化工原理课程设计——换热器

合集下载

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。

下面将为您介绍步骤和注意事项。

一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。

2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。

3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。

4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。

5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。

6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。

二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。

2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。

3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。

4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。

5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。

同时,必须符合国家有关规定。

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。

换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。

因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。

换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。

常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。

在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。

接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。

在化工原理课程设计中,换热器的设计重点之一是热力学计算。

为了实现对流体的热量传递,需要考虑流体的传热系数。

传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。

通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。

另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。

尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。

材料选择需要考虑到流体的化学性质,以避免流体与材料发生反应和腐蚀。

结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。

总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。

只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。

同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。

化工原理课程设计——换热器

化工原理课程设计——换热器

化工原理课程设计管壳式换热器选型姓名:学号:10091693班级:工092指导老师:袁萍前言1.换热器的设备简介传热是热能从热流体间接或直接传向冷流体的过程。

其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。

在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。

间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。

因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。

换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。

前3种应用比较普遍。

固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构成。

它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。

这种换热器的缺点是:壳程清洗困难,有温差应力存在。

这种换热器适用于两种介质温差不大,或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。

在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。

换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。

设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。

本文将介绍化工原理课程设计中换热器的设计过程和要点。

2. 设计目标在进行换热器设计之前,首先要确定设计的目标。

设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。

3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。

这些参数可以通过实验测定或者查阅相关文献获得。

3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。

传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。

3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。

传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。

3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。

常见的换热器类型包括管壳式换热器、板式换热器等。

3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。

3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。

性能评价主要包括换热器的传热效率、压降以及经济性等方面。

4. 实例分析下面通过一个实例来说明换热器的设计过程。

实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。

根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计本课题研究的目的要紧是针对给定的固定管板式换热器设计要求,通过查阅资料、分析设计条件,以及换热器的传热运算、壁厚设计和强度校核等设计,差不多确定固定管板式换热器的结构。

通过分析固定管板式换热器的设计条件,确定设计步骤。

对固定管板式换热器筒体、封头、管板等部件的材料选择、壁厚运算和强度校核。

对固定管板式换热器前端管箱、后端管箱、传热管和管板等结构进行设计,对换热器进行开孔补强校核。

绘制符合设计要求的固定管板式换热器的图纸,给出有关的技术要求;在固定管板换热器的结构设计过程中,要参考有关的标准进行设计,例如GB-150、GB151……,使设计能够符合有关标准。

同时要是设计的结构满足生产的需要,达到安全生产的要求。

通过设计过程达到熟悉了解换热器各部分结构特点及工作原理的目的。

关键词:换热器;固定管板;设计;强度名目摘要错误!未定义书签。

1 绪论11.2 固定管板换热器介绍21.3 本课题的研究目的和意义31.4 换热器的进展历史42 产品冷却器结构设计的总体运算6 2.1 产品冷却器设计条件62.2 前端管箱运算82.2.1 前端管箱筒体运算82.2.2 前端管箱封头运算102.3 后端管箱运算112.3.1 后端管箱筒体运算112.3.2 后端管箱封头运算132.4 壳程圆筒运算143 各部分强度校核153.1 开孔补强运算163.2 壳程圆筒校核213.3 管箱圆筒校核214 换热管及法兰的设计224.1 换热管设计224.2 管板设计234.3 管箱法兰设计254.4 壳体法兰设计274.5 各项系数运算295 产品冷却器制造过程简介36 5.1 总则365.2 零部件的制造37结论45参考文献: 46致谢471 绪论1.1 换热器的作用及分类在工业生产中,换热设备的要紧作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满足工艺过程上的需要。

化工原理课程设计 换热器

化工原理课程设计 换热器

一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。

本次设计条件满足第②种情况。

另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。

采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。

本设计中的固定管板式换热器采用的材料为钢管(20R钢)。

2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。

热空气和冷却水逆向流动换热。

根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。

(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。

查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。

本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。

2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。

三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:体积流量进口温度出口温度操作压力设计压力注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。

