机器大数据平台技术架构图
特种设备安全监管大数据平台总体架构
特种设备安全监管大数据平台总体架构本系统在总体设计中,创新性地以信息技术为核心,云计算、物联网、大数据和移动互联技术的迅猛发展为特种设备监管创新提供了良好的技术支撑环境:(1)以技术支撑创新为基础采用云计算技术建设平台支撑,以物联网技术采集基础运行数据,通过公共服务平台,吸引各类用户提供更多的数据,促进特种设备监管水平的提高。
(2)以数据为核心促进管理手段创新不断收集完善基础数据和设备运行数据,通过大数据分析手段挖掘数据的内含价值,提高管理公开性和管理的预先报警能力,将重大事故消灭在萌芽之中。
(3)以服务为核心提高特种设备管理的透明度,通过移动互联网技术,开发手机客户端应用根据不同权限查询特种设备运行、管理、监测等多种信息,同时及时发布政府在特种设备管理方面的工作状态,提高公众的社会满意度。
系统的整体结构图如下:基于物联网和大数据技术的特种设备安全监察系统运用了先进综合的信息技术,符合国家安全生产和特种设备安全监察规定,可以有效实现设备安全状态、设备能效、设备检验状况、设备维保状况、操作人员资质等与特种设备紧密相关的设备使用情况及从业人员的实时数据监控,从而实现设备故障预警、事故预警、事故责任追溯、事故应急救援指挥等特种设备安全及生产安全责任追溯与事故处理,为特种设备安全监察和安全生产提供了可靠的数据依据和有效的监控手段,可有助于降低事故率。
建成后的系统是适用于各种型号电梯及其他特种设备运行安全实时监测管理的管理软件系统平台,该平台综合了云计算、无线通信技术、传感器技术、移动互联网技术和物联网技术,采用分布式架构,实时监测电梯及其他种类特种设备的运行状况,通过采集数据的算法处理,实现电梯故障的综合预防、应急处理、事故取证等功能。
同时通过网络多媒体分发技术和显示终端,为电梯监管部门、管理单位和维保单位,以及业主提供了丰富的多媒体增值服务的综合管理平台,是智慧城市、平安城市在特种设备行业的典型应用。
平台架构图-产品架构图
风险控制
应收账款
铁路行业云平台
用户管理
权限管理
数据API
个性推荐
组织架构
分析引擎
数据运营
NLP
未来
已有
登入注册
租户管理
数据仓库
商业智能
工作流程
大屏引擎
舆情监控
深度学习
物资采购平台
计算资源
存储资源
网络资源
操作系统
数据库
SaaS
PaaS
IaaS
物流平台
数据可视化
智慧车站平台
需求管理
合同管理
寻源管理
内容管理
主数据管理
报表管理
安防监控主机安全网络安全数据安全威胁情报
平台层
武清机房
业务支撑平台
业务应用层
业务中控平台
安全防护
基础平台
运维监控
运维管理配置管理流程管理备份管理可用性管理统一运维平台
监控管理系统状态监控系统容量监控系统性能监控操作监控应用监控监控大屏展示
业务平台
可视化交互
大数据
物联网管理
架构特点
技术方案架构
登入注册
租户管理
数据仓库
商业智能
工作流程
大屏引擎
舆情监控
深度学习
物资采购平台
计算资源
存储资源
网络资源
操作系统
数据库
SaaS
PaaS
IaaS
物流平台
智慧车站平台
供应链金融平台
需求管理
合同管理
寻源管理
财务管理
运输服务
订单管理
业务服务
综合运营
应急指挥
站场服务
Tencent大数据技术架构
SetA
网关 主 MySQL + Agent 备1 MySQL + Agent
…
应用 MySQL API
备2n MySQL + Agent
网关
SetB
网关 主 MySQL + Agent 备1 MySQL + Agent
…
备2n MySQL + Agent
1、识别DDL类sql,并以任务形式保存至scheduler; 2、解析DML类sql,并转发至对应Set; 3、收集Set返回的结果,组合后返回请求端; 4、watch并获取表的访问路由; …
容量:自动分表
GW(逻辑表) Mysql(物理表) GW(逻辑表) Mysql(物理表)
T 0 T 1
T
T
当SET资源不够或表 记录超标时,触发 扩容,物理表分裂
T 2 T T 3
该过程自动完成
初始态:逻辑表=物理表
T n
扩容后:逻辑表=N个物理表
容量:自动伸缩
伸缩方式
整表迁移 子表分裂
T1 T2 T3
原则:避免表分裂,及时表合并 表分裂的问题
在一个集群中,每次表分裂,会导致集群 表数量的增加;集群中表的数量就是路由 的条数,表数量越多,路由的效率就会越 低
•
• •
采用hardlimit+softlimit结合的方式
Hardlimit保证安全,不超机器总容量 Softlimit保证充分利用整机资源
14
Gaia 技术特点
强扩展性:支持单cluster万台规模
(即将达到
8800节点,20w+核,1500个pool)
车联网大数据平台架构设计
车联网大数据平台架构设计-软硬件选型1.软件选型建议数据传输处理并发链接的传统方式为:为每个链接创建一个线程并由该线程负责所有的数据处理业务逻辑。
这种方式的好处在于代码简单明了,逻辑清晰。
而由于操作系统的限制,每台服务器可以处理的线程数是有限的,因为线程对CPU的处理器的竞争将使系统整体性能下降。
随着线程数变大,系统处理延时逐渐变大。
