信号与系统 第四章 拉普拉斯变换、连续系统的S域分析

合集下载

04四章 连续时间信号与系统的S域分析

04四章 连续时间信号与系统的S域分析

相应的傅里叶逆变换为
• Fb(s)称为f(t)的双边拉氏变换(或象函数),f(t)称为 Fb(s) 的双边拉氏逆变换(或原函数)。
二、双边拉氏变换的收敛域
能使
收敛的S值的范围。
若f(t)绝对可积,则 F(jω)=F(s)|σ=0 或F(jω)= F(s)|s= jω
S平面与零点、极点
N (s) F ( s) D( s )
例5.1-5求复指数函数(式中s0为复常数)f(t)=es0t(t)的 象函数
• 解: L[e (t )] 0 e e dt 0 e
s0 t s0t st



( s s0 ) t
dt
1 , Re[ s] Re[ s0 ] s s0 1 t , Re[ s ] 若s0为实数,令s0=,则有 e (t ) s

三、 S域平移(Shifting in the s-Domain): 若 x(t ) X (s), ROC: R 则
x(t )e X ( s s0 ), ROC : R Re[s0 ]
s0t
表明 X (s s0 ) 的ROC是将 X ( s)的ROC平移了 一个Re[ s0 ] 。
1 s2 X 1 ( s) 1 , s 1 s 1
1 X 2 ( s) , s 1
ROC: 1
ROC: 1
而 x1 (t ) x2 (t ) t 1 ROC为整个S平面 • 当R1 与R2 无交集时,表明 X ( s) 不存在。
二、 时移性质(Time Shifting):
ROC : 包括 R1 R2
x1 (t ) x2 (t ) X1 (s) X 2 ( s)

信号与系统4.3拉氏变换的性质

信号与系统4.3拉氏变换的性质

T
T2
2
E(2 )
T
s2 ( 2 )2
E(2 )
[
s2
T
( 2
)2
sT
]e 2
T
T
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
例4-4 试求图4.4所示的正弦半波周期信号的拉氏变换。
f (t)
E

0
TT
2T
t
2
图4.4 例 4―4图
解: 在例4―3中我们已求得从t=0开始的单个正弦半波(亦即
0 24
t
图4.5 例4-5图
e2(t2)e4u(t 2) e2(t4)e8u(t 4)
于是
F (s) L[ f (t)] e4L[e2t ]e2s e8L[e2t ]e4s
e2(s2) e4(s2) s2
第4章 拉普拉斯变换、连续时间系统的S域分析
4、s域平移特性
若 f (t) F(s)
t)u(t) E sin[ T
(t )]u(t )
2
2
第4章 拉普拉斯变换、连续时间系统的S域分析
应用拉氏变换的时移特性,有
F (s) L[ f (t)] L[ fa (t)] L[ fb (t)]
L[E sin(2 t)u(t)] L{E sin[ 2 (t T )]u(t T )}
本题第一个周期的波形)的拉氏变换为
F1(s)
L[
f
(t)]
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析

信号与系统 第四章 拉普拉斯变换、连续系统的S域分析.

信号与系统 第四章 拉普拉斯变换、连续系统的S域分析.
n
(n为正整数)
n st 0
n
t e dt
st



4、冲激函数 (t)
L (t ) 0 ( t )e d t 1
st
同理
L (t t0 ) e
st0
5、正弦函数
1 j t j t L sin t ( L e L e ) 2j
at
,相当于拉氏变
sin t 和 e at cos t 的拉氏变换。
L e sin t 2 2 (s a) sa a t L e cos t ( s a )2 2
a t
Lsin t 2 s 2
s Lcos t 2 2 s
解法一: bs 延时特性 L[ f (t b)u(t b)] F ( s )e
1 s 尺度变换 L[ f (at b)u(at b)] F e a a
解法二: 尺度变换 延时特性
b
s a
1 s L[ f (at )u(at )] F a a
st
t
j t
j 右 半 开 0 平 面

反映指数函数 est 的幅度变化速度 >0, 幅度发散 <0, 幅度收敛 反映指数函数 est 的因子ejt 作周期变化的频率
三、拉普拉斯变换的收敛域
1、定义 把使 f (t) e- t 满足绝对可积条件的 的取值范围称为拉氏变换的收敛域。 2、单边拉氏变换的收敛条件
九、卷积
1、时域卷积 若 L f1 (t ) F1 ( s) L f 2 (t ) F2 ( s) 则 L f1 (t ) f 2 (t ) F1 ( s ) F2 ( s )

