山东省临沂市沂南县2018-2019年最新中考数学一模试卷(含答案)
【名师推荐-新课标】2018年山东省临沂市中考数学第一次模拟试题及答案解析
2018年山东省临沂市中考数学一模试卷一.选择题(每小题3分,共42分)1.﹣5的绝对值是()A.B. C.+5 D.﹣52.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克3.下列计算正确的是()A.a+2a2=3a3B.(a3)2=a5C.a3•a2=a6 D.a6÷a2=a44.长方体的主视图、俯视图如图所示,则其左视图面积为()A.3 B.4 C.12 D.165.不等式组的所有整数和是()A.﹣1 B.0 C.1 D.26.如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于()A.70°B.26°C.36°D.16°7.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤18.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°9.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.10.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣111.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)12.如图,E是▱ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()A.AD=CF B.BF=CF C.AF=CD D.DE=EF13.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个14.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x 之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(本题共5小题,毎小题3分,共15分)15.分解因式:a3﹣10a2+25a= .16.某校四个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相等,那么这组数据的中位数是.17.如图,在塔AB前的平地上选择一点C,测出塔顶的仰角为30°,从C点向塔底B走100m到达D点,测出塔顶的仰角为45°,则塔AB的高为m.18.如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.19.若x是不等于1的实数,我们把称为x“差倒数”,如2的差倒数是=﹣1,﹣1的差倒数为=.现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2015的值为.三、解答题(本题共7小题,共63分)20.计算:(﹣)﹣2﹣(π﹣2016)0+sin45°+|1﹣|21.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有名学生;(2)补全直方图;(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?22.已知甲、乙两站的距离为828km,一列普通快车与一列直达快车都由甲站开往乙站,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h而先于普通快车4h到达乙站.分别求出两车的平均速度.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.25.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.26.已知,如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.(1)求过A、B、C三点的抛物线的解析式;(2)设点G是对称轴上一点,求当△GAB周长最小时,点G的坐标;(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,并选择其中一个的加以说明;若不存在,说明理由.参考答案与试题解析一.选择题(每小题3分,共42分)1.﹣5的绝对值是()A.B. C.+5 D.﹣5【考点】绝对值.【分析】根据绝对值的意义直接判断即可.【解答】解:|﹣5|=5.故选C.2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将50 000 000 000用科学记数法表示为5×1010.故选D.3.下列计算正确的是()A.a+2a2=3a3B.(a3)2=a5C.a3•a2=a6 D.a6÷a2=a4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项系数相加字母及指数不变,幂的乘方底数不变指数相乘,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.4.长方体的主视图、俯视图如图所示,则其左视图面积为()A.3 B.4 C.12 D.16【考点】由三视图判断几何体.【分析】根据物体的主视图与俯视图可以得出,物体的长与高以及长与宽,进而得出左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.则左视图面积=1×3=3,故选:A.5.不等式组的所有整数和是()A.﹣1 B.0 C.1 D.2【考点】一元一次不等式组的整数解.【分析】求出不等式组的解集,即可确定出所有整数的和.【解答】解:不等式解得:﹣2<x≤1,整数解为﹣1,0,1,即整数解之和为﹣1+0+1=0,故选B.6.如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于()A.70°B.26°C.36°D.16°【考点】平行线的性质;三角形内角和定理.【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.【解答】解:∵AB∥CD,∠A=48°,∴∠1=∠A=48°,∵∠C=22°,∴∠E=∠1﹣∠C=48°﹣22°=26°.故选B.7.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤1【考点】根的判别式.【分析】根据根的判别式,令△≥0,建立关于m的不等式,解答即可.【解答】解:∵方程x2﹣2x+m=0总有实数根,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.8.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数,进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选:B.9.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.【考点】几何概率;平行四边形的性质.【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为,10.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣1【考点】分式的混合运算.【分析】首先将除法变为乘法运算,即乘以除数的倒数,然后利用乘法运算法则约分求解即可求得答案.【解答】解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选B.11.