平行线的性质的练习题
(完整版)平行线及其判定与性质练习题
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
初二数学平行线的性质试题
初二数学平行线的性质试题1.下列说法中,不正确的是()A.同位角相等,两直线平行;B.两直线平行,内错角相等;C.两直线被第三条直线所截,同旁内角互补;D.同旁内角互补,两直线平行【答案】C【解析】平行线的判定定理有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;平行线的性质定理有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;根据平行线的判定和性质定理依次判断各项即可。
A.同位角相等,两直线平行,本选项正确;B.两直线平行,内错角相等,本选项正确;C.两直线被第三条直线所截,同旁内角互补,缺少平行线的前提,故本选项错误;D.同旁内角互补,两直线平行,本选项正确;故选C.【考点】本题考查的是平行线的判定和性质点评:解答本题的关键是掌握好平行线的判定和性质.2.如图,若AB∥CD,直线EF分别与AB、CD相交,则()A.∠3+∠2-∠1=180° B.∠1=∠3-∠2C.∠1+∠2+∠3=180° D.∠1-∠2+∠3=180°【答案】A【解析】先根据平行线的性质得出∠3=∠4,根据∠4+∠5=180°可得出∠3+∠5=180°,由三角形内角与外角的关系即可得出结论.如图所示:∵AB∥CD,∴∠3=∠4,∵∠4+∠5=180°,∴∠3+∠5=180°…①,∵∠1+∠5=∠2…②,∴∠5=∠2-∠1…③,把③代入①得,∠3+∠2-∠1=180°.故选A.【考点】本题考查的是三角形内角与外角的关系及平行线的性质点评:解答本题的关键是熟知以下知识:①两直线平行,同位角相等;②三角形的一个外角等于与之不相邻的两个内角的和.3.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个【答案】C【解析】由AC⊥BC可得∠ACB=90°,则∠CAB+∠ABC=90°,再根据两直线平行,内错角相等,对顶角相等,即可得到与∠CAB互余的角的个数。
平行线的性质判定专项练习40题
平行线的性质判定专项练习40题1.已知BE平分∠ABC,且∠1=∠2,要证明BC∥DE。
2.在图中,AB⊥BC,BC⊥CD,BF和CE是两条射线,且∠1=∠2,需要说明XXX。
3.在图中,AB⊥BC,且∠1+∠2=90°,∠2=∠3,要证明BE∥DF。
4.在图中,OP平分∠MON,A、B分别在OP、OM上,且∠BOA=∠BAO,需要判断AB是否平行于ON。
若平行,需要给出证明过程;若不平行,需要说明理由。
5.已知在图中,B、D、A在一直线上,且∠D=∠E,∠XXX∠D+∠E,BC是∠ABE的平分线,要证明DE∥BC。
6.在图中,直线AB、CD与直线EF相交于E、F,已知∠1=105°,∠2=75°,需要证明AB∥CD。
7.已知∠D=∠A,∠B=∠FCB,需要证明ED∥CF。
8.已知∠1的度数是它补角的3倍,∠2等于45°,需要判断AB是否平行于CD。
理由需要说明。
9.在图中,已知AC∥ED,且EB平分∠AED,∠1=∠2,需要证明AE∥BD。
10.在图中,AC⊥AE,BD⊥BF,且∠1=35°,∠2=35°,需要证明AE∥BF。
11.在△ABC中,点D在AB上,且∠XXX∠A,∠BDC的平分线交BC于点E。
需要证明DE∥AC。
12.已知∠XXX∠A+∠C,需要说明AB∥CD。
13.在图中,已知BE是∠B的平分线,交AC于E,且∠1=∠2,需要判断DE是否平行于BC。
理由需要说明。
14.已知∠C=∠D,且DB∥EC。
需要判断AC是否平行于DF。
理由需要说明。
15.直线AB、CD被EF所截,且∠3=∠4,∠1=∠2,XXX。
需要证明AB∥CD。
16.已知AB∥CD,且∠1=∠2,需要证明BE∥CF。
17.已知∠BAD=∠DCB,且∠1=∠3,需要证明AD∥BC。
18.在图中,AD是三角形ABC的角平分线,DE∥CA,并且交AB于点E,且∠1=∠2.需要判断DF是否平行于AB。
2.3.1 平行线的性质(作业)-2020-2021学年七年级数学下(北师大版)
2.3.1 平行线的性质一、选择题。
1.一副三角板如图摆放,且AB∥CD,则∥1的度数为()A.80°B.60°C.105°D.75°2.如图,AB∥CD,∥1=65°,∥2=35°,则∥B=()A.20°B.25°C.30°D.35°3.如图,将直尺与含30°角的直角三角板叠放在一起,若∥1=140°,则∥2的度数是()A.105°B.100°C.110°D.120°4.如图,直线a∥b,直线c与直线a,b分别交于A,B两点,AC∥AB于点A,交直线b于点C,如果∥1=58°,那么∥2的度数为()A.32°B.42°C.58°D.122°5.如图,已知直线AB∥CD,∥GEB的平分线EF交CD于点F,∥1=30°,则∥2等于()A.135°B.145°C.155°D.165°6.如图,AB∥DE,BC∥EF,∥B=50°,则∥E的度数为()A.50°B.120°C.130°D.150°二、填空题。
7.∥1的两边与∥2的两边分别平行,且∥2是∥1的余角的4倍,则∥1=.8.如图,AB∥CD,∥A=40°,∥C=30°,则∥AEC的度数为°.9.如图,已知AB∥CD∥EF,∥1=60°,∥3=20°,则∥2=.10.如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C',D'的位置上,EC'交AD于点G.已知∥EFG=58°,那么∥BEG=度.11.已知∥MON=40°,OE平分∥MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D,设∥OAC=x°,若AB∥ON,当x=时,使得∥ADB中有两个相等的角.三、解答题。
七年级数学上册《第五章 平行线的性质》同步练习题及答案(华东师大版)
七年级数学上册《第五章平行线的性质》同步练习题及答案(华东师大版)班级姓名学号一、选择题1.如图,已知直线a∥b,∠1=60°,则∠2的度数是( )A.45°B.55°C.60°D.120°2.一条公路两次转弯后又回到到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么∠C应是( )A.40°B.140°C.100°D.180°3.如图,已知直线AB∥CD,当点E在直线AB与CD之间时,下列关系式成立的是( )A.∠BED=∠ABE+∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABED.∠BED=2∠CDE-∠ABE4.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°6.如图,DE∥AB,∠CAE=13∠CAB,∠CDE=75°,∠B=65°则∠AEB是 ( )A.70°B.65°C.60°D.55°7.如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( )A.18°B.126°C.18°或126°D.以上都不对8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个二、填空题9.如图,a∥b,若∠1=46°,则∠2= °.10.如图,已知l1∥l2,直线l与l1,l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=________°.11.已知一副三角板如图1摆放,其中两条斜边互相平行,则图2中∠1=________.12.如图,DB平分∠ADE,DE∥AB,∠CDE=80°,则∠ABD= ,∠A= .13.如图,直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2= °.14.如图1是长方形纸袋,∠DEF=a,将纸袋沿EF折叠成图2,在沿BF折叠成图3,用表示图3中∠CFE的大小为_________三、解答题15.如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.16.如图,已知AB∥CD,∠1:∠2:∠3=1:2:3.求证:BA平分∠EBF.下面给出证法1.证法1:设∠1、∠2、∠3的度数分别为x,2x,3x.∵AB∥CD∴2x+3x=180°,解得x=36°∴∠1=36°,∠2=72°,∠3=108°∵∠EBD=180°∴∠EBA=72°∴BA平分∠EBF请阅读证法1后,找出与证法1不同的证法2,并写出证明过程.17.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.18.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.答案1.C2.B3.A4.A.5.C6.B7.C8.D9.答案为:46.10.答案为:20.11.答案为:15°.12.答案为:50°,80°.13.答案为50.14.答案为:180°﹣3α.15.解:(1)平行因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义) 所以∠1=∠CDB所以AE∥FC( 同位角相等两直线平行)(2)平行因为AE∥CF所以∠C=∠CBE(两直线平行, 内错角相等)又∠A=∠C所以∠A=∠CBE所以AF∥BC(两直线平行,内错角相等)(3) 平分因为DA平分∠BDF所以∠FDA=∠ADB因为AE∥CF,AD∥BC所以∠FDA=∠A=∠CBE,∠ADB=∠CBD所以∠EBC=∠CBD.16.证明:∵AB∥CD∴∠2+∠3=180°∵∠1:∠2:∠3=1:2:3∴设∠1=x°,∠2=2x°,∠3=3x°∴2x+3x=180解得:x=36∴∠1=36°,∠2=72°∴∠EBA=180°-36°-72°=72°∴BA平分∠EBF.17.解:如图,延长BE交CD的延长线于点F∵AB∥CD[已知]∴∠ABE+∠EFC=180°[两直线平行,同旁内角互补]又∵∠ABE=120°,[已知]∴∠EFC=180°﹣∠B=180°﹣120°=60°,[两直线平行,同旁内角互补] ∵∠DCE=35°∴∠BEC=∠DCE+∠EFC=35°+60°=95°18.解:(1)∵AE∥OF∴∠FOB=∠A=30°∵OF平分∠BOC∴∠COF=∠FOB=30°∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG∴∠FOG=90°∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°∵∠AOD=∠COB=∠COF+∠FOB=60°∴∠AOD=∠DOG ∴OD平分∠AOG.。
七年级下册数学同步练习题库:平行线的性质(选择题:容易)
