2.1晶体管单级放大器

合集下载

实验二、晶体管共射极单管放大器I

实验二、晶体管共射极单管放大器I

实验二、晶体管共射极单管放大器I实验目的:了解晶体管共射极单管放大器电路原理及性能指标的测量方法。

实验器材:晶体管(2SC1815),直流电源,信号源,示波器,万用表等。

实验原理:晶体管是一种电子器件,在电路中可以使用其放大、开关等功能。

共射极单管放大器是晶体管放大器中应用最广泛的一种电路。

共射极单管放大器具有放大倍数大、频带宽度宽的特点。

其电路原理图如下所示。

![image.png](attachment:image.png)当输入信号Vin加至共射极电路中时,基极中将出现一个与Vin同相的交流电压信号,进而影响晶体管的发射极电流Ie,使其随之发生周期性变化。

这样,晶体管的发射极将会出现一随输入信号而改变的电流信号Ie,从而对负载RL产生一随输入变化而改变的电压信号Vout,即输出信号。

根据输出信号的瞬时幅值与输入信号的瞬时幅值比值的大小,可以初步测定这个电路的放大倍数,即:Av = ΔVout / ΔVin式中,ΔVout表示输出信号的峰值与零点处的幅值之差,ΔVin表示输入信号的峰值与零点处的幅值之差。

为了进一步衡量这个电路的放大能力,需要定义一些性能指标,分别如下所示。

增益:A = Vout / Vin,它表示输出信号与输入信号的幅值比值。

最大输出电压:Vomax,它与输出电路的直流工作点有关,其大小可通过计算静态工作点的位置来确定。

Vomax是输出信号中某一瞬间的最大电压值。

最大输出功率:Pomax,它是输出信号的最大功率,同时也是输出电路在一定工作条件下所能输出的最大功率。

最大幅度稳定范围:Am,它是指在该范围内,输出信号的变化幅度始终不大于输入信号变化幅度的一定百分比,以保证输出信号的稳定性。

实验步骤:1. 按照电路原理图搭建共射极单管放大器电路,并接入信号源、示波器和万用表等。

2. 调节信号源输出电压幅值和频率,使其分别在两个电压档和两个频率档位内逐步变化,同时观察和记录示波器上输入信号和输出信号的波形,以了解电路的动态特性。

晶体管单管放大器实验报告

晶体管单管放大器实验报告

一、实验目的1. 理解晶体管单管放大器的基本原理和组成。

2. 掌握晶体管单管放大器静态工作点的调试方法。

3. 熟悉晶体管单管放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4. 提高对常用电子仪器及模拟电路实验设备的使用能力。

二、实验原理晶体管单管放大器是一种常见的放大电路,主要由晶体管、偏置电阻、负载电阻和耦合电容等组成。

实验电路采用共射极接法,通过输入信号u_i在晶体管的基极输入,放大后的信号u_o从集电极输出。

实验电路中,偏置电阻Rb1和Rb2组成分压电路,为晶体管提供合适的静态工作点。

负载电阻Rl接收放大后的信号,耦合电容C1和C2分别对输入信号和输出信号进行耦合,抑制交流干扰。

三、实验仪器与材料1. 晶体管(例如:3DG6)2. 偏置电阻(例如:Rb1=10kΩ,Rb2=20kΩ)3. 负载电阻(例如:Rl=10kΩ)4. 耦合电容(例如:C1=0.01μF,C2=0.01μF)5. 函数信号发生器6. 双踪示波器7. 万用电表8. 直流稳压电源9. 实验电路板四、实验步骤1. 按照实验电路图连接电路,将各元件和导线接到实验电路板上。

2. 将函数信号发生器输出端连接到双踪示波器,设置信号频率为1kHz,幅值为1V。

3. 将直流稳压电源连接到电路板,调节输出电压为12V。

4. 调节偏置电阻Rb1和Rb2,使晶体管处于合适的静态工作点。

使用万用电表测量晶体管的集电极电流Ic和集电极电压Uc,使其满足Ic=2mA,Uc=6V。

5. 在晶体管基极输入信号,观察双踪示波器上输入信号和输出信号的波形,记录电压放大倍数。

6. 测量输入电阻Ri和输出电阻Rl,计算放大器的输入电阻和输出电阻。

7. 调节输入信号幅值,观察输出波形,记录最大不失真输出电压。

五、实验数据及分析1. 静态工作点调试结果:Ic=2mA,Uc=6V。

2. 电压放大倍数:A_v=20。

3. 输入电阻:Ri=2kΩ。

实验二晶体管单级低频放大器预习资料

实验二晶体管单级低频放大器预习资料

实验二晶体管单级低频放大器预习资料:一.实验内容概述本实验需要做三件事:1.调整共射极放大电路的静态工作点2.测量放大电路的电压放大倍数3.观察各种输出失真波形也就意味着先要知道三极管最重要的作用:放大二.实验方法1.调整和测量静态工作点按照实验教材中要求在实验电路板上连线:6接5,9接14,10接12,11接4,如下图然后打开实验箱电源开关,如下图电源开关用万用表直流电压档20V量程测量9和10之间电压Uce,如下图调节RP1使得9和10之间电压Uce大约为6V(范围5.90V-6.10V)如下图RP1再用万用表测出6与4之间电压Ub,记入表格3-6,如下图再用万用表测出9与4之间电压Uc,10与4之间电压Ue,记入表格3-6,方法同上。