第四章拉普拉斯变换1

第四章拉普拉斯变换1
13
二、拉氏变换的收敛域ROC(单边拉氏变换)
(Region of Convergence) 信号 f (t)乘以收敛因子后,有可能满足绝对 可积的条件。是否一定满足,还要看f (t) 的性 质与 的相对关系。
t f ( t ) e 通常把使 满足绝对可积条件的 值
的范围称为拉氏变换的收敛域 。
14
lim f (t )e
t
t
0
( 0 )
则收敛条件为 0 满足上述条件的最低限度的 值,记为 0 (收敛坐标)。 j
收 敛 轴 0
1
收敛区

收 敛 坐 标
15
lim f (t )e
t
t
0
( 0 )
则收敛条件为 0
常用信号的收敛域 如:有始有终的能量信号 0 周期信号是功率信号 0 0 按指数规律增长的信号,如
显然,可表示成 F j


令s j F ( s) f (t )e st dt
FT[ f (t )e ] F ( s) f (t )e dt
t st
8

f (t )e
dt
FT[ f (t )e ] F ( s) f (t )e dt
24
1. 线性(linearity)
设f1 (t ) F 1 ( s), f 2 (t ) F 2 ( s)
则a1 f1 (t ) a2 f 2 (t ) a1F1 ( s) a2 F2 ( s), a1, a2为常数
例:求 f (t ) sin t u (t )的拉氏变换 F ( s ) 1 j t j t sin t (e e ) 解: 2j 1 1 jt jt e u (t ) , e u (t ) s j s j 1 1 1 LT [sin tu (t )] [ ] 2 2 j s j s j s 2

信号与系统课件(郑君里版)第四章

信号与系统课件(郑君里版)第四章
2 j j
F(s) L
[ f (t)]
f (t)estdt
0

f (t) L -1[F (s)]
1
j F (s)estds

2 j j
f (t) 原函数
F (s) 象函数
5
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
0
0
s j
F (s) f (t)estdt 0
单边拉氏变换
FB (s)
f (t)estdt

双边拉氏变换
4
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
2. 拉氏逆变换
f1(t)

f
(t )e t

1
2

F1
()e
jt
d
起系统函数 H(s) 的概念;
(5)利用系统函数零、极点分布可以简明、直观地表达系统
性能的许多规律。
2
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
§4.2 拉普拉斯变换的定义、收敛域
(一)从傅里叶变换到拉普拉斯变换
1. 拉氏变换是傅里叶变换的推广
当 f (t) 满足绝对可积条件时,存在傅里叶变换
(二)从算子符号法的概念说明拉氏变换的定义
d f (t) pf (t) dt
t f ( )d 1 f (t)

p
f (t) F(s)
d f (t) dt

sF(s) f (0 )
t f ( )d 1 F(s) 1 0 f ( )d

s
s
在算子符号法中,由于未能表示出初始条件的作用,只 好在运算过程中作出一些规定,限制某些因子相消。而拉氏 变换法可以把初始条件的作用计入,这就避免了算子法分析 过程中的一些禁忌,便于把微积分方程转化为代数方程,使 求解过程简化。

第4章拉普拉斯变换

第4章拉普拉斯变换

第四章 连续信号与系统的S 域分析1、如下方程和非零起始条件表示的连续时间因果LTI 系统,()()t f dt dft y dt dy dty d 524522+=++ 已知输入()()t e t f t ε3-=时,试求(1)系统的零状态响应;(2)判断系统的稳定性解:(1) 方程两边取拉氏变换;()()()()4552455222+++=⋅+++=⋅=s s s s F s s s s F s H s Y()()()t e e e t y s s s s s s s s Y t t t zs z ε⎪⎭⎫ ⎝⎛--=+-+-+=+++⋅+=---4221212142122111459221(2) 对于因果连续系统,()s H 的全部极点位于s 平面的左半平面, ()t h 才是衰减信号,由此可以得出,在复频域有界输出的充要条件是系统函数()s H 的全部极点位于s 平面的左半平面,若系统函数的极点是虚轴上的单阶共轭极点。

则系统临界稳定,若系统函数的极点在右半平面,则系统不稳定,如下图。

该题中,()114145522+++=+++=s s s s s s H ,其极点分别为4,121-=-=s s ,都在左半平面,所以系统稳定。

2、如下方程和非零起始条件表示的连续时间因果LTI 系统()()()()⎪⎩⎪⎨⎧==+=++--30,20223'22y y t f dt dft y dt dy t d y d已知输入()()t e t f t ε3-=时,试用拉普拉斯变换的方法求系统的零状态响应()t y zs 和零输入响应()t y zi , 0≥t 以及系统的全响应()0,≥t t y 。

解:方程两边取拉氏变换()()()()()()[]()()()()()()()()()()()()()()()t e e e t y t e e t y s s s s s s Y t e e e t y s s s s s s s s Y s s s s s s s s Y s s F s F s y y sy s Y s s t t t t t zi zi t t t zs ZS εεε⎪⎭⎫ ⎝⎛+--=+-=+++-=+++=⎪⎭⎫ ⎝⎛-+-=+-++++-=+⋅+++=++++++⋅+++=+=+=---+++-----------213225751725239232132512123325312312223632312312;3112030'023*********22。