平行线的性质(选择题:容易)1、下列所示的四个图形中,∠1和∠2是同位角的是()A.②③ B.①②③ C.①②④ D.①④2、如图,直线,被直线所截,,,若,则∠1等于()A.80° B.70° C.60° D.50°3、如果两个角的两边分别平行,且其中一个角比另一个角的4倍少,那么这两个角是()A.和 B.都是C.和或都是 D.以上都不对4、如图,B,=20,则=()A.20 B.22 C.30 D.455、如果两个角的两边分别平行,且其中一个角比另一个角的4倍少,那么这两个角是()A.和 B.都是C.和或都是 D.以上都不对6、如图,B,=20,则=()A.20 B.22 C.30 D.457、下列命题正确的是A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,同旁内角相等D.两直线平行,内错角相等8、下列语句中,不是命题的是()A.锐角小于钝角 B.作∠A的平分线C.对顶角相等 D.同角的补角相等9、如图,∠1=∠B,∠2=20°,则∠D=().A.20° B.22° C.30° D.45°10、如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30° B.45° C.60° D.90°11、如图,AB∥CD,CB∥DE,若∠B=72°,则∠D的度数为()A.36° B.72° C.108° D.118°12、如图,直线AB、CD被直线EF所截,AB∥CD,∠1=110°,则∠2等于()A.65° B.70° C.75° D.80°13、如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52° B.38° C.42° D.60°14、过一点画已知直线的平行线()A.有且只有一条 B.不存在C.有两条 D.不存在或有且只有一条15、下面3个命题:①同旁内角互补;②两直线平行,内错角相等;③在同一平面内,垂直于同一直线的两直线互相平行,其中真命题为()A.① B.③ C.②③ D.②16、如图,BC⊥AE于点C,CD∥AB,∠1=55°,则∠B等于()A.35° B.45° C.55° D.65°17、已知下列命题:①相等的角是对顶角;②邻补角的平分线相互垂直;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两个直线平行.其中真命题的个数是()A.个 B.个 C.个 D.个18、下列命题中,①对顶角相等.②等角的余角相等.③若,则.④同位角相等.其中真命题的个数有()A.1个 B.2个 C.3个 D.4个19、如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF的度数为().A.55° B.60° C.65° D.70°20、如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=()A.25° B.30° C.35° D.45°21、下列命题中:①有理数和数轴上的点一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个22、如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为()A.50° B.60° C.70° D.80°23、某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A.30° B.45° C.60° D.75°24、如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.40° B.20° C.80° D.60°25、如图:AB∥DE,∠B=30°,∠C=110°,∠D的度数为()A.115° B.120° C.100° D.80°26、如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A.70° B.75° C.80° D.85°27、如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()A.38° B.42° C.48° D.58°28、如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30° B.35° C.40° D.50°29、如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等 B.互余或互补 C.互补 D.相等或互补30、如图。
平行线的性质习题精选解答题专项训练
平行线的性质习题精选解答题专项训练解答题1.如图,已知直线EF与AB、CD都相交,且AB∥CD,说明∠1=∠2的理由.理由:∵EF与AB相交(已知)∴∠1=∠3( )∵AB∥CD(已知)∴∠2=∠3( )∴∠1=∠2( )2.已知,如图,AD∥BC,∠BAD=∠BCD,请说明AB∥CD的理由.理由:∵AD∥BC(已知)∴∠1=( )( )又∵∠BAD=∠BCD(已知)∴∠BAD-∠1=∠BCD-∠2( )即:∠3=∠4∴AB∥CD( )3.如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
请你认真完成下面的填空。
证明:∵∠A=∠F (已知)∴AC∥DF ()∴∠D=∠()又∵∠C=∠D (已知),∴∠1=∠C (等量代换)∴BD∥CE()。
4.如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B +∠F =180°。
请你认真完成下面的填空。
证明:∵∠B=∠BGD (已知)∴AB∥CD ()∵∠DGF=∠F;(已知)∴CD∥EF ()∵AB∥EF ()∴∠B +∠F =180°()。
5.已知:如图、BE//CF,BE、CF分别平分∠ABC和∠BCD求证:AB//CD证明:∵BE、平分∠ABC(已知)∴∠1=21∠∵CF平分∠BCD()∠2=21∠()∵BE//CF(已知)∴∠1=∠2()∴21∠ABC=21∠BCD()即∠ABC=∠BCD∴AB//CD()6.如图,已知:∠BCF=∠B+∠F。
求证:AB//EF证明:经过点C作CD//AB∴∠BCD=∠B。
()∵∠BCF=∠B+∠F,(已知)∴∠()=∠F。
()∴CD//EF。
()∴AB//EF()7.已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。
求证:AD∥BE。
证明:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠ =∠∴∠3=∠()∴AD∥BE()8.如图,已知、BE平分∠ABC,∠CBE=25°,∠BED=25°,∠C=30°,求∠ADE与∠BEC的度数。
平行线的性质 同步提升训练(解析版)
1.4平行线的性质同步提升训练一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•临洮县期中)将直尺和三角板按如图所示的位置放置.若∠1=50°,则∠2度数是()A.60°B.50°C.40°D.70°【分析】先根据平行线的性质求出∠3的度数,再由三角形内角和定理求出∠2的度数即可.【解答】解:∵直尺的两条边互相平行,∠1=50°,∴∠3=∠1=50°,∵∠4=60°,∴∠2=180°﹣∠4﹣∠3=180°﹣60°﹣50°=70°.故选:D.2.(2022秋•碑林区校级月考)如图,a∥b.∠1=58°,则∠2的度数为()A.58°B.112°C.120°D.132°【分析】根据平行线性质得出∠1=∠3,根据对顶角相等即可得出答案.【解答】解:如图,∵a∥b,∠1=58°,∴∠3=∠1=58°,∴∠2=∠3=58°,故选:A.3.(2022秋•龙岗区期末)如图,已知AB∥CD,BC平分∠ACD,∠B=35°,E是CA延长线上一点,则∠BAE的度数是()A.35°B.60°C.65°D.70°【分析】由平行线的性质可得∠BCD=∠B=35°,∠BAE=∠DCE,再由角平分线的定义求得∠DCE=2∠BCD,即可求∠BAE的度数.【解答】解:∵AB∥CD,∠B=35°,∴∠BCD=∠B=35°,∠BAE=∠DCE,∵BC平分∠ACD,∴∠DCE=2∠BCD=70°,∴∠BAE=70°.故选:D.4.(2022秋•宜兴市月考)如图,将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,则∠DGC'的度数为()A.20°B.25°C.30°D.40°【分析】根据折叠得出∠OGC=∠OGC′=100°,求出∠OGD,即可求出答案.【解答】解:∵将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,∴∠OGC=∠OGC′=100°,∴∠OGD=180°﹣∠OGC=80°,∴∠DGC'=∠OGC′﹣∠OGD=20°,故选:A.5.(2022•项城市校级模拟)如图,AB∥CD,∠MNC=138°,MP平分∠BMN,则∠MPN的度数为()A.59°B.48°C.54°D.69°【分析】首先根据AB∥CD,∠MNC=138°,求出∠MNC=∠BMN=138°,再根据MP平分∠BMN,求出∠BNP的度数.【解答】解:∵AB∥CD,∠MNC=138°,∴∠MNC=∠BMN=138°,∵MP平分∠BMN,∴∠BNP=BMN=69°,∵AB∥CD,∴∠BMP=∠MPN=69°.故选:D.6.(2022•博望区校级一模)如图是一款手推车的平面示意图,其中AB∥CD,∠1=24°,∠2=76°,则∠3的度数为()A.104°B.128°C.138°D.156°【分析】先根据平行线性质求出∠A,再根据邻补角的定义求出∠4,最后根据三角形外角性质得出∠3=∠4+∠A.【解答】解:如图:∵AB∥CD,∠1=24°,∴∠A=∠1=24°,∵∠2=76°,∠2+∠4=180°,∴∠4=180°﹣∠2=180°﹣76°=104°,∴∠3=∠4+∠A=104°+24°=128°.故选:B.7.(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.8.(2021秋•盐湖区校级期末)如图,木棒AB、CD与EF分别在G、H处用可旋转的螺丝铆住,∠EGB=100°,∠EHD=80°,将木棒AB绕点G逆时针旋转到与木棒CD平行的位置,则至少要旋转()A.10°B.20°C.30°D.40°【分析】由平行线的判定“同位角相等,两直线平行”可知,∠EGB=∠EHD时,AB∥CD,即∠EGB需要变小20°,即将木棒AB绕点G逆时针旋转20°即可.【解答】解:当∠EGB=∠EHD时,AB∥CD,∵∠EGB=100°,∠EHD=80°,∴∠EGB需要变小20°,即将木棒AB绕点G逆时针旋转20°.故选:B.9.(2021秋•霍州市期末)如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200°B.210°C.220°D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.10.(2021秋•晋中期末)如图,已知AB∥CD,点F,G分别在直线AB,CD上,∠BFE的平分线FQ所在直线与∠CGE的平分线相交于点P,若∠BFE=50°,∠CGE=140°,则∠GPQ的度数为()A.30°B.40°C.45°D.50°【分析】根据平行线的性质可得∠BMG=∠CGP,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF﹣∠PFM=∠CGP﹣∠BFQ,代入计算即可得到答案.【解答】解:如图:∵AB∥CD,∴∠BMG=∠CGP,∵FQ平分∠BFE,GP平分∠CGE,∠BFE=50°,∠CGE=140°,∴∠BFQ=∠BFE=25°,∠CGP=∠CGE=70°,∴∠GPQ=∠BMG﹣∠PFM=∠CGP﹣∠BFQ=70°﹣25°=45°.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2021秋•赣县区期末)如图,AB∥CD,∠B=42°,∠A+10°=∠1,则∠ACD=64°.【分析】利用平行线的性质解答即可.【解答】解:∵AB∥CD,∵∠DCB+∠B=180°,∵∠B=42°,∴∠DCB=138°,即∠DCA+∠1=138°.