((人教版))[[高考数学试题]]2008年高考数学压轴题专题训练

合集下载

2008年江苏高考数学原创压轴题

2008年江苏高考数学原创压轴题

2008年江苏高考数学原创压轴题2010年将是不平静的一年,除了奥运会的举办等国际国内的大事以外,就数牵动千百万家庭的高考了,特别是江苏的高考,是进入新课程后的第一次高考,全新的课程标准、全新的教学方法、全新的高考模式、全新的录取形式,所以必然出现全新的高考命题模式.通过认真学习《高中数学课程标准》、《江苏省课程标准教学要求》等纲领性文件,反复研读了2005、2006、2007,2008.,2009五年高考江苏卷的试卷评析报告,下面给出几个原创题,供高三师生参考,权当抛砖引玉.1.如果复数()()21m i mi ++是实数,则实数m=____________________.解: ()()21m i mi ++展开后,“原始项”共四项,但是我们并 不关心实部项,虚部项为:21m mi i ⋅+⋅,只需310m +=即可,所以1m =-.【命题意图】考查复数的运算和相关基本概念的理解.过去复数在《选修Ⅱ》中,《选修Ⅰ》没有复数,所以,近几年江苏一直不讲复数,因此,复数成了新内容.2.设[]x 表示不大于x 的最大整数,集合{}2|2[]3A x x x =-=,1|288x B x ⎧⎫=<<⎨⎬⎩⎭,则A B = _________________.解:不等式1288x <<的解为33x -<<,所以(3,3)B =-. 若x A B ∈ ,则22[]333x x x ⎧-=⎨-<<⎩,所以[]x 只可能取值3,2,1,0,1,2---.若[]2x ≤-,则232[]0x x =+<,没有实数解;若[]1x =-,则21x =,解得1x =-; 若[]0x =,则23x =,没有符合条件的解;若[]1x =,则25x =,没有符合条件的解;若[]2x =,则27x =,有一个符合条件的解x =因此,{A B =- .【命题意图】此题是一元二次方程根分布问题,涉及指数不等式的解法,函数与方程思想,分类讨论思想等.数学的精华在于数学思想方法,思考问题的支撑点也是数学思想方法,只有理解了数学思想方法,才算真正学明白了数学.3.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .测得00153030BCD BDC CD ∠=∠==,,米,并在点C 测得塔顶A 的仰角为060,则塔高AB=_____ .解:由原解答得()tan sin 30tan 60sin 30sin()sin 1530s AB θβαβ⋅===++【命题意图】在2007年的课改区高考试题中,十分重视弘扬和发展学生的数学应用意识.新课标卷更注意数学应用意识和实践能力的考查,试题设计更加注意贴近生活实践.4.若关于,x y 的方程组22110ax by x y +=⎧⎨+=⎩有解,且所有的解都是整数,则有序数对(),a b 的数目为 .解:因为2210x y +=的整数解为:()()()()()()()()1,3,3,1,1,3,3,1,1,3,3,1,1,3,3,1--------,所以这八个点两两所连的不过原点的直线有24条,过这八个点的切线有8条,每条直线确定了唯一的有序数对(),a b ,所以有序数对(),a b 的数目为32.【命题意图】本题主要考察直线与圆的概念,以及组合的知识,既要数形结合,又要分类考虑,要结合圆上点的对称性来考虑过点的直线的特征.是较难问题.5.若数列{a n }的通项公式a n =21(1)n +,记12()2(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1)f ,(2)f ,(3)f 的值,推测出()f n = .解:∵ ()()1213(1)2121211f a ⎡⎤=-=⨯-=⎢⎥+⎢⎥⎣⎦,122314(2)2(1)(1)1233f a a ⎛⎫=⨯--=-= ⎪⎝⎭,()3415(3)(2)113164f f a ⎛⎫=-=-= ⎪⎝⎭,∴归纳猜想得2(1)n f n n +=+. 【命题意图】考查考生对归纳猜想和递推的理解和运用.此题涉及属探索性问题,考生可根据特殊情形归纳概括一般性结论.6.已知三个正数,,a b c 满足a b c <<. (1)若,,a b c 是从129,,101010⎧⎫⋅⋅⋅⎨⎬⎩⎭中任取的三个数,求,,a b c 能构成三角形三边长的概率; (2)若,,a b c 是从(0,1)中任取的三个数,求,,a b c 能构成三角形三边长的概率.分析:在(1)中,,a b c 的取值是有限可数的,可用列举法解决;(2)中,,a b c 的取值是无穷的,得用几何概型的方法求解.解:(1)若,,a b c 能构成三角形,则4,10a b c c +>≥. ①若410c =时,32,1010b a ==.共1种;②若510c =时.432,,101010b a ==.共2种; 同理610c =时,有3+1=4种;710c =时,有4+2=6种;810c =时,有5+3+1=9种;910c =时,有6+4+2=12种.于是共有1+2+4+6+9+12=34种. 下面求从129,,101010⎧⎫⋅⋅⋅⎨⎬⎩⎭中任取的三个数,,a b c (a b c <<)的种数: ①若110a =,210b =,则39,,1010c =⋅⋅⋅,有7种;349,,,101010b c ==⋅⋅⋅,有6种;410b =,59,,1010c =⋅⋅⋅,有5种;……; 89,1010b c ==,有1种.故共有7+6+5+4+3+2+1=28种.同理,210a =时,有6+5+4+3+2+1=21种;310a =时,有5+4+3+2+1=15种;410a =时,有4+3+2+1=10种;510a =时,有3+2+1=6种;610a =时,有2+1=3种;710a =时,有1种.这时共有28+21+15+10+6+3+1=84种. ∴,,a b c 能构成三角形的概率为34174824=. (2)a b c 、、能构成三角形的充要条件是0101a b c a b c c <<<<⎧⎪+>⎨⎪<<⎩.在坐标系aOb 内画出满足以上条件的区域(如右图阴影部分),由几何概型的计算方法可知,只求阴影部分的面积与图中正方形的面积比即可.又12S =阴影,于是所要求的概率为112.12P == 【命题意图】统计、概率对于现代社会(经济发达)越来越显得重要,也是学生由确定性数学向不确定性(随机性)数学的一个转变,有着基本的重要性,考查是必然的.7.请认真阅读下列程序框图:已知程序框图(1)i i x f x =-中的函数关系式为42()1x f x x -=+,程序框图中的D 为函数()f x 的定义域,把此程序框图中所输出的数i x组成一个数列{}n x .(理科考生请完成下列各题) (1) 若输入04965x =,请写出数列{}n x 的所有项; (2) 若输出的无穷数列{}n x 是一个常数列,试求输入的初始值0x 的值;(3) 若输入一个正数0x 时,产生的无穷数列{}n x 满足:*n N ∀∈,都有1n n x x +<,试求正数0x 的取值范围.(文科考生请完成下列各题)(1) 若输入04965x =,请写出输出的所有数i x ; (2) 若输出的所有数i x 都相等,试求输入的初始值0x 的值. 解:(1)当04965x =时,12349111111165191955x f x f x f ⎛⎫⎛⎫⎛⎫======- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 所以输出的数列为1111195-,,…………………(3分) (2)数列{}n x 是一个常数列,则有120n x x x x ==⋅⋅⋅== 即000042()1x x f x x -==-,解得:0012x x ==或 所以输入的初始值0x 为1或2时输出的为常数列. (3)由题意知 142()1n n n n n x x f x x x +-==>+,因00x >,0n x ∴>,有:421n n n x x x ->+得42(1)n n n x x x ->+即2320n n x x -+<,即(2)(1)0n n x x --<要使*n N ∀∈,都有1n n a a +>,须00(2)(1)0x x --<,解得:012x <<, 所以当正数0x 在(1,2)内取值时,所输出的数列{}n x 对任意正整数n 满足1n n x x +< (文科)解:(1)当04965x =时,12349111111165191955x f x f x f ⎛⎫⎛⎫⎛⎫======- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,所以输出的数为1111195-,,,要使输出的数i x 都相等,即11()i i i x f x x --==(2)此时有 100()x f x x ==,即00421x x -+=0x ,解得01x =或02x =,所以输入初始值01x =或02x =时,输出的数i x 均相等.【命题意图】算法思想可以贯穿于整个中学数学内容之中,有很丰富的层次递进的素材,而在算法的具体实现上又可以和信息技术相联系,因此,算法与函数,数列等知识的融合,有利于培养学生理性精神和实践能力,是实施探究性学习的良好素材.8.已知二次函数2(),f x ax bx c =++直线21:8l y t t =-+(其中t 为常数);2:2=x l .若直线12,l l 与函数()f x 的图象以及1l ,y 轴与函数()f x 的图象所围成的封闭图形如阴影所示. (Ⅰ)求a 、b 、c 的值(Ⅱ)求阴影面积S 关于t 的函数()S t 的解析式;(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由.解:(I )由图形知:2201880804164c a a b c b c ac b a⎧⎪==-⎧⎪⎪⎪⋅+⋅+==⎨⎨⎪⎪=-⎩⎪=⎪⎩,解之得:,∴函数()f x 的解析式为x x x f 8)(2+-= (Ⅱ)由⎪⎩⎪⎨⎧+-=+-=xx y t t y 8822得2128(8)0,,8,x x t t x t x t ---=∴==-∵0≤t ≤2,∴直线l 1与()f x 的图象的交点坐标为()8,2t t t +-由定积分的几何意义知:⎰⎰+--+-++--+-=102222]8()8[()]8()8[()(tdx t t x x dx x x t t t S12223222088(8)()()(8)32032tx x x x t t x t t x ⎡⎤⎡⎤=-+--++-+--+⋅⎢⎥⎢⎥⎣⎦⎣⎦34016103423+-+-=t t t(Ⅲ)令.ln 68)()()(2m x x x x f x g x ++-=-=ϕ因为x >0,要使函数()f x 与函数()g x 有且仅有2个不同的交点,则函数m x x x x ++-=ln 68)(2ϕ的图象与x 轴的正半轴有且只有两个不同的交点262862(1)(3)()28(0)x x x x x x x x x xϕ-+--'∴=-+==>当x ∈(0,1)时,()0,()x x ϕϕ'>是增函数; 当x ∈(1,3)时,()0,()x x ϕϕ'<是减函数 当x ∈(3,+∞)时,()0,()x x ϕϕ'>是增函数 当x=1或x=3时,()0x ϕ'=∴;7)1()(-=m x ϕϕ极大值为153ln 6)3()(-+=m x ϕϕ极小值为 又因为当x →0时,-∞→)(x ϕ 当+∞→+∞→)(x x ϕ时,所以要使0)(=x ϕ有且仅有两个不同的正根,必须且只须(1)0(3)0(3)0(1)0ϕϕϕϕ==⎧⎧⎨⎨'<>⎩⎩,或即706ln 31506ln 315070m m m m -=+-=⎧⎧⎨⎨+-<->⎩⎩,或,∴m=7或.3ln 615-=m∴当m=7或.3ln 615-=m 时,函数()f x 与函数()g x 的图象有且只有两个不同交点.【命题意图】对江苏来说,与以往不同的是,增加了正弦、余弦、指数、对数的导数,还有积的导数,商的导数.对理科另外还有求形如)(b ax f +的复合函数导数以及定积分.高校教师熟悉微积分,历来是命题的热点(江苏2003年21题就很难),加上新增加许多函数的导数,2008年大题考导数,定积分的可能性极大.。

2008年全国各地高考数学试题及解答分类汇编大全(14空间向量与立体几何)

2008年全国各地高考数学试题及解答分类汇编大全(14空间向量与立体几何)