此外,当某链接中没有数据传输时,线程不会被释放,浪费系统资源。
为解决上述问题,可使用基于NIO的技术。
NettyNetty是当下最为流行的Java NIO框架。
Netty框架中使用了两组线程:selectors与workers。
其中Selectors专门负责client端(列车车载设备)链接的建立并轮询监听哪个链接有数据传输的请求。
针对某链接的数据传输请求,相关selector会任意挑选一个闲置的worker线程处理该请求。
处理结束后,worker自动将状态置回‘空闲’以便再次被调用。
两组线程的最大线程数均需根据服务器CPU处理器核数进行配置。
另外,netty内置了大量worker 功能可以协助程序员轻松解决TCP粘包,二进制转消息等复杂问题。
IBM MessageSightMessageSight是IBM的一款软硬一体的商业产品。
其极限处理能力可达百万client并发,每秒可进行千万次消息处理。
数据预处理流式数据处理对于流式数据的处理不能用传统的方式先持久化存储再读取分析,因为大量的磁盘IO操作将使数据处理时效性大打折扣。
流式数据处理工具的基本原理为将数据切割成定长的窗口并对窗口内的数据在内存中快速完成处理。
值得注意的是,数据分析的结论也可以被应用于流式数据处理的过程中,即可完成模式预判等功能还可以对数据分析的结论进行验证。
StormStorm是被应用最为广泛的开源产品中,其允许用户自定义数据处理的工作流(Storm术语为Topology),并部署在Hadoop集群之上使之具备批量、交互式以及实时数据处理的能力。
大数据平台与架构设计方案
大数据平台与架构设计方案目录一、引言 (2)二、大数据平台与架构设计 (3)三、全球大数据产业发展现状 (5)四、中国大数据产业发展状况 (7)五、大数据人才短缺与培养挑战 (10)六、大数据行业发展趋势预测 (12)一、引言随着互联网的不断发展和数字化时代的加速推进,大数据技术已逐渐渗透到各行各业中,并对经济和社会发展产生重要影响。
在大数据技术蓬勃发展的也面临着技术创新的挑战以及应用中的多重困境。
近年来,中国大数据产业规模不断扩大。
随着信息化建设的深入推进和数字化转型步伐的加快,国内大数据市场呈现快速增长态势。
大数据产业涉及硬件基础设施、软件服务、数据处理等多个领域,整体产业链日趋完善。
数据泄露可能导致个人隐私曝光、企业资产损失、客户流失等严重后果。
对于个人而言,数据泄露可能导致其身份信息、财产信息等被非法利用。
对于企业而言,数据泄露可能导致商业机密泄露、客户信任危机,甚至可能面临法律制裁。
数据采集是大数据处理的第一步。
为了实现高效的数据采集,需要采用各种数据抓取、数据接口等技术手段,从各种来源收集数据。
还需要考虑数据的实时性和准确性。
对象存储技术是一种基于对象的存储架构,它将数据作为对象进行存储和管理。
对象存储系统采用分布式存储方式,具有可扩展性强、数据一致性高等优点,特别适用于非结构化数据的存储。
声明:本文内容来源于公开渠道或根据行业大模型生成,对文中内容的准确性不作任何保证。
本文内容仅供参考,不构成相关领域的建议和依据。
二、大数据平台与架构设计(一)大数据平台概述大数据平台是指基于大数据技术,集数据存储、处理、分析和应用为一体的综合性平台。
它以高效、稳定、安全、灵活的方式处理海量数据,为用户提供数据驱动的业务决策和支持。
大数据平台的特点主要体现在以下几个方面:1、数据量大:能够处理海量数据,满足各种规模的数据处理需求。
2、数据类型多样:支持结构化、非结构化等多种数据类型。
3、处理速度快:采用高性能的数据处理技术和架构,提高数据处理速度。
大数据平台解决方案
大数据平台的架构组件
• 数据源:数据来源,包括企业内部数据、外部数据等 • 数据采集器:用于从数据源获取数据 • 数据存储:用于存储和管理数据,如Hadoop、NoSQL数据库等 • 数据处理:用于对数据进行清洗、转换和整合,如MapReduce、Spark等 • 数据分析:用于提取数据中的有价值信息,如机器学习、数据挖掘等 • 数据可视化:用于将数据结果展示给用户,如报表、图表等
大数据平台的优化方法
• 性能优化:提高数据处理和分析的效率 • 成本优化:降低硬件和资源投入成本 • 安全优化:加强数据保护,确保数据安全性和隐私性
03 大数据处理与分析技术
大数据的采集与预处理技术
大数据的采集方法
• 日志采集:通过日志分析工具获取数据 • API采集:通过API接口获取外部数据 • 数据爬虫:通过爬虫工具获取网络数据
管理
• 发现新的商业模式 • 拓展市场份额 • 提高盈利能力
03
大数据推
动企业创
新
大数据助 力企业降
低成本
02
• 优化供应链管理 • 降低库存成本 • 提高运营效率
大数据提 高企业决
策效率
04
• 提供实时数据支持 • 预测市场趋势 • 辅助决策制定
大数据平台的发展历程与趋势
大数据平台的发展历程
• 数据仓库:20世纪90年代,以数据仓库为主要技术 • 数据湖:21世纪初,以Hadoop和NoSQL技术为代表 • 云计算:近年来,以云原生大数据平台为主导
金融业大数据平台的实践案例
万字长文解读最新最全的大数据技术体系图谱!
