实验五、单容水箱液位PID控制实验(DCS)

合集下载

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告实验报告:单容水箱液位PID控制实验实验目的:本实验旨在通过PID控制器对单容水箱的液位进行控制,验证PID控制算法在液位控制中的应用效果,并了解PID控制器参数调节的方法和影响因素。

实验装置和仪器:1. 单容水箱:用于存放水并模拟液位变化。

2. 液位传感器:用于实时监测水箱的液位。

3. 控制器:采用PID控制器,用于调节水箱液位。

4. 电源和信号线:提供电力和信号传输。

实验步骤:1. 将水箱与液位传感器连接,并确保传感器能够准确测量液位。

2. 将PID控制器与液位传感器连接,建立控制回路。

3. 设置PID控制器的参数,包括比例系数(P)、积分时间(I)和微分时间(D)。

4. 将控制器调至手动模式,并将控制器输出设定值调整为合适的初始值。

5. 开始实验,记录初始液位和控制器输出设定值。

6. 观察液位的变化,并记录实时液位值。

7. 根据液位变化情况,调整PID控制器的参数,使液位尽可能接近设定值。

8. 结束实验,记录最终液位和控制器参数。

实验结果:通过实验,我们得到了如下的结果和观察:1. PID控制器的参数调节对液位控制有重要影响,不同的参数组合会导致液位的不同响应和稳定性。

2. 比例系数P的增大可以增加控制器对液位误差的敏感程度,但过大的P值可能引起震荡或超调。

3. 积分时间I的增大可以减小稳态误差,但过大的I值可能导致震荡或系统不稳定。

4. 微分时间D的增大可以提高系统的动态响应速度,但过大的D值可能引起噪声干扰或导致系统不稳定。

5. 通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,使液位尽可能接近设定值并保持稳定。

结论:本实验通过PID控制器对单容水箱的液位进行控制,验证了PID控制算法在液位控制中的应用效果。

通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,并使液位保持稳定。

实验结果表明,PID控制器的参数调节对液位控制有重要影响,需要根据实际情况进行调整和优化。

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告一、实验目的本实验旨在通过单容量水箱液位pid控制实验,掌握PID控制器的基本原理及其在工程中的应用,熟悉液位传感器的使用方法,了解单容量水箱液位pid控制系统的组成和工作原理。

二、实验原理1. PID控制器PID控制器是一种用于工业过程自动化控制的常见算法。

PID是Proportional-Integral-Derivative(比例-积分-微分)三个英文单词的缩写。

PID算法通过对过程变量进行采样和比较,计算出误差,并根据误差大小进行调整。

其中比例项P、积分项I和微分项D分别代表了对过程变量偏差大小、偏差持续时间以及偏差变化率的反馈调整。

2. 液位传感器液位传感器是一种用于测量液体或固体物料高度或深度的设备。

常见的液位传感器有浮球式、压力式、电容式等多种类型。

本实验中采用电容式液位传感器进行测量。

3. 单容量水箱液位pid控制系统单容量水箱液位pid控制系统由水箱、液位传感器、PID控制器和执行机构(如电磁阀)组成。

系统的工作原理是:液位传感器采集水箱内的液位信号,将其转换为电信号并传输给PID控制器;PID控制器通过比较设定值和实际值之间的误差,输出相应的控制信号给执行机构,使其调节水箱内的水流量,从而维持水箱液位稳定在设定值。