2.测量电压放大倍数(1)打开信号发生器电源开关,输入[幅度][shift][有效值][5][mV],如下图将信号发生器探头连线至放大器输入端(3,4),将示波器探头连线至放大器输出端(17,4),打开示波器电源开关,调节水平扫描速率为0.2ms/格,调节垂直衰减为0.5V/格,示波器其他按键开关设置参考图片(示波器开关旋钮常用位置.jpg),观察波形若无明显失真,将波形记录在表格3-7右边相应位置;再将毫伏表探头连线至放大器输出端(17,4),打开毫伏表电源开关,等待数据稳定后将数据记入表格3-7中Uo第一行,如下图将毫伏表探头换线至放大器输入端(3,4),等待数据稳定后将数据记入表格3-7中Ui 第一行,如下图(2)将9接14的连线换至9接15,再用万用表直流电压20V 量程测量9和10之间电压Uce ,再次调节RP1使得9和10之间电压Uce 为6V ,如下图信号发生器探头示波器探头毫伏表探头毫伏表信号发生器探头 示波器探头毫伏表探头调节RP1 ,使得Uce=6V9接15若波形无明显失真,用毫伏表测量Uo与Ui(方法同上),将数据记入表格3-7(3)连线:17接18,观察9和10之间电压Uce仍然是6V时,若波形无明显失真,用毫伏表测量Uo与Ui(方法同上),将数据记入表格3-7如下图3.观察失真波形(1)将9接15的连线换至9接14,保证17接18连线还在,将信号发生器信号电压幅度改至20mV(在幅度显示时,观察若单位是Vrms时,直接输入[2][0][mV])如下图调节RP1,观察万用表,使得9和10之间Uce小于3V,并观察波形下方失真后,将波形及此时Uce的值记录入表格3-9如下图调节RP1 ,使得Uce<3V(2)调节RP1,观察万用表,使得9和10之间Uce大于9V,并观察波形上方失真后,将波形及此时Uce 的值记录入表格3-9如下图(3)调节RP1,观察万用表,使得9和10之间Uce为6V,不断增大信号发生器信号电压幅度至50 mV-100mV 之间,并观察波形明显失真后,将波形及此时Uce 的值记录入表格3-9最后一行,如下图三. 实验相关原理 1. 符号的认识(1) 三极管:牢牢记住带箭头一极为发射极e ,与竖线垂直的一极为基极b ,与发射极同在一边的一极为集电极c ,本次实验电路中基极b 是6,发射极e 是10,集电极c 是9b1R p1R 15b2R b3R 200p2R 470c1R c2R c3R 1.53 6.2+2C 10μF 1R 10+1C10μF +-134865711101213181914151620172112V +F R 100+3C 47μFL1R L2R 1e R 2402e R 1.53103DG61T 9i E k Ωk Ω100k Ωk Ωk Ωk Ωk Ωk Ωk Ωk Ωk Ωk Ωk Ω20Ω-+(2) U 代表电压,下标为i 代表输入,下标为o 代表输出,下标为b 、c 、e 分别代表三极管的三个极,例如Uce 代表集电极与发射极之间电压,本次实验中就是9与10之间的电压。

2_第二讲_单级放大器

2_第二讲_单级放大器

一种简便方法
源极通路上的等效电阻
Av
RD 1 gm
漏极看到的电阻 源极通路上的电阻 RS
36
RS≠0的共源级大信号特性
RS 0
Gm=1/(1/gm+Rs)
在小电流时,1/gm>>RS,Gm ≈ gm;
随着Vin增加,gm变大,Vin较大时,Gm≈1/RS,
ID =GmVin≈ Vin/RS,近似为线性。
λ比gm更依赖于L,因此增益仍随L的增加而增加。
28
对于M2而言,L2增加的同时,可以保持W2不变,可 以提高增益,代价是增加|VDS2|来保证M2工作在饱和 区,输出摆幅减小。
过驱动 电压增 加
29
2.1.4 以工作在线性区的MOS为负载的共源极
等效为一 个线性电 阻
Av gm1Ron 2
5)Vin足够高,使M1进入深线性区,Vout<<2(Vin-VTH),等 效为一个电阻Ron,等效电路为:
Vout VDD Ron VDD Ron RD 1 u C W R V V n ox D in th L
其中
1/gm 8
2、小信号分析 1)跨导gm分析 MOS管工作在饱和区:
共源极的输出小信号变量和输入小信号 变量变化方向相反。
6
2.1.1 以电阻为负载的共源级 (一)忽略沟道长度调制效应
1、输入输出特性(大信号分析) 1)当Vin从0开始增大,M1截止,Vout=VDD 2)当Vin接近VTH时,M1饱和导通:
截止区 饱和区
Vout VDD RD 1 W 2 unCox Vin Vth 2 L
增量,gm变化平缓,输入输出特性趋于 线性化。

《单级放大器》课件

《单级放大器》课件
真。
共栅放大器
适用于宽带、低噪声、高速应 用,具有较高的增益和带宽。
差分放大器
适用于抑制共模干扰和消除零 点漂移,具有较高的线性度和
较低的失真。
06
CATALOGUE
单级放大器的调试与维护
单级放大器的调试方法
静态工作点的调试
通过调节偏置电阻,观察放大器的输 入和输出波形,确保工作点设置在合 适的区域。
03
CATALOGUE
单级放大器的电路分析
电压放大倍数
电压放大倍数是指输出电压与输入电压的比值,用于衡量放大器对信号的放大能力 。
电压放大倍数的大小取决于电路元件的参数和连接方式,可以通过计算和测量来确 定。
电压放大倍数的计算公式为:A = (Rc / Re) * (1 + β),其中Rc是集电极电阻,Re是 发射极电阻,β是晶体管的电流放大倍数。
失真
表示放大器输出信号与输入信 号相比产生的畸变程度。
02
CATALOGUE
单级放大器的基本结构和工作 原理
单级放大器的基本结构
输入级
偏置电路
接收微弱信号并将其放大,是放大器 的第一级。
为放大器提供合适的工作点,使放大 器正常工作。
输出级
输出放大的信号,是放大器的最后一 级。
单级放大器的工作原理
设计反馈网络
为了稳定放大器的性能,需要设 计合适的反馈网络。
确定放大倍数
根据需求确定放大器的放大倍数 。
考虑散热和封装
对于大功率放大器,需要考虑散 热和封装问题。
单级放大器的设计实例
01
02
03
04
共射放大器
适用于低频、大功率应用,具 有较高的输入阻抗和较低的输