万字长文解读最新最全的大数据技术体系图谱!正文开始大数据技术发展20年,已经形成覆盖面非常庞大的技术体系,最近信通院发布了《大数据白皮书2020》(关注本公众号后,后台回复“big2020”获得PDF),提供了一张非常全面的大数据技术体系图谱,如下图所示:从这张图谱可以看到,大数据技术体系可以归纳总结为数据分析应用技术、数据管理技术、基础技术、数据安全流通技术四大方向,每个方向大数据技术的产生都有其独特的背景。
1、基础技术:主要为应对大数据时代的多种数据特征而产生大数据时代数据量大,数据源异构、数据时效性高等特征催生了高效完成海量异构数据存储与计算的技术需求。
面对迅速而庞大的数据量,传统集中式计算架构出现难以逾越的瓶颈,传统关系型数据库单机的存储及计算性能有限,出现了规模并行化处理(MPP)的分布式计算架构,如分析型数据库GreenGreenplum。
面对分布式架构带来的海量分布式系统间信息协同的问题,出现了以Zoomkeeper为代表的分布式协调系统;为了将分布式集群中的硬件资源以一定的策略分配给不同的计算引擎和计算任务,出现了Yarn等集群管理及调度引擎;面对海量计算任务带来的管理复杂度大幅提升问题,出现了面向数据任务的灵活调度工作流平台。
面向海量网页内容及日志等非结构化数据,出现了基于Apache Hadoop和Spark生态体系的分布式批处理计算框架;面向对于时效性数据进行实时计算反馈的需求,出现了Apache Storm、Flink等分布式流处理计算框架。
面对大型社交网络、知识图谱的应用要求出现了以对象+关系存储和处理为核心的分布式图计算引擎和图数据库,如GraphX、neo4j等;面对海量网页、视频等非结构化的文件存储需求,出现了mongoDB 等分布式文档数据库;面向海量设备、系统和数据运行产生的海量日志进行高效分析的需求,出现了influxdb等时序数据库;面对海量的大数据高效开放查询的要求,出现了以Redis为代表的K-V数据库。
工业互联网大数据平台架构体系顶层设计
工业互联网大数据平台架构体系顶层设计1. 引言工业互联网是当前工业领域的热门话题,大数据技术在其中起到了重要作用。
为了更好地支持工业互联网的发展,一个高效可靠的大数据平台架构体系是必不可少的。
本文将针对工业互联网大数据平台架构体系进行顶层设计,以满足实际需求。
2. 平台整体架构工业互联网大数据平台的整体架构应该由数据采集、数据存储、数据处理、数据分析和业务应用等多个模块组成。
其中,数据采集模块负责从多种传感器和设备中采集数据,并将数据传输至平台;数据存储模块负责将数据保存在分布式存储系统中,以确保数据的安全和可靠性;数据处理模块负责对采集的数据进行清洗、转换和聚合等操作,以满足后续数据分析和业务应用的需求;数据分析模块负责对处理后的数据进行分析和挖掘,以提取有价值的信息;业务应用模块则基于分析结果,为用户提供智能化的决策和管理支持。
3. 数据采集模块数据采集模块是工业互联网大数据平台的核心组成部分。
在设计上,应该考虑灵活性和可扩展性,支持多种传感器和设备的接入。
同时,为了保证数据的实时性和准确性,可以采用分布式采集节点的方式进行数据采集,以避免单点故障和数据丢失的风险。
此外,数据采集模块还应该支持多种通信协议和数据传输方式,如基于物联网技术的无线传输和以太网传输等。
4. 数据存储模块数据存储模块负责将采集到的数据保存在分布式存储系统中,以保证数据的安全和可靠性。
在设计上,可以采用主从复制或者分布式文件系统等方式,将数据存储在多个节点上,以提高数据的可用性和容错性。
此外,为了支持大规模数据的存储和查询,可以采用分片存储和索引技术,以提高数据的读写性能。
5. 数据处理模块数据处理模块负责对采集到的数据进行清洗、转换和聚合等操作,以满足后续数据分析和业务应用的需求。
在设计上,可以采用流式处理和批处理相结合的方式,以处理实时数据和离线数据。
此外,为了提高数据处理的效率,可以采用并行计算和分布式计算技术,以支持大规模数据的处理。
(完整word版)大数据技术文档
第1章绪论随着计算机技术、通信网、互联网的迅速发展和日益普及,Internet上的信息量快速增长。
从海量的信息块中快速检索出用户真正需要的信息正变得很困难,信息搜索应向着具有分布式处理能力方向发展,本系统利用hadoop分布式开源框架良好的扩充能力、较低的运作成本、较高的效率和稳定性来满足需求。
现状:缺陷和不足:(1)结果主题相关度不高。
(2)搜素速度慢。
引入hadoop+nutch+solr的优点:(1)hadoop平台数据处理高效。
hadoop集群处理数据比起单机节省数倍的时间,数据量越大优势越明显,满足信息采集对数据处理的速度和质量要求。
(2)hadoop平台具有高扩展性.可以适当扩展集群数量来满足日益不断增加的数据量,而这并不会毁坏原集群的特性。
(3)安全可靠性高。
