择最佳的物流路径是一个重要的问题。
通过数学建模,我们可以将物流路径规划问题转化为图论问题,并通过求解最短路径或最小生成树来确定最佳的物流路径,以提高物流效率。
综上所述,数学建模在实际问题中的应用广泛且重要。
通过将现实问题转化为数学模型,并通过数学工具和方法来解决问题,我们可以提高问题的解决效率和准确性。
数学建模为我们提供了一个可以量化和优化问题的途径,为实际问题提供了科学的解决方案。
因此,数学建模不仅在学术研究中有重要作用,也在现实生活中具有广泛的应用前景。
车间调度问题模拟退火算法案例
JSCS问题描述
条件:假设有8个工件在7个机器上加工。将8个工件进行分为3组,分别是2、3、3。机器分为 三组,分别是2、3、2。表1列出了各工件在机器上的工艺流程和加工时间。 机器的加工时间符合均匀分布(0,100),每个工件的加工工艺如表1所示。工件的安装时间,
符合均匀分布在(0,50),如表2所示。
产生邻域的方法
本文使用基于块的概念插入方法产生领域。 插入的加工动作均选自同一个加工单元,并在这一加工单元的开始或结束 位置插入关键工序。
SA的优化解题
当前解的最近的邻域 最优解的最大完工时间 当前解的最大完工时间 邻域的最大完工时间 接受的概率 符合(0,1)均匀分布的随机数 初始、最终和当前温度 冻结计数器(用来表示冻结状 态) 温度下降次数 每个温度的迭代次数
模拟退火法的关键变量
SA的性能影响因素
T0, Tf, T FR N Iter 初始温度,最终温度和当前的温度 冻结计数器(用来表示冻结状态) 温度下降次数 每个温度的迭代次数
最终结果比较
最终结果比较
• •
模拟退火法在大多数问题上市可以很有效率的找到最优解的。 利用块可以使车间单元制造问题的搜索更有效率。
JSCS问题描述
JSCS问题和网格图 假设:有8个工件和7个机器。将8个 工件进行分为3组,分别是3、3、2。
机器分为三组,分别是2、3、2。图1
给出了表1中一种情况的网格图。在该 曲线图中,三种不同形状表示三组不 同的加工单元,每一条水平的线路表 示每个工件在机器上的加工工序。虚 线表示经过相同机器的连线。
利用模拟退火算法解决关于单元间可移动和可重入制造的 作业车间调度问题
北京科技大学物流工程系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二维背包问题
一维背包问题讨论的背包问题只有一种限制,即旅行者所能承受的背包的重量(亦即重量不能超过a (kg ).但是实际上背包除受重量的限制外,还有体积的限制,这就是不但要求旅行者的背包的重量M 不能超过a (kg ),还要求旅行者背包的体积V 不能超过b (m3),我们把这样的问题称为“二维背包问题”。
它的状态变量有两个因素:一个是重量,一个是体积。
二维背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。
问怎样选择物品可以得到最大的价值。
设这两种代价分别为代价1和代价2,第i 件物品所需的两种代价分别为i a 和i b 。
两种代价可付出的最大值(两种背包容量)分别为a 和b 。
物品的价值为i c 。
模型:
11
1
max .
,1,2,3...n
i i
i n
i i i
n
i i i
i c x st a x a b x b
x z i n
===≤≤∈=∑∑∑
例题
码头有一艘载重量为30t ,最大容为12×10m 3的船,由于运输需要,这艘船可用于装载四种货物到珠江口,它们的单位体积,重量及价值量见下表:
现求如何装载这四种货物使价值量最大。
1
1
1
max
.,1,2,3...n
i i i
n
i i i
n
i i i
i c x st a x a b x b
x z i n
===≤≤∈=∑∑∑
可用动态规划来解决
1.设x i (i=1,2,3,4)分别表示装载这四种货物的重量,
2.阶段k :将可装入的货物按1,2,3,…n 排序,每个阶段装一种货物,(共可分为四个阶段)
3.状态变量: 1k S +和1k R +,表示在第k 阶段开始时,允许装入的前k 种货物的重量与体积。
状态转移方程:
11k k k k k k k k
S S a x R R b x ++=-=-
()(){}111,max ,j k k j k k j j f S R f S R c x -++=+,表示在不超过重量和体积的前提下,装
入前j 中货品的价值。
(j=1,2,3,4)
二维指派问题
问题描述
设有K 批货物需要从A 地运输到N 地, 途经B 地换装,A 地可用车辆有I 辆,B 地可用车辆为J 辆。
每辆车一次只能运输一批货物, 同一车辆运输不同批次的货物费用不同。
如果I, J, K 中有两个或者两个以上不相等, 如何优化车辆与货物的搭配, 使运输费用最小。
此问题是一个二维不平衡指派问题,假设I ≤J 。
以yi 和uj 分别代表A 地车辆i 和B 地车辆j 运输的货物批数, yi 和uj 的表达式为:
以i A 表示A 地的第i 辆车, j B 表示B 地的第j 辆车, k 表示第k 项任务( 即第k 批货物) , 定义三维0- 1变量ijk X , 如果i A 与j B 组合运输第k 批货物, 则ijk X =1 否则, ijk X =0。
