数学选修测试题含答案
数学选修1-1第二章测试卷(含答案)
第二章测试卷 (本栏目对应学生用书P81)一、选择题(每小题5分,共60分) 1.抛物线y =-2x 2的准线方程是( ) A .x =-12B .x =12C .y =18D .y =-18【答案】C【解析】化成标准方程为x 2=-12y ,所以准线方程为y =18.2.已知P ,Q 是椭圆9x 2+16y 2=1上的两个动点,O 为坐标原点,若OP ⊥OQ ,则点O 到弦PQ 的距离必等于( )A .1B .2C .15D .3 【答案】C【解析】选用特殊值法.选P ⎝⎛⎭⎫0,14,Q ⎝⎛⎭⎫13,0即可. 3.设抛物线y =ax 2(a >0)与直线y =kx +b (k ≠0)有两个公共点,其横坐标分别是x 1,x 2,而x 3是直线与x 轴交点的横坐标,则x 1,x 2,x 3关系是( )A .x 3=x 1+x 2B .x 3=1x 1+1x 2C .x 1x 2=x 2x 3+x 1x 3D .x 1x 3=x 2x 3+x 1x 2 【答案】C【解析】联立直线和抛物线的方程,得ax 2-kx -b =0,x 1x 2=-b a ,x 1+x 2=ka ,由直线方程x 3=-bk,结合得出答案. 4.若以x 2=-4y 上任一点P 为圆心作与直线y =1相切的圆,那么这些圆必定过平面内的点( ) A .(0,1) B .(-1,0) C .(0,-1) D .(-1,-1) 【答案】C【解析】由抛物线的定义可得.5.已知双曲线kx 2-y 2=1的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率是( )A .52B .2C .3D . 5【答案】A【解析】由于直线2x +y +1=0的斜率为-2,故k =14,∴x 24-y 2=1,由离心率e =1+b 2a 2=54=52. 6.若抛物线y 2=mx与椭圆x 29+y 25=1有一个共同的焦点,则m 的值为( )A .8B .-8C .±8D .±4【答案】C【解析】由已知椭圆的焦点为(2,0),(-2,0),∴m 4=2或m4=-2.∴m =8或m =-8.7.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝⎛⎭⎫b 2+c 2有四个交点.其中c 为椭圆的半焦距,则椭圆的离心率范围是( )A .55<e <35B .0<e <25C .25<e <35D .35<e <45【答案】A【解析】数形结合可知圆与椭圆有四个交点,则满足b <b2+c <a ,结合b =a 2-c 2可求得离心率的范围是55<e <35. 8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e ∈[2,2],令双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则此角的取值范围是( )A .⎣⎡⎦⎤π6,π2B .⎣⎡⎦⎤π3,π2C .⎣⎡⎦⎤π2,2π3D .⎣⎡⎦⎤2π3,5π6【答案】C 【解析】b a=e 2-1∈[1,3],∴θ2∈⎣⎡⎦⎤π4,π3.∴θ∈⎣⎡⎦⎤π2,2π3.9.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形【答案】C【解析】双曲线的离心率e 21=a 2+b 2a 2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 21e 22=1,即a 2+b 2a 2×m 2-b 2m 2=1,化简,得a 2+b 2=m 2.10.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且只有一条B .有且只有两条C .有无穷多条D .不存在【答案】B【解析】抛物线的焦点弦中最短的是通径,长为2p =4<5,所以这样的直线有两条.11.(2015年菏泽模拟)设双曲线x 2m +y 2n =1的离心率为2且一个焦点与抛物线x 2=8y 的焦点相同,则此双曲线的方程为( )A .x 23-y 2=1B .x 24-y 212=1C .y 2-x 23=1 D .x 212-y 24=1【答案】C【解析】抛物线x 2=8y 的焦点为(0,2),所以n >0>m ,n -m =4,2n=2.所以n =1,m =-3.故选C . 12.(2015年太原模拟)已知P 是抛物线y 2=2x 上动点,A ⎝⎛⎭⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是( )A .4B .92C .5D .112【答案】B【解析】因为点P 在抛物线上,所以d 1=|PF |-12(其中点F 为抛物线的焦点),则d 1+d 2=|PF |+|P A |-12≥|AF |-12=⎝⎛⎭⎫72-122+42-12=5-12=92,当且仅当点P 是线段AF 与抛物线的交点时取等号,故选B.二、填空题(每小题5分,共20分)13.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =________. 【解析】抛物线y 2=2px (p >0)的焦点坐标是⎝⎛⎭⎫p 2,0,由两点间距离公式,得⎝⎛⎭⎫p 2+22+32=5,解得p =4.【答案】414.过(0,3)作直线l ,若l 和双曲线x 24-y 23=1只有一个公共点,则这样的直线l 共有________条.【解析】直线与双曲线有一个公共点时有两种情况,一是相交,此时与渐近线平行,一是相切,要考虑全面.【答案】415.过抛物线y 2=x 的焦点F 的直线l 的倾斜角θ≥π4,l 交抛物线于A ,B 两点且A 在x 轴上方,则|F A |的取值范围是____________.【解析】直线过焦点,AF 的长可转化为点A 到准线的距离,所以A 点的横坐标越大,AF 的长越大,最小在O 点时,|OF |=14.最大是AF 的倾斜角为π4时,设A (x 0,y 0),过A 作x 轴的垂线,垂足为C ,在△ACF 中,|AC |=y 0,|CF |=x 0-14.因为|AC |=|CF |,即y 0=x 0-14,结合y 20=x 0,得y 0=2+12,|AF |=2y 0=1+22. 【答案】⎝⎛⎦⎤14,1+2216.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.【解析】由题意知右焦点坐标为(1,0), 斜率为2的直线方程为 2x -y -2=0.则⎩⎪⎨⎪⎧2x -y -2=0,x 25+y 24=1,消去x ,得 3y 2+2y -8=0.解得y 1=-2,y 2=43.∴S △AOB =12×1×⎝⎛⎭⎫|-2|+43=53. 【答案】53三、解答题(共70分)17.(10分)指出方程(m -1)x 2+(3-m )y 2=(m -1)(3-m )所表示的曲线的形状. 【解析】当m ≠1,m ≠3时,把方程写成x 23-m +y 2m -1=1.当1<m <3,m ≠2时,方程表示椭圆; 当m =2时,方程表示圆;当m <1或m >3时,方程表示双曲线; 当m =1时,方程表示x 轴; 当m =3时,方程表示y 轴.18.(12分)已知圆(x +1)2+y 2=16的圆心为B 及点A (1,0),点C 为圆上任意一点,求线段AC 的垂直平分线l 与线段CB 的交点P 的轨迹方程.【解析】如图,因为P 在AC 的垂直平分线上,所以|P A |=|PC |,半径R =4=|BC |=|PC |+|PB |,所以|P A |+|PB |=|PC |+|PB |=4>|AB |=2.所以P 点轨迹是以A ,B 为焦点的椭圆,此椭圆中a =2,c =1,所以b 2=3,方程为x 24+y 23=1.19.(12分)已知顶点在原点,焦点在x 轴上的抛物线被直线y =2x -1截得的弦长为15,求抛物线方程.【解析】设抛物线方程为y 2=ax ,直线与抛物线的两交点为A (x 1,y 1),B (x 2y 2),联立方程得⎩⎪⎨⎪⎧y =2x -1,y 2=ax ,消去y 得4x 2-(4+a )x +1=0,x 1x 2=14,x 1+x 2=4+a 4,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2= 5 ×⎝⎛⎭⎫1+a 42-1=15, 解得a =-12或a =4,所以抛物线方程为y 2=-12x 或y 2=4x .20.(12分)设双曲线方程与椭圆x 227+y 236=1有共同焦点且与椭圆相交,在第一象限的交点为A 且A的纵坐标为4,求此双曲线的方程.【解析】由椭圆方程x 227+y 236=1得椭圆的两个焦点为F 1(0,-3),F 2(0,3). ∵椭圆与双曲线的交点A 的纵坐标为4, ∴这个交点为A (15,4).设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧42a2-(15)2b 2=1,a 2+b 2=32,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故所求双曲线方程为y 24-x 25=1.21.(12分)若抛物线y =-x 2-2x +m 和直线y =2x 相交于不同的两点A ,B . (1)求m 的取值范围; (2)求|AB |;(3)求线段AB 的中点坐标. 【解析】联立方程得⎩⎪⎨⎪⎧y =2x ,y =-x 2-2x +m ,消y 得x 2+4x -m =0. (1)∵直线与抛物线有两个相异交点, ∴Δ>0,即42-4(-m )>0. ∴m >-4.(2)当m >-4时,方程x 2+4x -m =0有两个相异实根,设为x 1,x 2,由根与系数的关系x 1+x 2=-4,x 1·x 2=-m ,∴|AB |=1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2=25m +20.(3)设线段AB 的中点坐标为(x ,y ),则x =x 1+x 22=-42=-2,y =y 1+y 22=2x 1+2x 22=-4,∴线段AB 的中点坐标为(-2,-4).22.(2014年新课标Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .【解析】(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a .由MN 的斜率为34,可得b 2a 2c =34,即2b 2=3aC .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或c a =-2(舍去).故C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4A .①由|MN |=5|F 1N |, 得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则 ⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c .y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②,得9(a2-4a)4a2+14a=1.解得a=7,b2=4a=28,故a=7,b=2 7.。