三、实验步骤1. 搭建实验装置将单容量水箱与电磁阀、电容式液位传感器等连接起来,组成完整的单容量水箱液位pid控制系统。

2. 设置PID参数根据实际情况,设置合适的PID参数。

其中比例系数Kp、积分系数Ki 和微分系数Kd需要进行适当调整以达到最佳效果。

3. 进行实验测试将设定值设置为一定值,并记录下当前的反馈值。

根据反馈值计算出误差,并通过PID控制器输出相应的调节信号给执行机构。

随着时间的推移,观察液位是否能够稳定在设定值附近。

4. 调整PID参数如果发现液位不能够稳定地保持在设定值附近,需要对PID参数进行适当调整。

可以通过增大或减小比例系数、积分系数和微分系数来调整系统的响应速度和稳定性。

液位PID综合实验

液位PID综合实验

液位PID综合实验一、实验目的1、掌握定值简单调节系统的结构和组成。

2、通过选定的控制对象来组成相应的调节系统。

3、学习简单定值调节系统的投运实施过程。

4、掌握分析简单定值控制系统的过渡过程。

5、学习分析调节系统的控制性能指标。

二、实验原理1、过程控制系统的结构组成过程控制通常是指连续生产过程的自动控制。

过程控制主要是对生产过程中的有关参数(温度、压力、流量、物位、成分、湿度)进行控制,使其保持恒定或按一定规律变化,在保证产品质量和生产安全的前提下,使连续型生产自动进行下去。

过程控制系统按设定值的形式分定值控制系统、随动控制系统以及程序控制系统。

按系统的结构特点分为反馈控制系统、前馈控制系统以及前馈—反馈复合控制系统。

一个过程控制系统包括被控对象(工艺过程部分)和自动化仪器仪表和设备两大部分。

定值简单控制系统一般由测量变送器、调节器、调节阀和对象组成的单闭环负反馈控制系统。

简单控制(调节)系统方块图为:如图2所示的贮槽液位调节系统,以出料流量为调节参数方案即控制出料量。

此时,贮槽为调节对象,液位为被调参数,测量变送器LT将液位测量信号送往液位调节器LC,调节器根据实际检测值与液位设定值的偏差情况进行PID运算,最后把控制信号给调节阀(执行器),改变调节阀的开度,调节贮槽的输出物料流量以维持液位稳定。

2、调节阀气开、气关作用方式的选择调节阀气开、气关作用方式的选择主要以人员安全、生产安全、系统及设备安全为首要依据。

气开型调节阀随着控制信号的增加压力增加,当无压力信号时,阀门处于全关闭状态;反之,气关型调节阀随着信号增加,阀门逐渐关小,无信号时,阀门处于全开状态。

简而言之,“气开阀有气则开,无气则关;气关阀有气则关,无气则开。

”当控制系统发生故障时(如电源、气源中断、控制器出现故障而无信号、传输线路断路、执行机构的膜片破裂等使调节阀失去驱动而无法工作)时,失控的调节阀所处的状态应能确保人身、系统、设备的安全。

单容水箱液位控制报告

单容水箱液位控制报告

湖南工程学院系统综合训练报告液位课题名称控制系统专业班级名姓号学指导教师目录一概述 (1)二硬件介绍说明 (4)2.1电动调节阀 (4)2.2扩散硅压力液位变送器 (5)2.2扩散硅压力液位变送器 (5)2.4远程数据采集模块ICP-7017、ICP-7024面板 (5)三.软件介绍说明 (7)3.1工艺流程 (7)3.2制作总体回路 (8)3.2制作总体回路 (9)调试结果与调试说明………………………………………11四.4.1调试说明: (11)4.2调试结果 (12)五.实训心得………………………………………………………12.第章系统总体方案1在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。

因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。

例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。

根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。

单容水箱是个比较简单的控制系统,因为在该设计中,只要控制一个液位的高度,初步设计采用水泵恒定抽水,改变电动调节阀的开度来控制水的流量从而控制水箱液位的高度。

本设计选用压力传感器对液位高度进行测量,将测量的值与系统的给定值进行比较,来确定阀的开度。

被控参数的选择1.1根据设计要求可知,水箱的液位要求保持在一恒定值。

所以,可以直接选取水箱的液位作为被控参数。

控制参数的选择1.2影响水箱液位有两个量,一是流入水箱的流量。

二是流出水箱的流量。

调节这两个流量的大小都可以改变液位高低,这样构成液位控制系统就有两种控制方案。

对两种控制方案进行比较,假如系统在停电或者失去控制作用时,第一种通过控制水箱的流入量的方案将出现的情况是:水箱的水将流干;第二种通过控制水箱的流出量的方案则会形成水长流或者水溢出的情况,因此,选择流入量作为控制参数更加合理。