集群的数据冗余机制使得hadoop能从单点失效中恢复,即Hadoop能自动进行数据的多次备份,以确保数据不丢失,即使当某个服务器发生故障时,它也能重新部署计算任务。
(4) Nutch不仅提供抓取网页的功能,还提供了解析网页、建立链接数据库、对网页进行评分、建立solr索引等丰富的功能。
(5)通过Nutch插件机制实现了系统的可扩展性、灵活性和可维护性,提高了开发效率。
能够根据用户需求进行灵活定制抓取和解析,提高了系统使用性。
(6)通过solr集群,采用分布式索引在不同的机器上并行执行,实现检索服务器之间的信息交换.可以通过设定主题进行索引检索。
研究目标和内容本文的研究目标是全面深入分析研究分布式搜索引擎,进而优化分布式搜索引擎中的索引构建策略,内容包括:(1)深入研究hadoop分布式平台,仔细剖析hadoop中的分布式文件系统HDFS和map/Reduce编程模型。
(2)深入研究Nutch架构、相关技术与体系结构,着重研究分析Nutch插件系统的内部结构和流程;对protocol-httpclient插件进行开发支持表单登录;对 url过滤、信息解析插件进行开发,提高搜索的主题相关度;(实现用mapreduce的google的排序算法,改进系统搜索的关联度)。
大数据技术架构
可靠性。Hadoop 能自动维护数据的多份备份,并且在任 务失败后能自动重新部署计算任务。
缺点
Hadoop 采用文件存储系统,所以读写时效性较差。
Hadoop 生态系统日趋复杂,组件之间的兼容性差,安装 和维护比较困难。 Hadoop 的各个组件功能相对单一。
边缘计算。将计算分散到数据产生、存储和查询端,数据产生既符合 CDM 的要求,同时也传输 给实时模型反馈,让客户端传送数据的同时马上进行反馈,而不需要所有事件都要到中央端处理 之后再进行下发。
5.3 Hadoop 生态架构
Part 01
Hadoop 基本概念
1 Hadoop 基本概念
定义
Hadoop 是一个由 Apache 基金会开发的大数据分布 式系统基础架构,实现高速运算和存储。Hadoop 是 可扩展的,它可以方便地从单一服务器扩展到数千台服 务器,每台服务器进行本地计算和存储。低成本、高可 靠、高扩展、高有效、高容错等特性使 Hadoop 成为 最流行的大数据分析系统之一。
定义
Spark 是基于内存计算的大数据并行计算框架, 可用于构建大型的、低延迟的数据分析应用程序。
Part 02
Spark 生态系统
2 Spark 生态系统
Spark
生态系 统
Part 03
Spark 主要特点
3 Spark 主要特点
Spark 主要特点
运行速度快。Spark 使用先进的 DAG 执行引擎,以支持循环数据流与内存计算,基于内存的执行速度 可比 Hadoop MapReduce 快上百倍,基于磁盘的执行速度也能快 10 倍左右。 容易使用。Spark 支持使用 Scala、Java、Python 和 R 语言进行编程,简洁的 API 设计有助于用户轻 松构建并行程序,并且可以通过 Spark Shell 进行交互式编程。
大数据平台聚类分析系统的设计与实现
DCWTechnology Analysis技术分析93数字通信世界2024.021 大数据平台聚类分析系统架构设计1.1 功能架构设计用户聚类分析系统功能架构设计首先是创建聚类任务,根据相对应的核心条件(比如圈人条件以及调度频率等),待聚类任务运行完毕后创建clu s t e r level 数据便能够予以可视化呈现。
之后在可视化呈现的基础上通过人工予以再次标注,并予以再次聚合计算,如此便可生成tribe level 指标数据并用于用户分析。
如图1所示[1]。
1.2 技术架构设计(1)前端展示:具备与用户进行交互的功能。
用户通过该页面登录进入该聚类分析系统,之后用户进行的创建聚类任务、查看聚类结果等相关操作行为均在该模块范围内[2]。
(2)后端调度:该模块的核心职责是响应前端传输至此的全部请求,同时和数据库、HDFS 、Hive大数据平台聚类分析系统的设计与实现孙雪峰(首都经济贸易大学密云分校,北京 101500)摘要:互联网领域蕴含着海量的数据信息,且这些信息呈现出多样性以及复杂性,总体而言,可以大致将这些数据划分成用户行为数据和内容数据,科学精细地分析处理这些数据,是强化用户分群治理效率、内容分类研究以及实现精细化运营的重要手段。
但现阶段尚无一站式的大数据聚类分析系统可供人们使用,因此,文章详细分析和阐述了基于大数据平台的聚类分析系统设计与实现,以此为相关工作人员提供参考。