∴∠1=138°﹣∠DCA.∵AB∥CD,∴∠DCA=∠A,∴∠1=138°﹣∠A.∵∠A+10°=∠1,∴∠A+10°=138°﹣∠A,∴∠A=64°,∴∠ACD=∠A=64°.故答案为:64°.12.(2021秋•社旗县期末)如图,已知AB∥CD,∠A=30°,∠B=71°,则∠BEF的度数是101°.【分析】利用平行线的性质求出∠AEC,再由对顶角相等得到∠DEF,从而可计算∠BEF.【解答】解:∵AB∥CD,∴∠AEC=∠A=30°,∠BED=∠B=71°,∴∠DEF=∠AEC=30°,∴∠BEF=∠BED+∠DEF=71°+30°=101°.故答案为:101°.13.(2021秋•叙州区期末)如图,AB∥CD,MF与AB、CD分别交于点E、F,∠CFE的平分线FG交AB于点G,若∠MEG=140°,则∠EGF的度数为70°.【分析】根据两直线平行同位角相等可得∠CFE=140°,根据角平分线的定义可得∠CFG=70°,再根据两直线平行内错角相等可得∠EGF=70°.【解答】解:∵FG平分∠CFE,∴∠CFG=∠EFG,∵AB∥CD,∴∠CFE=∠MEG,∵∠MEG=140°,∴∠CFE=140°,∴∠CFG=∠EFG=70°,∵AB∥CD,∴∠EGF=∠CFG=70°.故答案为:70°.14.(2022秋•肇源县期中)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F的度数50°.【分析】连接BC,由平行线的性质得∠ABC=∠BCD,由∠1=∠2得∠EBC=∠BCF,根据内错角相等,两直线平行可得EB∥CF,再根据两直线平行,内错角相等即可求解.【解答】解:连接BC,∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠BCF,∴EB∥CF,∴∠F=∠E=50°.故答案为:50°.15.(2022秋•香坊区校级期中)若∠1和∠2的两边互相平行,且∠1比∠2的3倍少36度,则∠2=18°或54°.【分析】由∠1和∠2的两边互相平行,可得此两角互补或相等,然后设∠2的度数为x,分别从两角相等或互补去分析,由∠1比∠2的3倍少36度列方程求解即可求得答案.【解答】解:∵∠1和∠2的两边互相平行,∴∠1和∠2互补或相等,设∠2的度数为x,则∠1=3x﹣36°,①当∠1和∠2相等时,则x=3x﹣36°,解得:x=18°,②当∠1和∠2互补时,则x+3x﹣36°=180°,解得:x=54°,综上,∠2=18°或54°,故答案为:18°或54°.16.(2021秋•盘州市期末)如图,已知AB∥CD,易得∠1+∠2+∠3=360°,∠1+∠2+∠3+∠4=540°,根据以上的规律求∠1+∠2+∠3+…+∠n=(n﹣1)×180°.【分析】由∠1+∠2+∠3=2×180°=360°,∠1+∠2+∠3+∠4=3×180°=540°,可得一般规律为∠1+∠2+∠3+…+∠n=(n﹣1)×180°.【解答】解:∵∠1+∠2+∠3=360°,∠1+∠2+∠3+∠4=540°,∴∠1+∠2+∠3=2×180°=360°,∠1+∠2+∠3+∠4=3×180°=540°,∴∠1+∠2+∠3+…+∠n=(n﹣1)×180°,故答案为:(n﹣1)×180°.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•黄岛区校级期末)如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°(垂直的定义)又,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)∴∠AFB=∠AOE(两直线平行,同位角相等)∴∠AFB=90°(等量代换)又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=(90)°又∵∠A+∠2=90°(已知)∴∠A=∠AFC(同角的余角相等)∴AB∥CD.(内错角相等,两直线平行)【分析】先证CE∥BF得∠AOE=∠AFB,由AF⊥CE得∠AOE=∠AFB=90°,利用平角定义得出∠AFC+∠2=90°,结合∠A+∠2=90°可以得出∠AFC=∠A,从而得证.【解答】证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.18.(2022秋•李沧区期末)如图,AB∥CD,直线EF分别与直线AB、直线CD相交于点E,F,点G在CD上,EG平分∠BEF.若∠EGC=58°,求∠EFD的度数.【分析】根据两直线平行,内错角相等求出∠BEG的度数,再根据角平分线的定义得到∠FEG,然后利用平行线的性质可得解.【解答】解:∵AB∥CD,∠EGC=58°,∴∠BEG=∠EGC=58°,∵EG平分∠BEF,∴∠BEF=2∠BEG=116°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=180°﹣116°=64°.19.(2022秋•福田区期末)如图,已知点D是△ABC中BC边上的一点,DE⊥AC于点E,∠AGF=∠ABC,∠1+∠2=180°.(1)求证:DE∥BF;(2)若AF=3,AB=4,求BF的长.【分析】(1)根据平行线的判定方法可得FG∥CB,由平行线的性质即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF;(2)根据平行线的性质可得∠BFC=∠DEC=90°,再根据勾股定理计算即可.【解答】(1)证明:∵∠AGF=∠ABC,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴DE∥BF;(2)解:∵DE⊥AC,∴∠DEA=90°,∵DE∥BF,∴∠BF A=∠DEA=90°,∵AF=3,AB=4,∴BF===.20.(2022•杭州模拟)已知:如图,AE⊥BC,FG⊥BC,∠CEA=∠FGB,∠D=∠ABC+50°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【分析】(1)先证明AE∥GF,可得∠EAB=∠FGB,再证明∠CEA=∠EAB,从而可得答案;(2)由AB∥CD,可得∠D+∠CBD+∠ABC=180°,再把∠D=∠ABC+50°,∠CBD=70°代入进行计算即可.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠EAB=∠FGB,∵∠CEA=∠FGB,∴∠CEA=∠EAB,∴AB∥CD;(2)解:由(1)得,AB∥CD,∴∠D+∠CBD+∠ABC=180°,∵∠D=∠ABC+50°,∠CBD=70°,∴∠ABC+70°+∠ABC+50°=180°,∴∠ABC=30°,∴∠C=∠ABC=30°.21.(2021秋•略阳县期末)如图,在三角形ABC中,点D,E分别在AB,BC上,且DE∥AC,∠1=∠2.(1)AF与BC平行吗?为什么?(2)若AC平分∠BAF,∠B=36°,求∠1的度数.【分析】(1)由平行线的性质可得∠1=∠C,从而可求得∠2=∠C,即可判定AF∥BC;(2)由平行线的性质可得∠B+∠BAF=180°,从而可求得∠BAF=144°,再由角平分线的定义求得∠2=72°,即可求∠1.【解答】解:(1)AF∥BC,理由如下:∵DE∥AC,∴∠1=∠C,∵∠1=∠2,∴∠C=∠2,∴AF∥BC;(2)∵AF∥BC,∴∠B+∠BAF=180°,∵∠B=36°,∴∠BAF=144°,∵AC平分∠BAF,∴,∵∠1=∠2,∴∠1=72°.22.(2021秋•镇巴县期末)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点C,点H是MN上一点,且GH⊥EG,过点P作PQ∥AB,则PF与GH平行吗?为什么?【分析】(1)由对顶角相等可求∠1=∠AEF,∠2=∠CFE,结合条件可得∠AEF+∠CFE=180°,由同旁内角互补,两直线平行可以证明结论;(2)由(1)得AB∥CD,则有∠BEF+∠EFD=180°,根据角平分线的定义可得∠BEP=∠BEF,∠PFD=∠EFD,根据平行线的判定和性质可得∠EPF=∠EPQ+∠FPQ=(∠BEF+∠EFD)=90°,根据垂直的定义可得EG⊥PF,由GH⊥EG可得PF∥GH.【解答】解:(1)AB∥CD,理由如下:∵∠1=∠AEF,∠2=∠CFE,∠1+∠2=180°,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)PF∥GH,理由如下:由(1)知AB∥CD,∴∠BEF+∠EFD=180°,∵∠BEF与∠EFD的角平分线交于点P,∴∠BEP=∠FEP=∠BEF,∠PFD=∠EFP=∠EFD,∵AB∥CD,PQ∥AB,∴PQ∥CD,∴∠EPQ=∠BEP=∠BEF,∴∠FPQ=∠PFD=∠EFD,∴∠EPQ+∠FPQ=(∠BEF+∠EFD),∴∠EPF=90°,即EG⊥PF,∵GH⊥EG,∴PF∥GH.23.(2022春•西安月考)如图,射线PE分别与直线AB,CD相交于E,F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,且∠PFM=∠EMF.(1)求证:AB∥CD;(2)点G为射线MA(不与M重合)上一点,H为射线MF(不与M,F重合)上一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论.【分析】(1)因为FM平分∠PFN,可得∠EMF=∠MFN,利用内错角相等,两直线平行可得结论;(2)分H在线段MF上和H在MF的延长线上两种情形解答即可.【解答】(1)证明:∵FM平分∠PFN,∴∠PFM=∠MFN,∵∠PFM=∠EMF,∴∠MFN=∠EMF,∴AB∥CD;②当H在线段MF上时,∠GHF+∠FMN=180°;当H在线段MF的延长线上时,∠GHF=∠FMN,证明如下:∵AB∥CD,∴∠PNF=∠PME.∵∠MGH=∠PNF,∴∠MGH=∠PME.∴GH∥PN.如图,当H在线段MF上时,∵GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠GHF+∠FMN=180°;如图,当H在线段MF的延长线上时,∵GH∥PN,∴∠GHM=∠FMN,∴∠GHF=∠FMN.。
平行线的性质_练习(含答案)