晶体管单级共射放大电路

晶体管单级共射放大电路

晶体管单级共射放大电路晶体管单级共射放大电路是一种常见的电子电路,其主要作用是将输入信号放大并输出。

本文将从以下几个方面对晶体管单级共射放大电路进行详细讲解。

一、晶体管单级共射放大电路的基本原理晶体管单级共射放大电路是一种基于晶体管的放大器电路。

其基本原理是通过控制晶体管的输入信号,使得输出信号得到放大。

在这个过程中,输入信号被送入到晶体管的基极,通过控制基极电流来控制晶体管的工作状态。

当基极电流增加时,晶体管会进入饱和状态,此时输出信号得到最大幅度的放大。

二、晶体管单级共射放大电路的组成1. 晶体管:负责实现信号的放大和控制。

2. 输入端:接收待处理信号。

3. 输出端:输出处理后的信号。

4. 耦合电容:连接输入端和输出端,起到隔离直流分量和传递交流分量的作用。

5. 偏置电阻:为了保证晶体管处于工作状态而设置的阻值较小且能够稳定偏置点位置的电阻。

6. 负载电阻:为了保证输出信号能够正常输出而设置的电阻。

三、晶体管单级共射放大电路的优缺点1. 优点:(1) 可以实现较高的放大倍数;(2) 简单易制作,成本较低;(3) 输出信号具有较好的线性度和稳定性。

2. 缺点:(1) 噪声较大,需要进行信号处理;(2) 输出阻抗较高,容易受到负载影响。

四、晶体管单级共射放大电路的应用领域晶体管单级共射放大电路广泛应用于各种电子设备中,如音频放大器、射频功率放大器等。

同时,它也是其他复杂电路中的基础模块之一,在集成电路设计中也有广泛应用。

五、晶体管单级共射放大电路的改进方法为了提高晶体管单级共射放大电路的性能,可以采取以下改进方法:1. 改变偏置点位置:通过调整偏置点位置来改变输出信号幅度和线性度。

2. 添加负反馈:通过添加反馈回路来降低噪声和增加稳定性。

3. 优化电路参数:通过选择合适的电容和电阻值来优化电路参数,进一步提高性能。

4. 使用多级放大器:通过使用多级放大器来增加放大倍数和稳定性,同时降低噪声。

六、总结晶体管单级共射放大电路是一种基于晶体管的放大器电路,其主要作用是将输入信号放大并输出。

模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告实验目的:1. 理解晶体管的结构与基本特性2. 掌握晶体管单级放大电路的构成方法与基本性能3. 学习测量电路中的关键参数4. 熟悉使用实验仪器(万用表、示波器、信号发生器等)实验原理:晶体管是由三个层(P、N、N或P、P、N)构成的半导体三极管。

由于晶体管有较高的输入电阻和较低的输出电阻,且电压放大系数大,因此被广泛应用于电子放大、开关、调制等方面。

晶体管单级放大电路是将晶体管作为电压放大器的基本电路。

其基本电路图如下:晶体管单级放大电路可以分为两种工作状态:放大状态和截止状态。

当输入信号较小时,晶体管工作于放大状态;当输入信号较大时,晶体管工作于截止状态。

实验步骤:1. 按照电路图连接晶体管单级放大电路,连接好信号源,示波器和万用表。

2. 打开电源并调节工作电压,保证晶体管正常工作。

3. 测量输入电压和输出电压的大小,计算增益。

4. 改变输入信号的频率,观察输出信号的频率变化并做相关测量。

5. 改变负载电阻的大小,观察输出信号的变化并做相关测量。

实验结果:1. 在输入电压为300mv时,输出电压为1.2v,计算增益为4。

2. 在变化输入信号频率时,输出信号的频率也随之变化;当输入信号频率到达10KHz 时,输出信号的频率无法再跟随增加。

3. 在改变负载电阻的大小时,输出信号的电压随之变化,当负载电阻小于100欧时,输出信号失真,不能正常工作。

实验结论:通过本次实验,我们了解了晶体管单级放大电路的基本原理和电路构成方法,在实际操作中熟悉了各种仪器的使用方法。

同时我们还学会了测量了电路中的关键参数,如输入电压、输出电压、增益等。

实验的结果表明,晶体管单级放大电路是一种有效的电压放大器,在实际应用中有着广泛的应用前景。

最新2.1晶体管单级放大器汇总

最新2.1晶体管单级放大器汇总

2.1晶体管单级放大器2.1晶体管共射极单管放大器一、实验目的1、掌握用multisim仿真软件分析单级放大器主要性能指标的方法。

2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放大器输出波形的影响。

3、测量放大器的放大倍数、输入电阻和输出电阻。

二、实验原理实验电路如图2.1-1所示,采用基极固定分压式偏置电路。

电路在接通直流电源V cc而未加入信号(V i=0)时,三极管三个极电压和电流称为静态工作点,即V BQ =R2VCC/(R2+R3+R7) (2.1-1)I CQ =IEQ=(VBQ-VBEQ)/R4(2.1-2)I BQ =IEQ/β(2.1-3)V CEQ =VCC-ICQ(R5+R4)(2.1-4)1、放大器静态工作点的选择和测量放大器的基本任务是不失真的放大小信号。

为了获得最大不失真输出电压,静态工作点应选在输出特性曲线上交流负载线的中点。

若工作点选的太高,则容易引起饱和失真;而选的太低,又易引起截止失真。

静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶体管的集电极电流I CQ和管压降V CEQ。

其中V CEQ可直接用万用表直流电压档测C-E极间的电压既得,而ICQ的测量则有直接法和间接法两种:(1)直接法:将万用表电流档串入集电极电路直接测量。

此法精度高,但要断开集电极回路,比较麻烦。

(2)间接法:用万用表直流电压档先测出R5上的压降,然后根据已知R 5算出ICQ,此法简单,在实验中常用,但其测量精度差。

为了减小测量误差,应选用内阻较高的电压表。

当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。

静态工作点具体的调节步骤如下:根据示波器上观察到的现象,做出不同的调整动作,反复进行。

当加大输入信号,两种失真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流负载线的中点,就是最佳的静态工作点。