高中数学选修一综合测试题重点易错题(带答案)
高中数学选修一综合测试题重点易错题单选题1、已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,点F到双曲线C的一条渐近线的距离为12a,则双曲线C的渐近线方程为()A.y=±12x B.y=±2xC.y=±4x D.y=±14x 答案:A分析:首先根据题意得到d=√b2+a2=b=12a,从而得到ba=12,即可得到答案.由题知:设F(−c,0),一条渐近线方程为y=bax,即bx−ay=0.因为d=√b2+a2=b=12a,所以ba=12,故渐近线方程为y=±12x.故选:A2、已知正方体ABCD−A1B1C1D1的棱长为a,则平面AB1D1与平面BDC1的距离为()A.√2a B.√3a C.√23a D.√33a答案:D分析:建立空间直角坐标系,用空间向量求解由正方体的性质,AB1∥DC1,D1B1∥DB,AB1∩D1B1=B1,DC1∩DB=D,易得平面AB1D1∥平面BDC1,则两平面间的距离可转化为点B到平面AB1D1的距离.以D为坐标原点,DA,DC,DD1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A (a,0,0),B (a,a,0),A 1(a,0,a ),C (0,a,0),B 1(a,a,a ),D 1(0,0,a ) 所以CA 1⃑⃑⃑⃑⃑⃑⃑ =(a,−a,a ),BA ⃑⃑⃑⃑⃑ =(0,−a,0),AB 1⃑⃑⃑⃑⃑⃑⃑ =(0,a,a ),B 1D 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−a,0).连接A 1C ,由CA 1⃑⃑⃑⃑⃑⃑⃑ ⋅AB 1⃑⃑⃑⃑⃑⃑⃑ =(a,−a,a )⋅(0,a,a )=0,CA 1⃑⃑⃑⃑⃑⃑⃑ ⋅B 1D 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−a,a )⋅(−a,−a,0)=0,且AB 1∩B 1D 1=B 1,可知A 1C ⊥平面AB 1D 1,得平面AB 1D 1的一个法向量为n ⃑ =(1,−1,1), 则两平面间的距离d =|BA ⃑⃑⃑⃑⃑ ⋅n⃑ |n ⃑ ||=√3=√33a . 故选:D3、已知两圆分别为圆C 1:x 2+y 2=49和圆C 2:x 2+y 2−6x −8y +9=0,这两圆的位置关系是( ) A .相离B .相交C .内切D .外切 答案:B分析:先求出两圆圆心和半径,再由两圆圆心之间的距离和两圆半径和及半径差比较大小即可求解. 由题意得,圆C 1圆心(0,0),半径为7;圆C 2:(x −3)2+(y −4)2=16,圆心(3,4),半径为4, 两圆心之间的距离为√32+42=5,因为7−4<5<7+4,故这两圆的位置关系是相交. 故选:B.4、已知直线斜率为k ,且−1≤k ≤√3,那么倾斜角α的取值范围是( ) A .[0,π3]∪[π2,3π4)B .[0,π3]∪[3π4,π)C.[0,π6]∪[π2,3π4)D.[0,π6]∪[3π4,π)答案:B分析:根据直线斜率的取值范围,以及斜率和倾斜角的对应关系,求得倾斜角α的取值范围. 解:直线l的斜率为k,且−1≤k≤√3,∴−1≤tanα≤√3,α∈[0,π).∴α∈[0,π3]∪[3π4,π).故选:B.5、过点P(√3,−2√3)且倾斜角为135∘的直线方程为()A.3x−y−4√3=0B.x−y−√3=0C.x+y−√3=0D.x+y+√3=0答案:D分析:由倾斜角为135∘求出直线的斜率,再利用点斜式可求出直线方程解:因为直线的倾斜角为135∘,所以直线的斜率为k=tan135°=−1,所以直线方程为y+2√3=−(x−√3),即x+y+√3=0,故选:D6、如图,下列各正方体中,O为下底面的中心,M,N为顶点,P为所在棱的中点,则满足MN∥OP的是()A.B.C.D.答案:A分析:根据给定条件,建立空间直角坐标系,再对每一个选项逐一分析,利用空间位置关系的向量证明推理作答.在正方体中,对各选项建立相应的空间直角坐标系,令正方体棱长为2,点O (1,1,0), 对于A ,M (0,0,2),N (2,0,0),P (2,0,1),MN ⃑⃑⃑⃑⃑⃑⃑ =(2,0,-2),OP ⃑⃑⃑⃑⃑ =(1,-1,1),MN ⃑⃑⃑⃑⃑⃑⃑ ∥OP ⃑⃑⃑⃑⃑ =0,MN ∥OP ,A 是;对于B ,M (2,0,2),N (0,2,2),P (0,2,1),MN ⃑⃑⃑⃑⃑⃑⃑ =(-2,2,0),OP ⃑⃑⃑⃑⃑ =(-1,1,1),MN ⃑⃑⃑⃑⃑⃑⃑ ∥OP ⃑⃑⃑⃑⃑ =4≠0,MN 与OP 不垂直,B 不是;对于C ,M (0,2,2),N (0,0,0),P (2,1,2),MN →=(0,-2,-2),OP →=(1,0,2),MN ⃑⃑⃑⃑⃑⃑⃑ ∥OP ⃑⃑⃑⃑⃑ =-4≠0,MN 与OP 不垂直,C 不是;对于D ,M (2,2,2),N (0,2,0),P (0,0,1),MN⃑⃑⃑⃑⃑⃑⃑ =(-2,0,-2),OP ⃑⃑⃑⃑⃑ =(1,0,1),MN ⃑⃑⃑⃑⃑⃑⃑ ∥OP ⃑⃑⃑⃑⃑ =-4≠0,MN 与OP 不垂直,D 不是.故选:A7、已知直线l 经过点P(1,3),且l 与圆x 2+y 2=10相切,则l 的方程为( ) A .x +3y −10=0B .x −3y +8=0C .3x +y −6=0D .2x +3y −11=0 答案:A分析:直线l 经过点P(1,3),且l 与圆x 2+y 2=10相切可知k l =−1k op,再使用点斜式即可.直线l 经过点P(1,3),且l 与圆x 2+y 2=10相切,则k l =−1k op=−13−01−0=−13,故直线l 的方程为y −3=−13(x −1),即x +3y −10=0. 故选:A.8、已知边长为2的等边三角形ABC ,D 是平面ABC 内一点,且满足DB:DC =2:1,则三角形ABD 面积的最小值是( )A .43(√3−1)B .43(√3+1)C .4√33D .√33答案:A分析:建立直角坐标系,设D(x,y),写出A,B,C 的坐标,利用DB:DC =2:1列式得关于x,y 的等式,可得点D 的轨迹为以(53,0)为圆心,以43为半径的圆,写出直线AB 的方程,计算|AB |和点D 距离直线AB 的最小距离d −r ,代入三角形面积公式计算.以BC 的中点O 为原点,建立如图所示的直角坐标系,则A(0,√3),B (−1,0),C (1,0), 设D (x,y ),因为DB:DC =2:1,所以(x +1)2+y 2=4(x −1)2+4y 2,得(x −53)2+y 2=169,所以点D 的轨迹为以(53,0)为圆心,以43为半径的圆,当点D 距离直线AB 距离最大时,△ABD 面积最大,已知直线AB 的方程为:√3x −y +√3=0,|AB |=2,点D 距离直线AB 的最小距离为:d −r =|5√33+√3|2−43=4√33−43,所以△ABD 面积的最小值为S △ABD =12×2×(4√33−43)=43(√3−1).故选:A多选题9、对抛物线y =4x 2,下列描述正确的是( ) A .开口向上,准线方程为y =-116B .开口向上,焦点为(0,116) C .开口向右,焦点为(1,0) D .开口向右,准线方程为y =-1 答案:AB分析:根据抛物线方程写出焦点、准线方程,并判断开口方向即可. 由题设,抛物线可化为x 2=y4,∴开口向上,焦点为(0,116),准线方程为y =−116. 故选:AB10、已知直线l 1:x −y −1=0,动直线l 2:(k +1)x +ky +k =0 (k ∈R ),则下列结论正确的是( ) A .存在k ,使得l 2的倾斜角为90∘B .对任意的k ,l 1与l 2都有公共点C.对任意的k,l1与l2都不重合D.对任意的k,l1与l2都不垂直答案:ABD分析:当k=0时可判断A;直线l1与l2均过点(0,−1)可判断B;当k=−12时可判断C,由两直线垂直斜率乘积等于−1可判断D,进而可得正确选项.对于A:当k=0时,直线l2:x=0,此时直线l2的倾斜角为90∘,故选项A正确;对于B,直线l1与l2均过点(0,−1),所以对任意的k,l1与l2都有公共点,故选项B正确;对于C,当k=−12时,直线l2为12x−12y−12=0,即x−y−1=0与l1重合,故选项C错误;对于D,直线l1的斜率为1,若l2的斜率存在,则斜率为−k+1k≠−1,所以l1与l2不可能垂直,所以对任意的k,l1与l2都不垂直,故选项D不正确;故选:ABD.11、已知F为椭圆C:x24+y22=1的左焦点,直线l:y=kx(k≠0)与椭圆C交于A,B两点,AE⊥x轴,垂足为E,BE与椭圆C的另一个交点为P,则()A.1|AF|+4|BF|的最小值为2B.△ABE面积的最大值为√2C.直线BE的斜率为12k D.