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告实验目的:通过单容量水箱液位PID控制实验,学习PID控制器的原理和调节方法,掌握PID控制器在液位控制中的应用。

实验器材:1. 单容量水箱2. 水泵3. 液位传感器4. 控制器5. 电脑实验原理:PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。

根据物体的反馈信号与设定值之间的差异,PID控制器会计算出相应的控制量,以使系统的输出信号趋近于设定值,从而实现对物体的控制。

实验步骤:1. 搭建实验装置:将单容量水箱与水泵和液位传感器连接,将控制器与电脑连接。

2. 设置实验参数:根据实验需求,设置控制器的比例增益、积分时间常数和微分时间常数,并将设定值设定为所需的液位。

3. 开始实验:启动水泵,观察水箱液位的变化,并记录在实验报告中。

4. 数据分析:根据液位传感器的反馈信号,计算实际液位与设定值之间的差异,并根据PID控制器的算法计算出相应的控制量。

5. 调整控制参数:根据实验数据分析的结果,调整PID控制器的参数,如增大比例增益、调整积分时间常数和微分时间常数,再次进行实验。

6. 重复步骤3-5,直到达到所需的控制效果。

实验结果与分析:根据实验数据,绘制出液位随时间变化的曲线图。

通过分析曲线形状和数据变化趋势,判断控制系统的稳定性和响应时间。

如果液位在设定值附近波动较小,并且响应时间较短,则说明PID控制系统的参数调节较为合适。

结论:通过单容量水箱液位PID控制实验,我们学习了PID控制器的原理和调节方法,并掌握了PID控制器在液位控制中的应用。

同时,我们还了解到PID控制器的参数调节对控制系统的稳定性和响应时间有很大影响,需要通过实验数据的分析来进行参数调整。

这些知识和技能对于后续的控制系统设计和实施有着重要的指导意义。

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告本次实验以单容水箱液位PID控制系统为研究对象,通过实验来探究PID控制系统在单容水箱液位控制中的应用。

实验采用的硬件设备包括一台多功能数据采集仪、一个电动水泵、一个水箱、一个液位传感器以及一台电脑。

液位传感器负责实时监测水箱的液位高度,然后将液位信号传输给多功能数据采集仪,再通过电脑处理分析数据。

电动水泵负责将水加入到水箱中,实现液位的上升。

在实验中我们需要采用PID控制算法对液位进行控制。

PID控制器是由比例控制器(P)、积分控制器(I)和微分控制器(D)三个部分组成的一种常见的控制算法。

比例控制器根据当前偏差值来进行控制,积分控制器主要解决由于比例控制器的积累误差,使系统达到静态稳态的需求,微分控制器则是对系统输出信号的变化率进行调整,在系统响应速度方面起到了重要的作用。