去掉输入信号,测量此时的V CQ,就得到了静态工作点。

实验二单级晶体管放大器特性研究

实验二单级晶体管放大器特性研究

实验原理(续)
交流参数的计算
交流小信号h参数微变等效电路如图
由等效电路可得到其输入阻抗、输出阻抗和电压放大倍数和源电压放大 倍数:
RI=RB∥rbe, RO=1/hoe∥RC≈RC, Au=uo/ui=-β(RC∥RL)/rbe. Aus=uo/u5=Au . Ri/(R5+Ri) 其中rbe为BE结交流阻抗 rbe(hie)=rb+(1+β) 26/IE 式中rb一般取200-300 Ω ,IE用mA,则计算单位为Ω。 由以上公式可看出,放大器的放大倍数不仅与三极管的β值有关,还与集电 极电流Ic和集电极电阻RC有关。适当提高IC和RC可以提高放大倍数。
实验内容4:
(1)取Rc=1k,调节Rw使Ic=3mA,当输入电压由小增大时, 用示波器观察放大器的输出波形,(注意始终保持波形大小适中) 会发生波形下端削波(是饱和还是截止失真?)[演示波形失真], 说明静态工作点不在动态特性曲线中点。测出当输出波形最大而 不失真时的输入电压值uimax 。 (2)加大输入电压,输出波形失真,调节Rw,使其不失真,再加 大输入信号,输出又失真,再调节Rw使得当输入信号电压逐渐加 大时,输出波形正负向同时出现失真[演示双向同时失真],即表 示此时放大器的静态工作点已选择在动态特性曲线的中点,记录 此 失 压时 真 值的时。静的此态晶时工体放作管大点输器入的ICQ电 动值压 态和范uUimC围aExQ最值值大。,。此并即测为出晶当体输管出最电大压允最许大输而入不电
实验原理(续)
放大器的频率特性
放大器所放大的模拟信号往往是含有多种频率成分的 复杂信号,具有丰富的谐波,或需要放大不同频率的 正弦波。这就要求放大器对不同频率的信号具有相同 的放大能力,才能使被放大的信号不产生失真,从而 得到正确的结果。但是,由于放大器电路中不可避免 地含有电容、分布电容和极间电容,这些电容对不同 频率的信号会产生不同的阻抗,因而使放大器的放大 性能与信号的频率有关,放大器与频率有关的特性称 为放大器的频率特性或放大器的频率响应。

单管放大器

单管放大器

共集电路
C1
Rs + vs -
VCC
RB1
RC
+ T C2
RB2 RE
RL vo
CE -
βRL′
Av

(大)
rbe
Ri
RB1∥RB2∥rbe(中)
Ro Ain 特点 应用
RC(中) (考虑 rce)
β (大) 输入、输出反相 既有电压放大作用 又有电流放大作用 作多级放大器 的中间级,提供增益
C1 T

Av , Avs
Ri>>Rs (Ri →∞ )
Ro<<RL (Ro →0 )
电流放大器
is ii Rs Ri
ion io Ro RL
Ai , Ais
Ri<<Rs (Ri →0 )
Ro>>RL (Ro →∞ )
互导放大器
+ Rs
+ vi Ri vs
--
ion io Ro RL
Ag , Ags
Ri>>Rs (Ri →∞ )
利用它可获得放大器各项性能指标的工程近似值。 (3)计算机仿真分析法:利用电路仿真程序进行分析。如利用 PSPICE 程序对电路进行分 析,它可对电路进行直流分析、交流小信号分析、瞬态分析、孟特卡罗(Monte Carlo)分 析和最坏(Worst Case)情况分析。
3.2 BJT 放大电路
1、放大电路的基本组态 放大电路的组态是针对交流信号而言的。对于晶体三极管(或场效应管)放大器,观察
Vi
(2—6)
为了表征负载对增益的影响,引入负载 RL 开路和短路时的增益。负载 RL 开路时的电压 增益定义为
Vot
Avt =
= Av Vi

单管放大器的放大原理

单管放大器的放大原理

单管放大器的放大原理单管放大器是一种常见的电子放大器,它的放大原理是通过控制输入信号的电流,来控制输出信号的电流放大倍数。

在单管放大器中,放大电流通过一个管子进行,所以被称为单管放大器。

单管放大器的基本原理是利用晶体管的特性,将输入信号的小电流放大成较大的电流输出。

晶体管主要由三个区域组成:发射区、基区和集电区。

发射区和基区之间通过正向偏置,形成PN结,集电区和基区之间通过反向偏置,形成PN结。

当输入信号的电流经过基区时,根据PN结的导通规律,基区的电流会被放大,从而控制集电区的电流变化。

这样,通过控制输入信号的电流,就可以实现输出信号的电流放大。

实际上,单管放大器的放大原理可以通过三种工作状态来解释:放大状态、截止状态和饱和状态。

在放大状态下,输入信号的电流通过基极,进入基区,根据PN结的导通规律,基区的电流会被放大,从而控制集电区的电流变化。

这样,输出信号的电流就会比输入信号的电流大很多倍,实现了电流的放大。

在截止状态下,输入信号的电流不足以控制晶体管的开关,输出信号的电流几乎为0,处于截止状态。

在饱和状态下,输入信号的电流足够大,可以使晶体管的开关完全导通,输出信号的电流达到最大值,处于饱和状态。

单管放大器通常需要配合其他电路组成放大电路,以实现更高的放大倍数。

常见的放大电路有共射放大电路、共基放大电路和共集放大电路。

共射放大电路是一种常用的放大电路,它的输入信号通过集电极输入,通过基极控制输出信号的电流。

在共射放大电路中,输出信号与输入信号相位相反,但是电流放大倍数较大。

共基放大电路是一种输入信号通过基极输入,通过集电极控制输出信号的电流。

在共基放大电路中,输出信号与输入信号相位相同,电流放大倍数较小。

共集放大电路是一种输入信号通过基极输入,通过集电极输出信号。

在共集放大电路中,输出信号与输入信号相位相同,电流放大倍数较小。

除了上述的放大电路,还有很多其他的放大电路,每种放大电路都有自己的特点和应用场景。

晶体管单级放大器实验报告【范本模板】

晶体管单级放大器实验报告【范本模板】

晶体管单管放大器一、实验目的1、 了解和熟悉掌握晶体管单管放大器2、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