∠PAB为钝角答案:BC分析:A项,先由椭圆与过原点直线的对称性知,|AF|+|BF|=4,再利用1的代换利用基本不等式可得最小值94,A项错误;B项,由直线与椭圆方程联立,解得交点坐标,得出面积关于k的函数关系式,再求函数最值;C项,由对称性,可设A(x0,y0),则B(−x0,−y0),E(x0,0),则可得直线BE的斜率与k的关系;D项,先由A、B对称且与点P均在椭圆上,可得k PA⋅k PB=−b2a2=−12,又由C项可知k PB=k BE=12k,得k PA⋅k AB=−1,即∠PAB=90°,排除D项.对于A,设椭圆C的右焦点为F′,连接AF′,BF′,则四边形AF′BF为平行四边形,∴|AF|+|BF|=|AF|+|AF′|=2a=4,∴1|AF|+4|BF|=14(|AF|+|BF|)(1|AF|+4|BF|)=14(5+|BF||AF|+4|AF||BF|)≥94,当且仅当|BF|=2|AF|时等号成立,A 错误;对于B ,由{x 24+y 22=1y =kx 得x =√1+2k 2,∴|y A −y B |√1+2k 2,∴△ABE 的面积S =12|x A ||y A −y B |=4|k|1+2k 2=41|k|+2|k|≤√2,当且仅当k =±√22时等号成立,B 正确;对于C ,设A(x 0,y 0),则B(−x 0,−y 0),E(x 0,0), 故直线BE 的斜率k BE =0+y 0x 0+x 0=12⋅y 0x 0=12k ,C 正确;对于D ,设P(m,n),直线PA 的斜率额为k PA ,直线PB 的斜率为k PB , 则k PA ⋅k PB = n−y 0m−x 0⋅n+y 0m+x 0=n 2−y 02m 2−x 02,又点P 和点A 在椭圆C 上,∴m 24+n 22=1①,x 024+y 022=1②,①−②得n 2−y 02m 2−x 02=−12,易知k PB =k BE =12k ,则k PA ⋅12k =−12,得k PA =−1k ,∴k PA ⋅k AB =(−1k )⋅k =−1,∴∠PAB =90°,D 错误. 故选:BC.小提示:椭圆常用结论:已知椭圆x 2a 2+y 2b 2=1(a >b >0),AB 为椭圆经过原点的一条弦,P 是椭圆上异于A 、B 的任意一点,若k PA ,k PB 都存在,则k PA ⋅k PB =−b 2a 2. 填空题12、设a∈R,若直线l经过点A(a,2)、B(a+1,3),则直线l的斜率是___________.答案:1分析:利用直线的斜率公式求解.解:因为直线l经过点A(a,2)、B(a+1,3),=1,所以直线l的斜率是k=3−2a+1−a所以答案是:113、已知圆x2+y2+2x−4y−5=0与x2+y2+2x−1=0相交于A、B两点,则公共弦AB的长是___________.答案:2分析:两圆方程相减可得公共弦所在直线方程,利用垂径定理即可得解.解:由题意AB所在的直线方程为:(x2+y2+2x−4y−5)−(x2+y2+2x−1)=0,即y=−1,因为圆x2+y2+2x−1=0的圆心O(−1,0),半径为r=√2,所以,圆心O(−1,0)到直线y=−1的距离为1,所以|AB|=2√2−12=2.所以答案是:214、直线y=kx+2(k>0)被圆x2+y2=4截得的弦长为2√3,则直线的倾斜角为________.答案:60∘分析:由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k,然后利用斜率等于倾斜角的正切值求解.∵直线y=kx+2(k>0)被圆x2+y2=4截得的弦长为2√3,所以,圆心O(0,0)到直线kx−y+2=0的距离d=√22−(√3)2=1,=1,解得k=√3(k>0).即√k2+1设直线的倾斜角为θ(0∘≤θ<180∘),则tanθ=√3,则θ=60∘.因此,直线y=kx+2(k>0)的倾斜角为60∘.所以答案是:60∘.解答题15、设直线l 的方程为(a +1)x +y −3+a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求a 的值; (2)若l 不经过第三象限,求a 的取值范围. 答案:(1)0或3 (2)[−1,3]分析:(1)通过讨论−3+a 是否为0,求出a 的值即可; (2)根据一次函数的性质判断a 的范围即可.(1)当直线l 过原点时,该直线l 在x 轴和y 轴上的截距为零, ∴a =3,方程即为4x +y =0; 若a ≠3,则3−a a+1=3−a ,即a +1=1,∴a =0,方程即为x +y −3=0, ∴a 的值为0或3.(2)若l 不经过第三象限,直线l 的方程化为y =−(a +1)x +3−a , 则{−(a +1)≤03−a ≥0 ,解得−1≤a ≤3,∴a 的取值范围是[−1,3].。
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
高中数学选修1-1综合测试题及答案
高中数学选修1-1综合测试题及答案选修1-1模拟测试题一、选择题1.若p、q是两个简单命题,“p或q”的否定是真命题,则必有()A。
p真q真B。
p假q假C。
p真q假D。
p假q真2.“cos2α=-35π/21”是“α=kπ+π/2,k∈Z”的()A。
必要不充分条件B。
充分不必要条件C。
充分必要条件D。
既不充分又不必要条件3.设f(x)=sinx+cosx,那么(。
)A。
f'(x)=cosx-sinxB。
f'(x)=cosx+sinxC。
f'(x)=-cosx+sinxD。
f'(x)=-cosx-sinx4.曲线f(x)=x^3+x-2在点P处的切线平行于直线y=4x-1,则点P的坐标为()A。
(1,0)B。
(2,8)C。
(1,0)和(-1,-4)D。
(2,8)和(-1,-4)5.平面内有一长度为2的线段AB和一动点P,若满足|PA|+|PB|=6,则|PA|的取值范围是A。
[1,4]B。
[1,6]C。
[2,6]D。
[2,4]6.已知2x+y=0是双曲线x^2-λy^2=1的一条渐近线,则双曲线的离心率为()A。
2B。
3C。
5D。
无法确定7.抛物线y^2=2px的准线与对称轴相交于点S,PQ为过抛物线的焦点F且垂直于对称轴的弦,则∠PSQ的大小是()A。
π/3B。
2π/3C。
3π/2D。
与p的大小有关8.已知命题p:“|x-2|≥2”,命题“q:x∈Z”,如果“p且q”与“非q”同时为假命题,则满足条件的x为()A。
{x|x≥3或x≤-1,x∈Z}B。
{x|-1≤x≤3,x∈Z}C。
{-1,0,1,2,3}D。
{1,2,3}9.函数f(x)=x^3+ax-2在区间(1,+∞)内是增函数,则实数a的取值范围是()A。
[3,+∞]B。
[-3,+∞]C。
(-3,+∞)D。
(-∞,-3)10.若△ABC中A为动点,B、C为定点,B(-a1,0),C(a2,0),且满足条件sinC-sinB=sinA,则动点A的轨迹方程是()A。
高中数学(人教A版)选修1-1全册综合测试题(含详解)
综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。
高中数学选修1-1考试题及答案
高中数学选修1-1考试题一、选择题(本大题有12小题,每小题5分,共60分,请从A ,B ,C ,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分。
)1.抛物线24yx 的焦点坐标是A .(0,1)B .(1,0)C .1(0,)16D .1(,0)162.设,aR 则1a是11a的A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件3.命题“若220ab,则,a b 都为零”的逆否命题是A .若220a b ,则,a b 都不为零B .若220ab,则,a b 不都为零C .若,a b 都不为零,则220abD .若,a b 不都为零,则22a b4.曲线32153yxx在1x 处的切线的倾斜角为A .34B .3C .4D .65.一动圆P 与圆22:(1)1A x y外切,而与圆22:(1)64B x y内切,那么动圆的圆心P 的轨迹是A .椭圆B .双曲线C .抛物线D .双曲线的一支6.函数()ln f x x x 的单调递增区间是A .(,1)B .(0,1)C .(0,)D .(1,)21世纪教育网7.已知1F 、2F 分别是椭圆22143xy的左、右焦点,点M 在椭圆上且2MF x轴,则1||MF 等于21世纪教育网A .12B .32C .52D .38.函数2()xf x x e 在[1,3]上的最大值为A .1B .1eC .24eD .39e9. 设双曲线12222by ax 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为().A.45 B. 5C.25 D.510. 设斜率为2的直线l 过抛物线2(0)yax a的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24yx B.28yx C.24yx D.28y x11. 已知直线1:4360l x y 和直线2:1l x,抛物线24y x 上一动点P 到直线1l 和直线2l 的距离之和的最小值是A.2B.3C. 4D. 112. 已知函数()f x 在R 上可导,且2'()2(2)f x xxf ,则(1)f 与(1)f 的大小(1)(1)(1)(1)(1)(1).Af f Bf f Cf f D不确定二、填空题(本大题有4小题,每小题5分,共20分,请将答案写在答题卷上)13.已知命题:,sin 1p x R x ,则p 为________。
高中数学选修(2-3)综合测试题(3)附答案
高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( ) A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++ 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nn n n n x C C x C x C x +=++++ , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++ 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ30a - 30100- 30P136 536 3036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x yC C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。