化工原理课程设计(换热器)

化工原理课程设计(换热器)

一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。

2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于1×105Pa。

4、每年按330天计,每天24小时连续运行。

三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸设计。

3、设计结果概要或设计结果一览表。

4、设备简图(要求按比例画出主要结构及尺寸)。

5、对本设计的评述及有关问题的讨论。

第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。

由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。

1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

所以传热是最常见的重要单元操作之一。

无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。

此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。

归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。

②削弱传热过程,如设备和管道的保温,以减少热损失。

1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。

在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。

换热器化工原理课程设计

换热器化工原理课程设计

换热器化工原理课程设计一、教学目标本课程旨在让学生掌握换热器的基本原理、类型及计算方法,能够运用化工原理分析解决实际工程问题。

通过本课程的学习,学生应达到以下目标:1.知识目标:(1)理解换热器的基本概念及其在化工工艺中的应用;(2)掌握换热器的传热原理,包括对流传热、热传导和热辐射;(3)熟悉不同类型的换热器结构及其特点;(4)学会换热器面积计算、热负荷计算和效率评价。

2.技能目标:(1)能够运用换热器的基本原理分析实际工程问题;(2)熟练运用相关软件进行换热器设计和模拟;(3)具备换热器操作和维护的基本技能。

3.情感态度价值观目标:(1)培养学生的工程意识,提高解决实际问题的能力;(2)培养学生对化工行业的兴趣,树立正确的职业观;(3)培养学生团队协作、创新思维和持续学习的意识。

二、教学内容本课程的教学内容主要包括换热器的基本原理、类型、计算方法和实际应用。

具体安排如下:1.换热器的基本原理:介绍换热器的工作原理,对流传热、热传导和热辐射的基本概念。

2.换热器的类型:讲解不同类型的换热器,如平板式换热器、壳管式换热器、空气冷却器等,及其特点和应用。

3.换热器计算方法:教授换热器面积计算、热负荷计算和效率评价的方法。

4.换热器实际应用:分析换热器在化工工艺中的应用案例,讲解换热器操作和维护的基本知识。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,如讲授法、案例分析法、实验法等。

1.讲授法:通过讲解换热器的基本原理、类型和计算方法,使学生掌握相关理论知识。

2.案例分析法:分析实际工程中的换热器应用案例,提高学生解决实际问题的能力。

3.实验法:学生进行换热器实验,培养学生的动手能力和实验技能。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的换热器教材,为学生提供系统、科学的理论知识。

2.参考书:提供相关的化工原理、热力学等参考书籍,丰富学生的知识体系。

化工原理课程设计__换热器

化工原理课程设计__换热器

化⼯原理课程设计__换热器⼀、设计任务书⼆、确定设计⽅案2.1 选择换热器的类型本设计中空⽓压缩机的后冷却器选⽤带有折流挡板的固定管板式换热器,这种换热器适⽤于下列情况:①温差不⼤;②温差较⼤但是壳程压⼒较⼩;③壳程不易结构或能化学清洗。

本次设计条件满⾜第②种情况。

另外,固定管板式换热器具有单位体积传热⾯积⼤,结构紧凑、坚固,传热效果好,⽽且能⽤多种材料制造,适⽤性较强,操作弹性⼤,结构简单,造价低廉,且适⽤于⾼温、⾼压的⼤型装置中。

采⽤折流挡板,可使作为冷却剂的⽔容易形成湍流,可以提⾼对流表⾯传热系数,提⾼传热效率。

本设计中的固定管板式换热器采⽤的材料为钢管(20R 钢)。

2.2 流动⽅向及流速的确定本冷却器的管程⾛压缩后的热空⽓,壳程⾛冷却⽔。

热空⽓和冷却⽔逆向流动换热。

根据的原则有:(1)因为热空⽓的操作压⼒达到1.1Mpa ,⽽冷却⽔的操作压⼒取0.3Mpa ,如果热空⽓⾛管内可以避免壳体受压,可节省壳程⾦属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较⼤,对流传热系数较⼤者宜⾛管间,因壁⾯温度与对流表⾯传热系数⼤的流体温度相近,可以减少热应⼒,防⽌把管⼦压弯或把管⼦从管板处拉脱。

