原子光谱与分子光谱共18页文档

合集下载

2-2 原子光谱和分子光谱

2-2 原子光谱和分子光谱

三、能级图
2.原子谱线:原子在不同能级之间跃迁产生 的谱线,即为原子谱线。
3.能级间的能量差: 当电子在某两个能级之间跃迁时,要吸收
或放出等于这两个能级之间能量差的能量( 电磁辐射)。
E h h c hc
例如:钠原子,核外电子组成为: (1S)2(2S)2(2P)6(3S)1
N , N 1, N 2, , 1 或0
22 2
2
• 即由N/2变化到0或1/2,相邻的S间相差为1。
当 S 为偶数时,S 值为零或正整数; 当 S 为奇数时,S 值为正半整数。
例:
N
S
1
1
2
2
1, 0
3
3,1
22
4
2,1, 0
电子组态
S
np1nd1
1,0
np2
1,0
ns2
0
ns2np1
由于振动光谱的波长在近、中红外波谱 区,故又称红外吸收光谱法。
(3)转动光谱:分子在转动能级间跃迁产 生转动光谱。
由于转动光谱的波长位于远红外区和微 波区,故又称远红外吸收光谱和微波。
(二)分子发光光谱
1.定义:分子由激发态回到基态或较低激发 态所释放出的光辐射所形成的光谱。发光 光谱为发光强度与波长间的关系曲线。
此时光谱项为:
32S1/2 表示n=3 L=0 S=1/2 M=2 J=1/2, ------基态光谱项
第一电子 32P3/2
n=3 L=1 S=1/2 J=3/2
激发态
32P1/2
n=3 L=1 S=-1/2 J=1/2
钠谱线:5889.96 Å,32S1/2----32P3/2,D2线
5895.93 Å,32S1/2----32P1/2,D1线

原子光谱项与分子的电子光谱项

原子光谱项与分子的电子光谱项

:
①一维表示标记为 A 或 B , 用 E、 T、 U 和 W 分别标记二、 三、 四、 五维不可约表示 。 π 2 ②对于绕主轴 Cn转动 ,对称的一维表示用 A 标记 , 反对称的用 B 标记 。
n
③如果有对称中心 ,则用“u ” 或“g ” 标记反演是对称或反对称的 。 ④如果有水平镜面 σh ,则用“′ ” 或“″ ” 表示对于 σh的反映为对称或反对称的。 ⑤如果上述标记还不足以区分全部表示时 ,再加上下标 1, 2, …。对于一维表示 A 或 B ,下 标 1 和 2 分别标记对垂直于主轴的 C2轴是对称的或反对称的 ; 如果没有 C2轴 ,则标记对垂直镜 π 2p 面的反映是对称的或是反对称的。对于二维表示 ,下标 1和 2标记绕主轴 Cn转动 角度中 p的
类似 ,双原子分子的光谱支项为 : 2S + 1 Λ + S,Λ + S - 1, …,Λ2 ( 7) Λ S Ω ,Ω = 如果分子有对称中心 ,分子谱项右下角也会有宇称符号 g 与 u。此外 , 对于 Σ谱项 (Λ = 0 ) , 右上角若有 + 、- 号 ,则代表其对包含键轴的平面的对称性 。 对于线性分子的电子光谱项 ,可根据该分子的最高占据轨道 ( HOMO )的电子排布来定 。线 p 性分子的基态光谱项见表 2。同原子体系一样 ,在分子中也存在互补定理 ,即开壳层组态 (λ) 与 p- 1 ( p为该壳层容纳的最大电子数 )具有相同的谱项 。 它的互补组态 (λ)
描述原子中单个电子的运动状态可以采用 n、 l、 m、 m s这 4 个量子数 。原则上讲 ,无论是原子 体系还是分子体系 ,其整体状态均取决于原子核外所有电子的运动状态 。在每一个原子中 ,由主 [1] 量子数 n、 角量子数 l描述的原子中的电子排布方式称为组态 ,例如基态碳原子的电子组态为 2 2 2 σg ) 2 ( 1 σu ) 2 1 s 2 s 2p 。电子组态也可以用于表示分子的电子排布 , 例如 L i2的电子组态为 ( 1