拉普拉斯变换、连续时间系统的S域分析

拉普拉斯变换、连续时间系统的S域分析
若f (t)满足以下条件时,才存在付里叶变换 1 狄氏条件:1) f (t)在有限闭区间连续或有有限个第一类间断点; 2) f (t)在有限闭区间只有有限个极值点。
2 在(-, )内满足绝对可积,即 f (t) dt
由付里叶变换存在条件 可知,绝对可积条件较强,许多 函数都不满足此条件,如单位阶跃函数、正弦余弦函数、线 性函数等。 2拉普拉斯变换
F (s) f (t)et e jtdt
f (t)e( j)tdt f (t)est dt
其中 s j
F (s) f (t)est dt称作拉普拉斯(Laplace)变换
f (t) 1
F
(s)e
st
d称s 作拉普拉斯逆变换
2j
f (t) F (s)
单边拉氏变换
a1 f1(t) a2 f2 (t) a1F1(s) a2F2 (s)
其收敛域至少是二函数收敛域的相重叠部分。
7
例1:求双曲函数的象函数
sht 1 (et et )
2
sht
1 2
(et
et
)
0
1 2
(et
et
)est
dt
1 2
s
1
1 1
2 s
1
s2 2
Res 0
et的收敛域Res ,et的收敛域Res ,
当n 2时
t2
2 s3
,依次类推
t n n(n 1)(n 2)2 1
s n1
6
4.冲击函数
(t) (t)est dt 1 0
5.正弦函数
sin kt sin ktest dt 1 e jkt e jkt est dt
0
0 2j

第四章拉普拉斯变换

第四章拉普拉斯变换

拉氏变换定义
如有界非周期信号 ; 有稳定幅度的周期信号 0;
随时间成正比增长的信号 0; 按指数eat 增长的信号 a。
0系统:若某些信号在0点有跳变且已知f (0 ) 则 F (s)
def


0
f (t )e st dt
2. 基本信号的单边拉氏变换 (1)阶跃函数
时间微分性质(续)
t 0 时, f t 0 ,且无原始储能, 若 f t 为有起因信号,即
即 f ( 0 ) f ( 0 ) 0 2 f ( t ) sF ( s ) f ( t ) s F ( s ), 则 ,
常用函数的拉氏变换表可查用。
3. 常用信号的拉氏变换(f(t), t>0)
1 阶跃函数 u (t ) , 0 1 s
L
L 2 冲激函数 (t )
1,
3 指数函数 e
at
1 , -a sa
L
常用信号的拉氏变换(f(t), t>0)
单边周期信号的拉氏变换(续)
(2)周期性脉冲的拉氏变换
f T ( t ) f 1 ( t ) f 1 ( t T ) f 1 ( t 2T )
FT ( s ) F1 ( s ) F1 ( s )e sT F1 ( s )e 2 sT F1 ( s )(1 e
S T 2
1 0
t
T 2

2 T
2 T sin t[u (t ) u (t )] T 2
信号加窗 第一周期
(1 e ) 2 2 S
LT
sT 2

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(第4章)【圣才出品】

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(第4章)【圣才出品】

3.全通函数 如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于 jω 轴互为镜像,这种系统函数称为全通函数,此系统则称为全通系统或全通网络。它的幅频特 性是常数。
4.最小相移函数 零点仅位于左半平面或 jω轴的网络函数称为“最小相移函数”,该网络称为“最小相 移网络”。非最小相移函数可以表示为最小相移函数与全通函数的乘积,即非最小相移网络 可以用最小相移网络与全通网络的级联来代替。

(1)部分分式展开法求解
首先将 F(s)展开成部分分式之和的形式,再对各部分分式分别取逆变换后叠加即可
得出 f(t)。
(2)留数定理求解
将拉氏逆变换的积分运算转化为求被积函数 F(s)est 在围线中所有极点的留数之和。
L 1[F (s)] 1 j F (s)estds [F (s)est的留数]
1 s
s2
s 2
,故
7 / 122
圣才电子书 十万种考研考证电子书、题库视频学习平台

L
[1 cos(t)]et
s
1
s (s )2 2

(7) L
[t 2
2t]
d2 ds2
1 s
d ds
2 s
2 s3
2 s2
(8) L [2 (t) 3e7t ] 2 3 s7
图 子书、题库视频学习平台

二、系统函数与系统特性 1.系统函数 系统的零状态响应的拉氏变换与激励的拉氏变换之比称为系统函数,即 H(s)=RZS (s)/E(s)。且冲激响应 h(t)↔H(s)。
2.零极点分布
H (s)

(9)e-αtsinh(βt);
(10)cos2(Ωt);