PID控制器综合了三种控制器的优点,因此在工业自控领域中得到了广泛的应用。

在实验的开始,我们首先需要计算PID控制参数,包括比例系数Kp、积分时间Ti和微分时间Td。

计算出这些参数之后,我们需要将它们输入到控制器中,使得控制器能够根据当前的液位值来进行控制。

实验过程中,需要适当控制电动水泵的运行时间和运行速度,使得液位能够平稳地上升,同时又不超过设定的上限值。

在实验中,我们首先对比例系数进行了调整。

我们发现当比例系数过大时,液位的波动会变得非常剧烈,表现为液位的快速上升和下降。

当比例系数过小时,系统的响应速度将会比较慢,导致液位不能够很好地达到设定值。

通过实验我们调整了比例系数,使得液位能够更加稳定地上升,并且在液位接近设定值时,系统能够迅速地响应。

我们也对积分时间和微分时间进行了调整,并且通过分析实验数据,我们最终确定了比例系数为1.8、积分时间为0.2秒和微分时间为0.1秒。

通过本次实验,我们深入了解了PID控制系统在单容水箱液位控制中的应用,也体验了PID控制系统参数调整的过程。

我们相信,在实际工程中,PID控制系统的应用会带来更大的效益。

过程控制实验——单容水箱属性测试及PID参数整定

过程控制实验——单容水箱属性测试及PID参数整定

过程控制实验——单容水箱属性测试及PID参数整定一、实验目的1)、熟悉单容水箱的数学模型及其阶跃响应曲线。

2)、根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

3)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

4)、分析分别用P 、PI 和PID 调节时的过程图形曲线。

5)、定性地研究P 、PI 和PID 调节器的参数对系统性能的影响。

二、实验设备AE2000A 型过程控制实验装置、MCGS 程序运行环境、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、实验原理1)、对象特性测试设单容水箱的输入为1Q ,输出为2Q ,液位为h 调节输入输出,当系统平衡时:1122Q (t )(t )0Q -=; 当系统由于输入变化处于动态时:12(t)(t)Q (t)(t)dv dh Q A dt dt-==⋅; 22(t)h Q R =; 12(t)(t)Q (t)h dh A R dt⇒-=⋅ 21212H(s)(s)Q (s)(s)(s)1R H As H R Q AR s ⇒-=⋅⇒=+拉氏变换得到传递函数为 22(s)11R K G AR s s τ==++令1Q 有阶跃变化量0X ,拉氏变换式 10(s)Q x s = 则 0001(s)(Ts 1)Tkx kx kx H s s s ==-++取拉氏反变换:0(t)(1e )tT h kx -=-当t →∞ 00()H(0)()H(0)Kx x H H K ∞-∞-=⇒=t T = 100(T)Kx (1e )0.632Kx H -=-= 2)、PID 参数整定加入PID 控制后的系统框图如下图有经验可知 :,,,,0,,p p r s i p o r s p K M T T T M T t t M ↑⇒↑↓↓↓↓⇒↑=↑⇒↓↓↓经验试凑法;① P (,0i o T T =∞=)此时0p K =↑,并给系统一个阶跃信号,观察波形直到第一次峰值和第二次峰值之比大于4;1②PI (0o T =)适当减小p K ,逐渐减小i T ,给系统一个阶跃信号,观察波形直到第一次峰值和第二次峰值之比大于4;1③PID适当增大p K ,i T ,0o T 逐渐增大,重复上述操作,得到合适的PID 参数。

实验五、单容水箱液位PID控制实验(DCS)

实验五、单容水箱液位PID控制实验(DCS)

实验五、单容水箱液位PID控制实验(DCS)一、实验目的1)、熟悉单容水箱液位反馈PID控制系统硬件配置和工作原理。

2)、熟悉用P、PI和PID控制规律时的过渡过程曲线。

3)、定性分析不同PID控制器参数对单容系统控制性能的影响。

二、实验设备CS4000型过程控制实验装置,DCS系统、 PC机,监控软件。

三、实验原理一阶单容水箱PID控制方框图图为单回路上水箱液位控制系统。

单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用EPA系统控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如下图中的曲线①、②、③所示。

P、PI和PID 调节的阶跃响应曲线四、实验步骤(1)关闭出水阀,将CS4000 实验对象的储水箱灌满水(至最高高度)。

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告一、实验目的1、了解单容水箱液位控制系统的结构与组成。

2、掌握单容水箱液位控制系统调节器参数的整定方法。

3、研究调节器相关参数的变化对系统静、动态性能的影响。

4、了解PID调节器对液位、水压控制的作用。

二、单容水箱系统模型图12.1液位控制的实现本实验采用计算机PID算法控制。

首先由差压传感器检测出水箱水位,水位实际值通过A/D转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值经过D/A模块转换成模拟信号,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。

2.2 被控对象本实验是单容水箱的液位控制。

被控对象为图1中的上水箱,控制量为流入水箱的流量,执行机构为调节阀。

由图1所示可以知道,单容水箱的流量特性:水箱的出水量与水压有关,而水压又与水位高度近乎成正比。

这样,当水箱水位升高时,其出水量也在不断增大。

所以,若阀开度适当,在不溢出的情况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。

由此可见,单容水箱系统是一个自衡系统。

三、电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。

电动调节阀接受调节器输出4~20mADC的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S的大小。

图2为电动调节阀与管道的连接图。

图2图中:u----来自调节器的控制信号(4~20mADC)θ----阀的相对开度s----阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q的关系是非线性的。