原子光谱与分子光谱

原子光谱与分子光谱

原子光谱和分子光谱
原子光谱反映原子或离子的性质而与原 子或离子来源的分子状态无关。确定试 样物质的元素组成和含量。不能给出物 质分子结构的信息。
原子光谱为线状光谱
原子光谱和分子光谱
一、原子光谱
(一)核外电子运动状态
原子核外电子的运动状态可以用主量子数、角量子数、磁量 子数、自旋量子数来描述。
1、n决定电子的能量和电子离核的远近。
取值:K、L、M、N。。。。
2、L决定角动量的大小及电子轨道的形状。
符号: s, p, d, f
L=0,1,2,3…..,(n-1)
3、磁量子数m决定磁场中电子轨道在空间的伸展的方向。
4、自旋量子数ms决定电子自旋的方向,顺磁场和逆磁场
ms=1/2,-1/2
原子光谱和分子光谱
➢拉曼光谱法 (RS) Raman Spectroscopy
➢*核磁共振波谱法(NMR) Nuclear Magnetic Resonance
Spectroscopy ➢*质谱法 (MS)
Mass Spectroscopy
联用技术发展很电子相对于原子核的运动--电子能级; (△E=1~20eV,紫外、可见、近红外) 2.原子核在其平衡位置附近的相对振动--振动能级;
第二节 原子光谱和分子光谱
(二)光谱项 原子的能量状态需要用光谱项来表征。
N2s+1LJ 其中n为主量子数,L为总角量子数
L=∑Li S为总自旋量子数,S=Σms , I J内量子数,是由于轨道运动和自旋运动的相互作 用,即轨道磁距与自旋磁距的相互影响而得出的。
第二节 原子光谱和分子光谱
J=L+S
➢*红外吸收光谱法(IR) Infrared Spectroscopy