关键词:大数据;聚类分析;系统设计;系统实现doi:10.3969/J.ISSN.1672-7274.2024.02.031中图分类号:TP 311.13 文献标志码:A 文章编码:1672-7274(2024)02-0093-03Design and Implementation of Cluster Analysis System for Big Data PlatformSUN Xuefeng(Capital University of Economics and Trade, Miyun Branch, Beijing 101500, China)Abstract: The internet field contains a vast amount of data information, which presents diversity and complexity. Overall, this data can be roughly divided into user behavior data and content data, and scientifically and meticulously analyzed and processed. It is an important means to strengthen the efficiency of user group governance, research on content classification, and achieve refined operations. However, at present, there is no one-stop big data clustering analysis system available for the public to use. Therefore, this article conducts research on this topic, analyzes and elaborates in detail on the design and implementation of clustering analysis systems based on big data platforms, in order to provide reference for relevant staff.Key words: big data; cluster analysis; system design; system implementation作者简介:孙雪峰(1980-),男,北京人,讲师,博士研究生,研究方向为计算机应用技术专业、计算机网络与应用技术、新媒体与网络传播。
《大数据平台简介》课件
B
C
D
可扩展性强
大数据平台采用分布式架构,可以根据业 务需求进行横向和纵向的扩展,满足企业 不断增长的数据处理需求。
数据整合能力强
大数据平台能够整合不同来源、不同格式 的数据,实现数据的统一管理和分析。
挑战分析
数据安全风险高
随着数据量的增长,数据安 全问题也日益突出,如何保 障数据的安全和隐私成为大 数据平台面临的重要挑战。
定义
大数据平台是一个集数据存储、处理、分 析和管理于一体的综合性系统,旨在高效 处理大规模数据集,挖掘其潜在价值。
高效性
具备高性能的数据处理能力,能够快速处 理和分析大规模数据。
可靠性
提供数据备份、恢复和容错机制,确保数 据安全可靠。
扩展性
具备水平扩展和垂直扩展能力,可根据业 务需求灵活增加计算和存储资源。
大数据平台的应用场景
数据分析与挖掘
对海量数据进行深入分析和挖掘,发现 潜在规律和趋势,为企业决策提供支持
。
数据科学与机器学习
利用大数据平台进行数据建模、特征 工程、模型训练和评估等,支持机器
学习和人工智能应用。
数据仓库与报表
构建企业级数据仓库,提供标准化的 报表和查询服务,满足企业日常运营 和管理的需求。
05
CATALOGUE
大数据平台案例分析
案例一:某电商的大数据平台建设
总结词
该电商企业通过大数据平台建设,实现 了精准营销、个性化推荐和供应链优化 。
VS
详细描述
该电商企业利用大数据技术,收集并分析 用户行为、购买历史、浏览记录等数据, 实现了个性化推荐和精准营销。同时,通 过大数据分析,优化了供应链管理,降低 了库存成本,提高了运营效率。
大数据、云计算系统高级架构师课程学习路线图