(3)热空⽓⾛管内,可以提⾼热空⽓流速增⼤其对流传热系数,因为管内截⾯积通常⽐管间⼩,⽽且管束易于采⽤多管程以增⼤流速。

查阅《化⼯原理(上)》P201表4-9 可得到,热空⽓的流速范围为5~30 m ·s -1;冷却⽔的流速范围为0.2~1.5 m ·s -1。

本设计中,假设热空⽓的流速为8 m ·s -1,然后进⾏计算校核。

2.3 安装⽅式冷却器是⼩型冷却器,采⽤卧式较适宜。

空⽓⽔⽔空⽓三、设计条件及主要物性参数3.1设计条件注:要求设计的冷却器在规定压⼒下操作安全,必须使设计压⼒⽐最⼤操作压⼒略⼤,本设计的设计压⼒⽐最⼤操作压⼒⼤0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出⼝温度的平均值。

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计1000字
该课程设计的目标是设计一个换热器,用于从一种热流体中传递热量到另一种热流体。

设计过程中需要考虑到热传递的效率和换热器的成本。

设计要求:
1.设定两种热流体的流量和进出口温度。

2.根据流量和温差计算出所需的传热量。

3.选择一种合适的换热器类型并计算出尺寸和效率。

4.根据选择的换热器类型确定换热管的材料,并计算出所需的管道长度。

5.确定换热器外壳材料和绝缘材料,并计算出所需的壁厚度。

在设计过程中,需要进行以下计算:
1.计算热传递量:
热传递量 = 流量 x 热容 x 温差
流量:两种热流体的流量
热容:热流体的比热容
温差:两种热流体的进出口温度差
2.选择换热器类型:
常见的换热器类型包括:管式热交换器、板式热交换器和壳管式热交换器。