信号分析第四章:拉普拉斯变换、连续时间系统的s域分析

信号分析第四章:拉普拉斯变换、连续时间系统的s域分析
dt T
A ( 1 esT ) AesT sF ( s ) Ts
F( s )
A/T s2
( 1 e sT
)
A e sT s
f (t)
A T
0
f (0 ) 0
Tt A ( t T )
20
拉普拉斯变换的性质
例 10 f (t) t e(t2) (t 1)
方法一:因为 (t 1) 1 es
中:a >0
解:
F ( s ) 0 e( sa ) tdt 0 e( a ) te j tdt 1
sa
为保证收敛,有 a+<0,故收敛域为 <-a
j
收 敛 a 0 域
9
拉普拉斯变换的收敛区
例3
求双边信号 f (t)= -e – t (-t)+ e -2t (t)的拉普拉斯变 换及其收敛域。
s s0
令 s0 = 实数, 则
et( t ) s
1
令 s0 = j 虚数, 则 e j t ( t ) s
1 j
12
常用函数的拉普拉斯变换 三个基本函数的拉普拉斯变换
• 单位阶跃函数 (t)
已知 es0 t ( t ) 1
s s0
令上例中s0=0。则
(
t
)
1 s
• 单位冲激函数 (t)
s 1
t
e(
t1 )
(
t
1)
d ds
(
s
1 es 1
)
(
s
1 1 )2
es
s
1 es 1
F(
s
)
(
2 s s 1 )2
e s1

第四章拉普拉斯变换与S域分析

第四章拉普拉斯变换与S域分析

考虑到实际信号都是因果信号,令信号起始时刻为零
所以
Fω f t e j 0 系统, 相应的单边拉氏变换为
Fs Lf t f t e s t d t 0 1 σ j 1 f t L f t Fs e s t d s 2 π j σ j
三.原函数的积分
若Lf (t ) F(s),则
t
证明:
F(s) f 1 (0 ) L f ( τ) d τ s s
t 0 t 0
f τd τ f τd τ f τd τ




t 1 t t f τ d τ e st d t e f τ d τ f t e st d t 0 0 s 0 0 s 0 1 t Fs st f t e d t s 0 s f 1 0 1 0 ① f s

电感元件的s域模型
i L (t )
L

v L (t )

d i L (t ) v L (t) L dt

Li L (t ) I L (s), Lv L (t ) VL (s)
应用原函数微分性质
VL (s) LsI L (s) i L (0 ) sL I L (s) Li L (0 )
四、从算子法的概念说明拉氏变换的定义
f ( t ) F(s) df ( t ) sF(s) dt
sFs f ' t h(t, s) d t
0
设变换关系可以通过积分完成
Fs f t h(t, s) d t
0
s f t h ( t , s) d t f t h ' ( t , s) d t

全国名校信号与系统考研真题及详解(拉普拉斯变换、连续时间系统的s域分析)【圣才出品】

全国名校信号与系统考研真题及详解(拉普拉斯变换、连续时间系统的s域分析)【圣才出品】

第4章拉普拉斯变换、连续时间系统的s域分析一、选择题以下为4个信号的拉普拉斯变换,其中不存在傅里叶变换的信号是()。

[武汉大学2015研]A.1/sB.1C.1/(s+3)D.1/(s-3)【答案】D【解析】D选项为1/(s-3),其时域表达式为e3t u(t),很显然是不稳定的,不满足绝对可积条件,也就不存在傅里叶变换。

二、填空题1.信号x(t)=cos2t的单边拉普拉斯变换为______。

[北京邮电大学2016研]【答案】s/(s2+4),Re[s]>0【解析】由于cos(βt)=(1/2)(e jβt+e-jβt),根据拉氏变换的定义式即可求解,该拉氏变换对也是常用变换对。

2.某连续线性时不变系统的系统函数为H(s)=s/(s+2),若用e(t)表示输入信号,而r(t)表示输出信号,则该系统的微分方程可以表示为______。

[北京邮电大学2016研]【答案】r ′(t)+2r(t)=e ′(t)【解析】由H(s)=s/(s +2)=R(s)/E(s),有sR(s)+2R(s)=sE(s),对应的微分方程即为:r ′(t)+2r(t)=e ′(t)3.已知某LTI 系统模型如下:y ′′(t)+3y ′(t)+2y(t)=f ′(t)+4f(t),y ′(0-)=1,y(0-)=0,f (t)=u (t),则系统的零状态响应y f (t )为______。

[武汉大学2015研]【答案】(2+e -2t -3e -t )u(t)【解析】对该微分方程两边取拉普拉斯变换得:s 2Y (s )+3sY (s )+2Y (s )=sF (s )+4F (s ) 则H (s)为:H(s)=(s +4)/(s 2+3s +2),系统的零状态响应为22441()()3232s s Y s F s s s s s s ++==⋅++++对Y (s)取拉氏逆变换得:y f (t)=(2+e -2t -3e -t )u(t)。