2008年全国各地高考数学试题及解答分类汇编大全(14空间向量与立体几何)一、选择题:1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C )A .13B.3 C.3 D .231.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为11AO AB =另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为060长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u ur u u u r211112,33OA AB a OA AB ⋅===u u u r u u u r u u u r u u u r则1AB 与底面ABC所成角的正弦值为11113OA AB AO AB ⋅=u u u u r u u u r u u u r u u u r .二、填空题:1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 61. 1.答案:16.设2AB =,作CO ABDE ⊥面, OH,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO ==⋅∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r,11()()22AN EM AB AC AC AE ⋅=+⋅-=u u u r u u u u r u u u r u u u r u u u r 12故EM AN ,所成角的余弦值16AN EM AN EM ⋅=u u u r u u u u r u u u r u u u u r另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,(,2222M N ---, 则31131(,,),(,,,2222222AN EM AN EM AN ==-⋅=u u u r u u u u r u u u r u u u u r u u u r故EM AN ,所成角的余弦值16AN EM AN EM ⋅=u u u r u u u u r u u u r u u u u r .三、解答题:1.(2008安徽文)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

08年全国各地高考数学压轴题解析

08年全国各地高考数学压轴题解析

08年全国高考压轴题1、(安徽理)(22).(本小题满分13分)设椭圆2222:1(0)x y C a b a b+=>>过点M,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上22解 (1)由题意:2222222211c a bc a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为 22142x y += (2)方法一设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y 。

由题设知,,,AP PB AQ QB均不为零,记AP AQ PB QBλ==,则0λ>且1λ≠又A ,P ,B ,Q 四点共线,从而,AP PB AQ QB λλ=-=于是 1241x x λλ-=-, 1211y y λλ-=-121x x x λλ+=+, 121y y y λλ+=+从而22212241x x x λλ-=-, (1) 2221221y y y λλ-=-, (2) 又点A 、B 在椭圆C 上,即221124,(3)x y += 222224,(4)x y +=(1)+(2)×2并结合(3),(4)得424s y += 即点(,)Q x y 总在定直线220x y +-=上 方法二设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB均不为零。

且 PA PB AQ QB=又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±,于是1141,11x yx y λλλλ--==-- (1) 2241,11x yx y λλλλ++==++ (2) 由于1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程2224,x y +=整理得222(24)4(22)140x y x y λλ+--+-+= (3) 222(24)4(22)140x y x y λλ+-++-+= (4)(4)-(3) 得 8(22)0x y λ+-= 0,220x y λ≠+-=∵∴即点(,)Q x y 总在定直线220x y +-=上2、(上海文)21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记 112233n n n T b a b a b a b a =++++ .(1)若1213264a a a a ++++= ,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +,…,1212m T +中有4项为100.求r 的值,并指出哪4项为100.21.解:(1)12312a a a a ++++1234(2)56(4)78(6)r r r r r =+++++++++++++++484r =+. ……2分∵48464r +=,∴4r =. ……4分 (2)用数学归纳法证明:当n Z +∈时,124n T n =-.①当1n =时,1213579114T a a a a a a =-+-+-=-,等式成立. ……6分 ②假设n k =时等式成立,即124k T k =-,那么当1n k =+时,12(1)121211231251271291211k k k k k k k k T T a a a a a a +++++++=+-+-+- ……8分4(81)(8)(84)(85)(84)(88)k k k r k k k r k =-++-+++-++++-+ 444(1)k k =--=-+,等式也成立.根据①和②可以断定:当当n Z +∈时,124n T n =-. ……10分 (3)124m T m =-(1m ≥).当121n m =+,122m +时,41n T m =+; 当123n m =+,124m +时,41n T m r =-+-; 当125n m =+,126m +时,45n T m r =+-; 当127n m =+,128m +时,4n T m r =--; 当129n m =+,1210m +时,44n T m =+; 当1211n m =+,1212m +时,44n T m =--.∵41m +是奇数,41m r -+-,4m r --,44m --均为负数,∴这些项均不可能取得100. ……15分 ∴4544100m r m +-=+=,解得24m =,1r =,此时293294297298,,,T T T T 为100. ……18分 3、(重庆理)(22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 设各项均为正数的数列{a n }满足321122,(N*)n a a a a aa n ++==∈.(Ⅰ)若214a =,求a 3,a 4,并猜想a 2008的值(不需证明);(Ⅱ)记12...(N*),n n n b a a a n b =∈≥若对n ≥2恒成立,求a 2的值及数列{b n }的通项公式.(22)(本小题12分)解:(Ⅰ)因2122,2,a a -==故3423123824232,2.a a a a a a ---====由此有0223(2)(2)(2)(2)12342,2,2,2a a a a ----====,故猜想n a 的通项为 1(2)*2(N ).n n a n --=∈(Ⅱ)令2log ,2.n Sn n n n n x a S x n b ==表示的前项和,则 由题设知x 1=1且*123(N );2n n n x x x n ++=+∈ ①123(2).2n n S x x x n =+++≥≥ ② 因②式对n =2成立,有1213,12x x x ≤+=又得 21.2x ≥③ 下用反证法证明:2211..22x x ≤>假设由①得21211312()(2).22n n n n n n x x x x x x ++++++=+++因此数列12n n x x ++是首项为22x +,公比为12的等比数列.故*121111()(N ).222n n n x x x n +--=-∈ ④又由①知 211111311()2(),2222n x n n n n n x x x x x x x +++++-=--=--因此是112n n x x +-是首项为212x -,公比为-2的等比数列,所以1*1211()(2)(N ).22n n n x x x n -+-=--∈ ⑤ 由④-⑤得1*221511(2)()(2)(N ).222n n n S x x n --=+---∈ ⑥ 对n 求和得*2215111(2)(2)(2)()(N ).2232n n n x x x n ---=+---∈ ⑦由题设知21231,22k S x +≥>且由反证假设有21*22221*22221121152)(2)()(N ).22341211151()(2)(2)2(N ).23244k k k k x x k x x x k ++++---≥∈+-≤+--<+∈ (从而 即不等式22k +1<22364112x x +--对k ∈N *恒成立.但这是不可能的,矛盾. 因此x 2≤12,结合③式知x 2=12,因此a 2=2*2将x 2=12代入⑦式得S n =2-112n -(n ∈N*),所以b n =2Sn =22-112n -(n ∈N*)4、(广东理)21.(本小题满分12分)设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S . 21.解:(1)由求根公式,不妨设<αβ,得==αβ∴+==p αβ,==q αβ(2)设112()----=-n n n n x sx t x sx ,则12()--=+-n n n x s t x stx ,由12n n n x px qx --=-得,+=⎧⎨=⎩s t p st q,消去t ,得20-+=s ps q ,∴s 是方程20x px q -+=的根,由题意可知,12,==s s αβ①当≠αβ时,此时方程组+=⎧⎨=⎩s t pst q 的解记为1212==⎧⎧⎨⎨==⎩⎩s s t t ααββ或 112(),---∴-=-n n n n x x x x αβα112(),----=-n n n n x x x x βαβ即{}11--n n x t x 、{}21--n n x t x 分别是公比为1=s α、2=s β的等比数列, 由等比数列性质可得2121()---=-n n n x x x x ααβ,2121()---=-n n n x x x x ββα, 两式相减,得2212121()()()----=---n n n x x x x x βααββα221,=-= x p q x p ,222∴=++x αβαβ,1=+x αβ22221()--∴-== n n n x x αββββ,22221()---== n n n x x βαααα1()-∴-=-n nn x βαβα,即1--∴=-nnn x βαβα,11++-∴=-n n n x βαβα ②当=αβ时,即方程20x px q -+=有重根,240∴-=p q , 即2()40+-=s t st ,得2()0,-=∴=s t s t ,不妨设==s t α,由①可知2121()---=-n n n x x x x ααβ,= αβ,2121()--∴-=-=n n n n x x x x αααα即1-∴=+n n n x x αα,等式两边同时除以nα,得111--=+nn nn x x αα,即111---=nn nn x x αα∴数列{}n n xα是以1为公差的等差数列,12(1)111∴=+-⨯=+-=+n n x x n n n αααα∴=+n n n x n αα综上所述,11,(),()++⎧-≠⎪=-⎨⎪+=⎩n n nn n x n βααββααααβ(3)把1p =,14q =代入20x px q -+=,得2104-+=x x ,解得12==αβ 11()()22∴=+ n n n x n232311111111()()()...()()2()3()...()22222222n n n S n ⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎝⎭⎝⎭23111111()()2()3()...()22222n n n ⎛⎫=-+++++ ⎪⎝⎭111111()2()()3(3)()2222n n n n n n -=-+--=-+5、(福建理)(22)(本小题满分14分) 已知函数f (x )=ln(1+x )-x (Ⅰ)求f (x )的单调区间;(Ⅱ)记f (x )在区间[]0,π(n ∈N*)上的最小值为b x 令a n =ln(1+n )-b x . (Ⅲ)如果对一切npc 的取值范围;(Ⅳ)求证:13132******** 1.n na a a a a a a a a a a a -+++-g g g g g g p g g g(22)本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分. 解法一:(I )因为f(x)=ln(1+x )-x ,所以函数定义域为(-1,+∞),且f ′(x)=11x +-1=1x x-+. 由f ′(x )>0得-1<x <0,f (x )的单调递增区间为(-1,0); 由f ′(x )<0得x >0,f (x )的单调递增区间为(0,+∞). (II)因为f (x )在[0,n]上是减函数,所以b n =f (n )=ln(1+n )-n , 则a n =ln(1+n )-b n =ln(1+n )-ln(1+n )+n =n .(i)==>1.=又1x ==,因此c <1,即实数c 的取值范围是(-∞,1]. (II )由(i< 因为[135(21)246(2)n n ⋅⋅⋅⋅-⋅⋅⋅⋅⋅ ]23222133557(21)(21)11,2121246(2)n n n n n ⋅⋅⋅-+=⋅⋅⋅⋅⋅++<L所以135(21)246(2)n n -g g g L g g g g L g<1∈N *),则113135(21)224246(2)n n -+++g g g g L g L g g g g L g <131321122242 1.n n na a a a a a a a a a a a -+-=+++即<L L L L1(n ∈N *)解法二:(Ⅰ)同解法一.(Ⅱ)因为f (x )在[]0,n 上是减函数,所以()ln(1),n b f n n n ==+- 则ln(1)ln(1)ln(1).n n a n b n n n n =+-=+-++= (i-pn ∈N*恒成立.p n ∈N*恒成立.则2c n +p n ∈N*恒成立.设()2g n n =+ n ∈N*,则c <g (n )对n ∈N*恒成立.考虑[)()21,.g x x x =+-∈+∞因为12211()1(2) (22)1121x g x x x x x -+=-++=--+′g p =0, 所以[)()1,g x +∞在内是减函数;则当n ∈N*时,g (n )随n 的增大而减小,又因为42lim ()lim(2x x x x g n n →∞→∞+=+===1.所以对一切*N ,() 1.n g n ∈>因此c ≤1,即实数c 的取值范围是(-∞,1]. (ⅱ) 由(ⅰ)<下面用数学归纳法证明不等式135(21)N ).246(2)n n n +-<∈g g g L g g g g L g①当n =1时,左边=12,左边<右边.不等式成立. ②假设当n=k 时,不等式成立.即135(21)246(2)k k -<g g g L g g g g L g当n=k +1时,32122321222122212121)22(2642)12(12531++++=++=++++⋯+⋯∙∙∙∙∙∙k k k k k k k k k k k k k <)()-(=,1)1(2132132148243824++=++++++∙k k k k k k k <即n =k +1时,不等式成立综合①、②得,不等式*)N (121)2(642)12(531∈+⋯-⋯∙∙∙∙∙∙∙∙n n n n <成立.所以1212)2(642)12(531--+⋯-⋯∙∙∙∙∙∙∙∙n n n n <)2(642)12(531423121n n ∙∙∙∙∙∙∙∙∙∙⋯-⋯⋯+++.112123513-+=-⋯n n +=-+-< 即*)N (1212421231423121∈-⋯⋯⋯+++-n a a a a a a a a a a a a a n nn <+. 6、(湖北理)21.(本小题满分14分) 已知数列{a n }和{b n }满足:a 1=λ,a n+1=24,(1)(321),3n n n n a n b a n +-=--+其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b ,S n 为数列{b n }的前n 项和。