在选择时需要考虑到传热效率、材料成本以及维护难度等因素。

3.计算换热管尺寸:
换热管的长度和直径需要根据流量和传热效率来计算,同时需要考虑到管壁的热传递系数和管壁的厚度。

4.确定换热器外壳材料和绝缘材料:
外壳的材料需要考虑到其耐腐蚀性和强度,同时需要计算出所需的壁厚度。

绝缘材料需要选用热传导系数较小的材料,以提高传热效率。

5.总体设计方案:
根据上述计算和选择,得到符合要求的换热器总体设计方案,并进行设计图纸和工艺流程图的绘制。

结论:
在设计过程中,需要考虑到换热器的热传递效率、成本、材料选用和维护难度等因素,从而得出符合要求的总体设计方案。

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器
本文设计一个换热器,实现化工过程中的能量传递。

换热器是一种常见的设备,用于将热量从一个介质传递到另一个介质。

首先,我们确定了换热器的工作原理和基本要求。

换热器采用了壳程和管程的设计,分别由外壳和管束组成。

热量通过管道中的热媒体流经管程,然后从外壳中的流体中吸收或释放热量。

接下来,我们选择了适用于该化工过程的换热介质。

在这个设计中,我们选择了水作为热媒体,因为水具有良好的热传导性能和可用性。

基于化工过程的热量需求,我们确定了换热器的热负荷。

热负荷是指单位时间内所需传递的热量。

我们计算了化工过程中的热负荷,并据此确定了设计换热器所需的换热面积。

为了提高换热效率,我们设计了合理的流体流动方式。

流体在外壳和管道中的流动方式可以影响换热器的传热性能。

我们通过合理设计管程和外壳的结构,以及选择合适的流道形式,来确保流体在换热器中的流动均匀且高效。

此外,我们还考虑了换热器的传热方式。

换热器可以通过对流、传导和辐射等方式进行传热。

根据化工过程的要求,我们选择了对流传热作为主要的传热方式。

最后,我们综合考虑了换热器的选材、工艺要求和安全性能。

我们选择了具有良好耐腐蚀性和导热性能的材料,并按照化工
过程的要求进行工艺设计。

在设计过程中,我们还充分考虑了换热器的安全性能,包括压力、温度和材料的选择等因素。

综上所述,本文设计了一个换热器,包括工作原理、基本要求、换热介质、热负荷、流体流动方式、传热方式、材料选材和安全性能等内容。

该设计旨在满足化工过程中的能量传递需求,并提高传热效率和安全性能。

化工原理课程设计__换热器

化工原理课程设计__换热器

一、设计任务书二、确定设计方案2.1选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。

本次设计条件满足第②种情况。

另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。

采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。

本设计中的固定管板式换热器采用的材料为钢管(20R钢)。

2.2流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。

热空气和冷却水逆向流动换热。

根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。

(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。

查阅《化工原理(上)》P201表4-9可得到,热空气的流速范围为5~30m·s-1;冷却水的流速范围为0.2~1.5m·s-1。

本设计中,假设热空气的流速为8m·s-1,然后进行计算校核。

2.3安装方式冷却器是小型冷却器,采用卧式较适宜。

三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。

化工原理课程设计之换热器

化工原理课程设计之换热器

(一)设计任务和设计条件:某生产过程的流程如图所示,出混合器的混合气体经过与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中可溶组分。

已知混合气体的流量为227801kg/h,压力为 6.9Mpa,循环冷却水的压力为0.4Mpa ,循环水入口温度29℃,出口温度为39℃,试设计一台列管式换热器,完成该生产任务。

已知混合气体在85℃下的物性数据如下:)()3590105.10279.0297.3mkg sPa C m W C kg kJ C o o o po =⋅⨯=︒⋅=︒⋅=-ρηλ(二)确定设计方案:1.选择换热器的类型:该换热器用循环冷却水冷却,冬季操作时,进口温度会降低,考虑这一因素,估计该换热器的管壁温与壳体壁温之差较大,因此初步确定选用浮头式换热器。

(原因:固定管板式换热器适用于壳程流体清洁,不易结垢,或者管外侧污垢能用化学处理方法除掉的场合,同时要求壳体壁温与管子壁温温差不能太大。

) 浮头式换热器能在较高的压力下工作,适用于壳体壁温与管壁温差较大或壳程流体易结垢的场合。

U 型管式换热器适用于壳程易结垢,或壳体壁温与管壁温差较大的场合,但要求管程流体较为清洁,不易结垢。

) 2.流程安排:从物流操作压力上来看,应使混合气体走管程,循环冷却水走壳程。

但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使传热器的传热能力下降,从总体上来看,应使循环水走管程,混合气体走壳程。

(三)确定物性参数:定性温度:对于一般气体和水等低粘度流体,其定性温度可取进出口温度平均值。

故混合气体的定性温度为 C T ︒=+=85260110 管程流体的定性温度为 C t ︒=+=3422939 查表确定冷却水在34℃下的物性数据:()()333.99410742.0624.0174.4mkg sPa K m W K kg kJ C i i i pi =⋅⨯=⋅=⋅=-ρηλ(四)估算传热面积:1.热流量:2.平均传热温差:先按纯逆流计算(一般逆流优于并流,在工程上若无特殊需要,均按逆流考虑)()()()())(3.48296039110ln 296039110ln 12211221K t T t T t T t T t m =-----=-----=∆逆3.传热面积:由于壳程气体压力较高,故选取较大的K 值。

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器
缺陷: 1)在管子旳U型处易冲蚀,应控制管内流速; 2)管程不合用于结垢较重旳场合;
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器化工工程专业是一门应用学科,其中涉及到很多实际工程应用,而其中最为重要的一项便是换热技术。