原子和分子的光谱

原子和分子的光谱

原子和分子的光谱光谱是研究物质结构和性质的重要手段之一,可以通过光的传播、吸收和发射等现象来揭示物质的特征。

原子和分子的光谱是指在特定能量条件下,原子和分子所吸收或发射的光线的频率和强度的变化规律。

在本文中,我们将探讨原子和分子的光谱现象及其应用。

一、原子光谱1. 光谱的背景知识原子是由核和核外电子组成的,电子围绕原子核运动,其运动状态可以用能级来描述。

当原子受到激发或处于激发态时,其电子会跃迁到更高的能级,随后又会发射光子返回到低能级。

这种光子的能量与频率与原子的能级差有关,从而形成了原子光谱。

2. 原子吸收光谱原子在吸收光谱中,从基态向激发态跃迁,从而吸收了与跃迁能量相对应的特定频率的光。

每种元素具有独特的光谱特征,可以通过测量被样品吸收的特定波长或频率的光线来确定样品中的元素。

3. 原子发射光谱原子在发射光谱中,由激发态返回到基态,释放出与跃迁能量相对应的特定频率的光。

这些特定频率的光线可以用来鉴定物质中所含的元素,并可用于元素含量的快速分析和检测。

4. 原子吸收光谱的应用原子吸收光谱广泛应用于环境监测、食品安全、地质勘探等领域。

例如,通过分析土壤或水中的金属元素吸收光谱,可以判断环境中是否超出了安全标准。

二、分子光谱1. 分子的振动光谱分子振动主要存在于红外和近红外光谱范围内。

当分子发生振动时,其极性发生变化,导致电偶极矩的变化,从而对吸收和发射特定波长的光线起作用。

分析物质的振动光谱可以确定化学键的类型和有机分子的结构。

2. 分子的旋转光谱分子旋转主要存在于微波和亚毫米波段的光谱范围内。

分子在旋转时,其转动状态会对特定波长的光线产生作用,从而形成分子的旋转光谱。

旋转光谱广泛应用于天体物理学和化学领域,用于研究星际空间中的分子及大气中的稀有气体。

三、光谱分析的应用1. 光谱在物质分析中的应用光谱分析技术可以用于研究和鉴定物质的成分和结构,包括金属元素、有机化合物、无机盐和生物分子等。

2. 光谱在医学诊断中的应用光谱技术在医学诊断中有广泛的应用,如红外光谱用于检测癌症细胞的变化、核磁共振光谱用于分析体内化学物质的浓度等。

原子光谱与分子光谱

原子光谱与分子光谱
12:21:30
二、 分子光谱
原子光谱为线状光谱, 分子光谱为带状光谱; 为什么分子光谱为带状光谱?
原子光谱图
12:21:30
分子光谱图
1.分子中的能量
E=Ee+ Ev + Er + En + Et + Ei 分子中原子的核能: En 分子的平移能:Et 电子运动能: Ee 原子间相对振动能: Ev 分子转动能: Er 基团间的内旋能: Ei
12:21:30
原子的能级通常用光谱项符号表示:nMLJ
n:主量子数;M:谱线多重性符号;
L:总角量子数; J :内量子数 钠原子的光谱项符号 32S1/2;
表示钠原子的电子处于n=3,M =2(S = 1/2),L =0,
J = 1/2 的能级状态(基态能级);
12:21:30
电子能级跃迁的选择定则
L=0,1,2,3,······, 例:碳原子,基态的电子层结构(1s)2(2s)2(2p)2, 两个外层2p电子: l 1= l2 =1; L=2,1,0;
12:21:30
总自旋量子数 :
S =∑ s ;外层价电子自旋量子数的矢量和, (2 S +1)个 S=N/2,N/2-1,……或1/2,0 (N是价电子) S =0,±1,± 2,······±S或 S = 0 ,±1/2,3/2 ,······±S
在一般化学反应中, En不变; Et 、 Ei较小; E=Ee+ Ev + Er
分子产生跃迁所吸收能量的辐射频率:
ν=ΔEe / h + ΔEv / h + ΔEr / h
12:21:30
2.双原子分子能级图
分子中价电子位于自旋成 对 的 单 重 基 态 S0 分 子 轨 道 上 ,当电子被激发到高能级上 时,若激发态与基态中的电 子自旋方向相反,称为单重 激发态,以S1 、 S2 、······表 示;反之,称为三重激发态 ,以T1 、 T2 、······表示;

原子光谱与分子光谱

原子光谱与分子光谱
• 3、原子荧光光谱:光致发光而产生的发 射光谱
19:44:16
二、分子光谱
•分子光谱(带光谱): 基于分子中电子能级、
振-转能级跃迁而产生的光 谱。
19:44:16
分子光谱(带状光谱)
原子光谱为线状光谱, 分子光谱为带状光谱; 为什么分子光谱为带状光谱?
19:44:16
原子光谱图 的能量
原子光谱与分子光谱
19:44:16
一、 原子光谱
原子光谱:基于原子外层 电子能级的跃迁而产生 的光谱(线光谱)
19:44:16
原子光谱
• 1、原子发射光谱:基态原子受外界能量 激发而发射出特征光谱(用于定性、定 量分析)。
• 2、原子吸收光谱:基态原子选择性吸收 光辐射而产生的吸收光谱(用于定量分 析)
19:44:16
(二)分子吸收光谱和分子发光光谱
1、分子吸收光谱:分子对辐射能的选择吸收 由基态或较低能级跃迁到较高能级产生的分 子光谱。
电子光谱 分子在电子能级间跃迁同时伴随振动能级和转动能级的跃迁
产生的光谱 带光谱/紫外-可见吸收光谱
分子吸收光谱
振动光谱
分子在振动能级间跃迁同时伴随转动能级的跃迁产生的光谱
(3)化学发光光谱:化学反应物或反应产物受反应释放的 化学能激发而产生的光辐射。(用于化学发光光谱分析法: 发光总强度与分析物浓度成正比。)
光致发光示意图.swf
19:44:16
红外吸收光谱
转动光谱 分子在转动能级间跃迁产生的光谱 远红外吸收光谱和微波
19:44:16
为什么分子光谱为带状光谱?
解释:分子在电子能级间跃迁的同时, 伴随着振动能级和转动能级的跃迁, 由于△EV很小,△Er更小,因此, 电子光谱中谱线间的波长差别甚微, 用一般的单色器很难将相邻的谱线 分开,其光谱的特征是在一定波长 范围内按一定强度分布的谱带(带 光谱)。