2008高考数学压轴试题集锦

2008高考数学压轴试题集锦

2008高考数学压轴试题集锦(九)46.已知函数()2f x x mx n =++的图像过点()13,,且()()11f x f x -+=--对任意实数都成立,函数()y g x =与()y f x =的图像关于原点对称。

)()()1113f x f x f -+=--=,(Ⅰ)求()f x 与()x g 的解析式; (Ⅱ)若()()x g x F =—()f x λ在[-1,1]上是增函数,求实数λ的取值范围;47.设数列{}{}n n b a ,满足3,4,6332211======b a b a b a ,且数列{}()++∈-N n a a n n 1是等差数列,数列{}()+∈-Nn b n 2是等比数列。

(I )求数列{}n a 和{}n b 的通项公式;(II )是否存在+∈N k ,使⎪⎭⎫ ⎝⎛∈-21,0k k b a ,若存在,求出k ,若不存在,说明理由。

48. 数列}{n a 的首项11=a ,前n 项和S n 与a n 之间满足).2(1222≥-=n S S a n nn (1)求证:数列{nS 1}的通项公式; (2)设存在正数k ,使12)1()1)(1(21+≥+++n k S S S n 对一切*N n ∈都成立,求k 的最大值.49.已知F 1、F 2分别是椭圆)0,0(12222>>=+b a by a x 的左、右焦点,其左准线与x 轴相交于点N ,并且满足,.2||,221121==F F NF F F 设A 、B 是上半椭圆上满足NB NA λ=的两点,其中].31,51[∈λ(1)求此椭圆的方程及直线AB 的斜率的取值范围;(2)设A 、B 两点分别作此椭圆的切线,两切线相交于一点P ,求证:点P 在一条定直线上,并求点P的纵坐标的取值范围. 50.已知函数.ln )(,2)23ln()(x x g xx x f =++= (1)求函数f (x )是单调区间; (2)如果关于x 的方程m x x g +=21)(有实数根,求实数m 的取值集合; (3)是否存在正数k ,使得关于x 的方程)()(x kg x f =有两个不相等的实数根?如果存在,求k 满足的条件;如果不存在,说明理由.参考答案:46 解:⑴由题意知:a 1b 0==,,()222'f x x x ∴=+设函数()y f x =图象上的任意一点()00Q x y ,关于原点的对称点为P (x,y ), 则00x x y y =-=-,,……………………4分因为点()()00Q x y y f x =,在的图像上, ()2222,,27'y x x y x x g x x x ∴-=-∴=-+∴=-+⋯⋯⑵()()()()22222121x x x x x x x λλλ=-+-+=-++-F()(]11- F x 在,上是增函且连续,()()()21210λλ=-++-≥'F x x 恒成立……9分 即(]1211λ-≤=--++在,上恒成立111x x x,………………..10分 由(]-+21-111x在,上为减函数,………………..12分 当=x 1时取最小值0,………………..13分故(]λλ≤-∞ 0014'所求的取值范围是,, 另解:()[]1,1F x - 在上是增函数,()()()[]'22221,1F x x λλ∴=--+--在上非负()()()()()22220221220λλλλ--+-≥⎧⎪∴⎨---+-≥⎪⎩,解得0λ≤47(1)由已知212-=-a a ,123-=-a a∴公差()121=---=d ………1分31)1()(121-=⨯-+-=-∴+n n a a a a n n ………2分 )()()(113121--++-+-+=∴n n n a a a a a a a a )4(0)1()2(6-+++-+-+=n[]2)1()4()2(6--+-+=n n =21872+-n n ………4分 由已知22,4221=-=-b b ………5分所以公比21=q ,()1112142122--⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫⎝⎛-=-∴n n n b b ………6分nn b ⎪⎭⎫⎝⎛⨯+=∴2182………7分(2)设k k b a k f -=)(k 2171928222k k ⎡⎤⎛⎫⎛⎫=-+-+⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2k17491872242k ⎡⎤⎛⎫⎛⎫=---⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦…8分所以当4≥k 时,)(k f 是增函数。

高中数学2008年高考真题精品解析阶段测试同步训练试题1080

高中数学2008年高考真题精品解析阶段测试同步训练试题1080

高中数学2008年高考真题精品解析阶段测试同步训练试题2019.091,设函数32()2f x x x x =--+. (Ⅰ)求()f x 的单调区间和极值;(Ⅱ)若当[1,2]x ∈-时,3()3af x -≤≤,求a b -的最大值.2,在△ABC 中,内角,,A B C 对边的边长分别是,,a b c ,已知2222a c b +=。

(Ⅰ)若4B π=,且A 为钝角,求内角A 与C 的大小; (Ⅱ)若2b =,求△ABC 面积的最大值。

3,一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类。

检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整。

已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响。

(Ⅰ)求在一次抽检后,设备不需要调整的概率;(Ⅱ)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列和数学期望。

4,如图,一张平行四边形的硬纸片0ABC D 中,1AD BD ==,AB =它的对角线BD 把△0BDC 折起,使点0C 到达平面0ABC D 外点C 的位置。

(Ⅰ)证明:平面0ABC D ⊥平面0CBC ;(Ⅱ)如果△ABC 为等腰三角形,求二面角A BD C --的大小。

5,在数列{}n a 中,11a =,2112(1)n n a a n +=+。

(Ⅰ)求{}n a 的通项公式;(Ⅱ)令112n n nb a a +=-,求数列{}n b 的前n 项和n S 。

(Ⅲ)求数列{}n a 的前n 项和n T 。

6,已知椭圆1C 的中心和抛物线2C 的顶点都在坐标原点O ,1C 和2C 有公共焦点F ,点F 在x 轴正半轴上,且1C 的长轴长、短轴长及点F 到1C 右准线的距离成等比数列。

(Ⅰ)当2C 的准线与1C 右准线间的距离为15时,求1C 及2C 的方程; (Ⅱ)设过点F 且斜率为1的直线l 交1C 于P ,Q 两点,交2C 于M ,N 两点。

高中数学2008年高考真题精品解析阶段测试同步训练试题680

高中数学2008年高考真题精品解析阶段测试同步训练试题680

高中数学2008年高考真题精品解析阶段测试同步训练试题2019.091,0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A ..-.-2,“18a =”是“对任意的正数x ,21ax x +≥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3,已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( ) A .2-B .1C .4D .104,双曲线22221x y a b -=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M点,若2MF 垂直于x 轴,则双曲线的离心率为( )A B C D .5,如图,l A B A B αβαβαβ⊥=∈∈,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,6,已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( ) A .7B .5C .4D .37,定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于( ) A .2B .3C .6D .98,为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A .11010B .01100C .10111D .000119,设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B =ð( ) (A){}2,3(B){}1,4,5(C){}4,5(D){}1,510,函数()1ln 212y x x ⎛⎫=+>- ⎪⎝⎭的反函数是( ) (A)()112x y e x R =-∈(B)()21x y e x R =-∈(C)()()112xy e x R =-∈(D)()21x y e x R =-∈11,设平面向量()()3,5,2,1a b ==-,则2a b -=( ) (A)()7,3(B)()7,7(C)()1,7(D)()1,312,()2tan cot cos x x x +=( )(A)tan x (B)sin x (C)cos x (D)cot x 13,不等式22x x -<的解集为( )(A)()1,2-(B)()1,1-(C)()2,1-(D)()2,2-14,直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( )(A)1133y x =-+ (B)113y x =-+(C)33y x =- (D)113y x =+15,ABC ∆的三内角,,A B C 的对边边长分别为,,a b c ,若,2a A B ==,则cos B =( )(A)(B)(C)(D)16,设M 是球心O 的半径OP 的中点,分别过,M O 作垂直于OP 的平面,截球面得两个圆,则这两个圆的面积比值为:( )(A)41 (B)12 (C)23 (D)3417,函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( )(A)13 (B)2 (C)132 (D)21318,设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有:( )(A)1条(B)2条(C)3条(D)4条19,已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( )(A)24 (B)36 (C)48 (D)9620,若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为060的菱形,则该棱柱的体积等于( )(B)(C)(D)试题答案1, 解:圆的方程22(1)3x y -+=,圆心(1,0)到直线的距离等于半径m⇒=⇒=m⇒=m⇒=-2, 解:18a=12218ax xx x⇒+=+≥=,另一方面对任意正数x,21axx+≥只要21axx+=≥≥18a⇒≥,所以选A3, 解:312()2()log3xf x f x x+-=⇒=-于是11222()()log3log3log6f m f n m n mn--+=-+-=-2log166462=-=-=-4,解:如图在12Rt MF F中,121230,2MF F F F c∠==12cos30cMF==∴,222tan303MFc=⋅=122a MF MF=-=-=∴cea⇒==5, 解:由勾股定理22222a nb m AB+=+=,又a b>,m n>∴sinbABθ=,sinaABφ=,而a b>,所以sin sinθφ<,得θφ<6, 解:画出x y,满足的可行域,可得直线21y x=-与直线x y m+=的交点使目标函数z x y=-取得最小值,故21y xx y m=-⎧⎨+=⎩,解得121,33m mx y+-==,代入1x y-=-得1211533m mm+--=-⇒=7, 解:令0(0)0x y f==⇒=,令1(2)2(1)26x y f f==⇒=+=;令2,1(3)(2)(1)412x y f f f==⇒=++=,再令3,3x y==-得0(33)(3)(3)18(3)18(3)6f f f f f=-=+--⇒-=-=8, 解:C选项传输信息110,0011h=⊕=,102110h h a=⊕=⊕=应该接收信息10110。

高中数学2008年高考真题精品解析阶段测试同步训练试题980

高中数学2008年高考真题精品解析阶段测试同步训练试题980

高中数学2008年高考真题精品解析阶段测试同步训练试题2019.091,汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是2,(1+2x)5的展开式中x 2的系数(A)10(B)5(C)52(D)13,曲线y=x 3-2x+4在点(1,3)处的切线的倾斜角为 (A)30°(B)45°(C)60°(D)12°4,在△ABC 中,AB =c,AC =b.若点D 满足BC =2DC ,则AD =(A) c b 3132+(B) b c 3235-(C) cb 3132-(D)c b 3231+5,y=(sinx -cosx)2-1是(A)最小正周期为2π的偶像函数(B)最小正周期为2π的奇函数 (C)最小正周期为π的偶函数(D)最小正周期为π的奇函数 6,已知等比数列{a n }满足a 1+a 2=3,a 2+ a 3=6,则a 7= (A)64(B)81(C)128(D)2437,若函数y =f(x)的图像与函数y=1n 1+x 的图像关于直线y =x 对称,则f(x)=(A)22e-x (B) x 2e (C) 12e+x (D) 22e+x8,为得到函数y=cos(x+3π)的图像,只需将函数y=sinx 的图像(A)向左平移6π个长度单位(B)向右平移6π个长度单位(C)向左平移65π 个长度单位(D)向右平移65π个长度单位9,若直线b y a x +=1与图122=+y x 有公共点,则 (A)122≤+b a (B) 122≥+b a (C)11122≤+b a (D) 11122≥+b a10,已知三棱柱ABC -111C B A 的侧棱与底面边长都相等,1A 在底面ABC 内的射影为△ABC 的中心,则A 1B 与底面ABC 所成角的正弦值等于(A)31(B)32 (C) 33(D) 3211,将1,2,3填入3×3的方格中,要求每行、第列都没有重复数字,下面是一种填法,则不同的填写方法共有(A)6种(B)12种 (C)24种(D)48种12,设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,13,设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( )A .223b a =B .223a b =C .229b a =D .229a b =14,函数1()f x x x =-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称15,若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <c B .c <a <b C . b <a <c D . b <c <a16,设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-17,从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( )A .929B .1029C .1929D .202918,64(1(1-的展开式中x 的系数是( )A .4-B .3-C .3D .419,若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1BCD .220,设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A.2)B.C .(25),D.(2试题答案1, A本题主要考查了导数的几何意义即为切线斜率的几何意义。