四、单容水箱系统PID控制规律及整定方法数字PID控制是在实验研究和生产过程中采用最普遍的一种控制方法,在液位控制系统中也有着极其重要的控制作用。

本章主要介绍PID控制的基本原理,液位控制系统中用到的数字PID控制算法及其具体应用。

单容水箱液位控制系统实验设计

单容水箱液位控制系统实验设计

单容水箱液位控制系统实验设计【摘要】通过对单容水箱液位控制系统特性的测试掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。

根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。

【关键词】单容水箱;液位控制;数字模型1.单容水箱液位控制系统组成本实验装置由被控对象和上位控制系统两部分组成。

系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、气动调节阀、直流电磁阀、PA电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。

1.1被控对象被控对象由不锈钢储水箱、圆筒形有机玻璃水箱和敷塑不锈钢管路组成。

水箱:包括上水箱和储水箱。

上水箱采用淡蓝色圆筒型有机玻璃,不但坚实耐用,而且透明度高,便于学生直能接观察到液位的变化和记录结果。

分别是缓冲槽,工作槽,出水槽。

管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。

有效提高了实验装置的使用年限。

其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀打开让水直接排出。

1.2检测装置压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。

1.3执行机构调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的气动调节阀,用来进行控制回路流量的调节。

它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等。

水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为32升/分,扬程为8米,功率为180W。

泵体完全采用不锈钢材料,以防止生锈,使用寿命长。

可移相SCR调压装置:采用可控硅移相触发装置,输入控制信号为4~20mA标准电流信号。

输出电压用来控制加热器加热,从而控制锅炉的温度。

电磁阀:在本装置中作为气动调节阀的旁路,起到阶跃干扰的作用。

基于DCS实验平台的水箱液位控制系统综合设计

基于DCS实验平台的水箱液位控制系统综合设计

一.实验目的通过使用LN2000分散控制系统对水箱水位进行控制,熟悉掌握DCS控制系统基本设计过程。

二.实验设备PCS过程控制实验装置;LN2000 DCS系统;上位机(操作员站)三.系统控制原理采用DCS控制,将上水箱液位控制在设定高度。

将液位信号输出给DCS,根据PID参数进行运算,输出信号给电动调节阀,由DDF电动阀来控制水泵的进水流量,从而达到控制设定液位基本恒定的目的。

系统控制框图如下:四.控制方案改进可考虑在现有控制方案基础上,将给水增压泵流量信号引入作为导前微分或控制器输出前馈补偿信号。

五.操作员站监控画面组态本设计要求设计关于上水箱水位的简单流程图画面(包含参数显示)、操作画面,并把有关的动态点同控制算法连接起来。

1.工艺流程画面组态在LN2000上设计简单形象的流程图,并在图中能够显示需要监视的数据。

要求:界面上显示所有的测点数值(共4个),例如水位、开度、流量等;执行机构运行时为红色,停止时为绿色;阀门手动时为绿色,自动时为红色。

2.操作器画面组态与SAMA图对应,需要设计的操作器包括增压泵及水箱水位控制DDF阀手操器:A.设备驱动器的组态过程:添加启动、停止、确认按钮(启动时为红色,停止和确认时为绿色)添加启停状态开关量显示(已启时为红色,已停时为绿色)B.M/A手操器的组态过程:PV(测量值)、SP(设定值)、OUT(输出值)的动态数据显示,标明单位,以上三个量的棒状图动态显示,设好最大填充值和最大值;手、自动按钮(手动时为1,显示绿色;自动时为0,显示红色),以及SP、OUT的增减按钮;SP(设定值)、OUT(输出值)的直接给值(用数字键盘)3.趋势画面组态趋势显示--新建实时趋势—添加三个观察数据点:上水箱水位、上水箱水位设定值和DDF电动阀开度电动阀投自动后设给定值SP,上水箱水位PV应逐渐逼近设定值SP对于趋势画面组态来说,我们可以看见图中有很多如“加长”“缩短”“放大”“缩小”等按钮,可以在我们需要的时候对我们所观察的图像曲线进行一定的加工,以期能够得到更好的观察结果。