大数据、云计算系统高级架构师课程学习路线图大数据之Linux+大数据开发篇Java Linux基础Shell编程Hadoop2.x HDFS YARN MapReduce ETL数据清洗Hive Sqoop Flume/Oozieo大数据WEB工具Hue HBase Storm Storm ScalaSpark Spark核心源码剖析CM 5.3.x管理CDH 5.3.x集群项目部分项目一:北风网用户行为分析项目二:驴妈妈离线电商平台分析平台项目三:基于Spark技术实现的大型离线电商数据分析平台大数据之阿里云企业级认证篇阿里云数据处理和分析报表场景的实现(企业案例)企业自助沙箱实验(10个)阿里云企业认证(ACP11003模块)大数据之Java企业级核心技术篇Java性能调优Tomcat、Apache集群数据库集群技术分布式技术WebLogic 企业级技术大数据之PB级别网站性能优化篇CDN镜像技术虚拟化云计算共享存储海量数据队列缓存Memcached+Redis\No-SqlLVS负载均Nginx项目部分PB级通用电商网站性能优化解决方案大数据之数据挖掘\分析&机器学习篇Lucene爬虫技术Solr集群KI分词Apriori算法Tanagra工具决策树贝叶斯分类器人工神经网络K均值算法层次聚类聚类算法SPSS Modeler R语言数据分析模型统计算法回归聚类数据降维关联规则决策树Mahout->Python金融分析项目部分项目一:地震预警分析系统项目二:文本挖掘(Mathout\中文分词)项目三:电商购物车功能实现(R语言)项目四:使用Python构建期权分析系统大数据之运维、云计算平台篇Zookeeper Docker OpenStack云计算项目部分博客WordPress、ELK、日志管理:Maven+Jenkins项目部分.了解更多详情课程体系北风大数据、云计算系统架构师高级课程大数- Hadoop阶段一、大数据、云计算据开发技术基础课程一、大数据运维之Linux基础,以便更好地学习Linux本部分是基础课程,帮大家进入大数据领域打好等众多课程。
大数据技术体系建设方案
大数据技术体系建设一、编制说明大数据技术体系建设包括数据汇聚、大数据框架、大数据存储、大数据分析等内容。
●数据汇聚是组织内的各类数据进行采集并处理的过程。
主要目标要实现对结构化业务数据和非结构化数据的抽取、清洗、转换和存储。
主要关键技术包括传统数据仓库ETL工具,大数据框架平台提供的数据共享,内存级功能和数据API等。
●大数据框架负责对数据系统中的数据进行计算,很多大数据框架已经通过各种组件形成了完整的大数据生态。
自动完成计算任务划分和计算处理,负责处理数据分布存储、数据通信、容错处理等底层技术细节。
主要关键技术包括Storm实时大数据计算,Hadoop离线大数据计算,Spark并行大数据计算,阿里云数据仓库解决方案等。
●大数据存储是将数量巨大、难于收集处理分析的数据持久化到计算机中。
主要目标实现对结构化数据和非结构化海量数据的存储。
主要关键技术包括传统数据仓库,MPP架构的新型数据库集群,基于Hadoop的技术扩展和封装,大数据一体机等。
●大数据分析是指对数据量大、速度快、类型多、价值低的数据进行分析。
主要目标是实现对数据资源的分析和利用。
主要关键技术包括传统BI、OLAP产品,可视化报表,数据挖掘,大数据画像,大数据模型构建和预测等。
●其他相关内容,请补充。
二、编制内容1 建设现状1.1 现状1.1.1总体架构图错误!文档中没有指定样式的文字。
总体架构●行业云平台大数据管理平台建设完成后将按照生态环境大数据建设项目总体要求,部署在行业云平台上。
●数据集成和整合系统数据源包括行业内部数据、外部委数据以及其他互联网数据,统一规范各业务数据接入,实现数据抽取、数据校验及错误处理、数据清洗转换及加载、空间及业务对象关联等数据集成工作,为各业务应用提供高质量的数据应用。
●数据库建设根据数据的特点和共享应用的需求,完成基础数据库、业务主题库、指标库、污染源主数据库以及模型库的设计和建设,建立结构化数据库、NOSQL数据库、时序数据库、分布式文件数据库,支撑行业监管、环评、监测、应急等业务的海量数据存储管理。
数据中心整体架构图
应用区
网络虚拟化区
测试区
备用线路
电子政务外网
安全 隔离区
核心业务 出口区
核心业务 网络区
核心业务 数据交换区
核心业务 安全管理区
核心业务服务器区
数据库区 中间件区
应用区 大数据平台区
网络虚拟化区
测试区 CA认证平台区
公共服务区
核心业务区
2. 网络区域划分(B数据中心)
互联网
公共服务 DMZ区
公共服务 出口区
管理系统
云平台
服务器
存储
网络
服务器
存储
网络
数据中心A
医保局(监测节点)
大屏展示系统监测系统运行状态
裸光纤连接
裸光纤连接
核心业务区
公共服务区
内部统一门 基础信息管 跨省异地就医管 运行监测
户系统
理系统
理系统
系统
公共服务系统
医疗保障智能监 医疗服务价格管 基金运行及审计
管系统
理系统
监管系统
信用评价管理 医保业务基 支付方式管 内部控制
业务库
数据抽取
专题
训练库
知识库
数据清洗
数据转换
......
数据......
负载均衡 虚拟网络
计算资源池
基 础
云基础设施 IAAS
设
施
X86服务器
层
机房
安全组件 对象存储 弹性计算
存储资源池 分布式系统基础服务
存储
数据中心机房环境
弹性伸缩
......
网络资源池
网络
运维 管理
技术架构-逻辑架构
APP
......
