201x版七年级数学上册 第二章 有理数及其运算 2.10 科学记数法学案(新版)北师大版
北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (3)
一、选择题1.有理数a,b,c在数轴上的位置如图所示,则式子∣a∣+∣b∣+∣a+b∣−∣b−c∣化简结果为( )A.2a+b−c B.2a+b+c C.b+c D.3b−c2.如图,点A,B在数轴上,点O为原点,OA=OB.按如图所示方法用圆规在数轴上截取BC=AB,若点A表示的数是a,则点C表示的数是( )A.2a B.−3a C.3a D.−2a3.一个点在数轴上距原点3个单位长度开始,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是( )A.6B.0C.−6D.0或64.已知a,b,c为有理数,且a+b+c=0,b≥−c>∣a∣,且a,b,c与0的大小关系是( )A.a<0,b>0,c<0B.a>0,b>0,c<0C.a≥0,b<0,c>0D.a≤0,b>0,c<05.当式子∣x+2∣+∣x−5∣取得最小值时,x的取值范围为( )A.−2≤x<5B.−2<x≤5C.x=2D.−2≤x≤56.在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A.2或6B.5或3C.2D.37.如果∣a∣a +∣b∣b+∣c∣c=−1,那么ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣的值为( )A.−2B.−1C.0D.不确定8.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8⋯新运算log 22=1log 24=2log 28=3⋯指数运算31=332=933=27⋯新运算log 33=1log 39=2log 327=3⋯根据上表规律,某同学写出了三个式子:①log 216=4,② log 525=5,③ log 212=−1,其中正确的是 ( ) A .①② B .①③ C .②③ D .①②③9. 【例 9−2 】已知 ∠AOB =60∘,∠AOC =13∠AOB ,射线 OD 平分 ∠BOC ,则 ∠COD 的度数为( ) A . 20∘ B . 40∘ C . 20∘ 或 30∘ D . 20∘ 或 40∘10. 下面四个数中,最大的数为 ( ) A . (−1)2021B . −∣−2∣C . (−2)3D . −12二、填空题11. 若 a +b +c >0,且 abc <0 则 a ,b ,c ,中有 个正数.12. 电子跳蚤落在数轴上的某点 k 0,第一步从 k 0 向左跳 1 个单位到 k 1,第二步由 k 1 向右跳 2个单位到 k 2,第三步由 k 2 向左跳 3 个单位到 k 3,第四步由 k 3 向右跳 4 个单位到 k 4,⋯,按以上规律跳了 140 步时,电子跳蚤落在数轴上的点 k 140 所表示的数恰是 2019.则电子跳蚤的初始位置 k 0 点所表示的数是 .13. 现定义某种运算“∗”,对给定的两个有理数 a ,b (a ≠0),有 a ∗b =a −a b ,则 (−3)∗2= .14. 如图所示是计算机程序计算,若开始输入 x =−1,则最后输出的结果是 .15. 已知实数 a ,b ,定义运算:a ⋇b ={a b ,a >b 且 a ≠0b a,a ≤b 且 a ≠0,若 a ⋇(a −3)=1,则 a = .16. 观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯根据你发现的规律写出272019的末位数字是.17.如图所示的运算程序中,若开始输入的x值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,⋯,则第2017输出的结果为.三、解答题18.阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1) 数轴上表示3与−2的两点之间的距离是.(2) 数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3) 代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4) 求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.19.计算下列各式的值.(1) −3−(−8)−(+7)+5.(2) 49÷74×(−47)÷(−16).(3) 7−(156−23−34)÷124.(4) −32÷(−3)2+3×(−2)+∣−1∣.20.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,(1) Q点出发3秒后所到的点表示的数为;此时P,Q两点的距离为.(2) 问当点Q从A点出发几秒钟时,能追上点P?(3) 问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.21.已知两点A,B在数轴上,AB=9,点A表示的数是a,且a与(−1)3互为相反数.(1) 写出点B表示的数;(2) 如图1,当点A,B位于原点O的同侧时,动点P,Q分别从点A,B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P,Q所表示的数;(3) 如图2,当点A,B位于原点O的异侧时,动点P,Q分别从点A,B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当∣OM−ON∣=2时,求动点P,Q运动的速度.22.【背景知识】数轴上A点,B点表示的数为a,b,则A,B两点之间的距离AB=∣a−b∣,.若a>b,则可简化为AB=a−b,线段AB的中点M表示的数为a+b2【问题情境】已知数轴上有A,B两点,分别表示的数为−10,8,点P,Q分别从A,B同时出发,点P以每秒5个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).【综合运用】(1) A,B两点的距离为,线段AB的中点C所表示的数;(2) 点P所在的位置的点表示的数为,点Q所在位置的点表示的数为(用含t的代数式表示);(3) P,Q两点经过多少秒会相遇?23.探究规律,完成相关题目.定义“∗”运算:(+2)∗(+4)=+(22+42),(−4)∗(−7)=+[(−4)2+(−7)2],(−2)∗(+4)=−[(−2)2+(+4)2],(+5)∗(−7)=−[(+5)2+(−7)2],0∗(−5)=+(−5)∗0=(−5)2,(+3)∗0=0∗(+3)=(+3)2,0∗0=02+02=0.归纳∗运算的法则(用文字语言叙述):(1) 两数进行∗运算时,.特别地,0和任何数进行∗运算,或任何数和0进行∗运算,.(2) 计算:(−3)∗[0∗(+2)]=.(3) 是否存在有理数m,n,使得(m+1)∗(n−2)=0,若存在,求出m,n的值,若不存在,请说明理由.24.若有理数x,y满足∣x∣=5,∣y∣=2,且∣x+y∣=x+y,求x−y的值.25.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1) 对于数阵A,2∗3的值为.若2∗3=2∗x,则x的值为.(2) 若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:(a∗b)∗c=a∗c.则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”你的结论:(填“是”或“否”).②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值.③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案一、选择题1. 【答案】D【解析】观察数轴可得:−1<a<0<b<c,∣a∣<∣b∣<∣c∣,∴∣a∣+∣b∣+∣a+b∣−∣b−c∣=−a+b+a+b−(c−b)=3b−c.【知识点】绝对值的化简、利用数轴比较大小2. 【答案】B【解析】∵OA=OB,点A表示的数是a,∴点B表示的数为−a,AB=−2a,∵BC=AB,∴点C表示的数是−3a.【知识点】数轴的概念3. 【答案】D【解析】∵该点距离原点3个单位,∴该点表示的数是3或−3,①若该点表示的数是3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=6;②若该点表示的数是−3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=0;故选D.【知识点】绝对值的几何意义4. 【答案】D【解析】∵∣a∣≥0,则b≥−c>∣a∣≥0,b>0,−c>0,即c<0,a+b+c=0,即a+b=−c≤b,即a≤0,∴a≤0,b>0,c<0.【知识点】绝对值的几何意义、利用数轴比较大小、有理数的加法法则及计算5. 【答案】D【解析】利用数轴,设A点表示的数为−2,B点表示的数为5,P点表示的数为x,则∣x+2∣+∣x−5∣=PA+PB,∴当P在A,B之间时,PA+PB最小,∴当−2≤x≤5时,∣x+2∣+∣x−5∣取得最小值.【知识点】绝对值的几何意义6. 【答案】A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.【知识点】绝对值的几何意义7. 【答案】C【解析】∣a∣a +∣b∣b+∣c∣c=−1,所以a,b,c中有一个正数,二个负数,假设a>0,b<0,c<0,则ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣=−1+1−1+1=0.【知识点】绝对值的性质与化简8. 【答案】B【知识点】有理数的乘方9. 【答案】D【解析】当OC在∠AOB内时,如图1,则∠BOC=∠AOB−∠AOC=60∘−13×60∘=40∘,∴∠COD=12∠BOC=20∘;当OC在∠AOB外时,如图2,则∠BOC=∠AOB+∠AOC=60∘+13×60∘=80∘,∴∠COD=12∠BOC=40∘.综上,∠COD=20∘或40∘.故选:D.【知识点】角的计算10. 【答案】D【解析】 (−1)2021=−1;−∣−2∣=−2;(−2)3=−8;且 −8<−∣−2∣<(−1)2021<−12, ∴ 最大的数是 −12,故选D .【知识点】有理数的乘方、绝对值的化简二、填空题 11. 【答案】 2【解析】 ∵ 有理数 a ,b ,c 满足 a +b +c >0,且 abc <0, ∴a ,b ,c 中负数有 1 个,正数有 2 个. 【知识点】有理数的加法法则及计算、有理数的乘法12. 【答案】 1949【解析】由题意可知:k 140=k 0−1+2−3+4−⋯−139+140=2019, 即 k 0+(−1+2)+(−3+4)+⋯+(−139+140)=2019, k 0+1+1+⋯+1⏟70 个 1=2019,∴k 0+70=2019,解得:k 0=1949.则电子跳蚤的初始位置 k 0 点所表示的数是 1949. 【知识点】有理数的加法法则及计算13. 【答案】 −12【解析】 ∵a ∗b =a −a b , ∴(−3)∗2=(−3)−(−3)2=(−3)−9=−12.【知识点】有理数的乘方14. 【答案】−22【解析】把x=−1代入计算程序中得:(−1)×6−(−2)=−6+2=−4>−5,把x=−4代入计算程序中得:(−4)×6−(−2)=−24+2=−22<−5,则最后输出的结果是−22.【知识点】有理数的乘法15. 【答案】3或±1【解析】∵a>a−3,a⋇(a−3)=1,根据题中的新定义得:a a−3=1,∴a−3=0或a=1或a=−1,∴a=3或±1.【知识点】有理数的乘方16. 【答案】3【解析】272019=(33)2019=36057,末位的循环为3,9,7,1,6057÷4=1514⋯1,所以末位为3.【知识点】有理数的乘方17. 