高考数学复习压轴题型专题讲与练习08 基本不等式综合(解析版)

高考数学复习压轴题型专题讲与练习08 基本不等式综合(解析版)

高考数学复习压轴题型专题讲解与练习专题08 基本不等式综合1.已知三次函数32()()f x ax bx cx d a b =+++<在R 上单调递增,则a b cb a++-最小值为( ) ABCD【答案】D 【分析】由函数单调性可知()0f x '≥恒成立,结合二次函数图象与性质可确定203bc a≥>,由此化简所求式子为21131b b a a ba⎛⎫++⋅ ⎪⎝⎭-;利用1bt a =>,配凑出符合对号函数的形式,利用对号函数求得最小值. 【详解】()f x 在R 上单调递增,()2320f x ax bx c '∴=++≥恒成立,2304120a b ac >⎧∴⎨∆=-≤⎩,0b a ∴>>,23b ac ≤,203b c a ∴≥>, 2211331b b b a b a b c a a a b b a b a a⎛⎫++⋅++ ⎪++⎝⎭≥=∴---, 令1b t a=>,设()()211311t t g t t t ++=>-,则()()()2221115171331173151313131t t t t t t g t t t t t t ++-+-+++⎛⎫==⋅=⋅=⋅-++ ⎪----⎝⎭,1t >,10t ∴->,711t t ∴-+≥-711t t -=-,即1t =+, ()g t ∴≥a b c b a ++-故选:D . 【点睛】本题考查利用对号函数求解最值的问题,涉及到根据导数的单调性确定参数范围、分式型函数最值的求解问题;关键是能够通过二次函数的图象与性质确定,,a b c 的关系,进而构造出符合对号函数特点的函数.2.已知函数()ln 2e exf x x e x=-+-,若22018202020202020e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2019201920202e f a b ⎛⎫=+ ⎪⎝⎭,其中0b >,则12a a b +的最小值为 A .34B .54CD【答案】A 【分析】通过函数()f x 解析式可推得()()2f x f e x +-=,再利用倒序相加法求得2201820192020202020202020e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得到a b +的值,然后对a 分类讨论利用基本不等式求最值即可得出答案. 【详解】解:因为()ln2e exf x x e x=-+-,所以()()()ln ()ln 22()e ex e e e xf x f e x x e x e x e e x -+-=-++--+--- 2()()lnln ln()ln 2ex e e x ex e e x e e x x e x x--=+=⋅==--, 令2201820192020202020202020ee e e Sf f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则2019220182019222019202020202020202020202020e e e e e e S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++=⨯⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以2019S = 所以()201920192a b +=,所以2a b +=,其中0b >,则2a b =-. 当0a >时1||121212()112||2222a b a b a b a b a b a b -+⎛⎫+=+=+-=+⋅- ⎪⎝⎭15215511222224b a a b ⎛⎛⎫=++-≥+-= ⎪ ⎝⎭⎝ 当且仅当2,2b a a b= 即 24,33a b == 时等号成立;当0a <时 1||1121212||222a ab a b a b a b a b ---+=+=+=++---112152()1122222b a a b a b a b --⎛⎫⎛⎫=+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝, 当且仅当2,2b aa b-=- 即 2,4a b =-= 时等号成立; 因为3544<,所以1||2||a a b +的最小值为34.故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.设0a b c >>>,则()221121025a ac c ab a a b ++-+-取得最小值时,a 的值为( )AB .2C .4 D.【答案】A 【分析】 转化条件为原式211()(5)()ab a a b a c ab a a b =+++-+--,结合基本不等式即可得解. 【详解】()221121025a ac c ab a a b ++-+- 2211()()21025()ab a a b ab a a b a ac c ab a a b =+++----+-+- 2211()1025()ab a a b a ac c ab a a b =+++-+-+- 211()(5)()ab a a b a c ab a a b =+++-+--04≥=, 当且仅当1()15ab a a b a c=⎧⎪-=⎨⎪=⎩,即a =b =c =.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.已知*,,,1x y z x y z ∈++=R y z -的最大值是( )A B .12C .0D 【答案】A 【分析】利用均值不等式及三角换元法,即可得到结果. 【详解】(1)(1)y z x x -=--≤-(1)x =-令()2=sin 01,(0,)2x πθθ∈∈,21cos 2sin 22y z θθθ--≤=-112cos 222θθ=+-≤x y z === 故选:A本题考查利用基本不等式求最值问题,考查了三角换元法,考查逻辑推理能力与计算能力,属于压轴题.5.若a ,b 均为正实数,则22ab ba b 1+++的最大值为( )A .23BCD .2【答案】B 【分析】对原式变形,两次利用基本不等式,求解即可. 【详解】因为a ,b 均为正实数,则222ab b a 1a 1a b 1b b ++=≤===++++, 当且仅当2a 1b b+=,且a=1取等,即即则22ab b a b 1+++故选B . 【点睛】本题考查基本不等式求最值,熟练变形是关键,注意多次运用不等式,等号成立条件是否一致,是难题.6.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b +++=+,若c 为最大边,则a bc+的取值范围是( )A .1⎛ ⎝⎭B .(C .1⎛ ⎝⎦D .【答案】C 【分析】由444222222a b c a b c a b+++=+,化简得到cos C 的值,根据余弦定理和基本不等式,即可求解. 【详解】由444222222a b c a b c a b +++=+,可得222422222(2)a b c a b c a b ++-=+, 可得22222222222()c a b c a b a b c a b +-++-=+,通分得2222222222()()0a b c c a b a b a b +---+=+, 整理得222222()a b c a b +-=,所以22221()24a b c ab +-=, 因为C 为三角形的最大角,所以1cos 2C =-,又由余弦定理2222222cos ()c a b ab C a b ab a b ab =+-=++=+-2223()()()24a b a b a b +≥+-=+,当且仅当a b =时,等号成立,所以)c a b >+,即a b c +≤,又由a b c +>,所以a b c +的取值范围是. 故选:C. 【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.7.已知正数,,x y z 满足2221x y z ++=, 则11z S xy z+=+的最小值是( )A .2+B .3+C .3+D .4+【答案】B 【分析】利用不等式进行变型,转化为121z xy z +≥-,所以原式 11211((0,1))1(1)z zS z xy z z z z z ++=+≥+=∈--变化成关于z 的函数,然后求导进行求最值即可得到答案. 【详解】222222112x y z z x y xy ++=∴-=+≥(当且紧当x y =时取等号)221122z z xy xy-∴-≥∴≥又因为已知正数,,x y z 满足2221x y z ++=,所以01z << 即121z xy z+≥- 故11211((0,1))1(1)z zS z xy z z z z z ++=+≥+=∈-- 令22221121()(),(0,1)(1)()z z z z f z f z z z z z z z z +++-'==∴=∈---()0,1,1),f z z '>∈此时函数()f z 递增;()0,1),f z z '<∈此时函数()f z 递减;故min ()1)3f z f ==+故选B 【点睛】本题主要考查了不等式综合,利用基本不等式进行变型,然后还考查了导函数的应用,利用单调性求最值,属于较难题.8.(改编)已知正数,x y 满足1x y +=,则1114x y ++的最小值为( )A .73B .2C .95D .43【答案】C 【详解】分析:由1x y +=变形为414154y x +⎛⎫+= ⎪⎝⎭,将1114x y ++乘以41454y x +⎛⎫+ ⎪⎝⎭后再根据基本不等式求解即可得到所求. 详解:∵1x y +=, ∴14544y x ++=. ∴11414114514451414541454144544y x y y x x y x y y x y x ⎛⎫⎛⎫⎛⎫+++⎛⎫+=++=++≥+ ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭4514992542545⎛⎫=+⨯=⨯= ⎪⎝⎭,当且仅当14144x y y x +=+且1x y +=,即5166x y ==,时等号成立. ∴1114x y ++的最小值为95.故选C .点睛:(1)使用基本不等式求最值时,注意使用的前提是“一正、二定、三相等”,且这三个条件缺一不可.(2)在运用基本不等式时,若条件不满足使用的条件,则要注意通过“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.9.若0x >,0y >,1x y +=,则2221x y x y +++的最小值为A .14B C .4D .12【答案】A 【详解】设2,1x s y t +=+=,则34s t x y +=++=,所以2221x y x y +=++()()()22214141414262s t s t s t sts t s t s t --⎛⎫⎛⎫⎛⎫⎛⎫+=-++-+=+++-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,因为()411411495444t s s t s t s t s t ⎛⎫⎛⎫+=++=++≥ ⎪ ⎪⎝⎭⎝⎭,所以2221x y x y +++14≥,故选A. 点睛:本题考查基本不等式的应用,属于压轴题目. 解此类题目的两个技巧: (1)创设运用基本不等式的条件,合理拆分项或配凑因式,其目的在于使等号能够成立.(2)既要记住基本不等式的原始形式,而且还要掌握它的变形形式及公式的逆用等,例如:22222a b a bab ++⎛⎫≤≤⎪⎝⎭2a b +≤a >0,b >0).10.设04b a b <<<,0m >,若三个数2a b+能组成一个三角形的三条边长,则实数m 的取值范围是( )A .5,14⎫⎪⎪⎝⎭B .(C .5,24⎤⎥⎣⎦ D .)2【答案】C 【分析】由题意可得a 14b<<,可令a t (1t 4)b=<<,判断可得a b2+<a b a b22++<,化为2m<<,结合基本不等式和导数判断单调性,以及不等式恒成立思想,即可得到所求范围. 【详解】0b a 4b <<<,m 0>,令a bx 2+=,y =z =2222a b 3x y ()(a b)024+-==--<,a b2+∴< x y ∴<,x ,y ,z能组成一个三角形的三条边长,可得y x z x y -<<+,a b a b22++<, 设0b a 4b <<<,可得a14b<<,可令a t (1t 4)b=<<,2m<<,即为2m<<,由4≥,当且仅当t 1=上式取得等号,但1t 4<<,可得4>, 则2m 4≤,即m 2≤;又设5k 2,2⎛⎫= ⎪⎝⎭,可得k =,由y k =的导数为y'1-=,由52k 2<<可得2k >y 为增函数,可得55k 22<=,即有52m 2≥,即有5m 4≥,5m 24≤≤, 故选C . 【点睛】本题考查导数和函数的单调性,基本不等式的性质,考查推理能力与计算能力,属于难题,关键是转化为关于a t (1t 4)b=<<的函数求最值.第II 卷(非选择题)二、填空题11.已知实数a ,b ,c 满足0a b c ++=________.【分析】先消去c ,再将分子分母同除以2a ,然后令1bt a+=,利用对勾函数的单调性即可求解. 【详解】解:先消去c ,再将分子分母同除以2a,可得原式=设1b t a +=,可得原式=, 由对勾函数的单调性可得1y t t=+在(),1-∞-上单调递增,在()1,0-上单调递减,在()0,1上单调递减,在()1,+∞上单调递增, 所以12t t+≥或12t t+≤-,所以原式=≤=12.若,x y R +∈,23()()-=x y xy ,则11x y +的最小值为___________. 【答案】2 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥=,当且仅当14xy xy =,即22x y =+=211x y+≥. 故答案为:213.已知0x >,0y >,若21122x y x y x y x y ⎛⎫⎛⎫+⎛⎫++≥+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,则()2x y +的最大值是________.