大数据平台系统架构图
大数据应用
经营KPI 客户分析 库存分析
收视率分析
用户行为分析
数
据
营销分析 财务分析 专题分析
广告推荐
视频推荐
应
数据分析工具
用
图表展示
OLAP分析
Dashboard
Ad-hoc
即席查询 360度客户视图 历史数据查询
If-then分析
运维监控
平台监控
数
据
任务监控
平
台
资源监控
系统监控
告警管理
接口服务
实时计算平台 实时计算引擎 规则匹配引擎
数据服务 数据推送
数据下载
离线计算平台 数据集市
EDW ODS
大数据平台
采集任务Байду номын сангаас理
ETL平台 采集调度管理
采集数据传输
基础架构平台
Kettle
Spark
HDFS
Storm
HQ
数据质量 规则 配置
质量 监控
问题 处理
质量 评估
数据安全 数据 隐私
访问 控制
存储 保护
安全 分析
数据资产 资产 分类
资产 注册
资产 管理
资产 统计
元数据管理
血缘分析
影响分析
元模型 元数据导入 元数据管理
大数据平台建设
大数据平台建设一、引言随着互联网和信息技术的快速发展,大数据已经成为企业决策和业务发展的重要支撑。
为了充分利用数据资源,提高数据处理和分析的效率,许多企业开始投入建设大数据平台。
本文将详细介绍大数据平台建设的标准格式,包括平台架构、数据采集与存储、数据处理与分析、数据可视化等方面的内容。
二、平台架构1. 硬件设施:大数据平台的建设需要考虑服务器、存储设备、网络设备等硬件设施的配置和部署。
根据数据量和处理需求,确定服务器数量和规格,选择高性能存储设备,保证网络带宽和稳定性。
2. 软件环境:大数据平台的软件环境包括操作系统、数据库管理系统、数据处理引擎等。
根据具体需求选择适合的操作系统和数据库管理系统,如Linux操作系统和Hadoop分布式文件系统。
同时,选择合适的数据处理引擎,如Spark、Hive 等。
三、数据采集与存储1. 数据采集:大数据平台需要采集各种来源的数据,包括结构化数据和非结构化数据。
通过数据采集工具,如Flume、Logstash等,实现数据的实时或批量采集,并确保数据的完整性和准确性。
2. 数据存储:大数据平台需要提供高性能和可扩展的数据存储方案。
常用的数据存储技术包括分布式文件系统、关系型数据库、NoSQL数据库等。
根据数据的特点和处理需求选择合适的存储技术,并进行容量规划和数据备份策略。
四、数据处理与分析1. 数据清洗与预处理:大数据平台需要对原始数据进行清洗和预处理,以提高数据质量和准确性。
通过数据清洗工具,如Apache Nifi、Pentaho等,实现数据的去重、去噪、格式转换等操作。
2. 数据挖掘与分析:大数据平台需要提供强大的数据挖掘和分析能力,以发现数据中的潜在价值和规律。
通过数据挖掘工具,如Apache Mahout、RapidMiner等,实现数据的聚类、分类、预测等分析操作。
3. 机器学习与人工智能:大数据平台可以结合机器学习和人工智能技术,实现自动化的数据分析和决策支持。
大数据平台架构设计说明书
大数据平台架构设计说明书大数据平台总体架构规格说明书V1.0版, 目录, 目录 ..................................................................... ...................................................... 2 I. 简介 ..................................................................... ............4 1. 目的 ..................................................................... (4)2. 词汇表 ..................................................................... .................................................................. 4 3. 引用 ..................................................................... (4)II. 整体介绍 ..................................................................... ........5 1. 系统环境 ..................................................................... .............................................................. 5 2. 软件介绍 ..................................................................... .............................................................. 5 3. 用途 ..................................................................... (6)4. 简介 ..................................................................... (6)5. 核心技术 ..................................................................... .............................................................. 7 , 大规模并行处理MPP .................................................................... ................................. 7 , 行列混合存储 ..................................................................... ............................................ 8 , 数据库内压缩 ..................................................................... ............................................ 8 , 内存计算 ..................................................................... ................................................... 9 6. MASTERNODE ................................................................... .............................................................. 9 7. DATA NODE ................................................................... ................................................................. 9 III.MASTERNODE ...................................................................10 1. 简介 ..................................................................... ....................................................................10 2. CONTROL 模块...................................................................... ........................................................10 3. SQL 模块...................................................................... .............................................................10 4. ACTIVE-PASSIVESOLUTION ............................................................... ................................................16 IV. DATANODE ................................................................... ........19 1. 