在化工原理课程中,学生需要学习换热的原理,同时也需要进行相应的课程设计,以加深对该项工艺的理解。

本文将具体介绍化工原理课程设计中的换热器部分。

一、换热器的定义与应用换热器是指将工作介质中的热量从一种流体(或气体)传到另一种流体(或气体)的装置。

具体来说,它是用于加热或冷却化学、石油、食品、冶金、电力、纺织等行业在生产过程中所使用的流体的设备,是化工生产过程中最为常用的一种装置。

换热器可分为管式换热器、板式换热器、壳式换热器等。

其中,壳式换热器是最常用的一种,也是本文课程设计的重点。

二、化工原理换热器课程设计1. 设计目标作为化工原理课程中的一个重要部分,换热器的课程设计旨在让学生了解换热器的原理和设计方法,培养学生的动手能力和实践能力,为学生未来从事化工工作提供实践基础。

2. 设计内容换热器的课程设计通常包括以下内容:(1)了解壳式换热器的结构和分类,并对不同的壳式换热器进行比较和分析。

(2)了解换热器的传热原理和传热方式,以及热传导、对流传热和辐射传热等基本原理。

(3)了解不同流体的传热性质,如热导率、热容、热透过系数等,并掌握其应用方法。

(4)掌握壳式换热器的设计方法,包括换热面积的计算、流速的估算、流体性质的确定等。

(5)通过计算确定换热器的设计参数,如壳程和管程的流体流量、进出口温度、换热系数等,并绘制换热器的流程图和工艺图。

3. 设计过程换热器的课程设计通常分为理论计算和实践操作两个部分。

理论计算部分包括上述内容中的步骤(1)至(4),而实践操作部分则需要学生使用化工实验室中的相应设备进行实验操作。

在实践部分中,学生需要完成以下操作:(1)拆卸换热器,进行清洗和维修,对设备的状态进行检查和评估。

(2)确定流量计和温度计的安装点,并将它们安装在换热器的管路中,以便后续的流量和温度测量。

化工原理课程设计之换热器

化工原理课程设计之换热器

课程设计1.前言2.设计任书…………………………………………………………….3.工艺流程草图及说明………………….............................................4.工艺计算及主要设备设计…………….............................................5.确定设计方案………………………………………………………6.选择换热器的类型………………………………………………7.流程安排……………………………………………………………8.确定物性数据……………………………………………………….9.估算传热面积……………………………………………………….10.热流量………………………………………………………………11.平均传热温差………………………………………………………12.传热面积……………………………………………………………13.冷却水用量…………………………………………………………14.工艺结构尺寸……………………………………………………….15.管径和管内流速……………………………………………………16.管程数和传热管数…………………………………………………17.传热管排列和分程方法……………………………………………18.壳体内径……………………………………………………………19.折流板………………………………………………………………20.其他附件……………………………………………………………21.接管…………………………………………………………………22.换热器核算 (9)23.热流量核算 (9)24.壳程表面传热系数 (9)25.管内表面传热系数 (9)26.污垢热阻和管壁热阻 (9)27.传热系数KC (10)28.传热面积裕度 (10)29.换热器内流体的流动阻力 (11)30.管程流体阻力 (11)31.课程阻力 (11)32.辅助设备的计算和选型 (11)33.换热器入水管的规格 (11)34.从河边至工厂的管子的规格 (12)35.离心泵1的规格 (12)36.换热器处离心泵2的规格 (13)37.蓄水池、凉水塔的设计 (14)38.设计结果设计一览表 (15)39.设计评述 (17)40.主要符号说明 (19)前言人类与化工的关系十分密切,在现代生活中,几乎随时随地都离不开化工产品,从衣、食、住、行等物质生活,到文化艺术、娱乐等精神生活,都需要化工产品为之服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
华东理工大学 化工学院
正位移式):包括往复式、旋转式等;其他类型:如喷射式等。其中离心泵由于其效率 高,性能范围和适用领域广,因此是现代应用最广、产量最大的泵。