【答案】1【解析】根据题意,x=16,第一次输出结果为:8,第二次输出结果为:4,第三次输出结果为:2,第四次输出结果为:1,第五次输出结果为:4,第六次输出结果为:2,第7次输出结果为:1,第8次输出结果为:4,由上规律可知:从第二次输出结果开始,每3次输出后重复一次,故(2017−1)÷3=672,故输出结果为:1.【知识点】有理数的加法法则及计算、有理数的乘法三、解答题18. 【答案】(1) 5(2) ∣x−7∣(3) −8;−3或−13(4) 如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.【解析】(1) ∣3−(−2)∣=5.【知识点】绝对值的几何意义、有理数的减法法则及计算19. 【答案】(1) 原式=−3+8−7+5=5−7+5=−2+5=3.(2) 原式=49×47×47×116=1.(3) 原式=7−(116−23−34)×24=7−(116×24−23×24−34×24) =7−(44−16−18)=7−10=−3.(4) 原式=−9÷9+(−6)+1 =−1−6+1=−6.【知识点】有理数的除法、有理数的加减乘除乘方混合运算、有理数的乘法20. 【答案】(1) −17;10(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2个单位/秒,162=8秒,∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P到B点时,Q从A出发,Q点速度为每秒3个单位长度,3秒运动距离为3×3=9,−26+9=−17,∴Q点出发3秒后所到的点表示为−17,3秒钟P点运动距离为3×1=3,又−10+3=−7,PQ两点距离为−7−(−17)=10,∴Q点出发3秒后所到点表示数为−17,此时P,Q两点的距离为10.【知识点】数轴的概念21. 【答案】(1) ∵a与(−1)3互为相反数,∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示;②当点A、点B在原点的异侧时,点B所表示的数为1−9=−8,如图2所示.故点B所表示的数为10或−8.(2) 当点A,B位于原点O的同侧时,点B表示的数是10.设点Q的运动速度为x,则点P的速度为2x.∵3秒后两动点相遇,∴3(x+2x)=9,解得:x=1.∴点Q的运动速度为1,则点P的速度为2.运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9,解得:t=73;∴点P表示的数为:1+2×73=173,点Q表示的数为:10−73=233;②相遇后,再运动y秒,P,Q两点相距2,由题意有:y+2y=2,解得:y=23.∴点P表示的数为:1+3×2+23×2=253,点Q表示的数为:10−3×1−23×1=193.(3) 根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度.∴点Q的运动速度为:9÷5=1.8.设点P的速度为v,∵∣OM−ON∣=2,∴∣9+1−(5v+1)∣=2,解得:v=75或115.∴点P的速度为75或115.【知识点】数轴的概念、相遇问题22. 【答案】(1) 18;−1(2) −10+5t;8−3t(3) 依题意有5t+3t=18,解得t=94.故P,Q两点经过94秒会相遇.【解析】(1) A,B两点的距离为8−(−10)=18,线段AB的中点C所表示的数[8+(−10)]÷2=−1.(2) 点P所在的位置的点表示的数为−10+5t,点Q所在位置的点表示的数为8−3t(用含t的代数式表示).【知识点】绝对值的几何意义23. 【答案】(1) 同号得正、异号得负,并把两数的平方相加;等于这个数得平方(2) −25(3) ∵(m+1)∗(n−2)=0,∴±[(m+1)2+(n−2)2]=0,∴m+1=0,n−2=0,解得m=−1,n=2,即m=−1,n=2即为所求.【解析】(1) 由题意可得:两数进行∗运算时,同号得正,异号得负,并把两数的平方相加0和任何数进行运算,或任何数和0迸行∗运算,等于这个数的平方.(2) (−3)∗[0∗(+2)]=(−3)∗(+2)2=(−3)∗(+4)=−[(−3)2+(+4)2]=−25.【知识点】有理数的乘方24. 【答案】∵∣x∣=5,∴x=±5,又∣y∣=2,∴y=±2,又∵∣x+y∣=x+y,∴x+y≥0,∴x=5,y=±2,当x=5,y=2时,x−y=5−2=3,当x=5,y=−2时,x−y=5−(−2)=7.【知识点】有理数的减法法则及计算25. 【答案】(1) 2;1或2或3(2) ①是.② ∵1∗2=2∴2∗1=(1∗2)∗1,∵(a∗b)∗c=a∗c,∴(1∗2)∗1=1∗1,∵a∗a=a,∴1∗1=1,∴2∗1=1.③方法一:不存在理由如下:若存在满足交换律的"有趣的”数阵,依题意,对任意的a,b,c有:a∗c=(a∗b)∗c=(b∗a)∗c=b∗c,这说明数阵每一列的数均相同.∵1∗1=1,2∗2=2,3∗3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1∗2=2;2∗1=1,与交换律相矛盾,因此,不存在满足交换律的“有趣的”数阵.【解析】(1) 由题意可知:2∗3表示数阵,第2行第3列所对应的数是2,∴2∗3=2.∵2∗3=2∗x,∴2∗x=2,由题意可知:数阵第1行中3列数均为1,∴x=1,2,3.(2) 方法二:不存在理由如下:由条件二可知,a∗b只能取1,2或3,由此可以考虑a∗b取值的不同情形.例如考虑1∗2:情形一:1∗2=1.若满足交换律,则2∗1=1,再次计算1∗2可知:1∗2=(2∗1)∗2=2∗2=2,矛盾.情形二:1∗2=2,由(2)可知,2∗1=1,1∗2≠2∗1,不满足交换律,矛盾.情形三:1∗2=3,若满足交换律,即2∗1=3,再次计算2∗2可知:2∗2=(2∗1)∗2=3∗2=(1∗2)∗2=1∗2=3,与2∗2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.【知识点】有理数的乘法。
七年级数学上册第2章有理数及其运算教学案(新版)北师大版
第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+( - 1)=0和( - 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.[过渡语]同学们,生活中处处有数学,下面我们一起探究实际问题与数学的联系吧!(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队 - 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和 - 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.[过渡语]我们已经认识了负数,你能顺利的利用正数和负数表示生活中具有相反意义的量吗?请同学们观察教材例题,想一想如何解答.(课件3出示)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么 - 0.03 g表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为; 一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以 - 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作 - 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是[过渡语]同学们,我们已经知道了可以用正数和负数表示具有相反意义的量,那么一起来试一试吧.(出示课件4)(1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么?(2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg”.“议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图]使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展]对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - ,,, - 5, - 7.3,3,,0.1,92, - .正数集合{…};负数集合{…};正整数集合{…};负整数集合{…};分数集合{…};负分数集合{…};负有理数集合{…};有理数集合{…}.〔解析〕小数 - 7.3,0.1都属于分数,=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是()A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A.2.在0,2, - 7, - 5,3.14, - 3, - 3,+0.75中,负数共有 ()A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 5, - 3, - 3是负数.故选D.3.飞机上升了 - 80米,实际上是()A.上升80米B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D.4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“ - ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了 - 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动 - 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃ - 2 ℃B.+8 ℃+2 ℃C. - 8 ℃ - 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+,3.1416,0.2011, - , - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作 - 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作 - 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作 - 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为 - 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2℃,表示最低温度是20 ℃ - 2 ℃=18℃,最高温度是20 ℃+2℃=22℃,即18~22 ℃之间是合适温度.)5.解:正数有:+,3.1416,0.2011,99%;负数有: - 18, - , - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为 - 40 m和 - 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m记作 - 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m,说明小明又向南跑了1200 m,此时他在A地的南边,距A地的距离=1200 - 1100=100(m).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。
北师大版七年级数学上册第二章所有学案
精品文档你我共享第二章:有理数及其运算单元备课一、单元知识点:本章主要内容是有理数的有关概念及其运算二、单元课标要求:1、理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