第4章信号与系统的S域分析

第4章信号与系统的S域分析

求其拉普拉斯变换。
解 其双边拉普拉斯变换 F (s)=F (s)+F (s) b b1 b2

仅当>时,其收敛域为 <Re[s]<的一个带状区域, 如图所示。
α
0
β
σ
第4-9页

©
信号与系统 例4 求下列信号的双边拉氏变换。 f1(t)= e-3t (t) + e-2t (t) f2(t)= – e -3t (–t) – e-2t (–t) f3(t)= e -3t (t) – e-2t (– t) 解
e ( s )t F2b ( s ) e e st d t (s )
0
t
0
1 [1 lim e ( )t e j t ] t (s )

, Re[ s ] . 无界 不定 , 1 (s ) ,
第4-28页

0
©
2
4
t
信号与系统
hysytangjianfeng


s s2 1
已知因果信号f(t)的象函数F(s)=
求e-tf(3t-2)的象函数。
( s 1) s 1 -tf(3t-2) ←→ e 3 解:e ( s 1) 2 9 2
第4-29页

©
信号与系统
5. 时域卷积
第4-16页

©
信号与系统
hysytangjianfeng 4.2 单边拉普拉斯变换的性质
1. 线性
第4-17页

©
信号与系统
2. 时移性
hysytangjianfeng

信号与系统4.3拉氏变换的性质

信号与系统4.3拉氏变换的性质

信号f(t)·u(t)既延时,又展缩时

f (t)u(t) F(s)
且有实常数a>0,b≥0,则
证明:
f
(at
b)u(at
b)
1
bs
e a F(
s
)
a
a
先由延时定理得:
L f (t b)u(t b) F (s)ebs
再由尺度定理得:
L
f
(at
b)u(at
b)
1 a
F
s a
第4章 拉普拉斯变换、连续时间系统的S域分析
4.3 单边拉普拉斯变换的性质
第4章 拉普拉斯变换、连续时间系统的S域分析
1.线性特性
若 f1(t) F1(s); f2 (t) F2 (s) 则 af1(t) bf2 (t) aF1(s) bF2 (s)
式中,a和b为任意常数。
证明:
Laf1(t) bf2 (t)
T
T
E L[tu(t)] E L[(t T )u(t T )] E L(Tu(t T )]
T
T
T
E T
1 (s2
1 s2
e sT
T s
e sT
)
E [1 (1 sT )esT ]
T
s2
第4章 拉普拉斯变换、连续时间系统的S域分析
例4―3 试求图4.3(a)所示单个正弦半波信号f(t)的拉氏变换。
拉氏变换为零,导致此展缩特性(尺度变换)失效。
证明:
L f (at) f (at)estdt 0
令τ=at,则上式变为
L f (at)
f
( s )
( )e a d
1
( s )

信号与系统第四章知识点

信号与系统第四章知识点

第四章 拉普拉斯变换—连续信号s 域分析一、考试内容(知识点)1.拉普拉斯变换的定义及其性质、拉普拉斯逆变换; 2.系统的复频域分析法; 3.系统函数)(s H ;4.系统的零极点分布决定系统的时域、频域特性; 5.线性系统的稳定性;6.拉普拉斯变换与傅里叶变换之间的关系。

二、内容(知识点)详解1.拉普拉斯变换的定义、收敛域(1)变换式与反变换式dt e t f t f s F st -∞⎰-==0)()]([)(L ds e s F js F t f stj j ⎰∞+∞--==σσπ)(21)]([)(1L )(s F 称为)(t f 的象函数,)(t f 称为)(s F 的原函数。