5.3 平行线的性质一、选择题:1.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个DCBA 1EDBAOF E D C BA(1) (2) (3)2.如图2所示,已知DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,•那么∠BDC 等于( )A.78°B.90°C.88°D.92°3.如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°4.如图4所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( )A.180°B.360°C.540°D.720°FE DCBAG FED C BA1(4) (5)5.如图5所示,AB ∥EF ∥CD,EG ∥BD,则图中与∠1相等的角(∠1除外)共有( )• A.6个 B.5个 C.4个 D.3个6.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( ) A.① B.②和③ C.④ D.①和④7.若两条平行线被第三条直线所截,则一组同位角的平分线互相( ) A.垂直 B.平行 C.重合 D.相交二、填空题:1.如图6所示,如果DE ∥AB,那么∠A+______=180°,或∠B+_____=180°,根据是______;如果∠CED=∠FDE,那么________∥_________.根据是________.F E DCBA(6) (7)2.如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________.DCBADCA12(8) (9)3.如图8所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______. 三、训练平台:1. 如图9所示,AD ∥BC,∠1=78°,∠2=40°,求∠ADC 的度数.2. 如图所示,AB ∥CD,AD ∥BC,∠A 的2倍与∠C 的3倍互补,求∠A 和∠D 的度数.•D CBA3. 如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的度数.EDCBA4.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba3412四、提高训练:1. 如图所示,已知直线MN 的同侧有三个点A,B,C,且AB ∥MN,BC ∥MN,试说明A,•B,C 三点在同一直线上.NMA2. 如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.NMG F EDC BA五、探索发现:六、 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.PDCBA P DCBAP DCB A PDCB A(1) (2) (3) (4)六、中考题与竞赛题:1.(2002.河南)如图a 所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_______.GF EDCBA 12FEDCB A12(a) (b)2.(2002.哈尔滨)如图b 所示,已知直线AB,CD 被直线EF 所截,若∠1=∠2,•则∠AEF+∠CFE=________.答案:一、1.C 2.C 3.A 4.B 5.C 6.C 7.B二、1.∠AED ∠BDE 两直线平行,同旁内角互补 DF AC 内错角相等,两直线平行2.150°3.60° 40°三、1.∠ADC=118° 2.∠A=36°,∠D=144° 3.∠BED=78° 4.∠4=120°四、1.解:如图所示,过B点任作直线PQ交MN于Q,∵AB∥MN,∴∠PBA=∠MQP,•又∵BC∥MN,∴∠PBC=∠PQN,又∵∠PQM+∠PQN=180°,∴∠ABC=180°,∴A,B,C三点在同一直线上.2.∠DEG=100°五、(1)∠P=360°-∠A-∠C,(2)∠P=∠A+∠C,(3)∠P=∠C-∠A,(4)∠P=∠A-∠C(说明略).六、1.54° 2.180°N M。
平行线的性质与判定综合训练(含答案)
平行线的性质与判定综合训练(含答案)1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°. ∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.。
平行线性质练习题30题
平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。
2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同旁内角互补。
3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。
4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。
5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。
6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。
7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:内错角相等。
8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。
9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。
10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。
11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。
12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同位角相等。
13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。
14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。
15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。
16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。
平行线的性质专项练习60题(有答案)ok
平行线的性质专项练习60题(有答案)题(有答案)1.如图,AB∥CD,证明:∠A=∠C+∠P.2.如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD的度数.的度数.3.已知:如图所示,直线AD∥BC,AD平分∠CAE,求证:∠B=∠C.4.已知∠E=∠F,AD∥EF,问:AD是∠BAC平分线吗?为什么?平分线吗?为什么?5.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.的度数.6.如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,求证:EG⊥FG.7.如图所示,AB∥DF,DE∥BC,∠1=65°,求∠2,∠3的度数,并说明理由.的度数,并说明理由.8.已知AB∥CD,FE⊥AB交AB于G点,∠GEH=138°,求∠EHD的度数.的度数.9.如图,AD∥BC,∠B=25°,∠C=30°,求∠EAC的度数.的度数.10.如图,AB∥CD,AC⊥BC,∠BAC=65°,求∠BCD度数.度数.11.如图,AB∥CD,∠BAE=∠DCE=45°,说明AE⊥CE.13.如图,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度数.的度数.14.已知:如图AB∥CD,EF⊥AB于E,FH交CD于H,∠CHG=130度.求∠EFH度数.度数.15.已知:如图,AC∥BD,∠A=∠D,求证:∠E=∠F.16.已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.17.如图,已知AB⊥AC,垂足为A,AD∥BC,且∠1=30°,试求∠2与∠B的度数.的度数.18.如图所示,AB∥CD,若∠B=45°,∠D=20°,求∠1的度数.的度数.19.如图,△ABC中,角平分线BO与CO的相交点O,OE∥AB,OF∥AC,△OEF的周长=10,求BC的长.的长.20.如图,若AB∥CD,∠C=60°,求∠A+∠E的度数.的度数.21.如图所示,已知AB∥CD,BC∥DE,若∠B=55°,求∠D的度数.的度数.22.如图所示,已知∠ACB=60°,∠ABC=50°,BO,CO分别平分∠ABC,∠ACB,EF经过点O且平行于BC,求∠BOC的度数.的度数.23.已知:如图所示,AB∥CD,∠B=120°,CA平分∠BCD.求证:∠1=30°.24.如图,AB∥CD,∠A=40°,∠C=65°,求∠E的度数.的度数.25.如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.的度数.26.如图,点A在直线MN上,且MN∥BC,求证:∠BAC+∠B+∠C=180°.27.已知:如图,OP平分∠AOB,MN∥OB.求证:∠1=∠3.28.如图所示,AB∥CD,∠1=55°,∠D=∠C,求出∠D,∠C,∠B的度数.的度数.29.已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.的度数.30.如图,已知直线AB ∥CD ,直线m 与AB 、CD 相交于点E 、F ,EG 平分∠FEB ,∠EFG=50°,求∠FEG 的度数.数.31.如图,已知CD ∥AB ,OE 平分∠BOD ,∠D=52°,求∠BOE 的度数.的度数.32.如图所示,直线l 1∥l 2,∠A=90°,∠ABF=25°,求∠ACE 的度数.的度数.33.如图,AB ∥CD ,∠1=45°,∠D=∠C ,求∠D 、∠C 、∠B 的度数.的度数.34.如图,CD ∥AB ,CD ∥EF ,∠A=105°,∠ACE=51°,求∠E 的度数.的度数.35.如图:a ∥b ,∠1=122°,∠3=50°,求∠2和∠4的度数.的度数.36.如图,已知AB ∥CD ,∠1=50°,BD 平分∠ADC ,求∠A 的度数.的度数.37.已知,如图所示,DE∥BC,BE平分∠ABC,且∠ABC=∠ACB,∠AED=72°,求∠CEB的度数.的度数.38.如图,若AB∥EF,∠C=90°,求x+y﹣z度数.度数.39.如图,已知AB∥DE,∠B=70°,CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.的度数.40.如图,DE∥AB,∠1=∠2,那么∠A=∠3吗?说明理由.吗?说明理由.41.如图,已知DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠P AG的度数.的度数.43.已知:如图,直线l1∥l2,AB⊥l1垂足为O,BC与l2相交于点D,∠1=43°,求∠2的度数.的度数.44.如图,直线AB∥MN,分别交直线EF于点C、D,∠BCD、∠CDN的角平分线交于点G,求∠CGD的度数.45.如图所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.46.如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由.的度数,并说明理由.47.已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.求证:∠A=∠B.48.如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于F,∠1+∠2=90°,试问:直线AB、CD在位置上在数量上有什么关系?有什么关系?∠2与∠3在数量上有什么关系?49.如图,已知直线AB∥CD,直线GH分别与直线AB、CD交于点E、G,直线CF交直线GH于点F,已知∠CFG=30°,的度数.∠HEB=50°,求∠FCG的度数.50.如图,AB∥CD,BC∥ED,求:∠B+∠D的度数.的度数.51.如图,已知AB∥CD,∠B=∠DCE,求证:CD平分∠BCE.52.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.的度数.53.如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB于E,请说明,请说明AE=BE.54.