数学选修2-2第一章测试题及答案
第一章测试题一、选择题1. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为 ( ) A.1B.2C.-1D. 02. 函数y =(2x +1)3在x =0处的导数是 ( ) A.0 B.1 C.3 D.6 3.函数)0,4(2cos π在点x y =处的切线方程是( )A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x4.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.55. 给出以下命题:⑴若()0b af x dx >⎰,则f (x )>0; ⑵20sin 4x dx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为 ( )A. 1B. 2C. 3D. 06.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C. 极小值-1,极大值3 D. 极小值-2,极大值2 7.若函数f(x)=x 3-3b 2x +3b 在(0,1)内有极小值,则 ( )A.0<b<2B.b<2C.b>0D.0<b<218、由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( )A .329B .2ln3-C .4ln3-D .4ln3+9. 已知自由下落物体的速度为V=gt ,则物体从t=0到t 0所走过的路程为( ) A .2012gt B .20gt C . 2013gt D .2014gt 10.设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、-4C 、-2D 、211Oyx11.已知函数(1)()y x f x'=-的图象如图所示,其中()f x'为函数()f x的导函数,则()y f x=的大致图象是( )12.设0<a<b,且f (x)=xx++11,则下列大小关系式成立的是( ).A.f (a)< f (2ba+)<f (ab) B. f (2ba+)<f (b)< f (ab)C. f (ab)< f (2ba+)<f (a) D. f (b)< f (2ba+)<f (ab)二、填空题(共4小题,每小题5分,共20分)13.一物体在力⎩⎨⎧>+≤≤=)2(,43)20(,10)(xxxxF(单位:N)的作用下沿与力F相同的方向,从0=x处运动到4=x(单位:m)处,则力)(xF做的功为焦。
数学选修1测试题及答案
数学选修1测试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 3x^2 - 2x + 1,求f(1)的值。
A. 2B. 3C. 4D. 5答案:A2. 已知等差数列{a_n}的公差d=3,且a_1=5,求a_5的值。
A. 17B. 18C. 20D. 22答案:B3. 计算复数z=3+4i与z'=1-2i的和。
A. 4-1iB. 2+2iC. 4+2iD. 2-2i答案:C4. 集合A={1,2,3},集合B={2,3,4},求A∩B。
A. {1}B. {2,3}C. {3,4}D. {1,2,3}答案:B5. 已知函数y=x^3-6x^2+9x+1,求其导数y'。
A. 3x^2-12x+9B. x^3-6x^2+9C. 3x^2-12x+9xD. x^3-6x^2+9x答案:A6. 求方程x^2-5x+6=0的根。
A. 2, 3B. 1, 2C. 2, 4D. 3, 4答案:A7. 已知向量a=(3,-4),b=(2,1),求向量a与b的点积。
A. -11B. -10C. -8D. -6答案:A8. 计算极限lim (x→0) [sin(x)/x]。
A. 1B. 0C. 2D. ∞答案:A9. 求函数y=x^2-4x+4的最小值。
A. 0B. 1C. 4D. 8答案:A10. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],求矩阵A的行列式。
A. 2B. 5C. 6D. 8答案:B二、填空题(每题4分,共20分)1. 已知函数f(x)=x^3-9x,求f'(x)=________。
答案:3x^2-92. 求圆x^2+y^2=25的半径。
答案:53. 已知等比数列{a_n}的公比q=2,且a_1=3,求a_4的值。
答案:484. 求函数y=ln(x+1)的定义域。
答案:(-1, +∞)5. 已知向量a=(1,2),b=(3,-4),求向量a与b的叉积。
高中数学选修一综合测试题专项训练(带答案)
高中数学选修一综合测试题专项训练单选题1、设圆C 1:x 2+y 2−2x +4y =4,圆C 2:x 2+y 2+6x −8y =0,则圆C 1,C 2的公切线有( ) A .1条B .2条C .3条D .4条 答案:B分析:先根据圆的方程求出圆心坐标和半径,再根据圆心距与半径的关系即可判断出两圆的位置关系,从而得解.由题意,得圆C 1:(x −1)2+(y +2)2=32,圆心C 1(1,−2),圆C 2:(x +3)2+(y −4)2=52,圆心C 2(−3,4),∴5−3<|C 1C 2|=2√13<5+3,∴C 1与C 2相交,有2条公切线. 故选:B .2、经过点(-√2,2),倾斜角是30°的直线的方程是( ) A .y +√2 =√33(x -2)B .y +2=√3(x -√2) C .y -2=√33(x +√2)D .y -2=√3(x +√2) 答案:C分析:根据k =tan30°求出直线斜率,再利用点斜式即可求解. 直线的斜率k =tan30°=√33,由直线的点斜式方程可得y -2=√33(x +√2), 故选:C .3、已知点P(x ,y)在直线x −y −1=0上的运动,则(x −2)2+(y −2)2的最小值是( ) A .12B .√22C .14D .√34 答案:A分析:(x −2)2+(y −2)2表示点P(x ,y)与(2,2)距离的平方,求出(2,2)到直线x −y −1=0的距离,即可得到答案.(x −2)2+(y −2)2表示点P(x ,y)与(2,2)距离的平方,因为点(2,2)到直线x −y −1=0的距离d =√2=√22, 所以(2,2)的最小值为d 2=12. 故选:A4、动点P ,Q 分别在抛物线x 2=4y 和圆x 2+y 2−8y +13=0上,则|PQ|的最小值为( ) A .2√3B .√3C .12√3D .32√3 答案:B分析:设P (x 0,14x 02),根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案. 设P (x 0,14x 02),圆化简为x 2+(y −4)2=3,即圆心为(0,4),半径为√3,所以点P 到圆心的距离d =√(x 0−0)2+(14x 02−4)2=√116(x 02)2−x 02+16,令t =x 02,则t ≥0,令f(t)=116t 2−t +16,t ≥0,为开口向上,对称轴为t =8的抛物线,所以f(t)的最小值为f (8)=12, 所以d min =√12=2√3,所以|PQ|的最小值为d min −√3=2√3−√3=√3. 故选:B5、已知圆C 1:x 2+y 2+4x −2y −4=0,C 2:(x +32)2+(y −32)2=112,则这两圆的公共弦长为( )A .4B .2√2C .2D .1 答案:C分析:先求出两圆的公共弦所在直线的方程,用垂径定理求弦长.由题意知C 1:x 2+y 2+4x −2y −4=0,C 2:x 2+y 2+3x −3y −1=0,将两圆的方程相减,得x +y −3=0,所以两圆的公共弦所在直线的方程为x +y −3=0.又因为圆C 1的圆心为(−2,1),半径r =3,所以圆C 1的圆心到直线x +y −3=0的距离d =√2=2√2.所以这两圆的公共弦的弦长为2√r2−d2=2√32−(2√2)2=2. 故选:C.6、设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.[√22,1)B.[12,1)C.(0,√22]D.(0,12]答案:C分析:设P(x0,y0),由B(0,b),根据两点间的距离公式表示出|PB|,分类讨论求出|PB|的最大值,再构建齐次不等式,解出即可.设P(x0,y0),由B(0,b),因为x02a2+y02b2=1,a2=b2+c2,所以|PB|2=x02+(y0−b)2=a2(1−y02b2)+(y0−b)2=−c2b2(y0+b3c2)2+b4c2+a2+b2,因为−b≤y0≤b,当−b3c2≤−b,即b2≥c2时,|PB|max2=4b2,即|PB|max=2b,符合题意,由b2≥c2可得a2≥2c2,即0<e≤√22;当−b3c2>−b,即b2<c2时,|PB|max2=b4c2+a2+b2,即b4c2+a2+b2≤4b2,化简得,(c2−b2)2≤0,显然该不等式不成立.故选:C.小提示:本题解题关键是如何求出|PB|的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.7、如图1所示,双曲线具有光学性质;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,从F2发出的光线经过图2中的A,B两点反射后,分别经过点C和D,且cos∠BAC=−35,AB⊥BD,则E的离心率为()A .√52B .√173C .√102D .√5 答案:B分析:利用双曲线的光学性质及双曲线定义,用|BF 2|表示|BF 1|,|AF 1|,|AB|,再在两个直角三角形中借助勾股定理求解作答.