i A 与j B 运输第k 批货物的费用为c ijk 以费用C 最小为目标, 模型如下:
111
11
11
11
1
1
Min ,1,2,,,(2),1,2,,,(3)1,1,2,
,,(4)
,(5)
I
J
K
ijk ijk
i j k
J
K
ijk
i j k
I K
ijk j i k
I J
ijk i j
I
J
i j
i
j
C C X X y i I X u j J X k K y u K ============
=======
=∑∑∑∑∑∑∑∑∑∑∑ 式( 2) 表示车辆Ai 运输货物批数为yi,
式( 3) 表示车辆Bj 运输货物批数为uj,
式( 4) 表示每批货物必须且只能由A 地某一车辆和B 地某一车辆共同运输, 式( 5) 表示A 地车辆和B 地车辆运输货物的总批数为K 。
车间作业调度问题(JSP ) 问题描述:
JSP 问题描述:
n 个加工顺序和时间不同的工件在m 台机器上加工,每个工件包含m 道工序,且每道工序使用某台机器的时间已知,调度的任务是确定各机器上所有工件的加工次序,约束条件被满足的同时以使总加工时间最优。
对应的己知条件如下所述: 1) 加工的机器集M=(123,,,...,m
m m m m ),其中
i
m 表示第i 个加工的机器, 2)加工的工件集O=(
123,,,...,n
o o o o ),其中,
i
o 表示第i 个加工的工件
3)各工件的工序集合J=(
123,,,...,n
J J J J ),其中,
i 123(j ,j ,j ...j ...j )
i i i ik im J =
第i 个工件的第k 道工序用j ik
表示,(i=1,2,..n; j=1,2,…m)
4)工件各工序的加工时间123n (,,......)k T T T T T T =,
123(,,......)
i i i i ik im T t t t t t =,
其中
ik
t 表示第i 个工件的第k 道工序需要的加工时间
作业车间调度需要考虑如下约束:
Cons1:每道工序在指定的机器上加工,且必须在其前一道工序加工完成后才能开始加工;
Cons2:某一时刻1台机器只能加工1个作业; Cons3:每个作业只能在1台机器上加工1次;
Cons4:各作业的工序顺序和加工时间已知,不随加工排序的改变而改变。
根据上述条件,构造构建了工序排列矩阵J 、加工时间矩阵T 和各机器对应加工工序的调度矩阵
J M
因此,所有调度方案均应满足如下的约束条件的数学表达式:
1)(1)1,,1,,,++≤==ij ij i j S t S i n j m
其中,
ij
S 为工件i 的第j 道工序的起始加工时间。
ij
t 表示工件i 的第j 道工序加工所需时间
(1)
+i j S 为工件i 的第j+1 道工序的起始加工时间
表明必须进行完上一步加工后才能进行下一步加工
2)
max max i 11ikh i ikh i ik ;,1,,;1,,;,1,
,;1,
,min()min (),,s.t
(1)(1)0,,0,1,
max max ααα≤≤≤≤+≤==+≤==⎧⎫⎧⎫⎪⎪
==+∀∈∈⎨⎨⎬⎬
⎪⎪⎩⎭⎩⎭
+≤+-+≤+-≥=ijk ij ghk ijk ij ghk ij ij j i n j m ik ik ih ik ik jk jk ik jk S t S i g n h m S t S i g n h m
C C c t J J M M c t c M c t c M x c x h ijk 1i 0,1,i j k x 0,,工件在机器k 上加工早于机器h 否则
工件早于工件在机器上加工否则
⎧=⎨
⎩⎧=⎨
⎩
ijk
S 表示工件i 的第j 道工序在机器k 上的起始加工时刻
ij
t 表示工件i 的第j 道工序加工所需时间
ghk
S 表示工件g 的第h 道工序在机器k 上的起始加工时刻
表明机器只有在上一道工序加工完成后才能进行下一道工序加工。
对于一个具体的车间作来调度问题,结合已知约束条件和各工序的加工时间,可以计算出各机器完成所有工件所需要的时间。
将最短加工时间作为车间作业高度优化目标,那么车间作业调度问题优化目标函数可以定义为:
()()()min max =J E F M T
举例:
下面给出作业车间调度问题的一个实例,其中每个工序上标注有一对数值(m,p ),其中,m 表示当前工序必须在第m 台机器上进行加工,p 表示第m 台机器加工当前工序所需要的加工时间。
(注:机器和作业的编号从0开始) job0=[(0,3),(1,2),(2,2)] job1=[(0,2),(2,1),(1,4)] job2=[(1,4),(2,3)]
在这个例子中,作业job0有3道工序:它的第1道工序上标注有(0,3),其表示第1道工序必须在第0台机器上进行加工,且需要3个单位的加工时间;它的第2道工序上标注有(1,2),其表示第2道工序必须在第1台机器上进行加工,且需要2个单位的加工时间;余下的同理。
总的来说,这个实例中共有8道工序。
该问题的一个可行解是L=8道工序开始时间的一个排列,且满足问题的约束。
下图给出了一个可行解的示例:。