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=55°,求∠BED的度数.的度数.55.如图,CD⊥AB,DE∥AC,EF⊥AB,EF平分∠BED,求证:CD平分∠ACB.56.如图,△ABC中,EB平分∠ABC,EC平分△ABC的外角∠ACG,过点E作DF∥BC交AB于D,交AC于F,求证:DB﹣CF=DF.57.已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF的度数.的度数.59.如图,已知DE ∥AB ,DF ∥AC ,∠EDF=85°,∠BDF=63°. (1)∠A 的度数;的度数;(2)∠A+∠B+∠C 的度数.的度数.60.如图,已知AB ∥CD ,∠1=∠2,∠EFD=56°,求∠EGD 的度数.的度数.参考答案:1.∵AB ∥CD , ∴∠A=∠PED ,(两直线平行,同位角相等)(两直线平行,同位角相等) 又∠PED 为△PCE 的外角,的外角, ∴∠P+∠C=∠PED , ∴∠P+∠C=∠A .2.解法一:过C 点作CF ∥AB ,则∠1=∠ACF=35°(两直线平行,内错角相等), ∵AB ∥ED ,CF ∥AB (已知),∴CF ∥ED (平行于同一直线的两直线平行)(平行于同一直线的两直线平行)∴∠FCD=180°﹣∠2=180°﹣80°=100°(两直线平行,同旁内角内角互补)旁内角内角互补)∴∠ACD=∠ACF+∠FCD=35°+100°=135°; 解法二:延长DC 交AB 于F ∵AB ∥ED (已知),∴∠BFC=∠2=80°(两直线平行,内错角相等), ∵∠ACF=∠BFC ﹣∠1=80°﹣35°=45°(三角形一个外角等于它不相邻的两个内角的和)(三角形一个外角等于它不相邻的两个内角的和) ∴∠ACD=180°﹣∠ACF=180°﹣45°=135°(1平角=180°).解法三:延长AC 、ED 交于F ∵AB ∥ED ,∴∠DFC=∠1=35°∵∠CDF=180°﹣∠2=180°﹣80°=100° ∴∠ACD=∠CDF+∠DFC=100°+35°=135°.3.∵AD ∥BC ,∴∠C=∠CAD ,∠B=∠DAE , 又∵AD 平分∠CAE , ∴∠CAD=∠DAE , 即∠C=∠B .4.∵AD ∥EF (已知)(已知)∴∠BAD=∠E (两直线平行,同位角相等)(两直线平行,同位角相等) ∠DAC=∠F (两直线平行,内错角相等)(两直线平行,内错角相等) ∵∠E=∠F (已知)(已知)∴∠BAD=∠DAC (等量代换)(等量代换) ∴AD 是∠BAC 的平分线.的平分线. 5.设∠3=3x ,∠2=2x ,由∠3+∠2=180°,可得3x+2x=180°, ∴x=36°,∴∠2=2x=72°; ∵AB ∥CD , ∴∠1=∠2=72°6.∵AB ∥CD ,∴∠BEF+∠EFD=180°,∵EG 平分∠BEF ,FG 平分∠DFE , ∴∠1=∠BEF ,∠2=∠EFD ,∴∠1+∠2=(∠BEF+∠EFD )=×180°=90°, 在△EFG 中,中,∠G=180°﹣∠1﹣∠2=90°, ∴EG ⊥FG .7.∵DE ∥BC , ∴∠1+∠2=180°, 又∵∠1=65°, ∴∠2=115°; ∵AB ∥DF ,∴∠3=∠2=115°.8.如图,过点E 作EP ∥AB , 而AB ∥CD ,则EP ∥CD , ∴∠FEP=∠FGB ,∵EF ⊥AB , ∴∠FGB=90°, ∵∠GEH=138°,∴∠PEH=138°﹣90°=48° ∵EP ∥CD ,∴∠EHD=180°﹣∠PEH=132°9.∵AD ∥BC ,∴∠EAD=∠B=25°, ∠DAC=∠C=30°,∴∠EAC=∠EAD+∠DAC=25°+30°=55°. 10.∵AB ∥CD ,∴∠ACD=180°﹣65°=115°, ∵AC ⊥BC ,∴∠BCD=115°﹣90°=25°. 11.过点E 作EF ∥AB , ∴∠AEF=∠BAE=45°, ∵AB ∥CD ,∴EF ∥CD ,∴∠FEC=∠DCE=45°,∴∠AEC=∠AEF+∠FEC=90°, ∴AE ⊥CE.12.∵AB ∥CD ,∠ABC=55°, ∴∠BCD=∠ABC=55°, ∵EF ∥CD ,∴∠ECD+∠CEF=180°, ∵∠CEF=150°,∴∠ECD=180°﹣∠CEF=180°﹣150°=30°, ∴∠BCE=∠BCD ﹣∠ECD =55°﹣30°=25°, ∴∠BCE 的度数为25°. 13.设∠1为x , ∵∠1=∠2, ∴∠2=x ,∴∠DBC=∠1+∠2=2x , ∵∠D :∠DBC=2:1, ∴∠D=2×2x=4x , ∵DE ∥BC ,∴∠D+∠DBC=180°, 即2x+4x=180°, 解得x=30°, ∵DE ∥BC ,∴∠DEB=∠1=30°. 14.∵EF ⊥AB 于E ,MN ∥AB ∴EF ⊥MN即∠EFM=90°. ∵MN ∥CD∴∠NFH=∠GHD=180°﹣130°=50°∴∠EFH=∠EFM+∠NFH=90°+50°=140°.15.∵AC ∥BD , ∴∠1=∠2. 又∵∠A=∠D ,∠A+∠1+∠E=180°,∠D+∠2+∠F=180°, ∴∠E=∠F .16.∵HG ∥AB (已知),∴∠1=∠3(两直线平行,内错角相等), 又∵HG ∥CD (已知),∴∠2=∠4(两直线平行,内错角相等), ∵AB ∥CD (已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补), 又∵EG 平分∠BEF (已知), ∴∠1=∠BEF (角平分线的定义), 又∵FG 平分∠EFD (已知), ∴∠2=∠EFD (角平分线的定义), ∴∠1+∠2=(∠BEF+∠EFD ), ∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换)(等量代换) 即∠EGF=90° 17.∵AD ∥BC , ∴∠2=∠1=30°, ∵AB ⊥AC ,∴∠B=90°﹣∠2=60°.18.过E 作EF ∥AB , ∵AB ∥CD ,∴AB ∥EF ∥CD , ∴∠B=∠BEF=45°, ∠DEF=∠D=20°,∴∠1=∠BEF+∠DEF=45°+20°=65°.19.∵OB ,OC 分别是∠ABC ,∠ACB 的平分线,的平分线, ∴∠1=∠2,∠4=∠5, ∵OE ∥AB ,OF ∥AC ,∴∠1=∠3,∠4=∠6, ∴BE=OE ,OF=FC ,∴BC=BE+EF+FC=OF+OE+EF , ∵△OEF 的周长=10, ∴BC=10.20.∵AB ∥CD ,∠C=60°, ∴∠EFB=∠C=60°; ∵∠EFB=∠A+∠E , ∴∠A+∠E=60°.21.∵AB ∥CD , ∴∠C=∠B . ∵∠B=55°, ∴∠C=55°. ∵BC ∥DE ,∴∠C+∠D=180°,即∠D=180°﹣∠C=180°﹣55°=125°. 22.∵EF ∥BC ,∴∠EOB=∠OBC ,∠FOC=∠OCB , ∵BO ,CO 分别平分∠ABC ,∠ACB , ∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°.∴∠EOB=25°,∠FOC=30°.又∵∠EOB+∠BOC+∠FOC=180°,∴∠BOC=180°﹣∠EOB ﹣∠FOC=180°﹣25°﹣30°=125° 23.∵AB ∥CD , ∴∠B+∠BCD=180°, ∵∠B=120°, ∴∠BCD=60°;又∵CA 平分∠BCD , ∴∠2=30°, ∵AB ∥CD , ∴∠1=∠2=30°24.∵AB ∥CD , ∴∠EFB=∠C=65°, ∵∠EFB=∠A+∠E ,∴∠E=∠EFB ﹣∠A=65°﹣40°=25°.25.∵CD 是∠ACB 的平分线,∠ACB=40°, ∴∠DCB=∠ACD=20°, 又DE ∥BC ,∴∠EDC=∠DCB=20°,在△BCD 中,∵∠B=70°, ∴∠BDC=90°.∴∠EDC 和∠BDC 的度数分别为20°、90° 26.∵MN ∥BC ,∴∠B=∠MAB ,∠C=∠NAC , ∵∠MAB+∠BAC+∠NAC=180°, ∴∠BAC+∠B+∠C=180°27.∵OP 平分∠AOB ,(已知)(已知) ∴∠1=∠2(角平分线定义)(角平分线定义) ∵MN ∥OB (已知)(已知)∴∠2=∠3(两直线平行,内错角相等)(两直线平行,内错角相等) ∴∠1=∠3(等量代换). 28.∵AB ∥CD , ∴∠D=∠1=55°, ∵∠C=∠D , ∴∠C=55°;∵AB ∥CD ,∴∠B+∠C=180°,∴∠B=180°﹣∠C=180°﹣55°=125°. 29.∵AD ∥BC ,∴∠ABC=180°﹣∠A=60°,∠ADB=∠2, ∵∠1=∠2,∴∠1=∠ADB=∠2=30°, ∵BD ⊥CD , ∴∠BDC=90°,∠C=180°﹣(30°+90°)=60°, 故∠C 的度数为60°.30.∵AB ∥CD (已知)(已知)∴∠EFG+∠FEB=180°(两直线平行,同旁内角互补)(两直线平行,同旁内角互补) ∵∠EFG=50°(已知)(已知)∴∠FEB=130°(等式的性质)(等式的性质) ∵EG 平分∠FEB (已知)(已知) ∴∠FEG=∠FEB=65°(角平分线的定义). 31.∵CD ∥AB , ∴∠BOD=∠D=52°; ∵OE 平分∠BOD , ∴∠BOE=26° 32.如答图所示,.如答图所示, ∵L 1∥L 2,∴∠ECB+∠CBF=180°.∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°,∴∠ACB+∠CBA=90°.又∠ABF=25°,∴∠ECA=180°﹣90°﹣25°=65°33.∠D=∠C=45°,∠B=135°.理由:∵AB∥CD,∴∠D=∠1=45°(两直线平行,同位角相等)(两直线平行,同位角相等)∴∠B+∠C=180°(两直线平行,同旁内角互补)(两直线平行,同旁内角互补)∵∠D=∠C=45°,∴∠B=180°﹣∠C=180°﹣45°=135°.34.∵CD∥AB,∴∠A+∠ACD=180°,又∵CD∥EF,∴∠E=∠ECD=∠ACD﹣∠ACE=75°﹣51°=24°. 35.∵a∥b,∠1=122°,∴∠2=∠5=180°﹣∠1=180°﹣122°=58°;∵a∥b,∠3=50°,∴∠3=∠6=50°;又∵∠6=∠4,∴∠4=50°.36.∵BD平分∠ADC,∴∠CDB=∠1=50°,∠ADC=100°,又AB∥CD,∴∠ADC+∠A=180°,∴∠A=80°.37.∵DE∥BC,∴∠C=∠AED=72°,∵BE平分∠ABC,且∠ABC=∠ACB,∴∠EBC=∠ABC=×72°=36°,在△BEC中,∠CEB=180°﹣72°﹣36°=72°38.如图,过点C、D分别作CM、DN平行于AB、EF, 则x=∠5,4=∠3,1=∠z,又∠1+∠3=y,∠4+5=90°,即x+∠4=90°,又∠4=∠3=y﹣∠1=y﹣z,∴x+y﹣z=90°39.∵AB∥DE,∠B=70°, ∴∠DCB=180°﹣∠B=180°﹣70°=110°,∠BCE=∠B=70°,∵CM平分∠DCB,∴∠BCM=∠DCB=×110°=55°,∵CM⊥CN,垂足为C,∴∠BCN=90°﹣∠BCM=90°﹣55°=35°,∴∠NCE=∠BCE﹣∠BCN=70°﹣35°=35°.40.∠A=∠3.理由如下:.理由如下:∵DE∥AB,∴∠1=∠A,∠2=∠3,又∵∠1=∠2,∴∠A=∠341.∵DB∥FG∥EC,∴∠BAG=∠ABD=84°,∠GAC=∠ACE=60°;∴∠BAC=∠BAG+∠GAC=144°,∵AP是∠BAC的平分线,的平分线,∴∠P AC=∠BAC=72°,∴∠P AG=∠P AC﹣∠GAC=72°﹣60°=12°42.