【答案】8+【分析】以xy 为主元,以x y +为参数,将问题转化为对勾函数的最值问题,利用对勾函数的单调性求解即可. 【详解】令xy t =,则2()04x y t +<,令21()()x y f t t t ++=+,因为2221121()2222x y x y x y x y xy x y x y xy x y ⎛⎫⎛⎫⎛⎫++++⎛⎫+⋅++⇔+-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭, 等价于2()()()4x y f t f +≥, 所以题意可转化为函数21()()x y f t t t ++=+在2()0,4x y ⎛⎤+ ⎥⎝⎦有最小值2()4x y f ⎛⎫+ ⎪⎝⎭,因为对勾函数21()()x y f t t t ++=+在上递减,在)+∞上递增,所以2()1(4x y x +++42()16()160x y x y +-+-≤,所以2()8x y +≤+故2()x y +的最大值是8+故答案为:8+【点睛】关键点点睛:本题的关键点是:由函数21()()x y f t t t ++=+在2()0,4x y ⎛⎤+ ⎥⎝⎦有最小值2()4x y f ⎛⎫+ ⎪⎝⎭结合对勾函数的单调性得到2()1(4x y x +++14.已知a ,b ,0c >,记()()()()419491abcT a a b b c c =++++,则T 最大值为________.【答案】1012 【分析】 将()()()()419491abcT a a b b c c =++++分子分母同除以ac ,利用基本不等式可得分母()()141949b a b c a c ⎛⎫⎛⎫++++⎪ ⎪⎝⎭⎝⎭()()2231≥,再将()()2231bT ≤,分子分母同除以b ,利用基本不等式求解. 【详解】()()()()()()141949141949abcb T b a a b bc c a b c a c ==++++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭, 而()()144194936943691b b ba b c a b b c a c a c ⎛⎫⎛⎫⎛⎫⎛⎫++++=++++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()()()224936131b b ≥++=,当且仅当 214449a b c ==时,等号成立,所以()()()222231123210bbT b ≤==⎛⎫+ ⎪⎝⎭,21012120≤=⎛⎫⎪⎝⎭.当且仅当14b =时取等号,所以T 最大值为1012故答案为:1012 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.已知0x >,0y >,若21122x y x y x y x y ⎛⎫⎛⎫+⎛⎫++≥+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,则()2x y +的最大值是________.【答案】8+【分析】以xy 为主元、x y +为参数,将问题转化为了对勾函数的最值问题,根据对勾函数的单调性可解得结果. 【详解】令xy t =,则2()04x y t +<,令21()()x y f t t t ++=+,因为2221121()2222x y x y x y x y xy x y x y xy x y ⎛⎫⎛⎫⎛⎫++++⎛⎫+⋅++⇔+-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭, 等价于2()()()4x y f t f +≥, 所以题意可转化为函数21()()x y f t t t ++=+在2()0,4x y ⎛⎤+ ⎥⎝⎦有最小值2()4x y f ⎛⎫+ ⎪⎝⎭,因为对勾函数21()()x y f t t t++=+在上递减,在)+∞上递增,所以2()1(4x y x +++42()16()160x y x y +-+-≤,所以2()8x y +≤+故2()x y +的最大值是8+故答案为:8+【点睛】本题考查了基本不等式在求最值中的应用.根据具体条件和解题需要,从不同的角度出发,在众多变元中选用一个变元为主元,并以此为线索把握解决问题的方法叫做主元法.本题中以xy 为主元、x y +为参数,将问题转化为了对勾函数的最值问题,达到了“避虚就实、变繁成简,化难为易”的解题效果.属于压轴题.三、解答题16.已知函数()1232f x x x =+++. (1)求不等式()47f x x ≤+的最小整数解m ;(2)在(1)的条件下,对任意a ,(),b m ∈-+∞,若4a b +=,求2211ba W ab =+--的最小值. 【答案】(1)1m =-;(2)8 【分析】(1)利用分类讨论法求解不等式,进而得到最小整数解m ;(2)化简整理221810113b a W a b ab =+=-+---,再利用基本不等式及不等式的性质求出031ab <-≤,进而求得结果.【详解】(1)当32x ≤-时,原不等式化为73472x x --≤+,解得32x ≥-,所以32x =-;当3122x -<≤-时,原不等式化为5472x x +≤+,解得32x ≥-,所以3122x -<≤-;当12x >-时,原不等式化为73472x x +≤+,解得72x ≥-,所以12x >-.综上,原不等式的解集为3,2⎡⎫-+∞⎪⎢⎣⎭.所以最小整数解1m =-.(2)由(1)知a ,()1,b ∈+∞,又4a b +=,所以()()2233221111b a a b a b W a b a b +--=+=----()()()()22221a b a ab b a b ab ab a b ⎡⎤+-+-+-⎣⎦=-++ ()()()()22321a b a b ab a b ab ab a b ⎡⎤⎡⎤++--+-⎣⎦⎣⎦=-++()()41631623ab ab ab ---=-48103ab ab -=-18103ab =-+-.1a >,1b >,()()1130a b ab ∴--=->, 又()244+≤=a b ab ,当且仅当2a b ==时等号成立,031ab ∴<-≤,18183ab ∴≥-,8W ∴≥,所以W 的最小值为8 【点睛】方法点睛:本题主要考查绝对值不等式的解法,函数与基本不等式的综合应用,含有多个绝对值符合的不等式,一般可用零点分段法求解,对于形如||||x a x b m -+->或m <,利用实数绝对值的几何意义求解,解答题采用零点分段法求解,考查学生的逻辑推理能力,属于压轴题.17.已知a ,b ,c 均为正实数,且满足3a b c ++=.证明:(1≤(2)22232a b c b c c a a b ++≥+++. 【答案】(1)证明见解析;(2)证明见解析. 【分析】(12()ca c +b 的式子,运用基本不等式可得结论;(2)运用基本不等式推得24a b c a b c +++,24b c a b c a +++,24c a bc a b +++,再相加即可得到所求结论. 【详解】(1)由a ,b ,c 均为正实数,且满足3a b c ++=,22()a c ac a c =+++,2()ca c +a c =时取得等号.22(3)(3)2b b b b -+- 当且仅当32b =,34a c ==时取得等号.(2)由a ,b ,c 均为正实数,且满足3a b c ++=,22244a b c a b ca b c b c +++=++,当且仅当2a b c =+取得等号, 同理可得24b c ab c a +++,当且仅当2b a c =+取得等号, 同理可得24c a bc a b +++,当且仅当2c b a =+取得等号, 上面三式相加可得222322a b c a b c b c c a a b++++=+++(当且仅当1a b c ===时取得等号). 【点睛】本题考查不等式的证明,注意运用基本不等式和累加法,考查逻辑推理能力,属于压轴题.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 18.已知a ,b ,c 为正数,且满足4abc =,证明: (1)3334()a c b a c b a b c ++≥++;(2)33322211148a b c b c a ⎛⎫⎛⎫⎛⎫+++++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)根据a ,b ,c 为正数,且4abc =,将不等式3334()a c b a c b a b c ++≥++转化为222a b c a b c b c a++≥++,再利用基本不等式结合不等式的性质证明; (2)根据a ,b ,c 为正数,且4abc =,直接利用基本不等式证明. 【详解】(1)因为a ,b ,c 为正数,且4abc =. 所以不等式3334()a c b a c b a b c ++≥++等价于333a c b a c b a b c abc++≥++,即等价于222a b c a b c b c a ++≥++.因为a ,b ,c 为正数,所以22a b a b +≥,22b c b c +≥,22c a c a +≥,所以2222()a b c a b c a b c b c a+++++≥++,即222a b c a b cb c a++≥++,当且仅当a b c ===. 所以a ,b ,c 为正数时,3334()a c b a c b a b c ++≥++成立.(2)因为a ,b ,c 为正数,且4abc =,所以原式≥2221113a b c b c a ⎛⎫⎛⎫⎛⎫=+⋅+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭348≥⨯==. 当且仅当a b c ==.所以a ,b ,c 为正数时,33322211148a b c b c a ⎛⎫⎛⎫⎛⎫+++++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成立. 【点睛】本题主要考查基本不等式证明不等式问题以及不等式的基本性质,还考查了转化求解问题的能力,属于压轴题.19.已知a ,b ,R c ∈,2221a b c ++=.()1证明:112ab bc ca -≤++≤. ()2证明:()()()22222222223a b c b c a c a b +++++≤. 【答案】()1证明见解析;()2证明见解析.【分析】()1先利用完全平方式子证出12ab bc ca ++≥-,再利用均值不等式证出1ab bc ca ++≤,进而可求证;()2化简式子得()4441a b c -++,再利用完全平方公式和基本不等式的运用得44413a b c ++≥,进而可求证结论.【详解】解:()1证明:由()222222212220a b c a b c ab bc ca ab bc ca ++=+++++=+++≥, 得12ab bc ca ++≥-.另一方面,222a b ab +≥,222b c bc +≥,222c a ca +≥,所以222222222a b c ab bc ca ++≥++,即1ab bc ca ++≤. 所以112ab bc ca -≤++≤. ()2证明:()()()222222222a b c b c a c a b +++++()()()()2222224441111a a b b c c a b c =-+-+-=-++,因为()()24442222222224444442221a b c a b c a b b c c a a b b c c a ++=++---≥-+++++, 即()44431a b c ++≥,则44413a b c ++≥, 所以()()()22222222223a b c b c a c a b +++++≤. 【点睛】本题考查不等式的证明,结合基本不等式和完全平方公式的运用,属于压轴题.20.已知实数,a b 满足01,01a b <<<<.(1)若1a b +=,求1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值; (2)若14ab =,求1111a b+--的最小值, 【答案】(1)9;(2)4.【分析】(1)由1a b +=得1b a =-,并且将其代入得()1121111a b a a ⎛⎫⎛⎫++=+ ⎪⎪-⎝⎭⎝⎭,再根据二次函数的最值可求()11,4a a -≤从而可得1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值;(2)由14ab =得14b a =,并代入得2111114513a b a a a +=+---+-,再由214513453a a a aa =-+---+,利用基本不等式得11444a a a a ⎛⎫--=-+≤- ⎪⎝⎭,可得1111a b +--的最小值. 【详解】 (1)由1a b +=得1b a =-,所以()()111111121111111111a b a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++=++=+++=+ ⎪⎪ ⎪⎪----⎝⎭⎝⎭⎝⎭⎝⎭, 而()221111,244a a a a a ⎛⎫-=-+=--+≤ ⎪⎝⎭当()10,12a =∈取等号, 所以()112211119114a b a a ⎛⎫⎛⎫++=+≥+= ⎪⎪-⎝⎭⎝⎭,当()10,12a =∈取等号, 所以1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为9; (2)由14ab =得14b a=,所以()()2211111448111111141141451143a a a a a b a a a a a a a a-+-+=+=+==+--------+--,因为01a <<,所以214513453a a a aa =-+---+,又11444a a a a ⎛⎫--=-+≤-=- ⎪⎝⎭,当且仅当14a a =,即()10,12a =∈(12a =-舍去)时取等号, 所以2314514545333a a a aa =≥=-+--+--+, 所以2111134114513a ab a a +=+≥+=---+-,当且仅当()10,12a =∈时取等号, 所以1111a b +--的最小值为4; 故得解.【点睛】本题考查基本不等式的应用,解决问题的关键在于将两个量转化成求关于一个量的最值,再运用二次函数的最值和基本不等式求解,属于压轴题.。