3、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4、 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号ui =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流IC 以及各电极对地的电位UB 、UC 和UE 。

一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用E E E C R U I I =≈算出I C(也可根据CCCCC R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。

为了减小误差,提高测量精度,应选用内阻较高的直流电压表。

三、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、直流毫安表7、频率计8、万用电表9、晶体三极管3DG6×1(β=50~100)或9011×1 (管脚排列如图2-7所示) 四、实验内容实验电路如图2-1所示。

1、调试静态工作点连接电路,接通直流电源前,将函数信号发生器关闭。

接通+12V 电源、调节R W ,使U E =2.2V(即I C =2.0mA,或RC1两端的直流电压为4。

实验2 晶体管共射极单管放大器

实验2  晶体管共射极单管放大器

实验一 晶体管共射极单管放大器一 实验目的1. 学会单级共射放大器静态工作点的测量和调试方法。

2. 了解电路参数变化对静态工作点的影响。

3. 掌握单级共射放大器动态指标(Au 、Ri 、Ro )的测量方法及最大不失真输出电压的测试方法。

4.掌握频率特性的测量方法。

二 实验原理图1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E1和R F1,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。

图1 共射极单管放大器实验电路在图1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算CC B2B1B1B U R R R U +≈CF1E1BEB E I R R U U I ≈+-≈U CE =U CC -I C (R C +F1E1R R +)电压放大倍数20)1( // 1-≈++-=F R βbe LC Vr R R βA 实验时不接负载,即R L 为无穷大。

输入电阻 R i =211////])1(B B F R R R β++be [r 输出电阻 R O ≈R C三、实验设备与器件1. +12V 直流电源2. 函数信号发生器3. 双通道数字示波器4. 交流毫伏表5. 直流电压表6. 直流毫安表7. 频率计8. 数字式万用表9. 晶体三极管3DG12或9011×1 10.电阻器、电容器若干 11.THM-3A 型模拟电路实验箱 四 实验内容1. 调试静态工作点为避免放大器的输出电压出现饱和失真或截止失真,应将放大器的静态工作点调试到合适的位置,即将Ic 或U CE 调试到合适的值,这可以通过改变电路参数Ucc 、Rc 、R B1和R B2来实现。

实验三--晶体管共射极单管放大器

实验三--晶体管共射极单管放大器

实验三 晶体管共射极单管放大器一、实验目的1. 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响2. 掌握放大器电压放大倍数A V 、输入电阻R i 、输出电阻R O 及最大不失真输出电压的测试方法。

3. 熟悉常用电子仪器及模拟电路实验仪的使用方法。

二、实验原理晶体管单级放大电路有三种基本接法,即共射电路、共集电路、共基电路。

三种基本接法的特点分别为:1. 共射电路既能放大电流又能放大电压,输入电阻在三种电路中居中,输出电阻大,频带较窄;常做为低频电压放大电路的单元电路。

2. 共集电路只能放大电流不能放大电压,是三种接法中输入电阻最大、输出电阻最小的电路,具有电压跟随的特点。

常用于电压放大电路的输入级和输出级,在功率放大电路中也常采用射极输出的形式。

3. 共基电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射电路相当,但频率特性是三种接法中最好的电路,常用于宽频带放大器。

放大电路的主要性能指标有:放大倍数、输入电阻、输出电阻、通频带等。

而保证基本放大电路处于线性工作状态(不产生非线性失真)的必要条件是设置合适的静态工作点Q ,Q 点不但影响电路输出是否失真,而且直接影响放大器的动态参数。

本实验所采用的放大电路为电阻分压式工作点稳定的单管放大电路(图3-1)。

它的偏置电路采用R B1和R B2组成分压电路,因此基极电位U B 几乎仅决定于R B1与R B2对V CC 的分压,而与环境温度的变化无关;同时三极管的发射极中接有电阻R E ,它将输出电流I C 的变化引回到输入回路来影响输入量U BE ,以达到稳定静态工作点的目的。

当放大器的输入端加入输入信号u i 后,在放大器的输出端便可以得到一个与u i 相位相反,幅值被放大了的输出信号u O ,从而实现了电压放大。

图3-1电路的静态工作点可用下式估算:CC 2B 1B 1B B R +R R ≈U V C EBEB E I ≈R U U I -=)R R (I V ≈U E C C CC CE +-而电压放大倍数、输入电阻、输出电阻分别为: beLC V r R //R A β-= be 2B 1B i r //R //R =RC O R ≈R 注意:测量放大器的静态工作点时,应在输入信号u i =0的条件下进行。

模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告

1 实验二晶体管单级放大电路实验一、实验目的1、熟悉分压式偏置共射极单管放大电路和射极输出器的组成。

2、掌握放大电路静态工作点的调试方法,加深静态工作点对放大电路性能的影响。

3、进一步熟悉常用电子仪器的使用方法。

二、预习要求1、熟悉分压式偏置共射极单管放大电路的构成。

2、熟悉共射放大电路静态工作点及调试方法。

3、什么是信号源电压u s ?什么是放大器的输入信号u i ?什么是放大器的输出信号u o ?如何用示波器和交流毫伏表测量这些信号?4、如何通过动态指标的测量求出放大器的电压放大倍数A V 、输入电阻R i 和输出电阻R o ?5、了解负载变化对放大器的放大倍数的影响。