过E作EF平行于AB,则EF∥CD,∵AB∥EF,∴∠A=∠AEF=∠1,∵CD∥EF,∴∠C=∠FEC=∠2,∵∠BED=180°,∴∠1+∠AEF+∠FEC+∠2=180°,即∠AEF+∠CEF=°=90°.43.解法一:延长AB交l2于点E.∵AB⊥l1,l1∥l2,∴AB⊥l2.∵∠2是△BED的外角,∴∠2=90°+∠1=90°+43°=133°.解法二:过点B作BF∥l1,利用平行线的性质求出∠2的度数.的度数.∵l1∥l2,∴BF∥l2,∴∠ABF=180°﹣90°=90°,∠FBC=∠1=43°,∴∠2=∠ABF+∠FBC=90°+43°=133°.44.∵AB ∥MN (已知)(已知)∴∠BCD+∠CDN=180°(两直线平行,同旁内角互补) ∵CG 、DG 是角平分线是角平分线 ∴∠1=∠BCD ,∠2=∠CDN (角平分线定义)(角平分线定义) ∴∠1+∠2=90°∵∠1+∠2+∠CGD=180°(三角形内角和等于180°) ∴∠CGD=90°45.由题意得:∠BEC=80°,∠BED=100°, ∠BEF=∠BEC=40°,∴∠BEG=90°﹣∠BEF=50°, ∠DEG=∠BED ﹣50°=50°. ∴∠BEG 和∠DEG 都为50° 46.∵∠AEF=125, ∴∠CEA=55°∵AE ∥BD ,∠CDB=∠CEA=55°, 在△BCD 中,∵∠CBD=57°, ∴∠C=68°.47.∵CE 是∠DCB 的角平分线,的角平分线, ∴∠1=∠2. ∵CE ∥AB ,∴∠1=∠A ,∠2=∠B , ∴∠A=∠B .48.AB ∥CD ,∠2+∠3=90°. 理由如下:理由如下:∵BE 、DE 分别平分∠ABD 、∠CDB , ∴∠ABD=2∠1,∠BDC=2∠2. ∵∠2+∠1=90°,∴∠ABD+∠CDB=180°, ∴AB ∥CD .∴∠3=∠ABF .∵∠1=∠ABF ,∠2+∠1=90°. ∴∠2+∠3=90°.49.由题意可知,AB ∥CD ,∠HEB=50°, ∴∠FGD=50°, 又∵∠CFG=30°, ∴∠FCG=20°50.∵AB ∥CD ,BC ∥ED , ∴∠B=∠C ,∠C+∠D=180°, ∴∠B+∠D=180°. 51.∵AB ∥CD (已知),∴∠B=∠BCD (两直线平行,内错角相等)(两直线平行,内错角相等) 又∵∠B=∠DCE (已知), ∴∠BCD=∠DCE (等量代换)(等量代换) 即CD 平分∠BCE .52.∵AB ∥CD ,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°, ∵CN 是∠BCE 的平分线,的平分线, ∴∠BCN=∠BCE=×140°=70°, ∵CM ⊥CN , ∴∠BCM=20°53.∵DE ∥AC , ∴∠ADE=∠CAD ,∵AD 是∠BAC 的平分线,的平分线, ∴∠EAD=∠CAD , ∴∠ADE=∠EAD ,∴AE=DE , ∵BD ⊥AD ,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°, ∴∠ABD=∠BDE , ∴BE=DE , ∴AE=BE .54.如图所示,过点E ,F 分别作EG ∥AB ,FH ∥AB . ∵EG ∥AB ,FH ∥AB , ∴∠5=∠ABE ,∠3=∠1; 又∵AB ∥CD ,∴EG ∥CD ,FH ∥CD ,∴∠6=∠CDE ,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=55°. ∵BF 平分∠ABE ,DF 平分∠CDE , ∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×55°=110°.55.∵CD ⊥AB ,EF ⊥AB , ∴CD ∥EF ,∴∠BCD=∠BEF,∠DEF=∠CDE;∵DE∥AC,∴∠ACD=∠CDE,∴∠ACD=∠DEF;∵EF平分∠BED,∴∠DEF=∠BEF,∴∠ACD=∠BCD,即CD平分∠ACB56.∵EB平分∠ABC,EC平分∠ACG,∴∠DBE=∠CBE,∠FCE=∠GCE,∵DF∥BC,∴∠DEB=∠CBE,∠FEC=∠GCE,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DB=DE,FE=FC,∵DE﹣EF=DF,∴DB﹣CF=DF57.∵AB∥CD,(已知)(已知)∴∠GFC=∠GMA.(两直线平行,同位角相等)(两直线平行,同位角相等)∵∠GMA=52°,(已知)(已知)∴∠GFC=52°.(等量代换)(等量代换)∵CD是直线,(已知)(已知)∴∠GFC+∠GFD=180°.(邻补角定义)(邻补角定义)∴∠GFD=180°﹣52°=128°.(等式性质)(等式性质)∵EF平分∠GFD,(已知)(已知)∴∠EFD=∠GFD=64°.(角平分线定义)(角平分线定义)∵AB∥CD,(已知)(已知)∴∠BEF+∠EFD=180°.(两直线平行,同旁内角互补) ∴∠BEF=180°﹣64°=116°.(等式性质)(等式性质)答:∠BEF=116°58.∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FP A=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).59.(1)∵DF∥AC,∴∠EDF=∠DEC=85°.∵DE∥AB,∴∠A=∠DEC=85°.(2)∵DF∥AC,DE∥AB,∴∠EDC=∠B,∠BDF=∠C,又∠A=∠EDF,∴∠A+∠B+∠C=∠EDF+∠EDC+∠BDF=180°. 60.∵AB∥CD,∠EFD=56°,∴∠BEF=180°﹣∠EFD=124°;∵∠1=∠2, ∴∠1=∠BEF=62°;∵∠EGD=∠1+∠EFD, ∴∠EGD=118°。
七年级数学平行线的性质专项练习题
七年级数学平行线的性质专项练习题【例1】如图,点D,E在AC上,点F,G分别在BC,AB上,且DDDD∥BBBB,∠1=∠2.(1)求证:DDBB∥EEEE;(2)若EF⊥AC,∠1=50°,求∠ADG的度数.【变式1-1】已知:如图,AAEE⊥BBBB,EEDD⊥BBBB,∠BBEEAA=∠EEDDBB,∠DD=∠AABBBB+50°,∠BBBBDD= 70°.(1)求证:AABB∥BBDD;(2)求∠BB的度数.【变式1-2】如图,△ABC中,∠BAC的角平分线交BC于D,点F在BA的延长线上,点E 在线段CD上,EF与AC相交于点G,且∠BBDDAA+∠BBEEDD=180°.(1)求证:AADD∥EEEE;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗?请说明理由.【变式1-3】(2022·湖北·武汉市新洲区阳逻街第一初级中学三模)如图,已知AADD⊥BBBB,EEEE⊥BBBB,∠1=∠2.(1)求证:EEEE∥AADD;(2)求证:∠BBAABB+∠AADDDD=180°.【例2】如图,∠1=∠2,∠AA=∠DD.求证:∠BB=∠BB.(请把下面证明过程补充完整)证明:∵1=∠2(已知)又∵∠1=∠3(____________)∴∠2=∠3(____________)∴AAEE∥EEDD(_____________)∴∠AA=∠_____(______________)∵∠AA=∠DD(已知)∴∠DD=∠BBEEDD(等量代换)∴_____∥BBDD(__________________)∴∠BB=∠BB(____________)【变式2-1】阅读并完成下面的证明过程:已知:如图,AABB∥EEEE,∠1=∠2,BBEE、BBEE分别平分∠AABBBB和∠BBBBDD,求证:BBEE⊥BBEE.证明:∵BBEE、BBEE分别平分∠AABBBB和∠BBBBDD.∴∠AABBEE=∠EEBBBB=12∠AABBBB∠2=________=12∠BBBBDD(角平分线定义)又∵∠1=∠2,∴∠1=∠EEBBDD()∴EEEE∥BBDD()又∵AABB∥EEEE(已知)∴________________()∴∠AABBBB+∠BBBBDD=180°()∴∠AABBEE+∠2=12(∠AABBBB+∠BBBBDD)=90°,又∵AABB∥EEEE,∴∠AABBEE=∠BBEEEE()∴∠BBEEEE+∠1=90°,∴∠BBEEBB=90°,∴BBEE⊥BBEE()【变式2-2】完成下面证明过程并写出推理根据:已知:如图所示,∠BBAABB与∠AABBDD互补,∠1=∠2.求证:∠EE=∠EE.证明:∵∠BBAABB与∠AABBDD互补(已知),即∠BBAABB+∠AABBDD=180°,∴____________∥_____________(_____________________),∴∠BBAABB=∠AABBBB(_____________________).又∵∠1=∠2,∴∠BBAABB-∠1=∠AABBBB-∠2(等式的性质),即∠3=∠4,∴____________∥_____________(_____________________),∴∠EE=∠EE(_____________________).【变式2-3】推理填空:完成下面的证明过程.如图,已知∠1+∠2=180°,∠B=∠DEF,求证:.DE∥BC证明:∵∠1+∠2=180°()∠2=∠3(_______________________________)∴∠1+∠3=180°∴______∥______(_____________________________)∴∠B=______(________________________________)∵∠B=∠DEF(已知)∴∠DEF=_______ (_______________________)∴DE∥BC()【例3】如图,含有30°角的直角三角板的两个顶点EE、EE放在一个长方形的对边上,点EE为直角顶点,∠EEEEDD=30°,延长EEDD交BBDD于点BB,如果∠3=65°,那么∠2的度数是()A.100°B.105°C.115°D.120°【变式3-1】将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠2;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【变式3-2】将一块直角三角板AABBBB∠AABBBB=30°,AA,BB两点分别落在直线mm、nn上,∠1=20°,添加下列哪一个条件可使直线mm∥nn()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°【变式3-3】小明把一副三角板按如图所示方式摆放,直角边CD与直角边AB相交于点F,斜边DDEE∥BBBB,∠B=30°,∠E=45°,则∠CFB的度数是()A.95° B.115° C.105° D.125°【例4】如图,aa∥bb,一块含45°的直角三角板的一个顶点落在直线b上,若∠1=58°54′,则∠2的度数为()A.103°6′B.104°6′C.103°54′D.104°54′【变式4-1】用一块含60°角的直角三角板和一把直尺按图中所示的方式放置,其中直尺的直角顶点与三角板的60°角顶点重合,直尺两边分别与三角板的两条直角边相交,若∠1= 50°,则∠2的度数为()A.25° B.22.5° C.20° D.15°【变式4-2】如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=75°;④∠AEG=∠PMN.其中正确的是_______.