高中数学2008年高考真题精品解析阶段测试同步训练试题1160

高中数学2008年高考真题精品解析阶段测试同步训练试题1160

高中数学2008年高考真题精品解析阶段测试同步训练试题2019.091,如图,在以点O 为圆心,||4AB =为直径的半圆ADB 中,OD AB ⊥,P 是半圆弧上一点, 30POB ∠=︒,曲线C 是满足||||||MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F . 若△OEF的面积不小于l 斜率的取值范围.2,水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为124(1440)50,010,()4(10)(341)50,1012.x t t e t V t t t t ⎧⎪-+-+<≤=⎨⎪--+<≤⎩(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以1i t i -<<表示第1月份(1,2,,12i =),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取 2.7e =计算).3,已知数列{}n a 和{}n b 满足:1a λ=,124,(1)(321),3n n n n n a a n b a n +=+-=--+其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列; (Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论;(Ⅲ)设0a b <<,n S 为数列{}n b 的前n 项和.是否存在实数λ,使得对任意正整数n ,都有n a S b<<?若存在,求λ的取值范围;若不存在,说明理由.4,已知以a 1为首项的数列{a n }满足:⑴ 当a 1=1,c =1,d =3时,求数列{a n }的通项公式⑵ 当0<a 1<1,c =1,d =3时,试用a 1表示数列{a n }的前100项的和S 100 ⑶ 当0<a 1<(m 是正整数),c =,d ≥3m 时,求证:数列a 2-,a 3m+2-,a 6m+2-,a 9m+2-成等比数列当且仅当d =3m5,已知函数f(x)=2x - ⑴ 若f(x)=2,求x 的值⑵ 若2t f(2t)+m f(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围6,设P(a,b)(b ≠0)是平面直角坐标系xOy 中的点,l 是经过原点与点(1,b)的直线,记Q 是直线l 与抛物线x 2=2py (p ≠0)的异于原点的交点 ⑴ 若a =1,b =2,p =2,求点Q 的坐标⑵ 若点P(a,b)(ab ≠0)在椭圆+y 2=1上,p =, 求证:点Q 落在双曲线4x 2-4y 2=1上⑶ 若动点P(a,b)满足ab ≠0,p =,若点Q 始终落在一条关于x 轴对称的抛物线上,试问动点P 的轨迹落在哪种二次曲线上,并说明理由7,已知{}n a 是一个等差数列,且21a =,55a =-.(Ⅰ)求{}n a 的通项n a ; (Ⅱ)求{}n a 前n 项和S n 的最大值.8,如图,已知点P 在正方体ABCD A B C D ''''-的对角线BD '上,60PDA ∠=︒. (Ⅰ)求DP 与CC '所成角的大小;(Ⅱ)求DP 与平面AA D D ''所成角的大小.9,已知双曲线22: 14x C y -=,P 为C 上的任意点。

2008年高考数学试题及答案

2008年高考数学试题及答案

2008年高考数学试题及答案一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 设集合A={x|0≤x≤3},B={x|x≤1或x≥2},则A∩B=()A.{x|0≤x≤1}B.{x|1≤x≤2}C.{x|0≤x≤3}D.{x|0≤x≤1或2≤x≤3}2. 函数y=(x-1)^2+2的最小值为()A.0B.1C.2D.33. 已知等差数列{an}的前n项和为Sn,若S4=16,S7=28,则该数列的通项公式为()A.an=2n-3B.an=2n-1C.an=3n-4D.an=3n-24. 已知函数f(x)=2x^3-3ax^2+bx+c,其中a、b、c是常数,且f(x)在x=1处取得极大值,则a、b的值分别为()A.2,-6B.2,6C.-2,-6D.-2,65. 若三角形ABC的三边长分别为a、b、c,且a^2+b^2+c^2=ab+bc+ac,则三角形ABC的形状为()A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形6. 已知函数f(x)=x^3-3x+1,求不等式f(x)<0的解集。

A.{x|-1<x<1}B.{x|x<-1或x>1}C.{x|-1<x<2}D.{x|x<-2或x>2}7. 设函数g(x)=x^2+2ax+b(a<0)的图象上存在点P(t,m),使得该图象在点P处的切线斜率为2,则t的取值范围是()A.t<0B.t=0C.t>0D.t≥08. 若函数y=f(x)的定义域为(-∞,2),则函数y=f(x-1)的定义域为()A.(-∞,1)B.(-∞,3)C.(1,+∞)D.(3,+∞)9. 已知函数f(x)=x^3-3x^2+x+1,求证:方程f(x)=0在区间(0,2)内至少有一个实根。

10. 若函数y=(2x-1)/(x-2)在区间(1,3)上是减函数,则实数x的取值范围是()A.1<x<2B.2<x<3C.1<x<3D.x≥3二、填空题(本大题共5小题,每小题5分,共25分。

2008年全国各地高考数学试题及解答分类汇编大全(08三角函数 三角恒等变换)

2008年全国各地高考数学试题及解答分类汇编大全(08三角函数  三角恒等变换)

2008年全国各地高考数学试题及解答分类汇编大全(08三角函数 三角恒等变换)一、选择题:1.(2008安徽文)函数sin(2)3y x π=+图像的对称轴方程可能是( D )A .6x π=-B .12x π=-C .6x π=D .12x π=2.(2008安徽理)将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π3.(2008福建文)函数cos ()y x x R =∈的图像向左平移2π个单位后,得到()y g x =的图像, 则()g x 的解析式为( A )A.sin x - B.sin x C.cos x - D.cos x4.(2008福建理)函数f (x )=cos x (x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象, 则m 的值可以为(A )A.2πB.πC.-πD.-2π5.(2008广东文)已知函数R x x x x f ∈+=,sin )2cos 1()(2,则)(x f 是( D )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数6、(2008海南、宁夏文)函数()cos 22sin f x x x =+的最小值和最大值分别为( C )A. -3,1B. -2,2C. -3,32D. -2,327、(2008海南、宁夏理)已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1 B. 2 C. 1/2 D. 1/38、(2008海南、宁夏理)0203sin 702cos 10--=( C )A. 12B. 2C. 2D. 39. (2008湖北文、理)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′, 若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是(.A ) A .512π B.512π- C.1112π D.1112π-10. (2008湖南理)函数2()sin 3sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C. ) A.1 B.132+ C.32D.1+311.(2008江西文)函数sin ()sin 2sin2x f x xx =+是(A )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数12.(2008江西文、理)函数tan sin tan sin y x x x x =+--在区间(2π,23π)内的图象大致是(D )A B C D13.(2008全国Ⅰ卷文) 2(sin cos )1y x x =--是( D ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数14.(2008全国Ⅰ卷文)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( C ) A .向左平移π6个长度单位 B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位15.(2008全国Ⅰ卷理)为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位16. (2008全国Ⅱ卷文).若sin 0α<且tan 0α>是,则α是( C ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角17.(2008全国Ⅱ卷理)若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( B )A .1B 2C 3D .218.(2008全国Ⅱ卷文)函数x x x f cos sin )(-=的最大值为( B )A .1B .2 C .3D .219.(2008山东文、理)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )20.(2008山东文、理)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( C ) A.5-B.5 C .45- D .4521.(2008陕西文) sin330︒等于( B ) A.2-B .12-C .12D.222.(2008四川文、理)()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x23.(2008四川理)若02,sin απαα≤≤>,则α的取值范围是:( C )(A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫ ⎪⎝⎭23.【解】:∵sin αα>∴sin 0αα>,即12sin 2sin 023πααα⎛⎫⎛⎫=-> ⎪ ⎪ ⎪⎝⎭⎝⎭又∵02απ≤≤ ∴5333πππα-≤-≤,∴03παπ≤-≤ ,即4,33x ππ⎛⎫∈ ⎪⎝⎭故选C ;24.(2008四川理) 设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f =(D)()'00f=24.【解】:∵()()sin f x x ωϕ=+是偶函数∴由函数()()sin f x x ωϕ=+图象特征可知0x =必是()f x 的极值点, ∴()'00f = 故选D25.(2008天津理)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是( B ) (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数26.(2008天津文)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上xxA .B .C .D .所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( C ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,27. (2008天津文)设5sin7a π=,2cos 7b π=,2tan 7c π=,则( D ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<28.(2008浙江文)函数1)cos (sin 2++=x x y 的最小正周期是( B ) (A )2π(B )π (C)23π (D) 2π29.(2008浙江文、理)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的 图象和直线21=y 的交点个数是(C ) (A )0 (B )1 (C )2 (D )430.(2008浙江理)若,5sin 2cos -=+a a 则a tan =( B ) (A )21 (B )2 (C )21- (D )2-31.(2008重庆文)函数f (x≤x ≤2π)的值域是( C )(A)[-11,44] (B)[-11,33] (C)[-11,22] (D)[-22,33]32. (2008重庆理)函数f(x)02x π≤≤) 的值域是 (B )(A )[-2] (B)[-1,0] (C )] (D )]二、填空题:1.(2008北京文)若角α的终边经过点P (1,-2),则tan 2α的值为 43.2.(2008北京文、理)已知函数2()cos f x x x =-,对于[-22ππ,]上的任意x 1,x 2,有如下条件: ①x 1>x 2; ②x 21>x 22; ③|x 1|>x 2.其中能使f (x 1)> f (x 2)恒成立的条件序号是 ② .3. (2008广东理)已知函数R x x x x x f ∈-=,sin )cos (sin )(,则)(x f 的最小正周期是__π__.4. (2008江苏)()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= 10 .5.(2008辽宁文)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=6.(2008辽宁理)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=_____143_____.7.(2008上海理)函数f (x )=3sin x +sin(π2+x )的最大值是 2.8.(2008浙江文)若==+θθπ2cos ,53)2sin(则 257- .三、解答题:1.(2008安徽文、理)已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域1.解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+Q1cos 22(sin cos )(sin cos )2x x x x x x =+-+221cos 22sin cos 2x x x x =+-1cos 22cos 22x x x =+- sin(2)6x π=-2T 2ππ==周期∴ (2)5[,],2[,]122636x x πππππ∈-∴-∈-Q 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又 1()()12222f f ππ-=-<=Q ,∴当12x π=-时,()f x 取最小值2-所以 函数 ()f x 在区间[,]122ππ-上的值域为[,1]2-2.(2008北京文、理)已知函数2()sin sin()(0)2f x x x x πωωωω=++f 的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数f (x )在区间[0,23π]上的取值范围.2.解:(Ⅰ)1cos 2()22x f x x ωω-=11cos 222x x ωω-+ =1sin(2).62x πω-+因为函数f (x )的最小正周期为π,且ω>0,所以22ππω= 解得ω=1.(Ⅱ)由(Ⅰ)得1()sin(2).62f x x π=-+ 因为0≤x ≤23π, 所以12-≤26x π-≤7.6π所以12-≤(2)6x π-≤1.因此0≤1sin(2)62x π-+≤32,即f (x )的取值范围为[0,32]4.(2008福建文、理) 已知向量(sin ,cos ),(1,2),m A A n ==-u r r且0m n ⋅=u r r 。

2008年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)

2008年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)

1.解: (1) f ' (x) ax2 3x (a 1) ,由于函数 f (x) 在 x 1 时取得极值,所以 f ' (1) 0 即 a 3 a 1 0,∴a 1
(2) 方法一:由题设知: ax2 3x (a 1) x2 x a 1 对任意 a (0, ) 都成立 即 a(x2 2) x2 2x 0 对任意 a (0, ) 都成立 设 g(a) a(x2 2) x2 2x(a R) , 则对任意 x R , g(a) 为单调递增函数 (a R) 所以对任意 a (0, ) , g(a) 0 恒成立的充分必要条件是 g(0) 0 即 x2 2x 0 ,∴2 x 0
(- b , b ) b
( b ,+∞)
f′(x)
+
0
-
0
+
所以,当 b<0 时,函数 f (x)在(-∞,- b )上单调递增,在(- b , b )上单调递减,在 ( b ,+∞)上单调递增.
当 b>0 时,f′(x)>0.所以函数 f (x)在(-∞,+∞)上单调递增.
4.(2008
(0,4),(2,0),(6,4) ,则 f ( f (0))
lim f (1 x) f (1) —2
x0
x
2; .(用数字作答)
y
4A
C
3
2
3.
(2008
湖南理)
lim
x1
x2
x 1 3x
4
______
.
1 5
1 B
O 1 234 5 6 x
第 2 页 (共 29 页)
4. (2008 江苏)直线 y 1 x b 是曲线 y ln x x 0 的一条切线,则实数 b= ln2-1 .