依题意,直线CA,DB 都过点F 1,如图,有AB ⊥BF 1,cos∠BAF 1=35,设|BF 2|=m ,则|BF 1|=2a +m ,显然有tan∠BAF 1=43,|AB|=34|BF 1|=34(2a +m),|AF 2|=32a −14m ,因此,|AF 1|=2a +|AF 2|=72a −14m ,在Rt △ABF 1,|AB|2+|BF 1|2=|AF 1|2,即916(2a +m)2+(2a +m)2=(72a −14m)2,解得m =23a ,即|BF 1|=83a,|BF 2|=23a ,令双曲线半焦距为c ,在Rt △BF 1F 2中,|BF 2|2+|BF 1|2=|F 1F 2|2,即(23a)2+(83a)2=(2c)2,解得ca =√173, 所以E 的离心率为√173. 故选:B小提示:方法点睛:求双曲线离心率的三种方法:①定义法,通过已知条件列出方程组,求得a,c 得值,根据离心率的定义求解离心率e ;②齐次式法,由已知条件得出关于a,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8、已知直线l 1:√3x +y =0与直线l 2:kx −y +1=0,若直线l 1与直线l 2的夹角是60°,则k 的值为( ) A .√3或0B .−√3或0 C .√3D .−√3 答案:A分析:先求出l 1的倾斜角为120°,再求出直线l 2的倾斜角为0°或60°,直接求斜率k . 直线l 1:√3x +y =0的斜率为k 1=−√3,所以倾斜角为120°. 要使直线l 1与直线l 2的夹角是60°, 只需直线l 2的倾斜角为0°或60°, 所以k 的值为0或√3. 故选:A 多选题9、下列四个命题中,错误的有( ) A .若直线的倾斜角为θ,则sinθ>0 B .直线的倾斜角θ的取值范围为0≤θ≤πC .若一条直线的倾斜角为θ,则此直线的斜率为tanθD .若一条直线的斜率为tanθ,则此直线的倾斜角为θ 答案:ABCD分析:根据倾斜角与斜率的定义判断即可;解:因为直线的倾斜角的取值范围是[0,π),即θ∈[0,π),所以sinθ≥0, 当θ≠π2时直线的斜率k =tanθ,故A 、B 、C 均错误; 对于D :若直线的斜率k =tan 4π3=√3,此时直线的倾斜角为π3,故D 错误;故选:ABCD10、(多选)已知三条直线x -2y =1,2x +ky =3,3kx +4y =5相交于一点,则k 的值为( ) A .-163B .-1C .1D .163分析:由任意两个直线方程联立方程组求出交点坐标,再由其会标代入第三个方程中可求出k 的值 解:由{x −2y =12x +ky =3,得{x =6+k4+ky =14+k ,所以三条直线的交点为(6+k4+k ,14+k),所以3k ⋅6+k 4+k+4⋅14+k =5,化简得3k 2+13k −16=0,解得k =1或k =−163, 故选:AC11、已知直线l 经过点P(3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,则直线l 的方程为( ) A .x =2B .x =3 C .y =1D .y =2 答案:BC分析:先分析当直线l 的斜率不存在,则直线l 的方程为x =3,符合题意;再分析直线l 的斜率存在时,先求出A,B 的坐标,解方程(3k−2k+1−3k−7k+1)2+(−4k−1k+1+9k−1k+1)2=52求出k 的值,综合即得解.若直线l 的斜率不存在,则直线l 的方程为x =3, 此时与l 1、l 2的交点分别为A(3,−4),B(3,−9), 截得的线段AB 的长|AB|=|−4+9|=5,符合题意, 若直线l 的斜率存在,则设直线l 的方程为y =k(x −3)+1, 解{y =k(x −3)+1x +y +1=0 得A(3k−2k+1,−4k−1k+1),解{y =k(x −3)+1x +y +6=0 得B(3k−7k+1,−9k−1k+1),由|AB|=5,得(3k−2k+1−3k−7k+1)2+(−4k−1k+1+9k−1k+1)2=52,解得k =0,即所求的直线方程为y =1,综上可知,所求直线l 的方程为x =3或y =1,填空题12、已知抛物线y 2=2px (p >0),圆(x −p 2)2+y 2=1与y 轴相切,斜率为k 的直线过抛物线的焦点与抛物线交于A ,D 两点,与圆交于B ,C 两点(A ,B 两点在x 轴的同一侧),若AB ⃑⃑⃑⃑⃑ =λCD ⃑⃑⃑⃑⃑ ,λ∈[2,4],则k 2的取值范围为___________. 答案:[8,16+12√2]分析:先求出p ,然后设出直线,让直线与抛物线联立,再根据向量之间的关系及韦达定理求出x A ,x D ,再利用抛物线的定义及条件建立等式,再转化为不等式求解即可.由圆的方程可知,其圆心坐标为(p2,0),当圆与y 轴相切可知p2=1,得p =2,所以抛物线的焦点坐标为(1,0),抛物线方程为y 2=4x ,设斜率为k 的直线方程为y =k(x −1),设A(x A ,y A ),D(x D ,y D ),直线与抛物线联立, {y =k(x −1)y 2=4x,得k 2x 2−(2k 2+4)x +k 2=0, 所以x A +x D =2k 2+4k 2①,x A x D =1②所以|AB⃑⃑⃑⃑⃑ |=|AF ⃑⃑⃑⃑⃑ |−1=x A +1−1=x A ,|CD ⃑⃑⃑⃑⃑ |=|DF ⃑⃑⃑⃑⃑ |−1=x D +1−1=x D , 而AB⃑⃑⃑⃑⃑ =λCD ⃑⃑⃑⃑⃑ ,则有|AB ⃑⃑⃑⃑⃑ |=λ|CD ⃑⃑⃑⃑⃑ |,λ∈[2,4], 所以x A =λx D ③,由①,③解得x A =λ(2k 2+4)(λ+1)k 2,x D =2k 2+4(λ+1)k 2,代入②有λ(λ+1)2⋅(2k 2+4)2k 4=1,变形得(2k 2+4)2k 4=(λ+1)2λ,因为λ∈[2,4],所以(λ+1)2λ=λ+1λ+2∈[92,254],所以92≤(2k 2+4)2k 4≤254,变形得√2≤2k 2+4k 2≤52,解得8≤k 2≤16+12√2. 所以答案是:[8,16+12√2].小提示:关键点睛:解决本题的关键一是先求出抛物线方程,二是运用抛物线的定义,三是解不等式. 13、设m ∈R ,圆M:x 2+y 2−2x −6y =0,若动直线l 1:x +my −2−m =0与圆M 交于点A 、C ,动直线l2:mx−y−2m+1=0与圆M交于点B、D,则|AC|+|BD|的最大值是________.答案:2√30分析:求出圆的圆心和半径,求出两条直线位置关系和经过的定点,作出图像,设圆心到其中一条直线的距离为d,根据几何关系表示出|AC|+|BD|,利用基本不等式即可求出其最大值.x2+y2−2x−6y=0⇒(x−1)2+(y−3)2=10,圆心M(1,3),半径r=√10,x+my−2−m=0⇒x−2+m(y−1)=0⇒l1过定点E(2,1),mx−y−2m+1=0⇒m(x−2)−y+1=0⇒l2过定点E(2,1),且l1⊥l2,如图,设AC和BD中点分别为F、G,则四边形EFMG为矩形,设|MF|=d,0≤d≤|ME|=√5,则|MG|=√|ME|2−|EG|2=√|ME|2−|MF|2=√5−d2,则|AC|+|BD|=2√10−d2+2√10−(5−d2)=2(√10−d2+√5+d2)⩽2√2(10−d2+5+d2)=2√30,当且仅当10−d2=5+d2即d=√102时取等号.所以答案是:2√30.14、已知椭圆C:x24+y23=1的左、右焦点分别为F1,F2,M为椭圆C上任意一点,N为圆E:(x−3)2+(y−2)2=1上任意一点,则|MN|−|MF1|的最小值为___________. 答案:2√2−5分析:首先根据椭圆的定义将|MN|−|MF1|的最小值转化为|MN|+|MF2|−4,再根据|MN|≥|ME|−1(当且仅当M、N、E共线时取等号),最后根据|ME|+|MF2|≥|EF2|求得|MN|−|MF1|的最小值.如图,由M为椭圆C上任意一点,则|MF1|+|MF2|=4又N为圆E:(x−3)2+(y−2)2=1上任意一点,则|MN|≥|ME|−1(当且仅当M、N、E共线时取等号),∴|MN|−|MF1|=|MN|−(4−|MF2|)=|MN|+|MF2|−4≥|ME|+|MF2|−5≥|EF2|−5,当且仅当M、N、E、F2共线时等号成立.∵F2(1,0),E(3,2),则|EF2|=√(3−1)2+(2−0)2=2√2,∴|MN|−|MF1|的最小值为2√2−5.所以答案是:2√2−5.小提示:思路点睛;本题主要考查与椭圆与圆上动点相关的最值问题,主要根据椭圆的定义将目标等价转化为能够通过数形结合解题的类型,考查学生的转化与化归思想,属于较难题.解答题15、如图所示,某隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成.已知隧道总宽度AD为6√3m,行车道总宽度BC为2√11m,侧墙高EA,FD为2m,弧顶高MN为5m.(1)以EF所在直线为x轴,MN所在直线为y轴,1m为单位长度建立平面直角坐标系,求圆弧所在的圆的标准方程;(2)为保证安全,要求隧道顶部与行驶车辆顶部(设为平顶)在竖直方向上的高度之差至少为0.5m ,问车辆通过隧道的限制高度是多少?答案:(1)x 2+(y +3)2=36;(2)3.5m . 分析:(1)设出圆的方程,代入F,M 即可求解;(2)设限高为ℎ,作CP ⊥AD ,求出点P 的坐标,即可得出答案. (1)由题意,有E(−3√3,0),F(3√3,0),M(0,3).∵所求圆的圆心在y 轴上,∴设圆的方程为(x −0)2+(y −b)2=r 2(b ∈R ,r >0), ∵F(3√3,0),M(0,3)都在圆上, ∴{(3√3)2+b 2=r 202+(3−b )2=r 2,解得{b =−3r 2=36 .∴圆的标准方程是x 2+(y +3)2=36.(2)设限高为ℎ,作CP ⊥AD ,交圆弧于点P , 则CP =ℎ+0.5.将点P 的横坐标x =√11代入圆的方程,得(√11)2+(y +3)2=36, 得y =2或y =−8(舍去).∴ℎ=CP −0.5=(2+2)−0.5=3.5(m ). 故车辆通过隧道的限制高度为3.5m .。
高中数学选修2-1全册综合测试题含答案