简介 ..................................................................... ....................................................................19 2. 重要模块 ..................................................................... . (19)第 2 页共 31 页3. 数据存储 ..................................................................... .............................................................20 4. 数据导入 ..................................................................... .............................................................21 V. 分布式机制 ..................................................................... .....23 1. 概括 ..................................................................... ....................................................................23 2. 数据备份和同步 ..................................................................... ...................................................24 3. 时间同步机制 ..................................................................... (27)LEASE机制查询过程备忘 ..................................................................... ............................27 4. 分布式VI. 内存管理机制 ..................................................................... ...29 VII. V3.0版的初步设计思路 (30)第 3 页共 31 页I. 简介1. 目的本文详细描述了DreamData数据库系统。
视图大数据技术浅析
此边侧基础设施主要是以视频图像解析应用和视频 图像实时应用为主。中心侧当然也会部署AI算力, 以库比对功能和视图信息综合应用基础设施为主。
2.数据资源服务层
视图大数据数据资源服务层主要参考安全行业 大数据平台构建,当前安全行业大数据平台的数据 资源层构建方式和互联网行业的数据资源层构建方 式一样,符合当前的技术主流。视图大数据数据资 源服务层主要包括视图大数据接入、视图大数据处 理、视图大数据服务、视图大数据治理、视图相关 原始库、视图相关资源库、视图相关主题库、视图 相关知识库,还可能包含其他与视图不直接相关的 原始库、资源库、主题库、业务库、知识库。视图 大数据数据资源如图2所示。
■文/吴参毅 浙江宇视科技有限公司
一、大数据平台趋势
1.国家大数据相关政策 2024年3月11日第十三届全国人民代
表大会第四次会议审议并通过了《中华人民共 和国国民经济和社会发展第十四个五年规划和
2035年远景目标纲要》(以下简称“纲要”)。
在“纲要”中指出:“培育壮大人工智能、大 数据、区块链、云计算、网络安全等新兴数字 产业”"推动大数据采集、清洗、存储、挖掘、 分析、可视化算法等技术创新,培育数据采集、 标注、存储、传输、管理、应用等全生命周期 产业体系,完善大数据标准体系。”"加强涉 及国家利益、商业秘密、个人隐私的数据保护, 加快推进数据安全、个人信息保护等领域基础 性立法,强化数据资源全生命周期安全保护。 完善适用于大数据环境下的数据分类分级保护 制度。” “推进大数据智能化平台建设。”
(2) 边缘侧与中心侧基础设施的搭配
对于视频图像信息大数据架构来讲,由于视频 图像信息源的海量性,若把视图解析(即结构化分 析功能)功能集中部署在中心侧,势必加重了中心 侧的算力负担,同时也不符合当前安全行业的现实 应用情况。当前的应用现实是实时应用集中在下级 平台(边侧),综合应用集中在上级平台(中心侧)。 所以目前的部署方式是结构化功能主要部署在边侧, 重要视图信息汇聚到中心侧平台进行综合应用。因
工业大数据技术架构概述
工业大数据技术架构概述目录第一章工业大数据系统综述 (1)1.1建设意义及目标 (1)1.2重点建设问题 (2)第二章工业大数据技术架构概述 (3)2.1数据采集与交换 (5)2.2数据集成与处理 (6)2.3数据建模与分析 (8)2.4决策与控制应用 (9)2.5技术发展现状 (10)— 1 —第一章工业大数据系统综述1.1建设意义及目标工业大数据是工业生产过程中全生命周期的数据总和,包括产品研发过程中的设计资料;产品生产过程中的监控与管理数据;产品销售与服务过程的经营和维护数据等。
从业务领域来看,可以分为企业信息化数据、工业物联网数据和外部跨界数据。
现阶段工业企业大数据存在的问题包括数据来源分散、数据结构多样、数据质量参差不齐、数据价值未有效利用等情况。
工业大数据技术的应用,核心目标是全方位采集各个环节的数据,并将这些数据汇聚起来进行深度分析,利用数据分析结果反过来指导各个环节的控制与管理决策,并通过效果监测的反馈闭环,实现决策控制持续优化。
如果将工业互联网的网络比做神经系统,那工业大数据的汇聚与分析就是工业互联网的大脑,是工业互联网的智能中枢。
工业大数据系统的建设首要解决的是如何将多来源的海量异构数据进行统一采集和存储。
工业数据来源广泛,生产流程中的每个关键环节都会不断的产生大量数据,例如设计环节中非结构化的设计资料、生产过程中结构化的传感器及监控数据、管理流程中的客户和交易数据、以及外部行业的相关数据等,不仅数据结构不同,采集周期、存储周期及应用场景也不尽相同。
这就需要一个能够适应多种场景的采集系统对各环节的数据进行统一的收集和整理,并设计合理的存储方案来满足各种数据的留存要求。
同时需要依据合适的数据治理要求对汇入系统的数据进行标准和质量上的把控,根据数据的类型与特征进行有效管理。
之后就需要提供计算引擎服务来支撑各类场景的分析建模需求,包括基础的数据脱敏过滤、关联数据的轻度汇总、更深入的分析挖掘等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
react-bootstrap • 图形展现:echarts
• 语法转换工具:lodash
• 路由:react router
• 下钻图形:BizCharts AntV • 时间转换工具:moment
• 状态:react redux
• 前端容器:Nginx
• 打包工具:webpack
框架技术 & 数据存储 & 数据处理 & 数据分析
Web:Jersey
权限认证: Shiro
IOC:Guice 数据输入: Netty 环形队列:Disruptor
数据缓冲与处理: Kafka Journal
Disruptor
元数据存储: MogoDB
JAVA项目 Maven管理
应用
Web Server
防火墙
网络设备
文本文件
1
日志数据存储
Elasticsearch 集群
指标数据处理
InfluxDB
资源及关系数据
Neo4j
流数据处理和分析 语言
CEP:Esper
SPL:ANTLR4
负载均衡 & 数据交换
数据采集
Syslog
Nxlog
SNMP
现场定制采集:Python
Agent和脚本管理:Ansible
数据源
服务器
杰出企业身边的服务提供商