下限值取-0,主要是考虑信号)(t f 在t =0时刻可能含有冲激函数及其导数项也能包含在积分区间之内。

(2)收敛域在s 平面上,能使式0)(lim =-→∞t t e t f σ满足和成立的σ的取值范围(区域),称为)(t f 或)(s F 的收敛域。

2.常用时间函数的拉普拉斯变换(1)冲激函数 )()(t t f δ= 1)(=s F)()()(t t f n δ= n s s F =)((2)阶跃函数 )()(t u t f = ss F 1)(= (3)n t (n 是正整数) t t f =)( 21)(s s F =2)(t t f = 32)(s s F =n t t f =)( 1!)(+=n s n s F(4)指数信号 t e t f α-=)( α+=s s F 1)(t te t f α-=)( ()21)(α+=s s F t n e t t f α-=)( ()1!)(++=n s n s F αt j e t f ω-=)( ωj s s F +=1)( (5)正弦信号、余弦信号系列)sin()(t t f ω= 22)(ωω+=s s F)cos()(t t f ω= 22)(ω+=s ss F)sin()(t e t f t ωα-= 22)()(ωαω++=s s F)cos()(t e t f t ωα-= 22)()(ωαα+++=s s s F )sin()(t t t f ω= 222)(2)(ωω+=s ss F )cos()(t t t f ω= 22222)()(ωω+-=s s s F )()(t sh t f ω= 22)(ωω-=s s F )()(t ch t f ω= 22)(ω-=s ss F (6) ∑∞=-=0)()(n nT t t f δ sT e s F --=11)(∑∞=-=00)()(n nT t f t f sTes F s F --=1)()(0 3.拉普拉斯变换的基本性质象函数)(s F 与原函数)(t f 之间的关系为:)]([)(t f s F L = (1)线性(叠加性)∑∑===⎥⎦⎤⎢⎣⎡ni i i n i i i s F a t f a 11)()(L ,其中i a 为常数,n 为正整数。

信号系统第四章 拉普拉斯变换、连续时间系统的

信号系统第四章 拉普拉斯变换、连续时间系统的

举例4.4:
已 知 F (s)s(s s 2 1 )3, 求 其 逆 变 换
解 : F (s)(sk 1 1 1 )3 (sk 1 2 1 )2 (s k 1 3 1 ) k s 2 令 F 1(s)(s1)3F(s)s s2
举例4.4:
解:其中k11 F1(s) s p1
s2
3
s s1
k12
d ds
F1 ( s )
s p1
s (s 2) 1
s2
s 1
2
举例4.4:
解 : k13
1 2
d2 ds2
F1 ( s )
s p1
k2
sF (s) s0
1 2
4s s4
s 1
2
s2 ( s 1) 3 s 0 2
F (s)(s3 1 )3(s2 1 )2(s2 1 )- 2 s
其 中 K1i (i 11)!d dsii 11F1(s)sp1
得 多 重 根 部 分 的 逆 变 换 L 1 :
fc(t) (kK111)!tk1ep1t L
K1i t e ki p1t (k i)!
L K1kep1t u(t)
例题4-4
三、留数法
f(t)21j
jF(s)estds,
1j2 5
s 1j2
即 k 1 , 2A jB ,(A 1 5 ,
B 2 ) 5
k0(s1js2 2) (s31j2)
7 5
s2
举例4.3:
1j2 1j2 解 : F(s) 5 5 5 5
7
s1j2 s1j2 5(s2)
Q1,2
A1, B 2
5
5
f(t) 2 e t 1 5 c o s(2 t) 5 2 sin (2 t) 7 5 e 2 t u (t)

第四章拉普拉斯变换及s域分析详解

第四章拉普拉斯变换及s域分析详解

F[ f (t)e t ] f (t)e te jtdt f (t)e( j)tdt F ( j)
令s j,则上式为
Fb (s)
f (t)est dt
2015.10
安徽工程大学机电学院信息工程系
5
第四章 拉普拉斯变换及s域分析
4 单边拉普拉斯变换
由于在实际问题中所遇到的大部分信号都是因果的, 即f(t)=0(t<0)
t
收敛区为s平面的右半平面。
2015.10
安徽工程大学机电学院信息工程系
10
第四章 拉普拉斯变换及s域分析
常见函数的拉式 变换如右,这6对 变换对需牢记
u(t) 1 s
(t) ห้องสมุดไป่ตู้1
et 1
s
tn
n! s n 1
sin t
s2
2
cos t
s2
s
2
t
1 s2
2015.10
安徽工程大学机电学院信息工程系
定义单边拉式正变换为 F (s) f (t)estdt 0-
说明:
①s是复参量,s j, F(s)是以s为自变量的复变函数 ②积分下线定为0 ,包括了 (t),从而无需计算0-到0+的跳变
③拉氏正反变换的简记形式 F (s) L[ f (t)] 或 f (t) F (s) f (t) L1[F (s)] 或 F (s) f (t)
新得到的信号满足绝对可积条件,因此其傅里叶 变换存在。
2015.10
安徽工程大学机电学院信息工程系
4
第四章 拉普拉斯变换及s域分析
3 引出拉普拉斯变换
由前述可知
lim f (t)e t ( 为实数)容易收敛。