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)【考点】坐标与图形变化-旋转.【分析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y轴,由旋转的性质得到∠POQ=120°,根据AP=BP=OP=2,得到∠AOP 度数,进而求出∠MOQ度数为30°,在直角三角形OMQ中求出OM与MQ的长,即可确定出Q的坐标.【解答】解:根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y轴,∴∠POQ=120°,∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ中,OQ=OP=2,∴MQ=1,OM=,则P的对应点Q的坐标为(1,﹣),故选B12.如图,E是▱ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()A.AD=CF B.BF=CF C.AF=CD D.DE=EF【考点】平行四边形的性质.【分析】可证△AEF≌△DEC(AAS或ASA),由∠FCD=∠D得△DEC、△AEF都是等腰三角形.故易判断C、D都成立;∠B=∠D=∠F,则CF=BC=AD.没有条件证明BF=CF.【解答】解:∵ABCD是平行四边形,∴AD=BC,∠B=∠D,AB∥CD.∵BF∥CD,∴∠F=∠FCD,∠FAE=∠D.∵AE=ED,∴△AEF≌△DEC.∴AF=CD,EF=CE.∵∠FCD=∠D,∴CE=DE.∴DE=EF.故C、D都成立;∵∠B=∠D=∠F,则CF=BC=AD.故A成立.没有条件证明BF=CF.故选B.13.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x >2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.14.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x 之间的函数关系用图象表示大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】求出CE的长,然后分①点P在AD上时,利用三角形的面积公式列式得到y与x的函数关系;②点P在CD上时,根据S△APE=S梯形AECD﹣S△ADP﹣S△CEP列式整理得到y与x的关系式;③点P在CE上时,利用三角形的面积公式列式得到y与x的关系式,然后选择答案即可.【解答】解:∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵点E是BC边上靠近点B的三等分点,∴CE=×3=2,①点P在AD上时,△APE的面积y=x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯形AECD﹣S△ADP﹣S△CEP,=(2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+﹣5+x,=﹣x+,∴y=﹣x+(3<x≤5),③点P在CE上时,S△APE=×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故选:A.二、填空题(本题共5小题,毎小题3分,共15分)15.分解因式:a3﹣10a2+25a= a(a﹣5)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式继续分解.【解答】解:a3﹣10a2+25a,=a(a2﹣10a+25),(提取公因式)=a(a﹣5)2.(完全平方公式)16.某校四个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相等,那么这组数据的中位数是10 .【考点】中位数;加权平均数;众数.【分析】根据题意先确定x的值,再根据定义求解.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得=10,解得x=10,将这组数据从小到大的顺序排列8,10,10,10,12,处于中间位置的是10,所以这组数据的中位数是10.故答案为10.17.如图,在塔AB前的平地上选择一点C,测出塔顶的仰角为30°,从C点向塔底B走100m到达D点,测出塔顶的仰角为45°,则塔AB的高为50(+1)m.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,设AB=x(米),再利用CD=BC ﹣BD=100的关系,进而可解即可求出答案.【解答】解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,=tan30°=,∴BC=AB.设AB=x(米),∵CD=100m,∴BC=x+100.∴x+100=x,∴x=50+50,故答案为:50(+1)18.如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.【考点】反比例函数系数k的几何意义.【分析】由A、C的坐标分别是(4,0)和(0,2),得到P(2,1),求得k=2,得到反比例函数的解析式为:y=,求出D(4,),E(1,2)于是问题可解.【解答】解:∵四边形OABC是矩形,∴AB=OC,BC=OA,∵A、C的坐标分别是(4,0)和(0,2),∴OA=4,OC=2,∵P是矩形对角线的交点,∴P(2,1),∵反比例函数y=(x>0)的图象过对角线的交点P,∴k=2,∴反比例函数的解析式为:y=,∵D,E两点在反比例函数y=(x>0)的图象的图象上,∴D(4,),E(1,2)∴S阴影=S矩形﹣S△AOD﹣S△COF﹣S△BDE=4×2﹣×2﹣×2﹣××3=.故答案为:.19.若x是不等于1的实数,我们把称为x“差倒数”,如2的差倒数是=﹣1,﹣1的差倒数为=.现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2015的值为.【考点】规律型:数字的变化类;倒数.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,…得到从x1开始每3个值就循环,而2015÷3=671…2,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2015÷3=671…2,∴x2015=x2=.故答案为:.三、解答题(本题共7小题,共63分)20.计算:(﹣)﹣2﹣(π﹣2016)0+sin45°+|1﹣|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用零指数幂的性质以及负整数指数幂的性质和特殊角的三角函数值以及绝对值的性质分别化简求出答案.【解答】解:原式=4﹣1++﹣1=2+.21.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有50 名学生;(2)补全直方图;(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)利用条形统计图与扇形统计图中0~0.5小时的人数以及所占比例进而得出该班的人数;(2)利用班级人数进而得出0.5~1小时的人数,进而得出答案;(3)利用九年级其他班级每天阅读时间在1~1.5小时的学生有165人,求出1~1.5小时在扇形统计图中所占比例,进而得出0.5~1小时在扇形统计图中所占比例;(4)利用扇形统计图得出该年级每天阅读时间不少于1小时的人数,进而得出答案.