离心泵的性能, 是指离心泵在标准工 况下的流量、扬程、效率、功率、转度、 必需汽蚀余量等性能参数。流量是指单位 时间内通过泵出口输出的液体量,一般采 用体积流量;扬程是单位重量输送液体从 泵入口至出口的能量增量 ,对于容积式 泵,能量增量主要体现在压力能增加上, 所以通常以压力增量代替扬程来表示。泵 的效率不是一个独立性能参数,它可以由 别的性能参数通过公式
工程压强 PN/MPa
1.6
管长 L/m
4.5
工程面积 m2 管程数 Np
11.1
管数 NT
32
2
中心管距 l/mm
32
管子排列方式
正三角形 中心排管数
7
qm2
=
Q cp2 (t2 − t1)
=
261.74 ×103 4.174 ×103 × (40 −
20)
kg
/
s
=
3.14kg
/
s
综合冷、热流体流动通道的注意事项,最终选择冷却水走管程通道,有
目录
1.设计任务………………………………………………… 3
1.1 工艺与要求………………………………………………… 3 1.2 流程与管路图……………………………………………… 3
2.计算结果明细表………………………………………… 3 3.计算过程………………………………………………… 4
3.1 换热器的选型……………………………………………… 4
2.泵的选用与评价
泵指改变容积内流体的压力或输送流体的机器,主要用来输送液体包括水、油、酸 碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的 液体。化工生产设计的流体可能是强腐蚀性、有毒、易燃易爆、高温或低温以及含有固 体悬浮物等,其性质千差万别。为适应各种不同的需要,研制了多种形式的输送机械, 依作用原理不同,可将其分为:动力式(叶轮式):包括离心式、轴流式等;容积式(正
= 15609.1〉10000
算:α i
=
0.023 λ2 di
( diui ρ2 µ2
)0.8 ( c p2 µ2 λ2
)0.4
所以管程给热系数可用下式计
= 0.023× 0.6171 × ( 0.02 × 0.628× 995.7 )0.8 × ( 4.174× 103 × 801.2× 10−6 )0.4W / m 2 K
3.1.1 换热器的选择………………………………………………4 3.1.2 换热器管程的计算……………………………………… 5 3.1.3 换热器壳程的计算……………………………………… 6 3.1.4 换热器的验证与说明…………………………………… 6
2
华东理工大学 化工学院
3.2 管路的铺设与泵的选型……………………………………7
3.计算过程
3.1 换热器的选型
综合考虑夏冬两季水温,将初温定为 20°C;考虑到化工生产中的实
际,将冷却水出口温度定为 40°C。 查的此时的物性参数如下:
t = t1 + t2 = 20 + 40 °C = 30°C 此时
2
2
ρ=995.7kg/m3 μ=801.2μPa·s Cp=4.174kJ/kg·°C λ=0.6171W/m·°C
换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备, 又称热交换器。管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U 型 管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。前3 种应用比较普 遍。
固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构 成。它的特点是结构简单,没有壳 侧密封连接,相同的壳体内径排管 最多,在有折流板的流动中旁路最 小,管程可以分成任何管程数,因 两个管板由管子互相支撑, 故在各 种管壳式换热器中它的管板最薄, 造价最低,因而得到广泛应用。这 种换热器的缺点是:壳程清洗困难, 有温差应力存在。。这种换热器适用 于两种介质温差不大, 或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。
di 20
对于正三角形排列,管程结垢校正系数 ft 取 1.4,则压降为:
∆Pt
= (λ
L di
+ 3) ft N p
ρui2 2
= (0.034 ×
4.5
995.7 × 0.6282
+ 3) ×1.4× 2 ×
0.02
2
Pa
= 5855Pa〈0.1MPa
符合题目要求。
Rei
=
ρ2u2di µ2
=
995.7 × 0.628 × 0.02 801.2 ×10−6
要求:1.选用合适的换热器;2.合理安排管路;3.选用一台合适的离心泵。
1.2 流程与管路图