2008山西高考数学压轴题

2008山西高考数学压轴题

2008年山西高考数学压轴题是一道涉及函数、不等式、数列等多个知识点的综合性题目。

由于我无法直接展示原题,我将尝试描述这道题目的主要内容和解题思路。

题目大致如下:
已知函数f(x)=lnx,g(x)=ax^2-x(a≠0)。

(1) 若函数y=f(x)与y=g(x)的图象在公共点P处有相同的切线,求实数a的值并求出点P的坐标;
(2) 若h(x)=f(x)-g(x)在其定义域内是增函数,求实数a的取值范围;
(3) 在(2)的结论下,设φ(x)=ax^2+2x+5,若存在1≤x1<x2,使得φ(x1)=φ(x2)成立,求实数a的取值范围。

解题思路:
(1) 首先,求出两个函数的导数,然后设它们在公共点P(x0, y0)处的切线斜率相等,解出x0和a的值,再代入原函数求出y0的值,从而得到点P的坐标。

(2) 对于h(x)=f(x)-g(x),求出其导数h'(x),由于h(x)在定义域内是增函数,所以h'(x)≥0在其定义域内恒成立。

然后利用不等式求解实数a的取值范围。

(3) 在(2)的结论下,φ(x)是一个开口向上的抛物线,且对称轴为x=-1/a。

由于存在1≤x1<x2使得φ(x1)=φ(x2)成立,所以φ(x)在[1, +∞)上不单调。

利用这些条件可以求出实数a的取值范围。

请注意,以上只是题目的大致描述和解题思路,实际题目可能有所不同。

要获取准确的题目和答案,请参考当年的高考数学试卷和答案解析。

高中数学2008年高考真题精品解析阶段测试同步训练试题1340

高中数学2008年高考真题精品解析阶段测试同步训练试题1340

高中数学2008年高考真题精品解析阶段测试同步训练试题2019.091,设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________。

2,已知2()2a i i -=,其中i 是虚数单位,那么实数a = . 3,已知向量a 与b 的夹角为120,且4==a b ,那么(2)+b a b 的值为 .4,若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n = ,其展开式中的常数项为 .(用数字作答)5,如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;0(1)(1)limx f x f x ∆→+∆-=∆ .(用数字作答)6,已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >;②2212x x >;③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .7,某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡--⎤⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩,.()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 ;第2008棵树种植点的坐标应为 .8,若角α的终边经过点(12)P -,,则tan 2α的值为 . 9,不等式112x x ->+的解集是 .10,已知向量a 与b的夹角为120,且4==a b ,那么a b 的值为 .11,5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 ;各项系数之和为 .(用数字作答)12,如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .13,已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >;②2212x x >;③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .14,函数2()f x =的定义域为 .15,已知双曲线22112x y n n -=-n =16,在数列{}n a 在中,542n a n =-,212n a a a an bn++=+,*n N ∈,其中,a b 为常数,则ab =17,已知点,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB=AC =8AD =,则,B C 两点间的球面距离是18,函数2()f x =的定义域为 .19,在数列{}n a 在中,542n a n =-,212n a a a an bn++=+,*n N ∈,其中,a b 为常数,则lim n n nnn a b a b →∞-+的值是20,若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为试题答案1, 【解】:∵112,1n n a a a n +==++ ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填2, 【标准答案】: -1【试题分析】: a 2-2ai -1=a 2-1-2ai =2i ,a=-1 【高考考点】: 复数的运算【易错提醒】: 增根a=1没有舍去。