6、观察静态工作点选择得不合适或输入信号u i 过大所造成的失真现象,从而掌握放大器不失真的条件。

三、实验设备及仪器模拟电子技术实验台、数字存储示波器、数字万用表、函数信号发生器、数字交流毫伏表。

四、实验内容及步骤1、连线如图1.1所示的分压式偏置共射放大电路。

2、共射放大电路静态工作点的测量图1.1 三极管共射放大电路接通电源V CC ,调节电位器RP1RP1,使发射极电位,使发射极电位U E =2.6V 2.6V,用直流电压表测量,用直流电压表测量U B 、U C 以及电阻R C1上的电压U Rc 的值,填入表1.1中。

中。

表1.1 静态直流工作点参数测量测 量 值 (V ) 计 算 值U E U B U C U Rc I E (mA ) I C (mA ) U CE (V )共射放大电路交流参数测量共射放大电路交流参数测量维持已调好的静态工作点不变,在输入端加入f =1kHz 1kHz、、u s =100mVrms 的正弦波信号,分别用交流毫伏表和双踪示波器测量u s 、u i 、u o 的值,并观察输入、输出波形及其相位,将结果填入表1.2中。

中。

表1.2 动态交流参数测量条件条件 测量值(mV ) 计 算 值 波 形R L u su iu oA V A VS R i R o 输入(u i ) 输出(u o )∞2k Ω输入电阻和输出电阻的计算方法如下:∵ s s i ii u R R R u += ∴ is i s i u u u R R -=∵ L Lo oo o R R R u u +=∴ L o o oo o R u u u R -=式中:式中:u u oo 为R L =∞时的输出开路电压,=∞时的输出开路电压,u u o =2k Ω时的输出负载电压。

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告

晶体管单级放大电路实验目的:1.掌握放大电路的组成,基本原理及放大条件。

2.掌握放大电路静态工作点的测量方法。

3.观察晶体管单级放大电路的放大现象。

实验仪器:1.双踪示波器2.函数发生器3.数字万用表4.交流毫伏表5.直流稳压电源实验原理:1.晶体管,又叫半导体三极管,其主要分为两大类:双极性晶体管(包含发射极,基极和集电极)和场效应晶体管(包括源极,栅极,漏极)。

晶体管在电路中主要起放大和开关的作用。

2.共射放大电路原理图:3.放大电路的本质为它利用晶体管的基极对集电极的控制作用来实现,即iC= iB。

放大的前提是晶体管的发射极正偏,集电极反偏。

4.放大电路的电压放大倍数是指电压不失真时,输出电压U0与输入电压Ui振幅或有效值之比,即Au=U0/Ui5.输出电阻R0是指从放大器输出端看进去的等效电阻,其反映了放大器带负载的能力,在被测放大器后加一个负载电阻RL,输入端加正弦信号,分别测空载时和加负载电阻RL时的输出电压U0与UL,则RL=(U0-UL)/UL。

6.输入电阻Ri是指从放大器输入端看进去的等效电阻,其大小表示放大器从信号源获取电流的多少。

在信号源与放大器之间串入一个样电阻Rs,分别测出UA与UB,则:Ri=UAXRs/(UB-UA)。

实验内容:1.静态工作点测量实验电路:实验步骤:1.使用万用表检查三极管的好坏:红笔接三极管基极,黑笔接集电极或射极,此时PN 结正偏,若显示数字为“500~700”(PN结正向导通管压降的毫伏值),说明其正向导通。

当用黑笔接基极,红笔分别接集电极.射极,此时PN结反偏,如果显示“1”,说明其反向不导通。

当红笔接射极,黑笔接集电极,显示“1”,表示不导通;交换红黑笔,显示“1”,表示不导通。

测试三极管满足上述数值,基本可以认为三极管是好的。

2.按照实验电路图连接电路。

稳压电源的+极接到电路的Vcc,-极接地。

3.将稳压电源调到+12V,用万用表直流电压档测量静态工作点 UBQ,UCQ,UEQ。

模电实验报告实验现象

模电实验报告实验现象

一、实验背景模拟电子技术是电子工程和电气工程中的重要基础课程,旨在使学生掌握模拟电路的基本原理、分析方法及实验技能。

本次实验旨在通过实际操作,观察模拟电子电路的实验现象,加深对理论知识的理解。

二、实验目的1. 观察并分析模拟电子电路的实验现象。

2. 掌握实验操作技能,提高实验分析能力。

3. 培养团队合作精神,提高实验报告撰写能力。

三、实验内容本次实验主要包括以下内容:1. 晶体管单级放大器2. 单极共射放大器3. 负反馈放大电路4. RC文氏电桥振荡器5. 直流稳压电源设计6. 场效应管放大电路四、实验现象以下是对各个实验内容的实验现象描述:1. 晶体管单级放大器(1)当输入信号为正弦波时,输出信号为放大后的正弦波,且幅度随输入信号幅度的增大而增大。