2、借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法〔绝对值符号内不含字母〕。
3、理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。
4、理解有理数的运算律,能运用运算律简化运算。
5、能运用有理数的运算解决简单的问题。
三、教材分析:本章的主要内容是有理数的有关概念及其运算。
教材从实例出发,由实际需要引入负数,有理数的一些概念,在此根底上,依次学习有理数的加减法,乘除法和乘方运算,并配合有理数的运算,学习近似数和有效数字的根本知识,以及使用计算器作简单的有理数运算。
四、思想方法渗透:〔1〕数形结合思想方法。
〔2〕从一般到特殊的方法。
五、教学方法:1、创设符合学生实际的问题情境,使学生感受数学与现实世界的联系。
2、引导学生主动参与和动手操作,在观察、操作、想象、交流等大量活动中,探索并掌握知识。
六、课时安排:1、有理数 1 课时2、数轴 1 课时3、绝对值 1 课时4、有理数的加法 2 课时5、有理数的减法 1 课时6、有理数加减混合运算 1 课时7、有理数的乘法 2 课时知识改变命运精品文档你我共享8、有理数的除法1课时9、有理数的乘方2课时10、科学记数法1课时11、有理数的混合运算1课时12、用计算器进行运算1课时回忆与思考1课时.有理数学习目标1、感受负数引入的必要性,理解负数的作用,认识正负数在实际生活中的应用,2、归纳出有理数的概念,得出有理数的分类方法;3、通过对负数的应用体会学习有理数的必要性。
一、自主探究1、根据课本第37页计算某班四个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进行小组合作讨论 .得出新知后,利用新的知识完成表格。
七年级数学上册第二章有理数及其运算1有理数优秀教案(新版)北师大版
1.内容构造特色本章是在小学非负有理数知识的基础上引进负数的.第一介绍有理数的基本看法,而后再学习有理数的运算,并用有理数的知识解决实质问题.本章知识的引入着重从实质情境下手,经过学习有理数的分类、相反数、数轴、绝对值、有理数大小的比较,理解并掌握有理数的看法,初步浸透数形联合的数学思想,经过研究归纳的方式,追求有理数的加法、减法法例和运算律,经过研究规律的方式归纳总结有理数的乘、除法法例和运算律,在现实背景中理解有理数乘方的意义,经过 24 点游戏的建立,训练基本运算能力,培育思想能力,经过计算器的使用,既使学生解脱了繁琐的运算,同时又培育了学生研究数字规律的能力.2.教材的地位及作用数是学习代数式、方程、不等式、函数等内容的基础.本章是初中阶段对数学习的一部分.在小学阶段学生已经学习了算术数,累积了初步的数感、符号感和基本的运算能力,本章将进一步研究有理数的有关知识并解决实质问题.教材经过现实生活供给的问题背景,给学生供给了归纳、猜想、考证、推理、计算、沟通等数学活动时机,使学生在活动中发现问题、研究规律,促使了学生对知识的理解和掌握.因此,本章内容在知识的掌握、数学思想方法的浸透、学习能力的培育等方面都是特别重要的.3.教课要点与难点教课要点:(1)有理数的看法,特别是有理数的分类、绝对值、相反数等的看法.(2)有理数大小的比较方法,研究有理数四则运算法例并娴熟计算.(3)用科学记数法表示数.(4)应用有理数的有关知识解决实质问题.教课难点:(1)有理数的看法和有理数的运算.(2)数形联合思想的应用.4.教课目的(1)在详细情境中,理解有理数及其运算的意义.(2)能用数轴上的点表示有理数,会比较有理数的大小.(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.(4)经历研究有理数运算法例和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混杂运算 ( 以三步为主 ) ;理解有理数的运算律,并能运用运算律简化运算.(5)会利用科学记数法表示数.(6)能运用有理数及其运算解决简单的实质问题.5.教课建议第一,教师应尽量从实质问题引入有理数的看法,借助风趣的情境和生活实例帮助学生理解看法,使学生正确地理解正数和负数是表示拥有相反意义的量.也可让学生自己从生活中找寻素材,加深理解;第二,进行有理数运算教课时,鼓舞学生自己研究运算法例和运算律,并在与伙伴沟通的过程中逐渐形成较为规范的解题格式.在该过程中,倡导算法多样化,教课时应减少繁难的笔算,对于出现的繁琐运算,鼓舞学生使用计算器;第三,要重视应用有理数及其运算解决实质问题的教课,让学生会用正负数表示实质问题中的量,能用运算的结果作出合理的解说,并给予实质意义.6.课时分派1 有理数1课时2数轴1课时3 绝对值 1 课时4有理数的加法 2 课时5 有理数的减法 1 课时6有理数的加减混杂运算 3 课时7 有理数的乘法 2 课时8有理数的除法 1 课时9 有理数的乘方 2 课时10科学记数法 1 课时11 有理数的混杂运算 1 课时12用计算器进行运算 1 课时1有理数教课要点与难点教课要点:1.理解并掌握有理数的看法.2.会用正、负数表示生活中拥有相反意义的量.教课难点:有理数的分类.学情剖析认知基础:学生在小学已经学习并掌握了非负有理数的意义,对应用非负有理数表示生活中的量比较熟习,而且已经娴熟地掌握了非负有理数的四则运算法例及运算律,能规范条理地表述运算过程,初步拥有了有条理地思虑和书面表达能力,这些都为本章的学习确立了基础.活动经验基础:北师大版的小学数学重视学生的生活经验,亲密数学与现实的联系,教材对重要的数学内容都是依照“问题情境——成立模型——解说与应用”的表达方式编排的,学生在学习中掌握了基本的数学知识和方法,形成了优秀的数学思想习惯和应意图识,有了必定的解决问题的能力,同时学生在研究详细问题的过程中自主地参加、研究和沟通,具备了必定的主动参加、合作意识和初步的察看、剖析、抽象归纳的能力.教课目的1.了解正数与负数是从实质需要中产生的,并会判断一个数是正数仍是负数.2.会用正、负数表示拥有相反意义的量.3.在负数看法的形成过程中,培育学生的察看、归纳与归纳的能力.教课方法创建情境,以问题为载体给学生供给研究的空间,指引学生踊跃研究.经过小组沟通合作的形式,建立以教师为主导,学生为主体自主研究的讲堂学习环境,使学生在研究合作的过程中掌握知识,提升技术,形成自己的看法.教课过程一、引入新课设计说明教材例题切近学生生活实质,生动开朗,经过对该例设置问题串,由浅入深,指引学生在轻松熟习的氛围中进行思虑,既复习旧知,作好新知学习的铺垫,同时鼓舞学生勇敢想象,充足进行思虑、沟通.阅读教材本节开端部分的内容,回答以下问题:问题 1:你能很快地为这两个队排一下名次吗?你的依照是什么?学生排名次的依照可能不独一,如:数笑容的个数、计算总得分等,只需学生能充足思虑,正确表达出排名次的依照,就进行夸奖.问题 2:在达成表格后,你有什么发现?学生经过填“答错题的得分”这一栏,发现“- 3”“- 2”,这类数字是我们没有学过的数,它是什么数?表示什么意义?和我们从前学过的数有什么关系?——引入新课.教课说明以上问题从学生已有的知识下手,以问题为载体,自然理顺学生解决问题的思路,问题 1 和问题 2 对于开辟学生解题思想有很大帮助,使个性化思想获得鼓舞和发展,同时引入了新课的学习.实践证明,该设计调换了学生的踊跃性,成功引入了新课.二、讲解新课1.达标导学,初探新知经过上边的问题我们看到,生活中的有些量用我们从前学过的数不可以表示了,这些比0小的数,能够用带有“-”的数来表示.比方-10,我们读作“负10”.对于比 0 大的数,我们用带有“+”的数来表示.如+10,读作“正10”.注意:“+”经常能够省略.问题:“-”能够省略吗?为何?学生回答:不可以够省略.“+”和“-”是表示数的性质符号,“-”省略了,数的性质就改变了.2.小组议论,理解新知生活中你见过带有“-”的数吗?设计说明安排一活的目的,主要了鼓舞学生自己找生活中的例子,并在求例的程中领会数的引入是生活的需要.同,能够依据需要,一些学生熟习的例睁开.如,零上温度与零下温度,海拔高于海平面的高度与海拔低于海平面的高度,等等.2像 5,1.2 ,3⋯的数叫做正数,它都比0 大.在正数前方加上“-”的数叫做数,如-10,- 3,⋯1:正数和数有什么关系?依据学生对于拥有相反意的量的,使学生通数学模型的察、、归纳、沟通等数学活,一步理解怎用正、数表示生活中拥有相反意的量,掌握正、数的意,培育学生的正、数的数感.2: 0 是正数是数?学生的回答会多种多,甚至有的学生没法回答,里教明确告学生,引入数以后,“ 0”的意就不表示“没有”了,它是正、数的分界,是“基准”.3:“-”的数必定是数?学生回答有必定困.于正数和数的看法,要提示学生注意不要“+”的数就是正数,“-”的数就是数.如-a不必定是数.但此不易引申太多.3.例理,稳固新知明通例的教课,要修业生能正确地表达出数所表示的意以及用正、数表示相反意的量;同,认识其实不是全部的基准都必0.教材例 (例):1:在以上 3 道中正数、数分表示什么量?2:每道的基准分是什么?1 依据学生的回答,上人常把零上的温度、上涨的高度、向的行程等定正的,而把零下的温度、降落的高度、向西的行程等与前方意相反的量定的; 2 要修业生注意其实不是全部的基准都必0,如第 1 小的基准静止不,第 2 小的基准一只球的准量,第 3 小的基准10 kg.明了学生更好地理解稳固正数和数是表示一意相反的量,在例解达成后及充,同通填空的形式范写格式,包含正、数的写及填空的位.通培育学生范地写.达成后教可提学生各中互相反意的量分是什么?基准分是什么?帮助学生更全面地理解本的要点.(1)海平面上的高度正,海平面下的深度,海平面下 150 米作 ________;(2)盈余 100 元作+ 100 元,那么100 元作 ________;(3)假如零上 5 ℃ 作+ 5 ℃,那么零下 5 ℃ 作 ________;(4)某运面粉 7.5 吨作+ 7.5 吨,那么运出 3.8 吨作 ________;(5)西两个相反方向,假如- 4 米表示一个物体向西运 4 米,那么+ 2 米表示________,物体原地不 ________;(6)向南走- 4 米,上是向 ________走了 ________米.4.小活,再探新知在大家分活,列我已学的数,而后将列的全部数适合地分红几,并明分的原因.有理数的分:正整数整数零有理数(按定)整数有理数(按性分数正分数分数正整数正数正分数)零整数数分数整数和分数称有理数.明有理数的看法是本的要点内容,通使学生充足理解有理数的分.2把以下各数填入相数集里:3,- 2,3.5 ,-3, 0,- 3.14 ,- 10%正数会合:⋯;数会合:⋯;整数会合:⋯;有理数会合:⋯.教课明本程通初探、理解、稳固、再探四个,使学生在教的引下,通的探、沟通、合作,自主地解决,稳固知.同的使学生的新知获得了及地稳固掌握,教课成效优秀.三、稳固提升明通三个,使学生本学程中易出和模糊的看法从不一样型加以理解,掌握解技巧.1.小学学的小数能否是有理数?属于分中的哪一?2.判断以下法能否正确:(1)一个有理数不是整数就是分数;(2)一个有理数不是正数就是数;(3)一个整数不是正整数就是整数;(4)一个分数不是正分数就是分数.3.一:一种商品的准价钱是200 元,但跟着季的化,商品的价钱可浮±10%.(1)±10%的含是什么?(2)你算出商品的最高价钱和最廉价钱;(3)假如以准价钱准,超准作“+”,低于准作“-”,商品价钱的浮范又能够怎表示?答案: 1.有限小数和无穷循小数都是有理数,属于分数;无穷不循小数不是有理数.2.第 (1) , (4) 法正确.3.(1) ±10%的含是在准的基上涨价或降价的幅度不超10%.(2) 最高价钱200+200×10%= 220( 元 ) ;最廉价钱200-200×10%= 180( 元 ) .(3)因 220- 200= 20( 元) ,200- 180= 20( 元 ) ,因此件商品涨价或降价的幅度不超 20元,因此件商品价钱的浮范又能够表示± 20 元.中考接:1.在一条东西向的跑道上,小亮先向东走了8 米,记作“+ 8 米”,又向西走了10 米,此时他的地点可记作()A.+2米B.-2米C.+18米D.-18米2.假如水库的水位高于标准水位 3 m时,记作+ 3 m,那么低于标准水位 2 m时,应记作()A.- 2 m B .- 1 m C .+ 1 m D .+ 2 m 答案: 1.B 2. A教课说明本过程仍旧先让学生独立思虑,再进行小组沟通的方式进行睁开.讲堂上鼓舞学生勇敢讲话,用自己的语言说明原因,进一步培育提升学生的思想表达能力.练习 1 对于有限小数和无穷循环小数都是分数,学生不可以很好的说明原因,考虑到为防止喧宾夺主,教课时可视学生状况适合解说.四、总结反省经过本节课的学习,请大家总结我们都学到了哪些数学知识和方法?1.我们知道了为何要学习负数,学会了用正、负数表示生活中的拥有相反意义的一对量,还知道了有理数都包含哪些数及其分类.2.我们还要掌握分类的思想方法.3.学生易疑惑的地方:学生对于有理数的分类理解不是很好,易把两种分类混杂和重复,应经过判断题或选择题的形式多加练习.评论与反省本节课设计为学生创建了轻松快乐地自主研究沟通的学习环境,四大环节的设计依照学生的认知规律,重在发掘学生潜力,给了学生更多的思虑空间.教课过程中着重发挥学生的主体作用,培育学生在学习互动过程中学会竞争与合作,加强团队相助合作精神.教课时向来让学生处于发现问题、提出猜想、沟通议论的状态中,用自己的思想方式形成自己对于问题独专门理解和认识 .。