2008山西高考数学压轴题

2008山西高考数学压轴题

2008山西高考数学压轴题2008年山西高考数学压轴题是数学科目中备受关注的一道题目。

在这个任务中,我将为您撰写一篇关于2008年山西高考数学压轴题的文章,详细讨论题目内容、解题思路以及解答方法。

2008年山西高考数学压轴题的题目是:已知函数f(x)满足f(x+1)=2f(x)+3,f(1)=5。

(1) 求f(2008)的值。

(2) 设函数g(x)满足g(x)=f(x)-1,求g(x)的值域。

首先,我们来解答第一部分,求f(2008)的值。

根据题目给出的条件,我们可以得到函数f(x)的递推关系式为f(x+1)=2f(x)+3。

根据这个递推关系式,我们可以逐步计算f(2)、f(3)、f(4)等等,直到计算到f(2008)。

我们首先计算f(2)的值。

根据递推关系式,我们可以得到f(2)=2f(1)+3。

代入已知的f(1)=5,我们可以计算得到f(2)=2*5+3=13。

接下来,我们计算f(3)的值。

同样地,根据递推关系式,我们可以得到f(3)=2f(2)+3。

代入已知的f(2)=13,我们可以计算得到f(3)=2*13+3=29。

继续按照相同的方法,我们可以计算得到f(4)=61,f(5)=125,f(6)=253,等等。

直到计算到f(2008)。

这个计算过程比较繁琐,需要进行2007次计算,所以这里我们就不一一列举了。

最终,我们计算得到f(2008)的值为2,147,483,647。

接下来,我们来解答第二部分,求g(x)的值域。

根据题目的要求,我们设函数g(x)=f(x)-1。

我们需要确定g(x)的取值范围。

首先,我们可以推导出g(x+1)=f(x+1)-1。

根据题目给出的递推关系式,我们可以得到g(x+1)=2f(x)+3-1=2f(x)+2=2(g(x)+1)+2=2g(x)+4。

由此可见,函数g(x)的递推关系式为g(x+1)=2g(x)+4。

我们可以根据这个递推关系式,逐步计算g(1)、g(2)、g(3)等等,直到得到g(x)的值域。

高中数学2008年高考真题精品解析阶段测试同步训练试题1280

高中数学2008年高考真题精品解析阶段测试同步训练试题1280

高中数学2008年高考真题精品解析阶段测试同步训练试题2019.091,三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=,1A A ⊥平面ABC,1A A =AB =,2AC =,111AC=,12BD DC =.(Ⅰ)证明:平面1A AD ⊥平面11BCC B ; (Ⅱ)求二面角1A CC B --的大小.2,已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =…. (Ⅰ)证明:数列1{1}n a -是等比数列;(Ⅱ)数列{}n na 的前n 项和n S .3,已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.4,设函数3222()1,()21,f x x ax a x g x ax x =+-+=-+其中实数0a ≠. (Ⅰ)若0a >,求函数()f x 的单调区间;(Ⅱ)当函数()y f x =与()y g x =的图象只有一个公共点且()g x 存在最小值时,记()g x 的最小值为()h a ,求()h a 的值域;(Ⅲ)若()f x 与()g x 在区间(,2)a a +内均为增函数,求a 的取值范围.5,已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫ ⎪⎝⎭的值;(Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.6,现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.7,如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.8,已知函数2()2sin cos 444x x xf x =-+(Ⅰ)求函数()f x 的最小正周期及最值;(Ⅱ)令π()3g x f x ⎛⎫=+ ⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由. 9,某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i 次击中目标得1~i (123)i =,,分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响. (Ⅰ)求该射手恰好射击两次的概率;(Ⅱ)该射手的得分记为ξ,求随机变量ξ的分布列及数学期望. 10,设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则()()U A B C ð= .11,已知函数f(x)= 23(0(0x x a x +≠⎧⎨=⎩当时)当时) ,点在x=0处连续,则2221lim x an a n n →∞+=+ .12,已知2349a =(a>0) ,则23log a = .13,设n S 是等差数列{}n a 的前n 项和,128a =-, 99S =-,则16S =14,直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 .15,某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题图所示的6个点A 、B 、C 、A 1、B 1、C 1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答)16,(1)1lim2n a n n a ∞++=+→,则a = .17,长方体1111ABCD A B C D -的各顶点都在球O 的球面上,其中1::AB AD AA =A B ,两点的球面距离记为m ,1A D ,两点的球面距离记为n ,则mn 的值为 .18,关于平面向量,,a b c .有下列三个命题:①若a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60. 其中真命题的序号为 .(写出所有真命题的序号)19,某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).20,ABC △的内角A B C ,,的对边分别为a b c ,,,若120c b B ===,则a = .试题答案1, 解:解法一:(Ⅰ)1A A ⊥平面ABC BC ⊂,平面ABC ,∴1A A BC ⊥.在Rt ABC △中,2AB AC BC ==∴=,:1:2BD DC =,3BD ∴=,又3BD AB ABBC ==, DBA ABC ∴△∽△,90ADB BAC ∴∠=∠=,即AD BC ⊥.又1A A AD A =,BC ∴⊥平面1A AD ,BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B . (Ⅱ)如图,作1AE C C ⊥交1C C 于E 点,连接BE ,由已知得AB ⊥平面11ACC A .AE ∴是BE 在面11ACC A 内的射影.由三垂线定理知1BE CC ⊥,AEB ∴∠为二面角1A CC B --的平面角. 过1C 作1C F AC ⊥交AC 于F点,则1CF AC AF =-=,11C F A A =,160C CF ∴∠=. 在Rt AEC △中,sin 602AE AC ===在Rt BAE △中,tan 3AB AEB AE ===.arctanAEB ∴∠=,即二面角1A CC B --为.解法二:(Ⅰ)如图,建立空间直角坐标系,则11(000)0)(020)(00A B C A C ,,,,,,,,,, :1:2BD DC =,13BD BC ∴=.D ∴点坐标为203⎫⎪⎪⎝⎭,,.∴22033AD ⎛⎫= ⎪⎪⎝⎭,,,1(220)(00BC AA =-=,,,. 10BC AA =,0BC AD =,1BC AA ∴⊥,BC AD ⊥,又1A A AD A =,BC ∴⊥平面1A AD ,又BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)BA ⊥平面11ACC A ,取(20)AB ==,,m 为平面11ACCA 的法向量, 设平面11BCC B 的法向量为()l m n =,,n ,则100BC CC ==,n n .200m m ⎧+=⎪∴⎨-+=⎪⎩,,3l n m ∴==,,如图,可取1m =,则=⎭n ,22010cos(2)1⨯+<>==+,m n,即二面角1A CC B--为15arccos5.2, 解:(Ⅰ)121nnnaaa+=+,∴111111222nn n naa a a++==+⋅,∴11111(1)2n na a+-=-,又123a=,∴11112a-=,∴数列1{1}na-是以为12首项,12为公比的等比数列.(Ⅱ)由(Ⅰ)知1111111222n nna-+-=⋅=,即1112nna=+,∴2nnn nna=+.设23123222nT=+++…2nn+,①则23112222nT=++…1122n nn n+-++,②由①-②得211111(1)1111122112222222212nn n n n n nn n nT+++-=+++-=-=---,∴11222n n nnT-=--.又123+++…(1)2n nn++=.∴数列{}nna的前n项和22(1)4222222n n nn n n n n nS+++++=-+==.3,解:解法一:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=,由韦达定理得122kx x +=,121x x =-,∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,. 设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=.由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭.MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x k x x x x =-=++-22214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.即存在2k =±,使0NA NB =.解法二:(Ⅰ)如图,设221122(2)(2)A x xB x x ,,,,把2y kx =+代入22y x =得2220x kx --=.由韦达定理得121212kx x x x +==-,.∴1224N M x x k x x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.22y x =,4y x '∴=, ∴抛物线在点N 处的切线l 的斜率为44k k ⨯=,l AB ∴∥.(Ⅱ)假设存在实数k ,使0NA NB =.由(Ⅰ)知22221122224848k k k k NA x x NB x x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,,,,则22221212224488k k k k NA NB x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 222212124441616k k k k x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1212144444k k k k x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+++ ⎪⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()221212121214()4164k k k x x x x x x k x x ⎡⎤⎡⎤=-++++++⎢⎥⎢⎥⎣⎦⎣⎦22114(1)421624k k k k kk ⎛⎫⎡⎤=--⨯++⨯-+⨯+⎪⎢⎥⎝⎭⎣⎦22313164k k ⎛⎫⎛⎫=---+ ⎪ ⎪⎝⎭⎝⎭0=,21016k --<,23304k ∴-+=,解得2k =±.即存在2k =±,使0NA NB =.4, 解:(Ⅰ) 22()323()()3af x x ax a x x a '=+-=-+,又0a >,∴ 当3a x a x <->或时,()0f x '>;当3aa x -<<时,()0f x '<, ∴()f x 在(,)a -∞-和(,)3a +∞内是增函数,在(,)3aa -内是减函数. (Ⅱ)由题意知 3222121x ax a x ax x +-+=-+,即22[(2)]0x x a --=恰有一根(含重根).∴ 22a -≤0,即≤a , 又0a ≠,∴ [(0,2]a ∈.当0a >时,()g x 才存在最小值,∴a ∈.211()()g x a x a a a =-+-, ∴1(),h a a a a =-∈. ∴()h a的值域为(,12-∞-.(Ⅲ)当0a >时,()f x 在(,)a -∞-和(,)3a +∞内是增函数,()g x 在1(,)a +∞内是增函数.由题意得031a a a a a ⎧⎪>⎪⎪≥⎨⎪⎪≥⎪⎩,解得a ≥1;当0a <时,()f x 在(,)3a -∞和(,)a -+∞内是增函数,()g x 在1(,)a -∞内是增函数.由题意得02312a a a a a ⎧⎪<⎪⎪+≤⎨⎪⎪+≤⎪⎩,解得a ≤3-;综上可知,实数a 的取值范围为(,3][1,)-∞-+∞. 5, 解:(Ⅰ)())cos()f x x x ωϕωϕ=+-+12)cos()2x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭. 因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+- ⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭.因为0ω>,且x ∈R ,所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<,故ππ62ϕ-=.所以π()2sin 2cos 2f x x xωω⎛⎫=+= ⎪⎝⎭.由题意得2ππ22ω=,所以2ω=.故()2cos2f x x =.因此ππ2cos 84f ⎛⎫== ⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫- ⎪⎝⎭的图象,所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 当π2π22ππ3k x k -+≤≤(k ∈Z ),即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减, 因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ).6, 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,,231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,,322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等, 因此这些基本事件的发生是等可能的. 用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成,因而61()183P M ==.(Ⅱ)用N 表示“11B C ,不全被选中”这一事件, 则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成,所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.7,解:(Ⅰ)证明:在ABD △中,由于4AD =,8BD =,AB =所以222AD BD AB +=.故AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD ,所以BD ⊥平面PAD ,又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO AD ⊥交AD 于O ,由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD .因此PO 为四棱锥P ABCD -的高,又PAD △是边长为4的等边三角形.因此4PO ==在底面四边形ABCD 中,AB DC ∥,2AB DC =, 所以四边形ABCD 是梯形,在Rt ADB △中,斜边AB5=,此即为梯形ABCD 的高,所以四边形ABCD的面积为2425S +==.故1243P ABCD V -=⨯⨯=8, 解:(Ⅰ)2()sin 2sin )24x x f x =-sin 22x x =π2sin 23x ⎛⎫=+ ⎪⎝⎭. ()f x ∴的最小正周期2π4π12T ==. 当πsin 123x ⎛⎫+=- ⎪⎝⎭时,()f x 取得最小值2-;当πsin 123x ⎛⎫+= ⎪⎝⎭时,()f x 取得最大值2. (Ⅱ)由(Ⅰ)知π()2sin 23x f x ⎛⎫=+ ⎪⎝⎭.又π()3g x f x ⎛⎫=+ ⎪⎝⎭.∴1ππ()2sin233g x x⎡⎤⎛⎫=++⎪⎢⎥⎝⎭⎣⎦π2sin22x⎛⎫=+⎪⎝⎭2cos2x=.()2cos2cos()22x xg x g x⎛⎫-=-==⎪⎝⎭.∴函数()g x是偶函数.9, 解:(Ⅰ)设该射手第i次击中目标的事件为(123)iA i=,,,则11()0.8()0.2P A P A==,,1212()()()0.20.80.16P A A P A P A==⨯=.(Ⅱ)ξ可能取的值为0,1,2,3.ξ的分布列为00.00810.03220.1630.8 2.752Eξ=⨯+⨯+⨯+⨯=.10, 解:{2,3,4,5)A B =,{1,2,5}UC=ð()(){2,5}UA B C =ð11, 解:0limx+→023lim233xx x-→+=+=又(0)f a=点在x=0处连续,所以0lim()(0)xf x f→=即3a=故2223131lim393xnn n→∞+==+12, 解:23323222()[()]3a=32()3a⇒=322332log log()33a⇒==13, 解:1991955512()99,2192a aS a a a a a a+⨯==-+=⇒=-∴+=-,11651216()16()1691672222a a a aS+⨯+⨯-⨯====-14, 解:设圆心(1,2)O-,直线l的斜率为k,弦AB的中点为P,PO的斜率为op k,2110opk-=--则l PO⊥,所以k(1)11opk k k⋅=⋅-=-∴=由点斜式得1y x=-15, 解:111432A B C处种,处种,处种则底面共43224⨯⨯=,1131A B B C,B分类,A,同,处种,处种,则共有3种,12B A BA,不同,处3,处种,1C⨯处种,则共有32=6种,由分类计数原理得上底面共9种,由分步类计数原理得共有249216⨯=种16, 解:1(1)(1)1lim lim 1211n n a a n n a a an a n ∞∞++++==+=⇒=++→→ 17, 解:设,AB a =则,AD a=1AA=22R a ⇒=球的直径,即R a =则OAB 是等边三角形,11263m a a ππ⇒=⋅=, 在1AOD中,11,OA OD a AD ===1112023AOD n a π∠=⇒=⋅故12m n =18, 解:①()0a b a c a b c ⋅=⋅⇒⋅-=,向量a 与b c -垂直②∥a b b a λ⇒=126k ⇒=-3k ⇒=- ③||||||==-a b a b ,,a b a b ⇒-构成等边三角形,a 与+a b 的夹角应为30 所以真命题只有②。

高中数学2008年高考真题精品解析阶段测试同步训练试题1220

高中数学2008年高考真题精品解析阶段测试同步训练试题1220

高中数学2008年高考真题精品解析阶段测试同步训练试题2019.091,已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程(Ⅱ)求函数()f x 在区间[,]122ππ-上的值域2,如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD 平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

3,为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。

某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望3E ξ=,标准差σξ为2。

(Ⅰ)求n,p 的值并写出ξ的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率4,设函数1()(01)ln f x x x x x =>≠且(Ⅰ)求函数()f x 的单调区间;(Ⅱ)已知12axx >对任意(0,1)x ∈成立,求实数a 的取值范围。

5,设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; (Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c ++>+-∈-6,设椭圆2222:1(0)x y C a b a b +=>>过点M ,且着焦点为1(F (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB=,证明:点Q 总在某定直线上7,已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程(Ⅱ)求函数()f x 在区间[,]122ππ-上的值域8,在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”. (Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。

高中数学2008年高考真题精品解析阶段测试同步训练试题1300

高中数学2008年高考真题精品解析阶段测试同步训练试题1300

高中数学2008年高考真题精品解析阶段测试同步训练试题2019.091,72(1)x -的展开式中21x 的系数为 .(用数字作答)2,关于平面向量,,a b c .有下列三个命题:①若a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60. 其中真命题的序号为 .(写出所有真命题的序号)3,某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).4,已知函数=-+=)1(|,2|)(2f x x x f 则 . 5,若==+θθπ2cos ,53)2sin(则 .6,已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点若|F 2A|+|F 2B|=12,则|AB|= 。

7,在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。

若,c o s co s )3(C a A c b =-则cos A= .8,如图,已知球O 的面上四点A B C D 、、、,DA ⊥平面ABC 。

AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 。

9,已知a 是平面内的单位向量,若向量b 满足b ·(a-b)=0,则|b|的取值范围是 .10,用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻。

这样的六位数的个数是 (用数字作答)11,已知集合{}{}{}45U A B =1,2,3,4,5,=2,3,4,=,,则A ⋂U (C B )=.12,若0,x >则1311142422-(2x +3)(2x -3)-4x = .13,已知圆C :22230x y x ay +++-=(a 为实数)上任意一点关于直线l :x-y+2=0的对称点都在圆C 上,则a= .14,某人有3种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A 、B 、C 、A 1、B 1、C 1上各安装一个灯泡,要求同一条线段两端的灯泡不同色,则不同的安装方法共有 种(用数字作答)15,已知a >0,若平面内三点A (1,-a ),B (2,2a ),C (3,3a )共线,则a =______16,已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B两点若1222=+B F A F ,则AB =____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求点A到点P距离的最大值d(a);
(3)在0?a?1的条件下,设△POA的面积为S1(O是坐标原点,P是曲线C上横坐标为a的点),以d(a)为边长的正方形的面积为S2.若正数m满足S1?mS2,问m是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
2.在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),?,Pn(xn,yn),?,对每个正整数n,点Pn位于一次函数y?x?
公差的等差数列?xn?.
(1)求点Pn的坐标;(2)设二次函数fn(x)的图像Cn以Pn为顶点,且过点53的图像上,且Pn的横坐标构成以?为首项,?1为42Dn(0,n2?1),若过Dn且斜率为kn的直线ln 与Cn只有一个公共点,求
?111???lim??????的值. n??kkkkkk23n?1n??12
(3)设S?{xx?2xn,n为正整数},T?{yy?12yn,n为正整数},等差数列?an?中的任一项an?S?T,且a1是S?T中的最大数,?225?a10??115,求?an?的通项公式.
757→→3.已知点A(-1,0),B(1,0),C(- 12,0),D12,动点P(x, y)满足AP·BP=0,
→→10动点(x, y)满足|C|+|D|=3 ⑴求动点P的轨迹方程C0和动点的轨迹方程C1;
⑵是否存在与曲线C0外切且与曲线C1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由;
⑶固定曲线C0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。

4.已知函数f (x)=m x2+(m-3)x+1的图像与x轴的交点至少有一个在原点右侧,⑴求实数m的取值范围;
1⑵令t=-m+2,求[t;(其中[t]表示不超过t的最大整数,例如:[1]=1, [2.5]=2, [-
2.5]=-3)
1tt⑶对⑵中的t,求函数g(t)11
[t][ttt5.已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,2)为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称. (1)求双。

相关文档
最新文档