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告一、实验目的本实验旨在设计并实现一个单容水箱液位PID控制系统,通过对水箱液位的测量和控制,达到稳定控制水箱液位的目的。

二、实验原理1. 液位测量原理:利用浮球开关检测水箱内部液位高度,并将其转换为电信号输出。

2. PID控制原理:PID控制器是一种经典的控制算法,它根据当前误差、误差变化率和误差积分值来计算输出信号,从而调节被控对象的状态。

三、实验步骤1. 设计电路:根据所需控制系统的功能要求,设计出相应的电路图。

本实验采用Arduino开发板作为主要控制器,通过连接电路板上的传感器和执行器来完成液位测量和PID调节功能。

2. 编写程序:在Arduino开发环境中编写程序代码。

首先需要进行传感器数据采集和处理,然后根据PID算法计算出输出信号,并将其发送到执行器上进行调节。

3. 调试系统:在完成硬件连接和程序编写后,需要对系统进行调试。

首先进行传感器测试,确保能够准确地检测到液位高度,并将其转换为电信号输出。

然后进行PID算法测试,通过手动调节控制器的参数,观察系统的响应情况,并逐步优化控制器的参数。

4. 实验结果:通过实验验证,本设计的单容水箱液位PID控制系统能够准确地检测到水箱内部液位高度,并能够根据设定值进行自动调节。

在实验过程中,我们不断优化控制器的参数,最终实现了稳定控制水箱液位的目标。

四、实验总结本实验通过设计和实现单容水箱液位PID控制系统,深入了解了传感器数据采集、PID算法计算和执行器控制等相关知识。

在实验过程中,我们遇到了很多问题,但通过不断尝试和优化,最终成功完成了任务。

这次实验对我们的学习和提高有很大帮助,在今后的学习和工作中也将会有所裨益。

单容水箱液位定值控制系统

单容水箱液位定值控制系统

实验八单容水箱液位定值控制系统一、实验目的1. 理解单容水箱液位定值控制的基本方法及原理;2. 了解压力传感器的使用方法;3. 学习PID控制参数的配置;。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验台平台2. THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根)3. PC机1台(含上位机软件“THBDC-1”)4. THBDY-1单容水箱液位控制系统三、实验原理单容水箱液位定值控制系统的控制对象为一阶单容水箱,主要的实验项目为单容水箱液位定值控制。

其执行机构为微型直流水泵,正常工作电压为24V。

直流微型水泵控制方式主要有调压控制以及PWM控制,在本实验中采用PWM控制直流微型水泵的转速来实现对单容水箱液位的定值控制。

PWM调制与晶体管功率放大器的工作原理参考实验十三的相关部分。

控制器采用了工业过程控制中所采用的最广泛的控制器——PID 控制器。

通过计算机模拟PID控制规律直接变换得到的数字PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。

水箱液位定值控制系统一般有由电流传感器构成大电流反馈环。

在高精度液位控制系统中,电流反馈是必不可少的重要环节。

这里为了方便测量与观察反馈信号,通常把电流反馈信号转化为电压信号:反馈端输出端串接一个250Ω的高精度电阻。

本实验电压与液位的关系为:H液位=(V反馈-1)×12.5 单位:mm四、实验步骤1. 调节好单容水箱的出水口阀门的大小,连接实验电路:1.1 将水箱面板上的“LT –”与实验台的“GND”相连接;水箱面板上的“LT +”与实验台的“AD1”相连接。

1.2将水箱面板上的“输入–”与实验台的“GND”相连接;水箱面板上的“输入+”与实验台的“DA1”相连接。

1.3将水箱面板上的“输出–”与“水泵电源–”连接;水箱面板上的“输出+”与“水泵电源+”连接。

2. 启动计算机,在桌面双击图标THTJ-1,运行实验软件。

单容下水箱液位调节阀PID控制

单容下水箱液位调节阀PID控制

西安郵電大学PLC课程设计报告书题目:单容下水箱液位调节阀PID控制院(系)名称:自动化学院1号:郭丽丽 9号:朱雅学生姓名:29号:宋党朋专业名称:测控技术与仪器班级:测控1003班2013 年 09 月 09 日至时间:2013 年 09 月22 日单容下水箱液位调节阀PID 单回路控制1.无原理图框;2.无程序流程图;3.两组报告完全一样;一、艺过程(1)单容下水箱液位 PID 控制流程图,如图1所示图 1 控制流程图水介质由泵P102从水箱V104中加压获得压头,经由调节阀FV-101进入水箱V103,通过手阀QV-116回流至水箱V104而形成水循环;其中,水箱V103的液位由LT-103测得,用调节手阀QV-116 的开启程度来模拟负载的大小。