北师大版初中数学七年级上册数学计划及进度表(3篇)
20xx-20xx学年第一学期七年级数学教学计划任课教师:xxx 北师大版新课标七年级数学上册内容较旧课标有了一些改变。
全册共六章,旧课标的第七章在本册删掉了,增加了“综合与实践”。
一、教材分析北师大版新课标七年级数学上册内容难度上较旧课标有所降低。
第一章“丰富的图形世界”分四节,从基本的立体图形认识,然后归纳总结立体图形如棱柱的一些性质;进一步学习将几何体展开,分析它的平面展开图形;第四节从三个方向观察物体的形状,然后画出它三个方向看的三视图。
第二章“有理数及其运算”共12节,着重于有理数的加、减、乘、除混合运算;在旧课标基础上增加了科学计数法。
第三章“整式及其加减”共5节知识,将整式的定义增加到本章知识点上,原先的合并同类项加入到整式的加减中。
第四章“基本平面图形”共5节,原先的平行与垂直被删掉,增加了多边形和圆的初步认识。
第五章“一元一次方程”共7节,着重于解一元一次方程。
第六章“数据的收集与整理”共四节,在旧课标上增加了普查与抽样调查。
二、教学进度本学期共有二十周,每周5节新课,一节练习课。
为了完成本学期的教学任务,我制定以下的教学进度表:三、新课改的实施新课标实施过程中注意几个问题: 1、不能只求“表面热闹”的课堂教学 ;2、不能过于追求教学的情境化;3、不能让学生讨论流于形式; 4、不能过于追求现代化手段; 5、不能忽视学生的学习活动。
教学备课从三方面着手:1、要备好教材;2、要好备教学程序;3、要备好学生。
在布置作业时,注意难易程度,对待后进生,要放低要求,采取循序渐进的原则,谆谆诱导的方法,从起点开始,耐心地辅导他们一点一滴地补习功课,让他们逐步提高。
北师大版七年级数学上册教学计划一、教学目标:本期教材知识内容为“丰富的图形世界”、“有理数及其运算”、“字母表示数”、“平面图形及其位置关系”、“一元一次方程”、“生活中的数据“、”可能性”。
1、知识与技能目标:学生通过经历从具体情境中抽象出符号的过程,认识有理数和代数式,掌握必要的有理数和代数式的运算(包括估算)技能,能运用有理数,代数式探索具体问题中的数量关系和变化规律,并能运用有理数的代数式来进行描述;学生在经历物体和图形的初步认识过程中,掌握基本的识图与作图技能,认识最基本的图形――点和线,进而认识角、相交线和平行线。
七年级数学上册 第二章 有理数及其运算 2.6 有理数的加减混合运算教案 (新版)北师大版-(新版)
2.6有理数的加减混合运算(第1课时)一、学生知识状况分析学生的知识技能基础:学生在前面几节课中已经学习过有理数的加法、减法的法则,并利用其解决了一些问题,但前面的运算比较简单且多为单纯的加法运算或减法运算,而少有加法减法的混合运算.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力;经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;同时在本章前面的数学学习中学生已经具备了一定的运算技能,能够解决一些简单的实际问题.这些为本节课的学习作了很好的奠基和知识准备.二、教学任务分析本节课是学生在前两节学习整数加法、减法运算的基础上自然地过渡到含有小数、分数的加减混合运算. 为了避免学生对单纯的运算产生厌烦情绪,所以利用游戏来训练有理数的加减混合运算,以增加学习的趣味性.本课时的教学目标如下:1.让学生熟练地按照运算顺序进行有理数加减混合运算.2.熟练运用有理数加法、减法运算法则进行加减混合运算.掌握有理数的加减混合运算及其运算顺序.三、教学过程分析本节课设计了六个教学环节:第一环节:问题引入;第二环节:讲授新课;第三环节:巩固练习;第四环节:合作学习;第五环节:课堂小结;第六环节:布置作业.第一环节问题引入活动内容:通过游戏来引入有理数的加减混合运算(课前每人准备红色卡片和白色卡片共20X,在每X卡片上写上任意数字).游戏规则如下:四人一组,每组选一学生当代表,在同组的80X卡片中,抽取4X,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.活动目的:复习旧知识的同时,引出新的知识.活动的实际效果:熟练写出加减混合运算的算式.第二环节:讲授新课活动内容:利用各小组写出的算式引导学生分析有理数的混合运算应该怎么算. 活动目的:既然是混合运算,自然联想到小学学习的运算顺序,要让学生明白,并不是学习有理数的运算就要抛弃小学的知识和方法.活动的实际效果:通过对运算顺序的回忆,学生尝试混合运算,体会运算顺序的重要性.教师要引导学生重视初小衔接,领悟知识的连贯和延续.第三环节:巩固练习 活动内容: 例1、计算: (1)5451)53(-+- (2)377)21()5(-+--- 随堂练习: 1.计算: (1)21)43(41--+; (2); (3)3)5.4(5.11----;(4))52()352(71---+-. 活动目的:让学生体会根据运算顺序,进行有理数的加减混合运算.活动的实际效果: 例1由教师指定几名学生板演,其余学生在笔记本上解答,教师巡视,发现问题及时解决,在复习有理数的加法、减法法则的同时,训练学生熟练进行有理数的加减混合运算.第四环节:合作学习活动内容: 通过游戏来进一步熟练有理数的加减混合运算). 游戏规则如下:(1)四人一组,每组选一学生当代表,在同组的80X 卡片中,抽取4X ,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)每组四人都计算,然后看结果的正确与否,再看一看谁用的计算方法最简便,交流经验.活动目的:利用游戏训练有理数的加减混合运算,以激发学生学习数学的兴趣,增加学习的趣味性.活动的实际效果:学生参与教学活动,从而使学生积极主动的学习,学生学习的热情高涨,气氛热烈.第五环节:课堂小结活动内容:师生共同完成.1.有理数的加减混合运算可以利用运算顺序进行计算.2.熟练进行含有整数、小数、分数的加减混合运算.活动目的:鼓励学生结合本节课的学习,谈谈自己的收获和感想,学会及时的反思和总结.活动的实际效果:学生畅所欲言自己的切身感受和实际的收获,在愉快的氛围中结束本节课的学习.第六环节:布置作业习题 2.7四、教学反思有理数的加减混合运算共两个课时.这一课时的重点一是体会混合运算中运算顺序的重要性,在运算顺序的指引下巩固加法和减法的法则;二是熟练含有整数、小数、分数等各种数据的加减混合运算.教材对本节两个课时内容调整的用意应该也在于此,先按部就班计算;再考虑灵活简便.2.6有理数的加减混合运算(第2课时)一、学生知识状况分析学生的知识技能基础:在上一节课的学习中学生已经学习了有理数的加减混合运算,初步接触了含有小数或分数的有理数的加减混合运算,知道加减混合运算可以利用运算顺序从左往右依次进行运算,但还不够熟练,同时对在混合运算中如何运用加法交换律和结合律简化计算还不了解.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力;经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;同时在本章前面的数学学习中学生已经具备了一定的运算技能,能够解决一些简单的实际问题.这些为本节课的学习作了很好的奠基和知识准备.二、教学任务分析本节课就是在前面学习的基础上进一步熟练有理数的加减混合运算,体会可以适当地运用加法交换律和结合律来简化运算.通过对一架特技飞机起飞的高度变化这个实际问题的讨论,引导学生从减法法则与实际问题两个方面回答两种算法的关系.对两种算法比较的同时,学生将体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),使学生进一步熟悉有理数加减混合运算. 具体教学目标如下:1.使学生理解有理数的加减法可以互相转化,并了解代数和概念;2.使学生熟练地进行有理数的加减混合运算;3.培养学生的运算能力.三、教学过程分析本节课设计了六个教学环节:第一环节:问题引入;第二环节:讲授新课;第三环节:巩固练习;第四环节:合作学习;第五环节:课堂小结;第六环节:布置作业.第一环节:问题引入活动内容:一架飞机进行特技表演,飞行的高度变化由表格给出.对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?4.5+(-3. 2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)还可以这样计算:=1(千米)活动目的:通过对身边的数学问题的讨论,学生将回顾有理数的运算法则,加深对法则的认识,并用以进行有关复杂数据的运算.活动的实际效果:对于这一实际问题,学生特别是男同学很感兴趣,都瞪大眼睛仔细听讲.通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的学习方式,争取让每个学生都在同伴的交流中获益.第二环节:讲授新课活动内容: 比较以上两种算法,你发现了什么?有理数的加减混合运算可以统一成加法运算.如算式“4.5-3.2+1.1-1.4”可以看作4.5、-3.2、1.1、-1.4这4个数的和,因此在进行加减混合运算时可运用加法交换律和结合律简化运算.如4.5+(-3.2)+1.1+(-1.4) =4.5+1.1+[(-3.2)+(-1.4)] =5.6+(-4.6) =1活动目的:学生参与教学活动,从而使学生积极主动的学习,学生学习的热情高涨,气氛热烈.活动的实际效果:通过对两种算法的比较,学生将体会加减法混合运算可以统一成加法,以及加法运算可以写成省略括号及前面加号的形式(即“代数和”问题).对“代数和”的学习,重点是让学生通过具体情境加以体会,无须出现“代数和”的名称.学生在学会混合运算运算顺序的前提下,理解利用运算律可以改变运算顺序,从而达到简化计算的目的.第三环节:巩固练习 活动内容:计算:(1) (8)(15)(9)(12)---+--- (2)12()15()33--+- (3)67(18)()(8)()510---++-+(4)2111()()3642-+---- 活动目的: 让学生能进行包括小数、分数在内的有理数的加减混合运算.活动的实际效果: 本例由教师指定几名学生板演,其余学生在笔记本上解答,教师巡视,发现问题及时解决,这样让学生在运算的过程中逐步熟练掌握有理数的加减混合运算.第四环节:合作学习活动内容:做一做下表是某年某市汽油价格的调整情况:与上一年年底相比,11月9日汽油价格是上升了还是下降了?变化了多少元?活动目的:在具体情境中体会混合运算的作用,在进行加减混合运算时,可以适当运用加法交换律和结合律来简化运算.活动的实际效果:本例由教师板演,在复习加减混合运算的同时,为下一小节的学习埋下伏笔.第五环节:课堂小结活动内容:师生共同完成.1.通过本节课的学习研究,我们进一步巩固和掌握有理数的加减混合运算,并能根据具体问题适当运用加法交换律和结合律简化运算.2.在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.