第四章 拉普拉斯变换

第四章 拉普拉斯变换

例:
1 es 2 已 知 X (s) ( ) , 求 x (t ) ? s 1 X ( s ) 2 (1 2e s e 2 s ) s
x(t ) tu(t ) 2(t 1)u(t 1) (t 2)u(t 2)
8、复频域积分性: 若x(t) X(s),则
第四章 拉普拉斯变换 连续时间系统的s域分析
傅立叶变换的局限性:
1) 工程中一些信号不满足绝对可积条件,如u(t);
t e ( 0) ; 2) 有些信号不存在傅立叶变换如
3) 求反变换时,求 (-∞,∞)上的广义积分,很困难; 4) 只能求零状态响应,不能求零输入响应。
为了克服傅立叶变换的局限性,采用拉普拉斯变换。
T ( t ) ( t nT )
0

x s(t) x(nT) (t nT)
0

1 L T ( t ) 1 e sT
X s ( s ) x ( nT ) e nsT
n0

4、复频移性: 若x(t) X(s),则
x(t)e j 0 t X( 0 )
x(t)e s 0 t X (s s 0 )
例:
cos(0t )u (t )
t
s e cos 0 t s 2 02 0 t 同理:e sin 0 t 2 s 02
s 2 2 s 0
5、时域微分性:
若x(t) X(s),则
拉普拉斯变换:
• 将信号分解成 e
st
的线性组合;
• 是分析连续时间信号与系统的另一工具; • 可用来分析傅立叶变换所不能分析的系统,不如傅立叶变换那么清楚。

重庆大学《841信号与系统》第四章 拉普拉斯变换 2012年4月16日稿

重庆大学《841信号与系统》第四章 拉普拉斯变换 2012年4月16日稿

0
f est0 es d
est0 F s
此性质表明:若波形延迟 t0 ,则它的拉普拉斯变换应乘以 est0 。
五、 s 域平移
若 f t F s
则 f t etu t F s
六、尺度变换
若 f t F s

f
at
1 a
F
s a
a0
七、初值定理
初值定理常用于由 F s 直接求 f 0 的值,而不必求出原函数 f t 。
1 s2
t
nu
t
n! s n 1
4、 es0tu t 1
s s0
( s0 为复常数)
特别地
etu t 1
s
etu t 1
s
5、 e jtu t 1
s j
0
e jtu t 1
s j
0
6、
sin
t
u
t
s
2
2
0
6
cos
t
u
t
s
2
s
2
7、 t sin t u t
F s L eatu t
e at e st dt e ast
0
as
0
1 , as
a
即 eatut 1 , a
as
3、复指数函数 es0tut ( s0 为复常数)
F s L es0tu t
e s0t e st dt e ss0 t dt e ss0 t
综述几种情况: (1)凡是有始有终,能量有限的信号,收敛坐标落于 ,全部 s 平面都属 于收敛区。例如:单个脉冲信号。
(2)信号的幅度既不增长也不衰减而等于稳定值,或随时间 t ,tn 成比例增 长的信号,则其收敛坐标落于原点, s 平面右半平面属于收敛区。例如:正弦信 号, t , tn 信号。

信号与系统 第四章 拉氏变换及S域分析

信号与系统 第四章 拉氏变换及S域分析

2.单边拉氏变换的收敛域
例1: f t e2 t t 0
lim f t e t lim e 2t e t lim e 2 t 0
t
tபைடு நூலகம்
t
j
20
2 0 0 :收敛坐标
例2:f t u t
2 0
j
lim u t e t lim 1 e t 0
t
t
0
0 0 0
f (t) 1 F e j td F 1 f (t)
2
X
为了解决对不符合狄氏条件信号的分析,第三章中引 入了广义函数理论去解释傅里叶变换,同时,还可利 用本章要讨论的拉氏变换法扩大信号变换的范围, •优点在于:
求解比较简单,特别是对系统的微分方程进行变换 时,初始条件被自动计入,因此应用更为普遍; •缺点在于: 物理概念不如傅氏变换那样清楚。
X
本章内容及学习方法
本章首先由傅氏变换引出拉氏变换,然后对拉氏正 变换、拉氏反变换及拉氏变换的性质进行讨论。
本章重点在于,以拉氏变换为工具对系统进行复频 域分析。
最后介绍系统函数以及H(s)零极点概念,并根据他 们的分布研究系统特性,分析频率响应,还要简略介绍 系统稳定性问题。
注意与傅氏变换的对比,便于理解与记忆。
f t e t
1
F j e j t d
2
两边同乘 e t
f t
1
F j e j t d
2
j
其中: s j d s j d 对 : 对s :
j
f t 1
j
F
s
e
s
t
ds
2 j j
X
3.拉氏变换对
F
s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f
(t)

1
2


F
(
)e
j
t
d
2、拉普拉斯变换是将时间函数f (t)分解为无
穷多项复指数信号e st之和。其中s = +j
s称为复频率。
f
(t)

1
2j


F (s)e st ds
3、拉普拉斯变换是傅立叶变换的推广。
4、复平面( s平面)
以复频率 s = +j 的实部 和虚部 j 为
t
所以其收敛域为s 平
面上 a 的部分.
四、一些常用函数的拉氏变换
设 f (t)为有始函数,讨论单边拉氏变换
1、阶跃函数
L
u(t)


0
estd t
即 u(t ) 1

est


s 0
( 0)
1 s
2、指数函数
s
L eat eatestd t
f
(t)