【变式4-3】如图所示,将一直角三角板放在AB,CD两条平行线之间:(1)图甲中,容易求得∠1+∠2=90°,请直接写出图乙中∠1,∠2的数量关系;(2)请问图丙中∠1,∠2的数量关系是什么?并加以说明;(3)请直接写出图丁中∠1,∠2的数量关系.【例5】如图①,AB∥CD,M为平面内一点,若BM⊥MC,则易证∠ABM与∠DCM互余.(1)如图②,AB∥CD.点M在射线EA上运动,猜想点M在点A和D之间时,∠BMC与∠ABM、∠DCM之间的数量关系,并证明.(2)在(1)的条件下,当点M在射线EA的其它位置上时(不与点E,A,D重合)请直接写出∠BMC与∠ABM、∠DCM之间的数量关系.【变式5-1】(2022·辽宁·兴城市第二初级中学七年级阶段练习)已知,点A,点B分别在线段MN,PQ上,且∠ACB-∠MAC=∠CBP.(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI的两边分别与直线CH,AG交于点F和点E,如图2,试判断∠CFB、∠BEG之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=80°,求∠CFB 的度数.(直接写出答案)【变式5-2】(2022·湖北·宜昌市第九中学七年级期中)如图,∠1=∠2,∠DD=∠BBCCDD.(1)求证:AADD∥NNDD;(2)若∠AA+∠DDDDDD=180°,试探索:∠AANNBB,∠NNBBDD,∠1的数量关系;(3)在(2)的条件下,若∠AANNBB:∠BBNNDD=2:1,∠1=100°,∠NNBBDD=130°,求∠AA的度数.【变式5-3】(2022·湖北·潜江市高石碑镇第一初级中学七年级期中)如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF⊥AE,求∠P的度数;(2)若点F是直线AE上一动点(点F与点A不重合),请写出∠P与∠AFB之间的数量关系并证明.【例6】实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.(2)请你猜想:当射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行时,两平面镜a、b间的夹角∠3的大小是否为定值?若是定值,请求出∠3,若不是定值,请说明理由.(3)如图3,两面镜子的夹角为α°(0<α<90),进入光线与离开光线的夹角为β°(0<β<90).试探索α与β的数量关系,并说明理由.【变式6-1】如图,直线AB∥CD,点M,N分别在直线AABB,BBDD上,H为直线BBDD下方一点.(1)如图1,CCDD和NNDD相交于点H,求证:∠CCDDNN=∠AACCDD−∠BBNNDD.(温馨提示:可过点H作AABB的平行线)(2)延长DDNN至点G,∠BBCCDD的平分线CCEE和∠DDNNDD的平分线NNEE相交于点E,DDCC与BBDD相交于点F.①如图2,若∠BBCCEE=50°,∠EENNDD=30°,求∠CCDDNN的度数;②如图2,当点F在点N左侧时,若∠BBCCEE的度数为xx°,∠EENNDD的度数为yy°,且xx+yy的值是一个定值,请问∠CCDDNN的度数是否会随x的变化而发生改变?若不变,求出∠CCDDNN的度数;若变化,请说明理由.③如图3,当点N在点F左侧时,②中其他条件不变,请问∠CCDDNN的度数是否会随x的变化而发生改变?若不变,直接写出....∠CCDDNN的度数;若变化,请说明理由.【变式6-2】如图1,点A、D分别在射线BM、CN线上,BM∥CN,BM⊥BC于点B,AE 平分∠BAD交BC于点E,连接DE,∠1+∠2=90°.(1)求证:AE⊥ED;(2)求证:DE平分∠ADC;(3)如图2,∠EAM和∠EDN的平分线交于点F,试猜想∠F的值是否为定值,若是,请予以证明;若不是,请说明理由.【变式6-3】直线CCNN与直线AABB、BBDD分别相交于点EE、EE,∠CCEEBB与∠BBEECC互补(1)如图1,试判断直线AABB与直线BBDD的位置关系,并说明理由.(2)如图2,∠BBEEEE与∠EEEEDD的平分线交于点BB,EEBB的延长线与BBDD交于点DD,DD是CCNN上一点,且DDDD⊥EEDD,求证:PF∥GH.(3)如图3,在(2)的条件下,连接BBDD,KK是DDDD上一点,使∠BBDDKK=∠DDBBKK,作BBPP平分∠EEBBKK,求证:∠DDBBPP的大小是定值.【例7】如图,已知AABB//BBDD,若按图中规律继续划分下去,则∠1+∠2+⋯+∠nn等于()A.nn•1800B.2nn•1800C.(nn−1)•1800D.(nn−1)2•1800【变式7-1】如图,已知直线AAEE,BBEE被直线AABB所截,且AAEE//BBEE,AABB1,BBBB1分别平分∠EEAABB,∠EEBBAA;AABB2,BBBB2分别平分∠BBAABB1和∠AABBBB1;AABB3,BBBB3分别平分∠BBAABB2,∠AABBBB2…依次规律,得点BB nn,则∠BB nn的度数为()A.90−902nn B.180−902nn−1C.902nn−1D.1802nn【变式7-2】如图(1)(2)(3)中,都满足AB∥CD.试求:(1)图(1)中∠A+∠C的度数,并说明理由.(2)图(2)中∠A+∠APC+∠C的度数,并说明理由.(3)图(3)中∠A+∠AEF+∠EFC+∠C的度数,并简要说明理由.(4)按上述规律,∠A+……+∠C(共有n个角相加)的和为【变式7-3】阅读并探究下列问题.(1)如图①,将长方形纸片剪两刀,其中AABB∥BBDD,则∠2与∠1、∠3有何关系?请进行证明.(2)如图②,将长方形纸片剪四刀,其中AABB∥BBDD,则∠1、∠2、∠3、∠4、∠5的关系为 .(3)如图③,将长方形纸片剪2016刀,其中AABB∥BBDD,则共剪出个角.若将剪出的角(∠A、∠C除外)分别用∠E1、∠E2、∠E3…表示,则被剪出的这些角的关系为 .(4)如图④,直线AABB∥BBDD,∠EF=∠HMN=x°,∠FGH=3x°,∠CNP=y°|2xx+yy−102|+�xx+yy−72=0由上述结论求∠GHM的度数.【例8】综合与实践:折纸中的数学知识背景我们在七年级上册第四章《几何图形初步》中探究了简单图形折叠问题,并进行了简单的计算与推理.七年级下册第五章我们学习了平行线的性质与判定,今天我们继续探究:折纸中的数学﹣﹣长方形纸条的折叠与平行线.知识初探(1)如图1,长方形纸条ABGH中,AABB∥DDDD,AADD∥BBDD,∠A=∠B=∠G=∠H=90°,将长方形纸条沿直线CD折上,点A落在A'处,点B落在B'处,B'C交AH于点E,若∠ECG=70°,则∠CDE=;类比再探(2)如图2,在图1的基础上将∠HEC对折,点H落在直线EC上的H'处,点G落在G'处得到折痕EF,则折痕EF与CD有怎样的位置关系?说明理由;(3)如图3,在图2的基础上,过点G'作BG的平行线MN,请你猜想∠ECF和∠H'G'M的数量关系,并说明理由.【变式8-1】如图,已知四边形纸片AABBBBDD,∠BB=∠DD=90°,点EE在AADD边上,把纸片按图中所示的方式折叠,使点DD落在BBBB边上的点EE处,折痕为BBEE.(1)试判定AABB与EEEE的位置关系,并说明理由;(2)如果∠AA=100°,求∠DDEEBB的度数.【变式8-2】学习了平行线以后,小明想出了用纸折平行线的方法,他将一张如图1所示的纸片,其中AADD//BBBB,先按如图2所示的方法折叠,折痕为CCNN;(CCBB′与AADD相交于点BB)然后按如图3的方法折叠,折痕为BBPP(AA′BB与BB′CC落在一条直线上).(1)在图2的折叠过程中,若∠1=130°,求∠2的度数(2)如图3,小明认为在折叠过程中,产生的折痕CCNN与BBPP平行,请把小明的思考步骤补充完整.由折叠可知,∠BB′CCNN=∠BBCCNN=12∠BBCCBB′;∠AA′BBPP=∠AABBPP=12∠AABBAA′;∵AABB//BBBB∴∠AABBAA′=∠BBCCBB′;(①)∴② =③ (等量代换)∴BBPP//CCNN.(内错角相等,两直线平行)【变式8-3】(2022·广东佛山·七年级期末)某公司技术人员用“沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行”.(1)如图1,测得∠1=∠2,可判定a∥b吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a∥b吗?请说明理由;(3)如图3,若要使a∥b,则∠1与∠2应该满足什么关系式?请说明理由.【例9】一辆汽车在笔直的公路上行驶,两次拐弯后,在与原方向相反的方向上平行行驶,则这两次拐弯的角度应为()A.第一次向右拐38°,第二次向左拐142°B.第一次向左拐38°,第二次向右拐38°C.第一次向左拐38°,第二次向左拐142°D.第一次向右拐38°,第二次向右拐40°【变式9-1】一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是()A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向右拐140° D.第一次向右拐40°,第二次向右拐40°【变式9-2】如图,防城港市的一条公路修到海边时,需要拐弯绕海而过,如果第一次拐角是∠AA=130°,第二次拐的角是∠BB=160°,第三次拐的角是∠BB,这时的道路恰好和第一次拐之前的道路平行,则∠BB度数为______.【变式9-3】如图所示,一条公路修到湖边时,需要拐弯绕湖而过,第一次拐的角∠AA=110°,第二次拐的角∠B=145°,则第三次拐的角∠BB=__________时,道路BBEE才能恰好与AADD平行.【例10】结合“爱市西,爱生活,会创新”的主题,某同学设计了一款“地面霓虹探测灯”,增加美观的同时也为行人的夜间行路带去了方便.他的构想如下:在平面内,如图1所示,灯AA射线从AACC开始顺时针旋转至AANN便立即回转,灯BB射线从BBBB开始顺时针旋转至BBPP便立即回转,两灯不停交叉照射巡视.若灯AA转动的速度是每秒2度,灯BB转动的速度是每秒1度.假定主道路是平行的,即BBPP//CCNN∠BBAACC:∠BBAANN=2:1.(1)填空:∠AABBBB=______°;(2)若灯BB射线先转动60秒,灯AA射线才开始转动,在灯BB射线到达BBPP之前,AA灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯AA射线到达AANN之前,若射出的光束交于点BB,过BB作∠AABBDD 交BBPP于点DD,且∠AABBDD=120°,则在转动过程中,请探究∠BBAABB与∠BBBBDD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【变式10-1】(1)如图1,将一副直角三角板按照如图方式放置,其中点C、D、A、F在同一条直线上,两条直角边所在的直线分别为CCNN、BBPP,∠BBAABB=30°,∠DDEEEE=45°.AABB与DDEE相交于点O,则∠BBBBEE的度数是__________;(2)将图1中的三角板AABBBB和三角板DDEEEE分别绕点B、F按各自的方向旋转至如图2所示位置,其中BBAA平分∠CCBBBB,求∠BBEEAA的度数;(3)将如图1位置的三角板AABBBB绕点B顺时针旋转一周,速度为每秒10°,在此过程中,经过_________秒边AABB与边DDEE互相平行.【变式10-2】嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE,经研究发现(1)如图2,当AB与DE重合时,∠CDF=°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=°;拓展(3)如图4,继续旋转使得AC垂直DE于点G,此时AC与EF位置关系,此时∠AED=°;探究(4)如图5,图6∥DF图5中此时∠AED=°,图6中此时∠AED=°.【变式10-3】如图1,PQ∥MN,点A,B分别在MN,QP上,∠BAM=2∠BAN,射线AM绕A点顺时针旋转至AN便立即逆时针回转,射线BP绕B点顺时针旋转至BQ便立即逆时针回转.射线AM转动的速度是每秒2度,射线BP转动的速度是每秒1度.(1)直接写出∠PPBBAA的大小为_______;(2)射线AM、BP转动后对应的射线分别为AE、BF,射线BF交直线MN于点F,若射线BP比射线AM先转动30秒,设射线AM转动的时间为t(0<t<180)秒,求t为多少时,直线BF∥直线AE?(3)如图2,若射线BP、AM同时转动m(0<m<90)秒,转动的两条射线交于点C,作∠ACD=120°,点D在BP上,请探究∠BAC与∠BCD的数量关系.。