管路布置如右图,已知泵进口段管
长 L 进=5 米,泵出口段管长 L 出=15 米 (均不包括局部阻力损失)。
2.计算结果明细表
物理量 换热器选型 热流量 Q(kW)
数值 BES273-1.6-11.1-4.5/25-2 换热器
(78
− 40) − (60 − ln(78 − 40)
20)
°C
=
39.0°C
T2 − t1
60 − 20
R = T1 − T2 = 78 − 60 = 0.9 t2 − t1 40 − 20
P = t2 − t1 = 40 − 20 = 0.34 T1 − t1 78 − 20
由 R、P 的值从表上读出 ϕ =0.97>0.8,故流动方式选择有效。
u0
=
qm1 ρ1 A0
=
6.55 997 × 0.0157
m
/s
=
0.418m
/
s
由于
Re0
=
d0u0 ρ1 µ1
=
0.025× 0.418× 997 0.6 ×10−3
= 17364.4〉500
所以
f0 = 5.0 Re−0.228 = 5 ×17364.4−0.228 = 0.540
化工原理课程设计
管壳式换热器选型
姓名: 李鹏程 学号: 10091693 班级: 工 092 指导老师: 袁萍
华东理工大学 化工学院
前言
1.换热器的设备简介
传热是热能从热流体间接或直接传向冷流体的过程。其性质复杂,不但要考虑经过 间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。在 化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三 大类即:间壁式、混合式和蓄热式。其中间壁式换热器詹用量最大,据统计,这类换热 器占总用量的 99%。间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换 热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设 计资料基本齐全,在许多国家都有了系列化的标准。因此,作为广泛应用于各个领域的 工业设备,它在国民经济中具有非常重要的作用。
3.2.1 管道的选用……………………………………………… 7
3.2.2 泵的选型与计算说明…………………………………… 7
4.附录……………………………………………………… 8
4.1 物性明细表………………………………………………… 8
4.2 符号说明…………………………………………………… 8
5.参考文献………………………………………………… 9 1.设计任务
1.1 工艺要求
要将温度为 78°C 的某液态有机物冷却至 60°C,此有机物的流量为
6.55kg/s。先拟用温度为 t1= °C 的冷水进行冷却。要求换热器管壳两侧的
压降皆不应超过 0.1MPa。一直有机物在 69°C 时的物性数据如下:
ρ=997kg/m3
μ=0.6mPa·s
Cp=2.22kJ/kg·°C λ=0.16W/m·°C
261.74
3
华东理工大学 化工学院
纯逆流平均推动力Δtm 逆(°C)
39.0
实际平均推动力Δtm(°C)
37.8
初步计算的 A 估(m2) 冷却水质量流速 qm2/(kg/s) 管内流速 ui/(m/s) 管内流动雷诺系数 Re 管程给热系数αi/(W·m-2·K-1) 管程阻力损失ΔPt/(Pa) 横过管束中心线的管数 NTC 壳程流动面积 A0/m2 壳程流速 u0/m·s-1 壳程流动雷诺数 Re0 壳程流体摩擦系数 f0 壳程压降ΔPS/Pa 当量直径 de/mm 最大流动截面 A'/m2 壳程实际流速 u0/m·s-1 壳程实际雷诺数 Re0 壳程给热系数α0/(W·m-2·K-1) 计算传热系数 K 计/(W·m-2·K-1) 计算传热面积 A 计/m2 实际传热面积 A 实/m2
H = ∆Z + ∆P + ∆u2 + λ( l + Σle ) u2
ρg 2g
d 2g 计算求得。在实际选泵的过程中,还要合理配置,安
全运行,这样才能做到优质输送。 泵选型的原则是:使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀
流量、吸程等工艺参数的要求;机械方面可靠性高、噪声低、振动小;经济上要综合考 虑到设备费、运转费、维修费和管理费的总成本最低。根据工艺流程 ,、专业要求,,应 将下面五个方面加以考虑, 既液体输送量、装置扬程、液体性质、管路布置以及操作运 转条件等。水泵的选取并不难,只要做到经验与理论计算相结合,充分利用各台水泵的 特性,就能做到使用最少的功率达到水泵的最大出水量,做到安全、优质、低耗输送。
相关文档
最新文档