1
2


F
(
)e
j
t
d
2、当函数不满足绝对可积条件时
将f(t)乘以衰减因子e-t ( 为 一实常数 ) ,恰当 地选取 的值 就有可以使 f(t) e-t 变得绝对可
积,即 其中 e t称为收敛因子
F f (t)e t

F1( )


f
(t )e t e j t dt
Lt 1 s2
L t2

2 s3
L tn

n! s n1
4、冲激函数 (t)
L (t)


0

(t
)e
st
d
t
1
同理 L (t t0 ) est0
5、正弦函数
sin t 1 (e j t e j t )
2j
Lsin t 1 ( L e j t L e j t ) 2j
坐标
3、指数阶函数
凡是满足
lim f (t)e t 0
t
( 0 )
的函数 f (t) 称为指数阶函数。
4、几个简单函数的收敛区
(1) 能量有限信号
能量信号在时间轴上有始有终,其能量是 有限的。
对 0 没有要求,收敛域为整个 s 平面。
(2) 单位阶跃信号u(t)
对于 > 0 的任何值,都有

0
f (t )estdt
f
(t)

1
2
j
jF (s)e s t ds
j
记作: F(s) L[ f (t)]
f (t) L1[F(s)]
本课程主要讨论单边拉普拉斯变换
拉氏变换与傅氏变换的关系:
1、傅立叶变换是将时间函数f (t)分解为 无穷多项虚指数信号e jt 之和。
§4.2 拉普拉斯变换的定义、 收敛域
一、从傅里叶变换到拉普拉斯变换 二、拉普拉斯变换定义 三、拉普拉斯变换的收敛 四、一些常用函数的拉氏变换
§4.2 拉普拉斯变换的定义、 收敛域
一、从傅里叶变换到拉普拉斯变换
1、傅立叶变换定义
当函数 f (t) 满足狄里赫利条件时
F( )



f
(t )e j tdt
二、拉普拉斯变换定义
1、双边拉普拉斯变换
Fb (s)
f (t)estdt

(1)
f
(t)

1
2j
j
j
Fb
(
s
)e
s
t
ds
(2)
s 称复频率,Fb(s) 称信号的复频谱
2、单边拉普拉斯变换
f (t)为有始函数,即 t <0 时,f (t) = 0
F
( s)

)e
jt
d
两边同乘 et
f (t)
1
2


Fb
(
s
)e
t
e
j
t
d
令 s = +j,因 为常数,所以 d = 1/j ds,
且当 时,s j 进行积分换元
f (t) 1
2 j
j
F j b
(s)e
s
t
ds
前面的两个公式为双边拉普拉斯变换对
f (t )e( j )t dt 令s=+j
f (t )estdt
因为上式中t 为积分变量,故积分结果必为s的函数
Fb (s)


f (t )estdt
用傅立叶反变换的定义方法求拉氏反变换
f (t )e t

1
2

Fb
(
s
0
即 eat
1
as

e(as)t
as
( a)


0
1 a
s
3、 t n (n为正整数)
L tn t nestd t 0
| t n est
s

0
est 0 s
nt n1d t

n s
0
t
n1e
st dt
L t n n L t n1 s
§4.1 引 言
傅立叶分析工具在研究信号和线性时不变系 统的很多问题时,是极为有用的。但傅立叶变 换有不足之处。
1、要求信号f(t)绝对可积。而有些常用信 号不满足该条件。 2、有些重要函数如 eat (a>0) 的傅立叶变换 不存在,无法用傅立叶分析方法处理。
而拉氏变换作为傅氏变换的推广,解决了上述 不足。
1( 1 1 )
2 j s j s j
s2 2

L sin

t
s2
2
同理 Lcos t s
s2 2
§4.3 拉氏变换的基本性质
一、线性(叠加) 六、尺度变换 二、原函数微分 七、初值
相互垂直的坐标轴而构成的平面.
j
当s = +j 确定时,




指数函数 est 也确定了
e st e t e j t


平 0平


反映指数函数 est 的幅度变化速度 >0, 幅度发散 <0, 幅度收敛
反映指数函数 est 的因子ejt 作周期变化的频率
lim u(t )e t 0
t
所以其收敛域为 s 平面的右半面。
(3) 线性增长信号 t n
对于 >0 的任何值,都有
lim t ne t 0
t
所以其收敛域为 s 平面的右半面。
(4) 指数函数 e at
只有当 a 时,才有
lim ea t e t 0
三、拉普拉斯变换的收敛域
1、定义
把使 f (t) e- t 满足绝对可积条件的
的取值范围称为拉氏变换的收敛域。
2、单边拉பைடு நூலகம்变换的收敛条件
若 f (t)为有始函数,存在下列关系
j
lim
t
f (t)e t
0
(
0)
则收敛条件为 0
0称为收敛坐标
收敛区
0 0

收敛
相关文档
最新文档