本例为定值自动调节系统,FV-101为操纵变量,LT-103为被控变量,采用PID调节来完成。

二、上位组态组态流程图界面,如图2所示图 2 组态流程图三、操作过程和调试1)在现场系统上,打开手阀QV102、QV105,调节下水箱闸板QV116开度(可以稍微大一些),其余阀门关闭。

2)在控制系统上,将IO面板的下水箱液位输出连接到AI0,IO 面板的电动调节阀控制端连到AO0。

3)启动计算机组态软件,进入测试项目界面。

启动调节器,设置各项参数,将调节器切换到自动控制。

4)设置比例参数,待系统稳定后,对系统加扰动信号(一般可通过改变设定值实现),选择合适的P,得到较满意的过渡过程曲线。

5)固定比例P值,改变PI调节器的积分时间Ti,对系统加扰动信号选择合适的I,得到较满意的响应曲线。

6)固定I于某一中间值,微调P的大小,观察加扰动后被调量输出的动态波形,得到满意的响应曲线。

7)在PI调节器控制的基础上,再引入适量的微分作用(设置D 参数),得到满意的响应曲线。

四.测试结果及分析1)选择合适的P值,响应曲线图如图3、图4所示P=22,I=∞,D=0P=20,I=∞,D=0图 3 P 值不同的组态图 4 P 值不同的组态分析:根据图3.4、3.5可知,P=20、P=22与P=24的响应曲线相比较,峰值时间)()()(202224t t t pp p ===P P P ,即t p 越小,响应速度越快;但P=24的响应曲线有振荡的趋势。

计算机过程控制实验报告单容水箱液位数学模型的测定实验

计算机过程控制实验报告单容水箱液位数学模型的测定实验

实验1 单容水箱液位数学模型的测定实验1、试验方案:水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。

被调量为水位H 。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ, 其中,F 是水槽横截面积。

在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。

公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻。

如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示:)1()(0+=TS S KR S G 。

相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。

2、实验步骤:1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有一定开度,其余阀门关闭。

2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪输出端连到电动调节阀(FV101)控制信号端。

3) 打开A3000-CS 电源,调节阀通电。

打开A3000-FS 电源。

4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。

给定值 图1 单容水箱液位数学模型的测定实验5) 调节内给定调节仪设定值,从而改变输出到调节阀(FV101)的电流,然后调节JV303开度,使得在低水位时达到平衡。

6) 改变设定值,记录水位随时间的曲线。

3、参考结果单容水箱水位阶跃响应曲线,如图2所示:图2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184 mm -35 mm =149 mm 。

基于DCS实验平台实现的水箱液位控制系统综合设计1

基于DCS实验平台实现的水箱液位控制系统综合设计1

基于DCS 实验平台实现的水箱液位控制系统综合设计 实验目的:通过使用LN2000分散控制系统对水箱水位进行控制,熟悉掌握DCS 控制系统基本设计过程。

实验设备:PCS 过程控制实验装置;LN2000 DCS 系统;上位机(操作员站)实验主要内容:一、实验物理系统的总体构成二、系统工艺流程三、系统控制原理四、基于DCS 的控制逻辑设计与组态五、操作员站监控画面组态六、系统运行调试实验。