(2)当输入信号为方波时,输出信号为放大后的方波,且幅度随输入信号幅度的增大而增大。

(3)当输入信号为三角波时,输出信号为放大后的三角波,且幅度随输入信号幅度的增大而增大。

2. 单极共射放大器(1)当输入信号为正弦波时,输出信号为放大后的正弦波,且幅度、相位均随输入信号幅度的增大而增大。

(2)当输入信号为方波时,输出信号为放大后的方波,且幅度、相位均随输入信号幅度的增大而增大。

(3)当输入信号为三角波时,输出信号为放大后的三角波,且幅度、相位均随输入信号幅度的增大而增大。

3. 负反馈放大电路(1)引入负反馈后,放大电路的带宽变宽,稳定性提高。

(2)负反馈可降低放大电路的增益,提高线性度。

(3)负反馈可改善放大电路的频率响应。

4. RC文氏电桥振荡器(1)当电路参数满足振荡条件时,输出信号为正弦波。

(2)调节振荡电路的参数,可改变振荡频率。

(3)加入稳幅电路,可改善输出信号的波形。

5. 直流稳压电源设计(1)变压器输出电压经整流、滤波、稳压后,输出稳定的直流电压。

(2)输出电压的稳定性受负载、温度等因素的影响。

(3)稳压电源的设计需满足实际应用的需求。

晶体管共射极单管放大器

晶体管共射极单管放大器

晶体管共射极单管放大器晶体管共射极单管放大器是现代电子工程领域中常用的一种放大器电路,该电路主要由晶体管、输入电容、输出电容、电源电阻和负载电阻等元器件组成。

本文将详细介绍晶体管共射极单管放大器的原理、特点、设计方法和常见故障。

一、原理晶体管共射极单管放大器是一种基本放大电路,在电子技术中得到广泛应用。

该电路的输入信号通过输入电容C1,进入基极,使晶体管的基极电位随之增加,则晶体管的电流也随之增加。

放大器的输出信号通过输出电容C2,从集电极流出。

当输入信号的幅度变化时,晶体管的通流也会随之变化,从而使输出电压或电流比输入电压或电流有更大的增益,实现了信号放大的功能。

二、特点1. 抗干扰能力强。

晶体管共射极单管放大器的电路结构简单而且抗干扰能力强,不易受到外界干扰信号的影响。

2. 幅度增益大。

晶体管共射极单管放大器的电路具有高增益性能,增益可达到几十倍甚至上百倍。

3. 非线性失真小。

因为该电路中的反馈作用,使得输出信号与输入信号的失真较小。

4. 电路简单。

晶体管共射极单管放大器的电路只需要一个晶体管和少量的元器件,结构简单,易于制造和调试。

三、设计方法晶体管共射极单管放大器的设计方法主要包括选择晶体管型号、估算电源电压、计算负载电阻和选取电容等。

1. 选择晶体管型号晶体管的工作点应当在直流负载线的中心位置,具体使用哪种型号的晶体管,取决于使用场合的需求。

2. 估算电源电压电源电压应当确保晶体管有足够的工作电压,同时不能超过晶体管的工作范围。

3. 计算负载电阻负载电阻的大小应该保证输出电压的稳定性和功率放大的最大效率。

4. 选取电容输入和输出电容的大小主要取决于所接入的载波信号的频率,通常可以通过计算得出合适的电容值。

四、常见故障1. 正常工作时的输出信号失真。

这种故障主要由于晶体管工作点不准确或者电容的失效引起的。

2. 输出电压偏大或偏小。

这种故障主要由于负载电阻或功率电源电压不足所造成。

需要对负载电阻和电源电压进行调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1晶体管共射极单管放大器一、实验目的1、掌握用multisim仿真软件分析单级放大器主要性能指标的方法。

2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放大器输出波形的影响。

3、测量放大器的放大倍数、输入电阻和输出电阻。

二、实验原理实验电路如图2.1-1所示,采用基极固定分压式偏置电路。

电路在接通直流电源Vcc 而未加入信号(Vi=0)时,三极管三个极电压和电流称为静态工作点,即V BQ =R2VCC/(R2+R3+R7) (2.1-1)I CQ =IEQ=(VBQ-VBEQ)/R4(2.1-2)I BQ =IEQ/β(2.1-3)V CEQ =VCC-ICQ(R5+R4)(2.1-4)1、放大器静态工作点的选择和测量放大器的基本任务是不失真的放大小信号。

为了获得最大不失真输出电压,静态工作点应选在输出特性曲线上交流负载线的中点。

若工作点选的太高,则容易引起饱和失真;而选的太低,又易引起截止失真。

静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶体管的集电极电流ICQ 和管压降VCEQ。

其中VCEQ可直接用万用表直流电压档测C-E极间的电压既得,而ICQ的测量则有直接法和间接法两种:(1)直接法:将万用表电流档串入集电极电路直接测量。

此法精度高,但要断开集电极回路,比较麻烦。

(2)间接法:用万用表直流电压档先测出R5上的压降,然后根据已知R5算出ICQ,此法简单,在实验中常用,但其测量精度差。

为了减小测量误差,应选用内阻较高的电压表。

当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。

静态工作点具体的调节步骤如下:根据示波器上观察到的现象,做出不同的调整动作,反复进行。

当加大输入信号,两种失真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流负载线的中点,就是最佳的静态工作点。

去掉输入信号,测量此时的VCQ,就得到了静态工作点。

2、电压放大倍数的测量电压放大倍数是指放大器的输入电压Ui输出电压Uo之比A V =UO/Ui(2.1-5)用示波器分别测出UO 和Ui,便可按式(2.1-5)求得放大倍数,电压放大倍数与负载R6有关。

3、输入电阻和输出电阻的测量(1)输入电阻Ri用电流电压法测得,电路如图2.1-3所示。

在输入回路中串接电阻R=1kΩ,用示波器分别测出电阻两端电压Vi 和Vs,则可求得输入电阻Ri为R i =Vi/Ri=Vi×R/(Vs-Vi)(2.1-6)图2.1-3电阻R不宜过大,否则引入干扰;也不宜过小,否则误差太大。

通常取与Ri同一数量级。

(2)输出电阻Ro 可通过测量输出端开路时的输出电压Vo’,带上负载R6后的输出电压Vo。

R o =(Vo’/Vo-1)×R6(2.1-7)三、实验步骤(一)计算机仿真部分1、静态工作点的调整和测量1.如图所示,介入函数发生器和示波器,示波器A通道接放大器输入信号,B 通道接放大器输出信号。

按Run键开始仿真。

2. 在输入端加入1kHz,幅度为20mV(峰-峰值)的正弦波,双击函数信号发生器设置信号为正弦波,频率1kHz,幅度为10mV 。

按A 或shift+A 调节电位器,使示波器所显示的输出波形达到最大不失真。

如图所示。

3. 撤掉信号发生器,使输入信号电压i V =0,用万用表测量三极管三个极分别对地的电压E V ,B V ,CV ,CEQV ,EQI ,根据E EQR V I =EQ ,算出EQ CQ I I =。

将测量值记录于下表中,并与估算值进行比较。

2、电压放大倍数的测量输入信号是1kHz ,幅度是20mVpp 正弦信号,利用实验原理中的公式(2.1-5)分别计算输出端开路和R 6=2k Ω时的电压放大倍数,并用示波器双踪观察V o 和V i 的相位关系。