选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( ) A .(116,0) B .(-116,0) C .(0,1) D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-3,0) C .(-12,0) D .(-60,-12)5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2 二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确.答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A 8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1. 答案 0≤a ≤115.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案 22317.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎨⎧ m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x+by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧ a -c =1,a +c =7,解得⎩⎨⎧ a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为10 5.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3 3,即所求二面角A1-BD-C1的余弦值为3 3.。
高中数学选修二综合测试题典型例题(带答案)
高中数学选修二综合测试题典型例题单选题1、函数y=f(x)的图像如图所示,下列不等关系正确的是()A.0<f′(2)<f′(3)<f(3)−f(2)B.0<f′(2)<f(3)−f(2)<f′(3)C.0<f′(3)<f(3)−f(2)<f′(2)D.0<f(3)−f(2)<f′(2)<f′(3)答案:C分析:根据导数的几何意义和函数平均变化率的定义,结合图象,即可求解.如图所示,根据导数的几何意义,可得f′(2)表示切线l1斜率k1>0,f′(3)表示切线l3斜率k3>0,=f(3)−f(2),表示割线l2的斜率k2,又由平均变化率的定义,可得f(3)−f(2)3−2结合图象,可得0<k3<k2<k1,即0<f′(3)<f(3)−f(2)<f′(2).故选:C.,则f(x)()2、已知f(x)=3xe xA .在(−∞,+∞)上单调递增B .在(−∞,1)上单调递减C .有极大值3e ,无极小值D .有极小值3,无极大值 答案:C分析:根据导数判断单调性与极值 f ′(x)=3−3x e x,则x <1时f ′(x)>0,x >1时f ′(x)<0f(x)在区间(−∞,1)上单调递增,在区间(1,+∞)上单调递减 有极大值f(1)=3e故选:C3、若数列{a n }满足a 1a 2a 3⋅⋅⋅a n =n 2(n ≥2),则a 3=( ) A .9B .3C .94D .49 答案:C分析:利用前n 项积与通项的关系可求得结果. 由已知可得a 3=a 1a 2a 3a 1a 2=3222=94.故选:C.4、设等差数列{a n }的前n 项和为S n ,数列{b n }的前n 和为T n ,已知a 5=11,S 10=120,b n =1a n ⋅a n+1,若T k =17,则正整数k 的值为( ) A .9B .8C .7D .6 答案:A分析:设等差数列{a n }的公差为d ,根据a 5=11,S 10=120求得公差d ,即可求得数列{a n }的通项,从而求得数列{b n }的通项,再根据裂项相消法求得数列{b n }的前n 和为T n ,从而可得出答案. 解:设等差数列{a n }的公差为d , S 10=10(a 1+a 10)2=5(a 5+a 6)=5(11+a 6)=120,所以a 6=13,则d =a 6−a 5=2,所以a n =a 5+2(n −5)=2n +1,所以b n =1a n ⋅a n+1=12(12n+1−12n+3), 所以T n =12(13−15+15−17+⋯+12n+1−12n+3)=12(13−12n+3)=n3(2n+3), 因为T k =17,所以k 3(2k+3)=17,解得k =9. 故选:A.5、设a ≠0,若x =a 为函数f (x )=a (x −a )2(x −b )的极大值点,则( ) A .a <b B .a >b C .ab <a 2D .ab >a 2 答案:D分析:先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到a,b 所满足的关系,由此确定正确选项.若a =b ,则f (x )=a (x −a )3为单调函数,无极值点,不符合题意,故a ≠b .∴f(x)有x =a 和x =b 两个不同零点,且在x =a 左右附近是不变号,在x =b 左右附近是变号的.依题意,为函数的极大值点,∴在x =a 左右附近都是小于零的.当a <0时,由x >b ,f (x )≤0,画出f (x )的图象如下图所示:由图可知b <a ,a <0,故ab >a 2.当a >0时,由x >b 时,f (x )>0,画出f (x )的图象如下图所示:由图可知b >a ,a >0,故ab >a 2. 综上所述,ab >a 2成立. 故选:D小提示:本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答. 6、若直线l 与曲线y =√x 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12 答案:D分析:根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 设直线l 在曲线y =√x 上的切点为(x 0,√x 0),则x 0>0, 函数y =√x 的导数为y ′=2√x ,则直线l 的斜率k =2√x 0,设直线l 的方程为y −√x 0=2√x 0−x 0),即x −2√x 0y +x 0=0,由于直线l 与圆x 2+y 2=15相切,则√1+4x 0=√5,两边平方并整理得5x 02−4x 0−1=0,解得x 0=1,x 0=−15(舍),则直线l 的方程为x −2y +1=0,即y =12x +12.故选:D.小提示:本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 7、已知正项等比数列{a n }的前n 项和为S n ,若−5,S 3,S 6成等差数列,则S 9−S 6的最小值为( ) A .25B .20C .15D .10答案:B分析:利用等比数列前n 项和的性质表示出S 9−S 6,再表示成同一变量S 3,然后利用基本不等式求出其最小值即可.因为{a n }是正项等比数列,所以S 3,S 6−S 3,S 9−S 6仍然构成等比数列, 所以(S 6−S 3)2=S 3(S 9−S 6). 又−5,S 3,S 6成等差数列,所以S 6−5=2S 3,S 6−S 3=S 3+5, 所以S 9−S 6=(S 6−S 3)2S 3=(S 3+5)2S 3=S 3+25S 3+10.又{a n }是正项等比数列,所以S 3>0,S 3+25S 3+10≥2√S 3⋅25S 3+10=20,当且仅当S 3=5时取等号.故选:B.8、已知等比数列{a n }中,a 1=2a 2,则这个数列的公比为( ) A .2B .√2C .12D .√22答案:C分析:结合等比数列的知识求得正确答案. 数列{a n }是等比数列, 所以公比q =a 2a 1=12.故选:C 多选题9、已知数列{a n }满足a 1=−12,a n+1=11−a n,则下列各数是{a n }的项的有( )A .−2B .23C .32D .3 答案:BD分析:根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.因为数列{a n }满足a 1=−12,a n+1=11−a n,∴a 2=11−(−12)=23;a 3=11−a 2=3;a 4=11−a 3=−12=a 1;∴数列{a n }是周期为3的数列,且前3项为−12,23,3; 故选:BD .小提示:本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.10、记S n 为等差数列{a n }的前n 项和.若a 1+3a 5=S 7,则以下结论一定正确的是( ) A .a 4=0B .S n 的最大值为S 3C .S 6=S 1D .|a 3|<|a 5| 答案:AC分析:根据等差数列的定义及前n 项和公式可求得公差d 与a 1的关系,再对各项进行逐一判断即可. 设等差数列的公差为d ,因为a 1+3a 5=S 7,可得a 1+3(a 1+4d )=7a 1+21d ,解得a 1=−3d , 又由a n =a 1+(n −1)d =(n −4)d ,所以a 4=0,所以A 正确; 因为公差d 的正负不能确定,所以S 3可能为最大值最小值,故B 不正确; 由S 6−S 1=a 2+a 3+a 4+a 5+a 6=5a 4=0,所以S 6=S 1,所以C 正确; 因为a 3+a 5=2a 4=0,所以a 3=−a 5,即|a 3|=|a 5|,所以D 错误. 故选:AC.11、已知函数f(x)=xlnx ,若0<x 1<x 2,则下列结论正确的是( ) A .x 2f(x 1)<x 1f(x 2)B .x 1+f(x 1)<x 2+f(x 2) C .f(x 1)−f(x 2)x 1−x 2<0D .当lnx >−1时,x 1f(x 1)+x 2f(x 2)>2x 2f(x 1)答案:AD 分析:设g(x)=f(x)x=lnx ,函数g(x)单调递增,可判断A ;设ℎ(x)=f(x)+x ,则ℎ′(x)=lnx +2不是恒大于零,可判断B ;f(x)=xlnx ,f ′(x)=lnx +1不是恒小于零,可判断C ;当x >1e时,lnx >−1,故f ′(x)=lnx +1>0,函数f(x)=xlnx 单调递增,故(x 2−x 1)[f(x 2)−f(x 1)]=x 1f(x 1)+x 2f(x 2)−x 2f(x 1)−x 1f(x 2)>0,即x 1f(x 1)+x 2f(x 2)>x 2f(x 1)+x 1f(x 2),由此可判断D.