活动目的:鼓励学生谈自己的收获和感想,让学生总结本节所学内容的同时,学会及时的反思和总结.活动的实际效果:学生畅所欲言自己的切身感受和实际的收获,在愉快的氛围中结束本节课的学习.第六环节:布置作业习题 2.8四、教学反思这一课时的重点是继续帮助学生实现减法向加法的转化与加减法互化,了解运算符号和性质符号之间的关系.把任何一个含有有理数加、减混合运算的算式都看成和式,这一点对学生熟练掌握有理数运算非常重要,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.因此在教学中要让学生真正理解加法和减法的关系.2.6 有理数的加减混合运算(第3课时)一、学生起点分析知识技能基础:学生在前面已经学习了有理数加减混合运算,能够综合运用有理数的意义及其加法、减法的有关知识,解决简单的实际问题.活动经验基础:在相关知识的学习过程中,学生已经经历了观察、抽象、计算等活动,解决了一些简单的现实问题,感受到了有理数的意义和作用,体会到数学与现实生活的联系;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节设置了一个丰富的现实情境一—流花河的水文资料,并据此资料,提出相关问题,综合运用有理数及其加法、减法的有关知识对现实问题进行讨论,进一步体会数学和现实生活的联系.通过对流花河一周内的水位变化的数据信息进行分析,判断一周中每天河流水位情况,继而用折线统计图表示本周的水位情况,让学生体会用数学的方法对生活中的问题进行合理判断,并学会用数学工具直观地表示事物的变化情况.它对学生进一步理解有理数加减运算,提高运用知识解决实际问题能力,激发学习数学的热情具有重要作用.本节教学目标为:教学目标:(1)培养学生的动态观察、对比、分析生活问题的能力;让学生能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题.(2)在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的灵活处理.使学生感受到折线统计图确实可以直观地反映事物的变化情况.(3)让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到有理数运算的实用性,增强学生学好数学的信心.三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备一一收集资料;第二环节:情境引入;第三环节:合作学习;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业.第一环节课前准备活动内容:对学生有理数的加减运算的掌握情况进行检测,,并让学生收集一些与上课相关的资料(新闻与水文资料).活动目的:复习的目的是让学生对已有知识进行补充与完善,为新一次的挑战作好准备.收集资料的目的是丰富学生对背景资料的学习,减少学习的障碍.活动的实际效果:通过前面的学习学生对有理数的加减运算普遍掌握得不错,并收集了丰富的新闻和水文资料.第二环节:情境引入引例1:大湖水库平均水位为62.6米,今年七月,由于久旱无雨,大湖水库水位降到了历史最低水位51.5米,而八月的连续降雨又使水位创历史新高75.3米.若取警戒水位73.4米记作O点,那么最高水位75.3米可记作米,最低水位51.5米可以记作米,平均水位62.6米可以记作米.引例 2:小华是一个理财小能手,上周末他数了数自己的零花钱共有120元,下表是小华本周零花钱记录情况,+号表示当天的零花钱有节余,-号表示当天的零花钱超出预算:(2)本周末小华的零花钱总数比上周末多还是少?活动目的:创设丰富的现实情境,让学生体验所学知识与现实世界的联系,引起学生对学习内容的兴趣.活动的实际效果:学生独立观察思考后与交流组内的同学交流,然后全组内发表看法进行交流.有助于培养学生独立思考、善于与人合作的习惯和语言表达能力,运用数学解决简单问题的能力.第三环节:合作学习上图是流花河的水文资料(单位:米)流花河的警戒水位记为0点,那么其他数据可以分别记为什么?2.下表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水位).(1)本周哪一天流花河的水位最高?哪一某某位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?(2)与上周末相比,本周末流花河水位是上升了还是下降了?(3)请完成下面的本周水位记录表:活动目的:通过老师指导,学生之间的交流,讨论,思维水平及思维方法灵活多样,促进思维的提高,培养学生的“数感”.活动的实际效果:学生分组讨论,相互交流,取得一致意见,并做汇报.培养学生语言表达能力,运用有理数的加减法解决实际问题,培养学生学习兴趣.学生表现得都非常出色,积极地动脑筋思考问题,能大胆表明自己的观点.第四环节:练习提高1.光明中学初一(1)班学生的平均身高是160厘米.(1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表:(3)最高和最矮的学生身高相差多少?2. 9.11事故后,美国股市出现狂跌,股市指数一度跌到历史最低点,后经政府宏观调控,稍有反弹,下表是某周的股市指数升跌情况,+号表示指数比头一天上升,-号表示指数比头一天下跌:(2)本周五的股市指数比上周五的股市指数高还是低?(3)若将上周五的股市指数即为O点,请你画出本周的股市指数折线图。
北师大版初一上册数学第二章有理数及其运算教案:科学计数法
3.科学记数法.
(1)任何一个数都能够表示成整数数位是一位数的数乘以10的n次幂的形式.如:100=1×100=1×102;6000=6×1000=6×103;7500=7.5×1000=7.5×103.第一个等号是我们在小学里就学习过的关于小数点移动的知识,我们现在要做的确实是把100、1000变成10的n次幂的形式就行了.
情感、态度与价值:让学生充分感受到数学知识在我们生活中的应用.
重难点
重点
正确运用科学记数法表示较大的数.
难点
把握10的幂指数特点.
教
学
过
程
一、复习引入
师:我们先来看这几个问题.
1.回答什么叫做乘方,让学生说出103,-103,(-10)3,an等的底数、指数、幂.
2.运算:101,102,103,104,105,106,1010.教师引导学生得出:由第2题运算:105=100000,106=1000000,1010=10000000000,左边用10的n次幂表示简洁明了,且不易出错,右边有许多零,专门容易显现写错的情形,这就使我们想到用10的n次幂表示较大的数,我们如何能简单明了地表示它们呢?这确实是本节课我们要学习的内容——科学记数法.
(2)科学记数法的定义.
依照上面的例子,我们把大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是自然数,这种记数法叫做科学记数法.
一样地,把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数(即1≤a<10),n是正整数,这种记数法叫做科学记数法.
4.例题.
【例1】用科学记数法表示下列各数:
(1)赤道长约为40000000m;(2)地球表面积约为510000000km2.
铜陵市四中七年级数学上册第二章有理数及其运算10科学记数法教案新版北师大版
10科学记数法【知识与技能】1.掌握用科学记数法表示数的方法.2.会把用科学记数法表示的数还原成原数.【过程与方法】通过举出生活中常见的大数,了解科学记数法的作用,探索用科学记数法表示数的方法.【情感态度】结合本课教学特点,向学生进行爱国主义教育和美育渗透,激发学生学习兴趣.【教学重点】会用科学记数法表示较大数.【教学难点】正确使用科学记数法表示数.一、情境导入,初步认识教师引导学生观察教材第63页最上方的三个图,并提出下面的问题:在日常生活中,我们经常碰到这样的大数,这些数无论是读还是写,都很不方便,有什么办法能使这些数读起来,写起来既方便又简单呢?【教学说明】学生很容易找出生活中这样的大数,知道它们读写都不方便,有利于激发学生学习兴趣.二、思考探究,获取新知1.科学记数法问题1怎样用简单的方法表示这些大数?【教学说明】学生通过观察、分析,与同伴进行交流,教师加以引导,使学生知道可以借用乘方的形式表示这些大数,体验运用所学知识的成就感.我们可以借用乘方的形式表示大数.例如:1370000000可以表示成1.37×109;6400000可以表示成6.4×106;300000000可以表示成3×108.【归纳结论】一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.注意:科学记数法只是改变数的书写形式,没有改变数的大小.2.用科学记数法表示数问题2用科学记数法表示下列数据:(1)赤道长约为40000000m;(2)地球表面积约为510000000km2.【教学说明】学生通过观察、分析,尝试掌握用科学记数法表示较大数.【归纳结论】用科学记数法表示一个数,一般分两步进行:①确定a的值(1≤a<10),②确定n 的值(n比整数位数少1或小数点向左移动几位,n就等于几).3.将用科学记数法表示的数还原问题3下列用科学记数法表示的数,原数各是什么?(1)2×104(2)3.14×105(3)-5.012×107(4)-4.106×106【教学说明】把用科学记数法表示的数还原,是用科学记数法表示数的逆向变形,有利于发展学生的逆向思维.【归纳结论】把用科学记数法表示的数还原成原数时,只要将a的小数点向右移动几位即可,若位数不够,用0补上.注意:用科学记数法表示数或者把用科学记数法表示的数还原,数前面的符号都不变.4.科学记数法的实际应用问题4教材第63页的“做一做”.【教学说明】学生在课前通过上网查询或亲自调查,了解一个书架所存放图书的数量和本校人数,然后列式进行计算,进一步体会科学记数法的优点.三、运用新知,深化理解1.用科学记数法表示:10000,1000000和100000000.2.将下面用科学记数法表示的数还原成原数.(1)1.28×103(2)8.7×105(3)-7.2×108(4)-5.076×1043.一个正常人的心跳平均每分70次,一年大约跳多少次?用科学记数法表示这个结果.一个正常人一生心跳次数能达到1亿次吗?【教学说明】学生自主完成,检测对科学记数法的掌握情况,加深对新学知识的理解,对学生的疑惑教师及时进行指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.10000=104 1000000=106 100000000=1082.(1)1280(2)870000(3)-720000000(4)-507603.一个正常人一年的心跳次数大约为70×60×24×360=3.6288×107(次)100000000÷(3.6288×107)≈2.76(年),所以一个正常人一生的心跳次数能达到1亿次.四、师生互动,课堂小结1.师生共同回顾科学记数法的定义及表示方法.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴进行交流,加深对新学知识的理解与应用.【板书设计】1.布置作业:从教材“习题2.15”中选取.2.完成练习册中本课时的相应作业.本节课从学生认识科学记数法到运用科学记数法表示较大数,体会科学记数法的优点,培养学生爱思考、爱学习的习惯,提升学生运用知识的能力.三元一次方程组的解法知识要点:1.定义:含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.用代入消元法解三元一次方程组的步骤:①利用代人法消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求三元一次方程组的解.3.用加减消元法解三元一次方程组的步骤:①利用加减法消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求的三元一次方程组的解.一、单选题1.如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与( )个砝码C的质量相等.A.1 B.2 C.3 D.42.