平行线的性质
平行线的性质精选题26道一.选择题(共7小题)1.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°2.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°3.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°4.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④5.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°6.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°7.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°二.填空题(共12小题)8.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=度.9.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度.10.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为.11.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.12.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2=度.14.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.15.如图,已知AB∥CD,则∠A、∠C、∠P的关系为.16.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB =65°,则∠AED′等于°.17.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.18.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.19.将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为.三.解答题(共7小题)20.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.21.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.22.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.23.已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.24.问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠P AB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.25.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a 度/秒,灯B转动的速度是b度/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若A射出的光束与B射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.26.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.。
平行线的判定定理和性质定理练习题
平行线的判定定理和性质定理[一]、平行线的判定一、填空1.如图1,若∠A=∠3,则∥;若∠2=∠E,则∥;若∠ +∠= 180°,则∥.2.若a⊥c,b⊥c,则a b.3.如图2,写出一个能判定直线a∥b的条件:.4.在四边形ABCD中,∠A +∠B = 180°,则∥().5.如图3,若∠1 +∠2 = 180°,则∥。
6.如图4,∠1、∠2、∠3、∠4、∠5中,同位角有;内错角有;同旁内角有.7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB得∥();(2)由∠CAD =∠ACB得∥();(3)由∠CBA +∠BAD = 180°得∥()8.如图6,尽可能多地写出直线l1∥l2的条件:.9.如图7,尽可能地写出能判定AB∥CD的条件来:.10.如图8,推理填空:(1)∵∠A =∠(已知),∴AC∥ED();(2)∵∠2 =∠(已知),∴AC∥ED();(3)∵∠A +∠= 180°(已知),∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED();二、解答下列各题11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.12.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.13.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。
求证:AB∥CD,MP∥NQ.[二]、平行线的性质一、填空1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 = .2.如图2,直线AB、CD被EF所截,若∠1 =∠2,3.如图3所示(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠= 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.6.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =.7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有.8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.G321FE D C BA11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.3、如图,EF ∥AD,∠1=∠2,∠BAC=70°.将求∠AGD 的过程填写完整. 解: 因为EF ∥AD,所以∠2=____(____________________________)又因为∠1=∠2所以∠1=∠3(______________)所以AB∥_____(_____________________________)所以∠BAC+______=180°(___________________________)因为∠BAC=70°所以∠AGD=_______.7.如下左图,已知EF⊥AB,垂足为F,CD⊥AB,垂足为D,∠1=∠2,求证:∠AGD=∠ACB.8.如上右图,已知:∠B+∠BED+∠D=360°.求证:AB∥CD.11. 在下图中,已知直线AB和直线CD被直线GH所截,交点分别为E、F,∠AEF =∠EFD .(1)直线AB 和直线CD 平行吗为什么(2)若EM 是∠AEF 的平分线,FN 是∠EFD 的平分线,则EM 与FN 平行吗为什么ABCDG EM FNH13. 如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.C16. 如图,已知AB 4658ABCE如图,已知AD (2)你能说明∠1+∠2=180吗A BCD 1 5 2 3 418. 如下图,直线AB,CD相交于O点,OM⊥AB.(1)若∠1=∠2,求∠NOD;(2)若∠1=14∠BOC,求∠AOC与∠MOD.MN1OA BDC219. 如图,已知:AB∥CD,AE平分∠BAC,CE平分∠ACD,请说明:AE⊥CF.A BDCE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完成时间: 第 周 周 课题:§平行线的性质 判断题:
1.(1)在同一平面内的两条直线被第三条直线所截,那么同位角相等。
( ) (2)如图1,如果180A B ∠+∠=,那么180C D ∠+∠=。
( )
图1 图2
(3)两直线平行,同旁内角相等。
( ) (4)如果两条平行线被第三条直线所截,则一对同旁内角的平分线互相垂直。
( ) (5)两条直线被第三条直线所截,那么这两条直线平行。
( ) 2.如图2,AB ∥CD ,则( )
A.∠1=∠5;
B.∠2=∠6;
C.∠3=∠7;
D.∠5=∠8 3.下列说法,其中是平行线性质的是( )
①两直线平行,同旁内角互补 ②同位角相等,两直线平行 ③内错角相等,两直线平行 ④垂直于同一条直线的两直线平行
A.① B .②③ C.④ D.①④ 4.如图3,已知∠1=∠2,∠3=125°,那么∠4的度数为( )
° ° ° °
图3 图4 图5
5.如图4,已知AB ∥DE ,∠A=150°,∠D=140°,则∠C 的度数是 。
6. 两条直线被第三条直线所截,如果内错角相等,则同旁内角_________。
7. 如图5,直线a ∥b ,若∠1=118°,则∠2=_________。
8. 如图6,已知AB ∥CD ,BC ∥DE ,那么=∠+∠D B _________。
纠错栏
图6 图7
9. 如图7,已知CE 是DC 的延长线,AB ∥DC ,AD ∥BC ,若∠B =60°,则∠BCE =_________,∠D =_________,∠A =_________。
10. 填写推理的理由
(1)如图8,∵BE 平分∠ABC (已知) ∴∠1=∠3( )
又∵∠1=∠2(已知) ∴_________=∠2
∴_________∥_________( ) ∴∠AED =_________( )
(2)如图9,∵AB ∥CD ∴∠A +_________=180°( )
∵BC ∥AD , ∴∠A +_________=180°( ) ∴∠B =_________。
11. 如图所示,//AB CD ,直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠,若
172∠=,求2∠的度数。
321E
A
B
C
D
F
G
评价等级: 评 语:
批阅时间:
图8
图9。