3、输入电阻和输出电阻的测量(1)用示波器分别测出电阻两端的V s 和V i ,用式(2.1-6)便可计算R i 的大小。

如图2.1-11所示。

图2.1-11(2)根据测得的负载开路时的电压V o ’和接上2k Ω电阻时的输出电压V o ,用式(2.1-7)可算出输出电阻R o 。

将2,3的结果记录于下表四、实验结果静态工作点放大电路动态指标测试、计算结果(仿真)电压放大倍数测量(R L=∞)电压放大倍数测量(R L=2kΩ)2.5 多级负反馈放大器的研究一. 实验目的5.掌握用仿软件研究多级负反馈放大电路。

6.学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。

二.实验原理4.实验基本原理及电路(1)基本概念。

在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输出回路,用来影响其输出量(放大电路的输入电压或输入电流)的措施成为反馈。

若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。

若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。

交流负反馈有四种组态:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。

若反馈量取自输出电压,则称之为电压反馈;以电流形式相叠加,称为并联反馈。

在分析反馈放大电路市,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。

“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路:“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,否则为串联反馈。

引入交流反馈后,可以改善放大电路多方面的性能:提高放大倍数的稳定性、改变输入电阻和输出电阻、展宽通频带、减小非线性失真等。

实验电路如图所示。

该放大电路由两级运放构成的而反相比例器组成,在末级的输出端引入了反馈网络Cf 、Rf2和 Rf1,构成了交流电压串联负反馈电路。

(2)放大器的基本参数:1)开环参数。

将反馈支路的A 点与P 点断开,与B 点相连,便可得到开环时的放大电路。

由此可测出开环时放大电路的电压放大倍数Av 、输入电阻Ri ,输出电阻Ro 、反馈网络的电压反馈系数Fv 和通频带BW ,即1'(1)o V e i i i N o o Lo f V oH LV A V V R R V V V R R V V F V BW f f ==-=-==-式中:VN 为N 点对地的交流电压;Vo ’为负载RL 开路时的输出电压;Vi 为B 点对地的交流电压;fH 和fL 分别为放大器的上、下限频率,其定义为放大器的放大倍数下降为中频放大倍数的1/1111()0.707()0.707V H V V V L V V A jf A A jf A ====2)闭环参数。

通过开环时放大电路的电压放大倍数V A ,输入电阻i R ,输出电阻o R ,反馈网络的电压反馈系数V F 和上、下限频率H f 、L f ,可以计算求得多级反馈放大电路的闭环电压放大倍数Vf A 、输入电阻if R 、输出电压of R 和通频带f BW 的理论值,即''V 'V 1(1)A 1(1)()1VVf V V if i V V o oof V iHf H V u f HfLf L Lf V V A A A F R R A F R V R A F V f f A F BW f f f f A F=+=+=+=+⎧⎪=-⎨=⎪+⎩(其中:=)其中:测量放大电路的闭环特性时,应将反馈电路的A 点与B 点断开、与P 点相连,以构成反馈网络。

此时需要适当增大输入信号电压i V ,使输出电压o V (接入负载L R 时的测量值)达到开环时的测量值,然后分别测出i V 、N V 、f V 、f BW 及'o V 的大小,并由此得到负反馈放大电路闭环特性的实际测量值为1'(1)oV e i i i N o o Lo f V oH LV A V V R R V V V R R V V F V BW f f ==-=-==-上述所得结果应与开环测试时由上式所计算的理论值近似相等,否则应该找出原因后重新测量。

在进行上述测试时,应保证各点信号波形与输入信号为同频率且不失真的正弦波,否则应找出原因,排除故障后再进行测量。

三.实验内容(一)计算机仿真部分(1)根据电路画出实验仿真电路图如图所示。

其中得到波特图绘制仪的命令为“Simulate Instrument Bode Plotter ”。

(2)调节J1,使开关A 端与B 端相连。

测试电路的开环基本特性。

1)将信号发生器输出调味1kHz 、20mV (峰峰值)正弦波,然后接入放大器的输入端。

得到网络的波特图如下图所示。

2)保持输入信号不变,用示波器观察输入和输出波形。

3)接入负载L R ,用示波器分别测出i V ,N V ,f V ,o V ,记入表中。

4)将负载L R 开路,保持输入电压i V 的大小不变,用示波器测出输出电压'o V ,记入表中5)从波特图上读出放大器的上限频率H f 与下限频率L f 记入表中。

6)由上述测试结果,算出放大电路开环时的,,V i o A R R 和V F 的值,并由上式计算出放大器闭环时,Vf if A R 和of R 的理论值,记入表中。

(3)调节J1,使开关A 端与P 端相连,测试电路的闭环基本特性。

1)将信号发生器输出调味1kHz 、20mV (峰峰值)正弦波,然后接入放大器的输入端,得到网络的波特度如图所示。

2)接入负载L R ,逐渐增大输入信号i V 达到开环时的测量值,然后用示波器分别测出i V ,使输出电压o V 达到开环时的测量值,然后用示波器分写测出i V 、N V 和fV 的值,记入表中。

3)将负载L R 开路,保持输入电压i V 大小不变,用示波器分别测出'o V 的值,记入表中。

4)闭环时放大器的频率特性测试同开环时的测试,即重复开环测试(5)步。

5)由上述结果并根据上式计算出闭环时的Vf A 、if R 、of R 和V F 的实际值,记入表中。

6)由波特图测出上、下限频率,计算通频带BW 。

四.负反馈放大电路仿真测试数据(1)实验结论4、画出仿真实验开环网络与闭环网络的波特图,比较它们的异同并简要分析。

开环的通频带较窄,且上限频率较低;而闭环的通频带较宽,且上限频率高。

5、开环时BW=H L f f - c42.330kHz 闭环时BW=H L f f -H f ≈=146.022kHz6、比较电压放大倍数、输入电阻、输出电阻和通频带在开环闭环时的差别,得到相应结论。

相关文档
最新文档