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25 B.15 C.12 D.143.方程组1231x y zx y zx y z-+=⎧⎪+-=⎨⎪-+=⎩的解为A.11xyz=⎧⎪=⎨⎪=⎩B.111xyz=⎧⎪=⎨⎪=⎩C.121434xyz⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩D .121434xyz⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩4.三元一次方程组321x y zx y zx y-+=-⎧⎪+-=⎨⎪+=⎩的解是()A.112xyz=-⎧⎪=⎨⎪=⎩B.124xyz=-⎧⎪=-⎨⎪=-⎩C.221xyz=-⎧⎪=⎨⎪=⎩D.227xyy=⎧⎪=-⎨⎪=-⎩5.三元一次方程组的解是()A.B.C.D.6.已知x=2,y=﹣1,z=﹣3是三元一次方程组72325mx ny znx y mzx y z k--=⎧⎪--=⎨⎪++=⎩的解,则m2﹣7n+3k的值为( )A.125 B.119 C.113 D.717.设x y z234==,则x2y3zx y z-+++的值为()A.27B.69C.89D.578.利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A.84cm B.85cm C.86cm D.87cm9.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为( )A.2 B.3 C.4 D.5二、填空题10.已知方程组123a bb ca c-=-⎧⎪-=⎨⎪+=⎩,则a=______________.11.“微信”已成为人们日常交流的一种重要工具,前不久在“微信群”中看到如下一幅图片,被群友们所热议.请你运用初中所学数学知识求出桌子的高度应是__________.12.方程组42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩的解是_____.13.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y,得一元一次方程2x=3,解得x =,从而得y=_____,z=____.14.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了12分钟,小轿车追上了货车,又过了8分钟,小轿车追上了客车,再过t分钟,货车追上了客车,则t=_____.三、解答题15.解方程组:34, 2312,6.x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩①②③16.已知方程组522718x y ax y a-=⎧⎨+=-⎩的解x、y互为相反数,求出a的值并求出方程组的解.17.一方有难八方支援,某市政府筹集抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型可供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车来运送,需运费8200元,则分别需甲、乙两种车各几辆?(2)为了节约运费,该市政府共调用16辆甲、乙,丙三种车都参与运送物资,试求出有几种运送方案,哪种方案的运费最省?其费用是多少元?答案1.B2.B3.C4.C5.D6.C7.C8.B9.D10.211.130 cm12.325 abc=⎧⎪=-⎨⎪=-⎩13.,. 14.4015.2,3,1. xyz=⎧⎪=⎨⎪=⎩16.a=274,9494xy⎧=⎪⎪⎨⎪=-⎪⎩.17.(1)需甲车型8辆,需车型10辆;(2)有二种运送方案:①甲车型6辆,乙车型5辆,丙车型5辆;②甲车型4辆,乙车型10辆,丙车型2辆;方案②运费最省,最少运费是7800元10。
2.10 科学记数法
4.把下列用科学记数法表示的数写成原来的数:
3.73×107= 37 300 000
;
-5.01×105= -501 000 2.51×104= 25 100 1.001×102= 100.1
; ; .
课件目录
首页
末页
2.10 科学记数法
5.在 1∶30 000 000 的地图上量得两地之间的距离是 2.5 cm,试用科学记数法表 示这两地间的实际距离.(单位:m)
类型之二 科学记数法表示的数转换成原数 下列用科学记数法表示的数,原来各是什么数?
(1)我国的国土面积约为 9.597×106 平方千米; (2)光的速度约为 3×108 m/s.
解:(1)9 597 000.(2)300 000 000. 【点悟】 仔细回忆一下用科学记数法表示一个数的过程,将这一过程倒过来考虑, 即可写出原来的数.
A.1.526×108 B.15.26×108 C.1.526×109 D.1.526×1010
课件目录
首页
末页
2.10 科学记数法
2.[2019·安徽]2019 年“五一”假日期间,我省银联网络交易总金额接近 161 亿
元.其中 161 亿用科学记数法表示为( B )
A.1.61×109
B.1.61×1010
解:帐篷数:2.5×107÷40=6.25×105(个); 这些帐篷的占地面积:6.25×105×100=6.25×107(平方米); 需要广场的个数:6.25×107÷5 000=1.25×104(个).
课件目录
首页
末页
2.10 科学记数法
分层作业
点击进入word链接
课件目录
首页
末页
2.10 科学记数法
2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版
3.解决实际问题:提供几个涉及有理数的实际问题,要求学生运用所学知识解决这些问题。
4.有理数在生活中的应用:鼓励学生观察和思考日常生活中涉及有理数的问题,如购物时的打折、优惠等,尝试用所学的有理数知识解决实际问题。
-参与数学竞赛:鼓励学生参加数学竞赛,提高学生的数学水平和竞赛能力,培养学生的团队合作精神。
教学反思与改进
回过头来看,今天的内容感觉学生掌握得怎么样?我在讲解有理数运算规则时,是否讲解得足够清晰?学生在课堂上的参与度如何?这些问题都需要我在课后进行反思。
首先,我意识到在讲解有理数的概念时,有些学生似乎还是有些模糊。下次我在讲解时,可以结合更多的实际例子,让学生更好地理解有理数在日常生活中的应用。此外,我也可以让学生在课堂上更多的互动,比如通过小组讨论,让学生互相解释有理数的定义,这样也许能帮助他们更清晰地理解。
作业反馈:
1.对于有理数的定义和分类的作业,我会检查学生是否能够准确识别各种类型的有理数,并针对存在的问题给出改进建议。
2.对于有理数的运算的作业,我会检查学生的计算是否正确,并指出存在的问题,如运算错误、计算粗心等,给出改进建议。
3.对于解决实际问题的作业,我会检查学生是否能够运用所学知识解决这些问题,并针对存在的问题给出改进建议。
-设计预习问题:围绕有理数的定义和分类,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解有理数的基本概念。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
科学记数法说课稿
《2.10科学记数法》说课稿紫薇中学党飞燕尊敬的各位领导、老师们:大家好!今天我说课的内容是义务教育课程标准实验教科书(北师大版)七年级上册第二章《有理数及其运算》中的第十节课《科学计数法》。
我将从教材分析、教学方法、学法指导、教学程序设计、教学反思等五个方面进行阐述。
一、教材分析1、教材的地位与作用:科学记数法是在学生学习了有理数的乘方知识后,安排了一节与现实世界中的数据(尤其是大数)相关的数学内容,一方面让学生感受现实宏观世界中的大数,培养学生《数学新课程标准》中的六大核心观念之一:数感。
另一方面又通过对较大数学信息作出合理的解释和推断时,学会用科学的、方便的方法表示大数,同时为今后用科学记数法表示微观世界中较小的数据奠定基础,并且在其他学科,如物理、化学等学科经常得以应用。
2、教学目标:根据新《课标》的要求和上述教材分析,结合学生的情况,我制定了以下的教学目标:知识目标:1、了解科学记数法的意义;2、学会用科学记数法表示大数;3、对用科学记数法表示的数进行简单的运算。
能力目标:1、积累数学活动经验,发展数感;2、学会与人合作、与人交流。
情感目标:1、感受数学与生活的密切联系,开拓学生视野,激发学生学习数学的2、通过用科学记数法方便、简洁地表示大数,感受数学的简洁美。
3、让学生通过对现实生活中的大数的背景知识的了解,培养学生的爱国热情与培养节约、环保等意识。
3、教学重、难点:重点:学会用科学记数法表示大数。
难点:探索归纳出科学记数法中指数与整数位间的关系。
二、教学方法:为了突出学生的主体性,使学生积极参与到数学活动中来,我使用多媒体采用了问题性教学模式,“以学生为主体,以问题为中心,以活动为基础,以培养分析问题和解决问题能力为目标”,体现直观性,在教学中以现实生活为素材,让学生感受到生活中处处有数学,激发学生兴趣,经历数学问题情境,掌握知识,学会技能。
三、学法指导:情境激趣合作探究尝试运用感悟提升实践生活的一个学习过程,让学生在愤悱中学习,在学习中合作,在合作中交流,在交流中学会。
2.10 科学记数法(分层练习)(解析版)
第二章 有理数及其运算2.10 科学记数法精选练习一、单选题1.(2020·湖北荆门·七年级期中)用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(精确到千分位)D .0.0502(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断.【详解】解:A.精确到0.1时,0.05019»0.1,故该选项正确;B.精确到百分位时,0.05019»0.05,故该选项正确;C.精确到千分位时,0.05019»0.050,故该选项错误;D.精确到0.0001时,0.05019»0.0502,故该选项正确.故选:C .【点睛】本题考查了近似数,解题关键是理解“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.2.(2022·河北·围场满族蒙古族自治县中小学教研室七年级期末)213000000用科学记数法可表示为( )A .621310´B .721.310´C .82.1310´D .92.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将213000000用科学记数法表示为82.1310´.故选:C .【点睛】本题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(2022·山西晋中·七年级期中)北斗卫星导航系统可在全球范围内全天候、全天时为各类用户提供高精度、高可靠的定位、导航、授时服务,其授时精度为10纳秒,1纳秒为1秒的十亿分之一,用科学记数法表示其授时精度为( )A .7110-´秒B .8110-´秒C .91010-´秒D .9110-´秒4.(2021·四川广元·七年级期末)中国扶贫事业在国际上被誉为“人类历史上最伟大的事件之一”,经过8年持续奋斗,如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽.通过实施易地扶贫搬迁,960多万建档立卡贫困群众从以前居住的土坯房,茅草房,危旧房搬进了宽敞明亮、安全牢固的新房,他们的“两不愁三保障”问题也得到了解决.960万用科学记数法可表示为( )A .96×105B .9.6×105C .9.6×106D .0.96×106【答案】C【分析】用科学记数法表示较大的数时,一般形式为10n a ´,其中11|0|a £<,n 为整数.【详解】解:960万=696000009.610=´.