第12章 光分析法导论第2节 原子光谱与分子光谱资料

第12章 光分析法导论第2节 原子光谱与分子光谱资料
分子的荧光光谱是在紫外或可见光照射下,电子跃迁至 单重激发态,并以无辐射弛豫方式回到第一单重激发态的最 低振动能级,再跃回基态或基态中的其他振动能级所发出的 光;
分子的磷光是指处于第一最低单重激发态的分子以无辐 射弛豫方式回到第一最低三重激发态,再跃迁回到基态所发 出的光;
04:10:58
内容选择:
内量子数 :
内量子数J取决于总角量子数L和总自旋量子数S的矢量和: J = (L + S), (L + S - 1),······, (L - S) 若 L ≥ S ; 其数值共(2 S +1)个; 若 L < S ; 其数值共(2 L +1)个;
例:L=2,S=1,则 J 有三个值,J = 3,2,1; L=0,S=1/2;则 J 仅有一个值 1/2;
根据量子力学原理,电子的跃迁不能在任意两个能级之 间进行;必须遵循一定的“选择定则”: (1)主量子数的变化 Δn为整数,包括零; (2)总角量子数的变化ΔL = ±1; (3)内量子数的变化ΔJ =0, ±1;但是当J =0时, ΔJ =0的 跃迁被禁阻; (4)总自旋量子数的变化ΔS =0 ,即不同多重性状态之间的 跃迁被禁阻;
04:10:58
例:钠原子,一个外层电子, S =1/2;因此: M =2( S ) +1 = 2;双重线; 碱土金属:两个外层电子, 自旋方向相同时, S =1/2 + 1/2 =1, M = 3;三重线; 自旋方向相反时, S =1/2 - 1/2 =0, M = 1;单重线;
04:10:58
第一节 光分析基础
fundamental of optical analysis
第二节 原子光谱与分子光谱
atom spectrum and molecular spectrum

第二-章-原子光谱项和分子光谱项

第二-章-原子光谱项和分子光谱项

2、 S1P1能级示意图
组态
谱项 1P
支项 1P1
态 MJ
+1 0
-1
(np)1[(n+1)s]1 3P
中心场近似
真实的电 子排斥能
3P2
3P1 3P0 自旋-轨道 相互作用
MJ
+2 +1 0 -1 -2
+1 0 -1 0
外加磁场
3、光谱基项 组态中,能量最低旳谱项。
4、光谱基项旳得到 (1)得到组态下全部谱项,再利用洪特规则
2、光谱项符号 给定电子组态下,只有当两个定态旳量子数L
和S都相同,能量才相同。
我们将同一组态给出旳具有相同L和S值旳一 组状态称为一种光谱项(或简称谱项),并用符号 2S+1L标识 (n 2S+1L标识)。 (2S+1称为多重度)
这么,当考虑真实旳电子静电排斥能时,原 本在中心场近似下一种电子组态分裂成若干光谱 项,不同光谱项旳能量不同,各能级用电子组态 和光谱项符号共同标识。
所以,一种p2组态产生旳谱项是1S、3P、1D。
****阐明**** (1)比较p1p1 和p2 旳谱项。
(2)一种技巧: 2个等价电子旳L+S=偶数规则。
(3)取得等价电子组态旳谱项比不等价电子 组态旳谱项难。
(4)P4(如O)与P2谱项相同。
四、光谱支项(level)和光谱支项旳推求
1、光谱支项旳定义和意义 原子中旳静电相互作用。原子中还存在
光谱支项 3P0、3P1、3P2。
例2:3S谱项 有L=0, S=1,所以J可为1,从而给出1个光谱支
项 3S1
例 3:钠D线(3p3s旳跃迁)旳精细构造,两 条谱线波长相差6Ǻ。

原子光谱与分子光谱

原子光谱与分子光谱

e
v
F
r + e
e
由于原子总能量减小,电子 将逐渐的接近原子核而后相遇, 原子不稳定 .
e +
第一节 氢原子的玻尔理论
(2)玻尔的三个假设 假设一 电子在原子中,可以在一些特定的轨道上
运动而不辐射电磁波,这时原子处于稳定状态(定态), 并具有一定的能量.
r 假设二 电子以速度 v在半径为 的圆周上绕核运
e2
4π 0rn
En
me4
802h2
1 n2
E1 n2
基态能量 (n 1)
E1
me4
8
2 0
h
2
13.6eV(电离能)
自 氢原子能级图

态 n E / eV 0
激 n4 发 n3
0.85 1.51
态 n2
3.4
激发态能量 (n 1)
En E1 n2
基态 n 1
13.6
第一节 氢原子 透
射 红宝石棒 射


。U 。
红宝石激光示意图
激光器发展的主要方面
(1)扩展了激光 的波长范围.
(2)激光的功率 大大提高.
(3)激光器已能 实现小型化.
第五节 激光
四 激光器的特性和应用 1 方向性好
利用激光准直仪可使长为2.5km的隧道掘进偏差 不超过16nm.
2 单色性好
激光的 单色性比普通光高1010 倍.
1 n2
)
,
n 6,7,
汉弗莱系
1
R(
1 62
1 n2
)
,
n 7,8,
第一节 氢原子的玻尔理论
二 玻尔的氢原子理论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档