系统控制原理:采用DCS 控制,将上水箱液位控制在设定高度。

将液位信号输出给DCS ,根据PID 参数进行运算,输出信号给电动调节阀,由DDF 电动阀来控制水泵的进水流量,从而达到控制设定液位基本恒定的目的.系统控制框图如下:SAMA 图组态PID 控制器M/A 手操器+-SP e -液位变送器执行器PV 上水箱液位根据下图配置测点:组态逻辑下装步骤:过程站操作—-选择需要下装的站——下装备站——执行操作——切换主备站-—执行操作-—从主站复制到备站-—执行操作--关闭水箱系统流程图在LN2000上设计简单形象的流程图:操作员监控系统在操作员监控系统开电动阀,启动增压泵上水,水位稳定后(低于20cm)投自动,调节SAMA图中PID参数,使水位恒定系统运行调试实验:系统调试实验主要包括以下内容:(1)观察过程参数显示是否正常、执行机构操作是否正常,是否按要求变化;(2)检查控制系统逻辑是否正确,并在适当时候投入自动运行;(3)系统扰动实验(水位给定值扰动、给水(上水/下水)阀门扰动);(4)增压泵流量信号:导前微分、前馈补偿扰动实验;(4)控制回路参数在线整定,PID参数可在线整定;(5)当系统存在较大问题时,如需进行控制结构修改、增加测点等,不能在线修改,应重新离线组态、编译、下装。

实验分析:手动切换到自动前瞬间,由于PID控制器TR端连接到M/A手操器的输出,PID控制器在跟踪模式,PID控制器输出等于M/A手操器输出,故切换瞬间不产生扰动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五、单容水箱液位PID控制实验(DCS)
一、实验目的
1)、熟悉单容水箱液位反馈PID控制系统硬件配置和工作原理。

2)、熟悉用P、PI和PID控制规律时的过渡过程曲线。

3)、定性分析不同PID控制器参数对单容系统控制性能的影响。

二、实验设备
CS4000型过程控制实验装置,DCS系统、 PC机,监控软件。

三、实验原理
一阶单容水箱PID控制方框图
图为单回路上水箱液位控制系统。

单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用EPA系统控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如下图中的曲线①、②、③所示。

P、PI和PID 调节的阶跃响应曲线
四、实验步骤
(1)关闭出水阀,将CS4000 实验对象的储水箱灌满水(至最高高度)。

(2)打开以丹麦泵、电动调节阀、电磁流量计组成的动力支路至中上水箱的出水阀门,关闭动力支路上通往其他对象的切换阀门。

同时打开中上水箱的出水阀至适当开度。

(3)手动打开实验装置、检测仪表、丹麦泵、电动调节阀的电源开关。

(4)启动EPA与Advantrol V3.16上位机组态软件,进入主画面,然后进入实验五画面,熟悉本实验组态软件的启动、退出、界面和基本操作)。

(5) 在上位机软件界面用鼠标点击调出PID窗体框,用鼠标按下自动按钮,在“设定值”栏中输入设定的上水箱液位,按“回车”键确认。

选择控制规律P、PI或者PID,并设置相应的参数(比例度、积分时间和微分时间),待测量值在设定值附近基本稳定。

注意,如果不想要积分,可以把积分时间Ti设为无穷大(999.99)。

如果不想要微分,可以把微分时间Td置为零。

(6)开始记录数据,然后加干扰,这里采用突然改变给定值的方法来模拟干扰(如原来给定值为10cm,现在改为15cm或5cm,回车)。

记录该时刻,同时不断记录水位,直到新的稳态建立。

如果过渡过程的质量不理想,就应该考虑调节相应的PID参数,尽可能得到适当的衰减振荡曲线。

(7)改变控制规律,时间允许的情况下,对于P、PI、PID,分别得到2条合理的过渡过程曲线(对应不同参数)。

每当做完一次试验后,必须待系统稳定后再做另一次试验。

五、实验报告要求
1、作出P调节器控制时,不同P值下的阶跃响应曲线。

2、作出PI调节器控制时,不同P和Ti值时的阶跃响应曲线。

3、画出PID控制时的阶跃响应曲线,并分析微分D的作用。

4、比较P、PI和PID三种调节器对系统无差度和动态性能的影响。

六、思考题
1、试定性地分析三种调节器的参数P、(P、Ti)和(P、Ti和T d)的变化对控制过程各产生什么影响?
2、如何实现减小或消除余差?纯比例控制能否消除余差?。

相关文档
最新文档