故选C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ´的形式,其中11|0|a £<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10³时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.5.(2022·贵州安顺·中考真题)贵州省近年来经济飞速发展,经济增长速度名列前茅,据相关统计,2021年全省GDP 约为196000000万元,则数据196000000用科学记数法表示为( )A .619610´B .719.610´C .81.9610´D .90.19610´【答案】C【分析】用科学记数法表示较大的数时,一般形式为10n a ´,其中11|0|a £<,n 为整数.【详解】解:8196000000 1.9610=´.故选C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ´的形式,其中11|0|a £<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10³时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.6.(2022·江苏南京·七年级期末)据统计,电影《长津湖》上映第16天,累计票房突破45.6亿元.将数据45.6亿用科学记数法表示为( )A .45.6×108B .4.56×109C .4.56×1010D .0.456×1011二、填空题7.(2022·黑龙江哈尔滨·九年级期末)2021年我国考研人数约为320万,将320万这个数用科学记数法表示为______.【答案】63.210´【分析】用科学记数法表示较大的数时,一般形式为10n a ´,其中11|0|a £<,n 为整数.【详解】解:63203200000 3.210==´万.故答案为:63.210´.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ´的形式,其中11|0|a £<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10³时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.8.(2022·黑龙江·哈尔滨市风华中学校阶段练习)2021年9月20日“天舟三号”在海南成功发射,这是中国航天工程又一重大突破,它的运行轨道距离地球393000米,数据393000米用科学记数法表示为___________米.【答案】53.9310´【分析】用科学记数法表示较大的数时,一般形式为10n a ´,其中11|0|a £<,n 为整数.【详解】解:5393000 3.9310=´.故答案为:53.9310´.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ´的形式,其中11|0|a £<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10³时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.9.(2022·云南红河·七年级期末)建水县是国家历史文化名城,位于云南省南部红河北岸部,截止2021年7月有常住人口约53万人,53万这个数字用科学记数法表示为______.【答案】55.310´【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:53万=530000=5.3×105,故答案为:5.3×105.【点睛】本题主要考查科学记数法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.解题关键是正确确定a 的值以及n 的值.10.(2021·江苏盐城·七年级阶段练习)一颗人造地球卫星运行的速度是7.9×103m/s ,一辆小汽车行驶的速度是79km/h .这颗人造地球卫星运行的速度是这辆小汽车行驶速度的_____倍.三、解答题11.(2022·全国·七年级专题练习)已知电路振荡1838526354次的时间为0.2s.(1)1s内电路振荡 次.(2)用四舍五入法将(1)中的结果精确到千万位,并用科学记数法表示.12.(2022·全国·七年级专题练习)有关资料表明,如果一个人在刷牙过程中一直开着水龙头,将浪费大约10杯水.(每杯水约250毫升)(1)如果一家三口都像这样刷牙,每人每天刷两次牙,那么一年要浪费多少毫升水?(一年按360天计算)(2)如果每立方米水按2元计算,那么(1)中的家庭一年要浪费多少钱?(1立方米=1×106毫升)(3)某城市约有100万个(1)中这样的家庭,如果所有的人在刷牙过程中都不关水龙头,那么一年要浪费多少毫升水?还按每立方米水2元计算,一年要浪费多少钱?(1立方米=1×106毫升)【答案】(1)5.4×106毫升(2)10.8元(3)1.08×107元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.(1)一、填空题1.(2021·湖北荆门·七年级期中)下列说法:①若ba=-1,则a,b互为相反数;②9596960用四舍五入法精确到万位,表示为9.60×106;③在有理数的加法中,两数的和一定比加数大;④较大的数减去较小的数,差一定是正数;⑤两数之差一定小于被减数;其中一定正确的是____(填序号).故答案为:①②④.【点睛】本题考查了相反数的概念,科学计数法的表示,有理数的加法和减法,理解和熟练相关的概念和运算法则是解题的关键.2.(2022·黑龙江·哈尔滨工业大学附属中学校期中)亚洲陆地面积约为44000000平方千米,将44000000用科学记数法表示为10na´的形式,则n=_________.3.(2022·江苏·曹甸初中七年级阶段练习)太阳光照射到地球表面所需的时间大约是5×102s,光的速度约是3×108m/s,地球与太阳之间的距离是_________m【答案】1.5×1011【分析】首先速度乘以时间,再把所得结果用科学记数法表示即可.【详解】解∶(3×108) × (5×102)=3×108×5×102= (3×5) × (108× 102 )=15×1010=1.5×1011(m).故答案为: 1.5×1011.【点睛】此题主要考查了用科学记数法表示较大的数,科学记数法表示数的一般形式为a×10",其中1≤|a|<10,确定a与n的值是解题的关键.4.(2022·湖南株洲·九年级期末)截止到2021年4月6日,电影《你好,李焕英》累计票房达到53.96亿元,进入全球前100名,同时贾玲成为了全球票房最高的女导演,其中数据53.96亿用科学记数法表示为______.5.(2021·江西景德镇·九年级期中)“陶溪川·CHINA 坊”国际陶瓷文化产业园是我市重点项目,其核心区域宇宙瓷厂总建筑面积约为18万2m ,这个数据用科学记数法可表示为_______2m .【答案】51.810´【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:18万2m =1800002m =51.810´2m ,故答案为:51.810´.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.二、解答题6.(2022·全国·七年级专题练习)光在真空中的传播速度约是3×108m/s ,光在真空中传播一年的距离称为光年.请你算算:(1)1光年约是多少千米?(一年以3×107s 计算)(2)银河系的直径达10万光年,约是多少千米?(3)如果一架飞机的飞行速度为900km/h ,那么光的速度是这架飞机速度的多少倍?(精确到万位)【答案】(1)9×1012千米(2)银河系的直径达10万光年,约是9×1017千米(3)1.2×106倍【分析】(1)根据题意列出算式,求出即可;(2)根据题意列出算式,求出即可;(3)先化单位,再根据题意列出算式,求出即可.(1)3×107×3×108=9×1015(m)=9×1012千米,答:1光年约是9×1012千米;(2)10万=100000100000×9×1012=9×1017(千米),答:银河系的直径达10万光年,约是9×1017千米;(3)3×108m/s=1.08×109km/h,1.08×109÷900=1.2×106,答:光的速度是这架飞机速度的1.2×106倍.【点睛】本题考查了科学记数法的应用,解此题的关键是能根据题意列出算式.7.(2022·全国·七年级专题练习)为节约水资源,某学校环保宣传小组作了一个调查,得到了如下的一组数据:我们所在的城市人口大约900万人,每天早晨起来刷牙,如果大家都有一个坏习惯,刷牙时都不关水龙头,那么我们每个人刷牙时可浪费75毫升的水.(1)按这样计算我们全市一天早晨仅这一项就浪费了多少升水?请用科学记数法表示;(2)如果我们用500毫升的纯净水瓶来装浪费的水,约可以装多少瓶?【答案】(1)6.75×105升(2)1350000瓶【分析】(1)先算出答案,再用科学记数法表示出来;(2)用浪费的水的总量÷每瓶水的容量即可得到瓶数.(1)解:9000000×75÷1000=675000=6.75×105升,按这样计算我们全市一天早晨仅这一项就浪费了6.75×105升水;(2)675000×1000÷500=1350000瓶,如果我们用500毫升的纯净水瓶来装浪费的水,约可以装1350000瓶【点睛】本题考查科学记数法与有效数字,熟练掌握科学计数法是解本题的关键.8.(2021·广东·深圳实验学校中学部七年级期中)“十•一”期间,某湿地公园在7天中每天游客的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化单位:万人+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2(1)若9月30日的游客人数记为a ,请用a 的代数式表示10月2日的游客人数?(2)请判断七天内游客人数最多的是哪天?请说明理由.(3)建湿地公园的目的一般有两个,一方面是给广大市民提供一个休闲游玩的好去处;另一方面是拉动内需,促进消费.若9月30日的游客人数为1万人,进园的人每人平均消费30元.问“十•一”期间所有在游园人员在湿地公园的总消费是多少元?(用科学记数法表示)【答案】(1)()2.4a +万人;(2)10月3日;(3)66.0610´元【分析】(1)根据9月30日的人数,由表格即可确定出10月2日的人数;(2)求出10月1到7日的人数,即可做出判断;(3)求出7天的人数之和,乘以30,即可得到结果【详解】解:(1)根据题意得: 1.60.8 2.4a a ++=+(万人),则10月2日的游客人数是()2.4a +万人;(2)7天的游客人数分别为 1.6a +万、 2.4a +万、 2.8a +万、 2.4a +万、 1.6a +万、 1.8a +万、0.6a +万,则7天内游客人数最多的是10月3日;(3)7天的游客人数分别为2.6万、3.4万、3.8万、3.4万、2.6万、2.8万、1.6万,则黄金周期间门标收入为:()2.6 3.4 3.8 3.4 2.6 2.8 1.630++++++´20.230=´606=(万元)66.0610=´元故答案为66.0610´元【点睛】此题考查了有理数的加法计算,正负数的实际应用,科学记数法的表示,正确理解题意,根据题意正确列式计算即可.。
《科学记数法》公开课教学设计【北师大版七年级数学上册】