得选项. 解: 对于A 选项,因为令g(x)=f(x)x=lnx ,在(0,+∞)上是增函数,所以当0<x 1<x 2时,g(x 1)<g(x 2),所以f(x 1)x 1<f(x 2)x 2,即x 2f(x 1)<x 1f(x 2).故A 选项正确;对于B 选项,因为令g(x)=f(x)+x =xlnx +x ,所以g′(x)=lnx +2,所以x ∈(e −2,+∞)时,g′(x)>0,g(x)单调递增,x ∈(0,e −2)时,g′(x)<0,g(x)单调递减.所以x 1+f(x 1)与x 2+f(x 2)无法比较大小.故B 选项错误;对于C 选项,令f′(x)=lnx +1,所以x ∈(0,1e )时,f′(x)<0,f(x)在(0,1e )单调递减,x ∈(1e ,+∞)时,f′(x)>0,f(x)在(1e,+∞)单调递增,所以当0<x 1<x 2<1e时,f(x 1)>f(x 2),故f(x 1)−f(x 2)x 1−x 2<0成立,当1e<x 1<x 2时,f(x 1)<f(x 2),f(x 1)−f(x 2)x 1−x 2>0.故C 选项错误;对于D 选项,由C 选项知,当lnx >−1时,f(x)单调递增,又因为A 正确,x 2f(x 1)<x 1f(x 2)成立, 所以x 1⋅f(x 1)+x 2⋅f(x 2)−2x 2f(x 1)>x 1⋅f(x 1)+x 2⋅f(x 2)−x 2f(x 1)−x 1f(x 2) =x 1[f(x 1)−f(x 2)]+x 2[f(x 2)−f(x 1)] =(x 1−x 2)[f(x 1)−f(x 2)]>0,故D 选项正确. 故选:AD .小提示:用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 填空题12、等差数列{a n }的前n 项和为S n ,且满足S 19>0,S 20<0,则使S n 取得最大值的n 为______. 答案:10分析:由S19>0,S20<0,结合等差数列的前n项和公式得到第10项大于0,第10项和第11项的和小于0,得到第10项大于0,这样前10项的和最大.由S19>0,S20<0,可知{a n}为递减的等差数列,设其公差为d,则d<0,由S19=19(a1+a19)2>0,S20=10(a1+a20)<0,得a1+a19=2a10>0,a1+a20=a10+a11<0,所以a10>0,a11<0,所以使S n取得最大值的n为10,所以答案是:10.小提示:一般地,如果{a n}为等差数列,S n为其前n项和,则有性质:(1)若m,n,p,q∈N∗,m+n=p+q,则a m+a n=a p+a q;(2)S n=n(a k+a n+1−k)2,k=1,2,⋯,n且S2n−1=(2n−1)a n;(3)S n=An2+Bn且{S nn}为等差数列;(4)S n,S2n−S n,S3n−S2n,⋯为等差数列.13、若直线y=2x+a是函数f(x)=x+lnx的图象在某点处的切线,则实数a=____________.答案:−1分析:利用f′(x)=2求得切点坐标,代入切线方程,从而求得a.令f′(x)=1+1x=2,解得x=1,所以切点为(1,1),将(1,1)代入切线y=2x+a得1=2+a,a=−1.所以答案是:−114、若对任意的x1,x2∈(m,+∞),且当x1<x2时,都有lnx1−lnx2x1−x2>2x1x2,则m的最小值是________.答案:2分析:将lnx1−lnx2x1−x2>2x1x2变形为x1lnx1+2x1<x2lnx2+2x2,令f(x)=xlnx+2x,利用f(x)在(m,+∞)上是递增函数求解.由题意得:0<x1<x2,所以x 1−x 2<0, 则lnx 1−lnx 2x 1−x 2>2x 1x 2等价于x 1x 2(lnx 1−lnx 2)>2(x 2−x 1), 即x 1lnx 1+2x 1<x 2lnx 2+2x 2,令f (x )=xlnx+2x,则f (x 1)<f (x 2),又x 2>x 1>m ,所以f (x )在(m,+∞)上是递增函数, 所以f ′(x )=x−2x 2>0成立,解得x >2所以m ≥2, 故m 的最小值是2, 所以答案是:2 解答题15、在①a 3=5,S 9=63;②3a 2=a 10,S 2=7;③a 1=3,S 8−S 6=19这三个条件中任选一个,补充在下列问题中的横线上,并解答(若选择两个或三个按照第一个计分).已知等差数列{a n }的前n 项和为S n ,___________,数列{b n }是公比为2的等比数列,且b 2=a 2.求数列{a n },{b n }的通项公式. 答案:a n =n +2;b n =2n分析:设等差数列{a n }的公差为d ,根据等差数列的基本量方法,结合等差数列的性质可得{a n },进而根据b 2=a 2求得{b n }的通项公式即可 设等差数列{a n }的公差为d .若选①:根据等差数列的性质,由S 9=63有9a 5=63,故a 5=7,所以{a 1+2d =5a 1+4d =7 ,解得{a 1=3d =1,故a n =3+(n −1)=n +2.故b 2=a 2=4,故b n =b 2⋅2n−2=2n若选②:由题意{3(a 1+d )=a 1+9d 2a 1+d =7 ,即{a 1=3d 2a 1+d =7 ,解得{a 1=3d =1,故a n =3+(n −1)=n +2.故b 2=a 2=4,故b n =b 2⋅2n−2=2n若选③:由S 8−S 6=19可得a 7+a 8=19,即{a 1+2d =52a 1+13d =19 ,解得{a 1=3d =1,故a n =3+(n −1)=n +2.故b 2=a 2=4,故b n =b 2⋅2n−2=2n。
数学选修测试题(一)
数学选修2-2试题(一)一、选择题(每小题5分共计60分)1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x -D .0 2. 函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 3. 13()i i --的虚部为( )A .8iB .8i -C .8D .8- 4. 数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .275. 已知3()z =- ,那么复数z 在平面内对应的点位于( )A .第一象限B . 第二象限C .第三象限D .第四象限6. 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件7. 若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )8. 若复数z 满足)1z z i +=,则2z z +的值等于( )A .1B .0C .1-D .122-+ 9. 函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值 10. 已知2()(1,)nnf n i i i n N -=-=-∈集合{}()f n 的元素个数是( )A. 2B. 3C. 4D. 无数个11. ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A .()f x =()g xB .()f x -()g x 为常数函数C .()f x =()0g x =D .()f x +()g x 为常数函数 12. 下面四个命题(1) 0比i -大(2)两个复数互为共轭复数,当且仅当其和为实数(3) 1x yi i +=+的充要条件为1x y ==(4)如果让实数a 与ai 对应,那么实数集与纯虚数集一一对应, 其中正确的命题个数是( ) A .0 B .1 C .2 D .3 二、填空题(每小题5分共计30分)1.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 2. 若复数sin 2(1cos 2)z a i a =--是纯虚数,则a = .3. 曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;4. 函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修测试题含答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]数学选修2-1 综合测评时间:90分钟 满分:120分一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( ) B .(-1,-3,2)D .(2,-3,-22)解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式.即b ≠0,a ∥b ?a =λb ,a =(1,-3,2)=-1⎝ ⎛⎭⎪⎫-12,32,-1,故选C.答案:C2.若命题p :?x ∈⎝ ⎛⎭⎪⎫-π2,π2,tan x >sin x ,则命题绨p :( )A .?x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≥sin x 0B .?x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0>sin x 0C .?x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≤sin x 0 D .?x 0∈⎝⎛⎭⎪⎫-∞,-π2∪⎝ ⎛⎭⎪⎫π2,+∞,tan x 0>sin x 0 解析:?x 的否定为?x 0,>的否定为≤,所以命题绨p 为?x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≤sin x 0.答案:C3.