第二章有理数及其运算2. 10 科学记数法教学设计在我们的生活和学习中,经常会遇到大数,表示起来也会很麻烦,怎样简单准确地表示大数是学生们渴望的,这时提出学生很易接受. 学会用科学记数法来表示大数,为学习后面的统计知识奠定基础.1.借助学生所熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.通过收集数据、整理数据、分析数据的活动,培养学生应用数学的意识和能力;培养学生与人合作,并能与人交流思维的意识.【教学重点】学会用科学记数法来表示大数【教学难点】学会用科学记数法来表示大数教师准备:相关资料.学生准备:课前调查一些有关祖国人口、资源、土地的一些数据资料,计算器.一、创设情境,引入新知我们伟大的祖国具有悠久的文明史,作为一个中国人,我们应为她而骄傲.课前,同学们已经对有关我国的人口、资源等做了一系列的调查,同学们查到了什么资料呢?谁愿意起来展示一下你的调查成果?学生1:我在图书馆里查到了我国第五次人口普查时,我国人口大约为1300000000人.学生2:我从地图上查到了我国陆地面积约为9597000千米.学生3:我从电脑上查到了我国石油储量为240亿桶.通过刚才几位同学的反馈,你发现了什么?(学生沉思)学生1:我发现我国的人口众多,资源丰富.学生2 :我发现这些数据都比较大,书写和读时都比较麻烦.教师点拨:同学们的观察都是正确的,那么有没有一种比较简单的方法来表示这些比较大的数呢?(学生沉思)二、合作交流,探究新知1. 102=__;104=____;107=_____;10n=___?以10为底的幂,10的指数n与运算结果中的0的个数相同,即:比结果的整数位数少1.2. 用10n的形式表示:100 000=__;1 000 000=__;1 000 000 000=__.试一试:一般地,一个大于10 的数可以表示成a×10n的形式,其中1≤a<10, n 是正整数,这种记数方法叫做科学记数法.小组讨论:科学计数法中的 a 怎样确定, n 怎样确定?科学记数法中10 的指数n 值的确定法:①比原整数位数少1 (当原数的绝对值≥ 10时);②由小数点的移动位数来确定.三、应用新知1. 用科学记数法表示下列各数①32 000②384 000 000③94100.00④-810 000 ⑤10 000 000⑥-223 000⑦二千三百四十六万⑧一亿五千万2. 下列科学记数法表示的数的原数是什么?①1×105②4×103③8.5×106④7.04×102⑤3.96×108⑥3.6×1033. 仔细观察找出下列错误的地方,并纠正:①90000=94②某县境内森林面积达1 000 000亩,1 000 000亩用科学记数法表示为:1×107亩;③“神州七号”的入轨飞行速度为每小时21700千米.21700千米用科学记数法表示为:2.17×104米;④地球上的陆地面积约为149 000 000平方千米,149 000 000平方千米用科学记数法表示为:14.9×107平方千米;⑤陆地上最低处是位于亚洲西部的死海,海拔为-392米;-392米用科学记数法表示为0.392×103米.四、巩固新知问题:(1)天安门广场大约可以容纳多少位受检阅的官兵?(每个人大约占0.5平方米)(2)如果1 亿名群众排成一个方阵,那么所占用的场地相当于几个天安门广场?计算(结果用科学记数法表示):①涉及科学记数法的加、减、乘、除、乘方的简单混合运算,可考虑数据还原计算;也可考虑应用乘法运算律和乘方的意义计算.②最后结果要注意a×10n中1 ≤ a < 10.五、归纳小结回顾本节内容,并请学生回答下列问题:1. 本节课学习了哪些主要内容?2. 本节课你有什么收获和体会?3. 对本节课所学知识你还有哪些疑惑?略.◆教学反思。
初中数学北师大七年级上册(2023年修订) 有理数及其运算科学记数法
2.10科学记数法教案【学习目标】借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数。
【学习重难点】重点:能用科学记数法表示大数难点:对科学记数法法则的理解【学习活动】◆学习助跑:齐读关于《阳明滩大桥》的相关信息:阳明滩大桥位于我国黑龙江省哈尔滨市松花江上,是一座国内跨度最大的钢—砼组合梁结构自锚式悬索桥,松花江流域最长的跨江大桥。
它全长7130米,其中桥梁长度6464米,桥宽包括双向八车道和两侧各2米人行道共计41米,桥面总面积236000平方米,相当于33个标准足球场面积。
全桥共使用混凝土近400000万立方米,使用各种钢材60000000千克,钢梁6600000千克,缆索1450000千克。
问题:可以用一种简单的方法来表示这些读和写都显得困难的大数吗?◆探究之旅1、10n的特征计算102,103,104,….并讨论102表示什么?指数与运算结果中的0的个数有什么关系?与运算结果的数位有什么关系?10n呢?◆暂停之思一般地,10的n次幂,在1的后面有个0。
2、把下面各数写成10的幂的形式:1000,10000000,10000000000◆暂停之思一般地,在1的后面有几个0,就表示成10的几次幂。
3、我们可以借助10的幂的形式来表示大数。
比如:1300000000=1.3×109,69600000000=6.96×1010,300000000=,98000000=,10100000000=,61000000=。
◆学以致用请用上面这种方法表示我们开始问题中的大数。
7130=,6464=,236000=,400000=,60000000=,6600000=,1450000=.◆暂停之思科学记数法:一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫科学记数法.注意:从定义中,我们可以发现a的范围是___________;n是____________◆学以致用例1 科学记数法表示下列各数:(1)70100;(2)-1 200 000;(3)100万(4)44◆暂停之思方法点拨:用科学记数法表示一个n位数时,只须把小数点向移动位,最后一个非0数字后的0都不写。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版七年级数学上册 第二章 有理数及其运算 2.10
科学记数法学案(新版)北师大版
四、课堂探究——质疑
生
活中还常常遇到比100万更大的数
2019版七年级数学上册 第二章 有理数及其运算 2.10 科学记数法学案(新版)
北师大版
四、课堂探究——
质疑解疑、合作探究 探究点1:用科学记数法表示数
生活中还常常遇到比100万更大的数
有简单的表示方法吗?
310表示什么?指数与运算结果中的0的个数有什么关系?与运算结果的数位有什
么关系?
我们可以借用乘方的形式表示大数如: 1300 000 000表示成1.3⨯109 696 000 000表示成6.96⨯108
300 000 000表示成3⨯108
课题 §2.10 科学记数法
主备 审阅 七年级数学组
时间
课型
新 授
授课教师
科学记数法的定义:把一个大于10的数,写成10n
a 的形式,其中1≤a<10,n是_______,这种方法叫做
科学记数法.
例题:1.下列各数中,属于科学记数法表示的有()
A.5
.0⨯D.13
⨯
10
2.510
35
20.710
⨯B.5
0.710
⨯C.6
2. 用科学记数法表示下列各数.
(1) 5 000 000=___________,(2) 100.2 =___________,
(3) 503 000=___________,(4) -345 000 000=_ .
练习::1.用科学记数法表示下列各数正确的是()
A.63000=63×103B.75300=753×103
C.1300000000=1.3×109D.25746300=257463×102
2.用科学记数法表示下列各数:
(1)400320=_______________,(2)-741.25=___________,
(3)7200.40=___________,(4)406000= .
探究点2:用科学记数法表示的数与原数互化
下列科学记数法表示的数的原数是什么?
⑴3.4×104= ,⑵6×105= .
原数整数的位数与10的指数n有什么关系?
例题:写出下列科学记数法表示的数的原数
⑴ 3.5×107=•___________,⑵2.986 ×104=______,⑶5.9406×102=________.
练习:下列用科学记数法表示的数,原来各是什么数?
⑴北京故宫的占地面积约为7.2 ×105__________.
⑵人体中约有2.5×1013个红细胞____________________.
⑶全球每年大约有5.77×1014米3的水从海洋和陆地转化为大气中的水汽__________________.
探究点3:科学记数法在生活中的应用
⑴107中学校图书馆某个书架所存放图书的数量为200册,中国国家图书馆所藏的书为2700万册,需要
多少这样的书架?用科学记数法表示结果.
⑵本校的人数大约为1350人,如果每人借阅10本,那么中国国家图书馆所藏的书大约可以供多少所这样
学校的学生借阅?用科学记数法表示结果.
例题:在“迎奥运,全民健身”活动中,据不完全统计,截至5月1日北京市延庆县参与的人数累计达35000人,这个数用科学记数法表示正确的是()
A.5
10
5.3⨯C.3
35⨯
5.3⨯B.4
10
10
D.6
35
.0⨯
10
练习:
1.2011年2月27日国务院总理温家宝提出:“我们计划在今后五年,新建保障性住房3600万套。
” 3600万这个数用科学记数法可表示为()
A.36×102B.3.6×103C.3.6×107D.3.6×108
2.(xx沈阳)据沈阳市住房公积金管理会透露,今年我市新增住房公积金11.2亿元,其中11.2亿元可用科
学记数法表示为()
A.11.2×108元B.1.12×109元C.11.2×1010元D.11.2×107元3.北京时间2010年10月1日长征三号丙火箭在位于中国四川的西昌卫星发射中心发发射,把嫦娥二号探月卫星成功送入太空,“嫦娥二号”所携带的CCD立体相机的空间分辨率小于10米,并将在距月球约100公里的轨道上绕月运行,较“嫦娥一号”的距月球200公里高的轨道要低,也就是卫星轨道距月球表面又近了一倍,“看得更加精细”,“200公里”用科学计数法表示为( )
A.2.00×102米B.2.00×105米C.200×103米D.2.00×104米
五、巩固提升——(有效训练、反馈矫正)1.10 490 000用科学记数法表示______________.
2.把数据149 000 000用科学记数法表示为
____________.
3.5.17×104的原数是________.
4.(xx宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨.这个数据用科学记数法表示为()
A.6.75×104
B.67.5×103
C.0.675×105
D.6.75×10-4 5.(xx嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数2500万用科学计数法表示为()
A.2.5×108
B.2.5×107
C.2.5×106
D.25×106
6.(xx潍坊)xx年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达865.4亿元.数据“865.4亿元”用科学计数法可表示为()元.
A.8
10
865⨯ B.9
10
65
.8⨯
C.10
8.65410
⨯ D.11
10
865
.0⨯7.(xx南宁)2013年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行速度约每秒7900米,将数7900用科学记数法表示,表示正确的是()
A.0.79×104
B.7.9×104
C.7.9×103
D.0.79×103 8.(xx台州)三门湾核电站的1号机组将于xx年10月建成,其功率将达到1250000千瓦,其中1250000可用科学记数法表示为()
A.4
10
125⨯ B.5
10
5.
12⨯
C.6
10
25
.1⨯ D.7
10
125
.0⨯
9.(xx宜宾)据宜宾市旅游局公布的数据,今年“五
一”小长假期间,全市实现旅游总收入
330000000元.将330000000用科学记数法表示为____________.
10.(xx牡丹江)据xx年黑龙江省垦区交通运输工作会议消息,今年垦区计划投资27亿元用于公路建设,将为全垦区社会经济发展提供有力支撑.27亿元用科学记数法表示为_________元.11.(xx黄石)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间
平均距离,即1.4960亿千米,用科学记数法
表示1个天文单位应是____________米.
如有侵权请联系告知删除,感谢你们的配合!。