设α,β是两个不重合的平面,l ,m 是两条不重合的直线,则α∥β的充分条件是( )A.l?α,m?β且l∥β,m∥αB.l?α,m?β且l∥mC.l⊥α,m⊥β且l∥mD.l∥α,m∥β且l∥m解析:由l⊥α,l∥m得m⊥α,因为m⊥β,所以α∥β,故C选项正确.答案:C4.以双曲线x24-y212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )+y212=1 +y216=1+y24=1 +y216=1解析:由x24-y212=1,得y212-x24=1.∴双曲线的焦点为(0,4),(0,-4),顶点坐标为(0,23),(0,-23).∴椭圆方程为x24+y216=1.答案:D5.已知菱形ABCD边长为1,∠DAB=60°,将这个菱形沿AC折成60°的二面角,则B,D两点间的距离为( )解析:菱形ABCD 的对角线AC 与BD 交于点O ,则AC ′⊥BD ,沿AC 折叠后,有BO ⊥AC ′,DO ⊥AC ,所以∠BOD 为二面角B -AC -D 的平面角,即∠BOD =60°.因为OB =OD =12,所以BD =12.答案:B6.若双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )B .2C .3D .6解析:双曲线x 26-y 23=1的渐近线方程为y =±22x ,因为双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,故圆心(3,0)到直线y =±22x 的距离等于圆的半径r ,则r =|2×3±2×0|2+4= 3.答案:A7.在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( )解析:取DA →,DC →,DD 1→分别为x 轴,y 轴,z 轴建立空间直角坐标系,可求得平面AB 1D 1的法向量为n =(2,-2,1).故A 1到平面AB 1D 1的距离为d=|AA1→·n||n|=43.答案:C8.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=43,则C的实轴长为( ) B.2 2 C.4 D.8解析:抛物线y2=16x的准线方程是x=-4,所以点A(-4,23)在等轴双曲线C:x2-y2=a2(a>0)上,将点A的坐标代入得a=2,所以C的实轴长为4.答案:C9.如图,在正方体ABCD-A1B1C1D1中,M,N分别为A1B1,CC1的中点,P为AD上一动点,记α为异面直线PM与D1N所成的角,则α的集合是( )解析:取C1D1的中点E,PM必在平面ADEM内,易证D1N⊥平面ADEM.本题也可建立空间直角坐标系用向量求解.答案:A10.已知P是以F1,F2为焦点的椭圆x2a2+y2b2=1(a>b>0)上的一点,若PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为( )解析:由PF 1→·PF 2→=0,得△PF 1F 2为直角三角形,由tan ∠PF 1F 2=12,设|PF 2|=s ,则|PF 1|=2s ,又|PF 2|2+|PF 1|2=4c 2(c =a 2-b 2),即4c 2=5s 2,c =52s ,而|PF 2|+|PF 1|=2a =3s ,∴a =3s 2,∴e =c a =53,故选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.若命题“?x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.解析:原命题的否定形式为?x ∈R,2x 2-3ax +9≥0,为真命题.即2x 2-3ax +9≥0恒成立,∴只需Δ=(-3a )2-4×2×9≤0,解得-22≤a ≤2 2.答案:[-22,22]12.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则动点P 的轨迹方程是__________.解析:由OP →·OA →=4得x ·1+y ·2=4,因此所求动点P 的轨迹方程为x +2y -4=0.答案:x +2y -4=013.在四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 为边长是1的正方形,PA =2,则AB 与PC 的夹角的余弦值为__________.解析:因为AB →·PC →=AB →·(PA →+AC →)=AB →·PA →+AB →·AC →=1×2×cos45°=1,又|AB →|=1,|PC →|=6,∴cos 〈AB →,PC →〉=AB →·PC →|AB →||PC →|=11×6=66.答案:6614.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为__________.解析:由题意,如图,在Rt △AOF 中,∠AFO =30°,AO =a ,OF =c , ∴sin 30°=OA OF =a c =12.∴e =c a=2. 答案:2三、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤)15.(12分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.解:由于不等式|x -1|>m -1的解集为R , 所以m -1<0,m <1;因为f (x )=-(5-2m )x是减函数, 所以5-2m >1,m <2. 即命题p :m <1,命题q :m <2.因为p 或q 为真,p 且q 为假,所以p 和q 中一真一假.当p 真q 假时应有⎩⎨⎧ m <1,m ≥2,m 无解.当p 假q 真时应有⎩⎨⎧m ≥1,m <2,1≤m <2.故实数m 的取值范围是1≤m <2.16.(12分)已知椭圆x 2b 2+y 2a 2=1(a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)直线l :x -y +m =0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.解:(1)由题意得⎩⎨⎧c a =22,a 2=2b ,解得⎩⎪⎨⎪⎧a =2,c =1,所以b 2=a 2-c 2=1, 故椭圆的方程为x 2+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0).联立直线与椭圆的方程得⎩⎨⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,Δ=(2m )2-4×3×(m 2-2)>0,m 2<3,所以x 0=x 1+x 22=-m3,y 0=x 0+m =2m3,即M ⎝⎛⎭⎪⎫-m 3,2m 3.又因为M 点在圆x 2+y 2=5上,所以⎝⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3与m 2<3矛盾.∴实数m 不存在.17.(13分)已知点P (1,3),圆C :(x -m )2+y 2=92过点A ⎝⎛⎭⎪⎫1,-322,点F 为抛物线y 2=2px (p >0)的焦点,直线PF 与圆相切. (1)求m 的值与抛物线的方程;(2)设点B (2,5),点Q 为抛物线上的一个动点,求BP →·BQ →的取值范围.解:(1)把点A 代入圆C 的方程,得(1-m )2+⎝ ⎛⎭⎪⎫-3222=92,∴m =1. 圆C :(x -1)2+y 2=92.当直线PF 的斜率不存在时,不合题意. 当直线PF 的斜率存在时,设为k , 则PF :y =k (x -1)+3,即kx -y -k +3=0. ∵直线PF 与圆C 相切, ∴|k -0-k +3|k 2+1=322.解得k =1或k =-1.当k =1时,直线PF 与x 轴的交点横坐标为-2,不合题意,舍去. 当k =-1时,直线PF 与x 轴的交点横坐标为4, ∴p2=4.∴抛物线方程为y 2=16x .(2)BP →=(-1,-2),设Q (x ,y ),BQ →=(x -2,y -5),则 BP →·BQ →=-(x -2)+(-2)(y -5)=-x -2y +12=-y 216-2y +12=-116(y +16)2+28≤28. ∴BP →·BQ →的取值范围为(-∞,28].18.(13分)如图,在四棱锥A -BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =2,AB =AC .(1)证明:AD ⊥CE ;(2)设CE 与平面ABE 所成的角为45°,求二面角C -AD -E 的余弦值.解:①(1)证明:作AO ⊥BC ,垂足为O ,则AO ⊥底面BCDE ,且O 为BC 的中点.以O 为坐标原点,射线OC 为x 轴正方向,建立如图①所示的直角坐标系O -xyz .设A (0,0,t ).由已知条件知C (1,0,0),D (1,2,0),E (-1,2,0),CE →=(-2,2,0),AD →=(1,2,-t ),所以CE →·AD →=0,得AD ⊥CE .(2)作CF ⊥AB ,垂足为F ,连接FE ,如图②所示.②设F (x,0,z ),则CF →=(x -1,0,z ),BE →=(0,2,0),CF →·BE →=0,故CF ⊥BE .又AB ∩BE =B ,所以CF ⊥平面ABE ,故∠CEF 是CE 与平面ABE 所成的角,∠CEF =45°.由CE =6,得CF = 3.又CB =2,所以∠FBC =60°,所以△ABC 为等边三角形,因此A (0,0,3).作CG ⊥AD ,垂足为G ,连接GE .在Rt △ACD 中,求得|AG |=23|AD |. 故G ⎝ ⎛⎭⎪⎫23,223,33,GC →=⎝ ⎛⎭⎪⎫13,-223,-33, GE →=⎝ ⎛⎭⎪⎫-53,23,-33. 又AD →=(1,2,-3),GC →·AD →=0,GE →·AD →=0,所以GC →与GE →的夹角等于二面角C -AD -E 的平面角. 故二面角C -AD -E 的余弦值cos 〈GC →,GE →〉=GC →·GE →|GC →||GE →|=-1010.。