【解答】解:(1)由题意可得:4÷8%=50(人);故答案为:50;(2)由(1)得:0.5~1小时的为:50﹣4﹣18﹣8=20(人),如图所示:;(3)∵除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,∴1~1.5小时在扇形统计图中所占比例为:165÷×100%=30%,故0.5~1小时在扇形统计图中所占比例为:1﹣30%﹣10%﹣12%=48%,如图所示:;(4)该年级每天阅读时间不少于1小时的学生有:×(30%+10%)+18+8=246(人).22.已知甲、乙两站的距离为828km,一列普通快车与一列直达快车都由甲站开往乙站,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h而先于普通快车4h到达乙站.分别求出两车的平均速度.【考点】分式方程的应用.【分析】设普通快车的平均速度为xkm/h,直达快车的平均速度为1.5km/h,根据甲、乙两站的距离为828km,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h而先于普通快车4h到达乙站,列出方程求出x的值即可.【解答】解:设普通快车的平均速度为xkm/h,则直达快车的平均速度为1.5km/h,根据题意得:﹣6=,解得:x=46,经检验x=46是原方程的解,符合题意,则1.5x=46×1.5=69(km/h).答:普通快车的平均速度为46km/h,直达快车的平均速度为69km/h.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】切线的判定与性质;扇形面积的计算.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,利用垂径定理得到F为BD中点,连接AD,由EA=AO可得:AD是Rt△ODE斜边的中线,利用直角三角形斜边上的中线等于斜边的一半得到AD=AE=AO,即三角形AOD为等边三角形,确定出∠DAB=60°,即∠OBD=30°,在直角三角形BOF中,利用30°所对的直角边等于斜边的一半求出OF的长,利用勾股定理求出BFO的长,得到BD的长,得出∠DOB为120°,由扇形BDO面积减去三角形BOD面积求出阴影部分面积即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE;(3)解:作OF⊥DB于点F,连接AD,由EA=AO可得:AD是Rt△ODE斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF⊥BD,∴OF=1,BF=,∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=﹣.24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了0.5 h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.【考点】一次函数的应用.【分析】(1)利用图象得出CD这段时间为2.5﹣2=0.5,得出答案即可;(2)利用D点坐标为:(2.5,80),E点坐标为:(4.5,300),求出函数解析式即可;(3)利用OA的解析式得出,当60x=110x﹣195时,即可求出轿车追上货车的时间.【解答】解:(1)利用图象可得:线段CD表示轿车在途中停留了:2.5﹣2=0.5小时;(2)根据D点坐标为:(2.5,80),E点坐标为:(4.5,300),代入y=kx+b,得:,解得:,故线段DE对应的函数解析式为:y=110x﹣195(2.5≤x≤4.5);(3)∵A点坐标为:(5,300),代入解析式y=ax得,300=5a,解得:a=60,故y=60x,当60x=110x﹣195,解得:x=3.9,故3.9﹣1=2.9(小时),答:轿车从甲地出发后经过2.9小时追上货车.25.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=ME,DM⊥ME .(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【考点】四边形综合题;直角三角形斜边上的中线;正方形的性质.【分析】猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【解答】猜想:DM=ME证明:如图1,延长EM交AD于点H,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是正方形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.∵四边形ABCD和CEFG是正方形,∴AD=CD,CE=CF,∵△FME≌△AMH,∴EF=AH,∴DH=DE,∴△DEH是等腰直角三角形,又∵MH=ME,故答案为:DM=ME,DM⊥ME.(2)如图2,连接AE,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在Rt△ADF中,AM=MF,∴DM=AM=MF,∠MDA=∠MAD,∴∠DMF=2∠DAM.在Rt△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.∵∠MDA=∠MAD,∠MAE=∠MEA,∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.∴DM⊥ME.26.已知,如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.(1)求过A、B、C三点的抛物线的解析式;(2)设点G是对称轴上一点,求当△GAB周长最小时,点G的坐标;(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,并选择其中一个的加以说明;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)由线段长度求出三个点的坐标,再用待定系数法求解即可;(2)找到点B关于抛物线对称轴的对称点A,取AB与抛物线对称轴的交点即可;(3)分别过点P,A作AP的垂线,取点Q,根据等腰直角三角形构建全等三角形即可求解.【解答】解:(1)由题意可求,A(0,2),B(﹣1,0),点C的坐标为(4,0).设过A、B、C三点的抛物线的解析式为y=a(x﹣4)(x+1),把点A(0,2)代入,解得:a=﹣,所以抛物线的解析式为:y=﹣(x﹣4)(x+1)=﹣x2+x+2,(2)如图1,抛物线y=﹣x2+x+2的对称轴为:x=,由点C是点B关于直线:x=的对称点,所以直线AC和直线x=的交点即为△GAB周长最小时的点G,设直线AC的解析式为:y=mx+n,把A(0,2),点C(4,0)代入得:.,解得:,所以:y=﹣x+2,当x=时,y=,所以此时点G(,);(3)如图2,使△PAQ是以PA为腰的等腰直角三角形的所有符合条件的点Q的坐标:Q1(,),Q2(﹣,﹣),Q3(2,),Q4(﹣2,),证明:过点Q1作Q1M⊥x轴,垂足为M,由题意:∠APQ1=90°,AP=PQ1,∴∠APO+∠MPQ1=90°,∵∠APO+∠PAO=90°,∴∠PAO=∠MPQ1,在△AOP和△MPQ1中,,∴△AOP≌△MPQ1,∴PM=AO=2,Q1M=OP=,∴OM=,此时点Q的坐标为:(,).2016年6月23日。
山东省临沂市2019年中考数学模拟试题(含答案)
山东省临沂市2019年中考数学模拟试题一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号涂在答题卡上.) 1.3-的倒数是 A .3B .3-C .13D .13-2.为积极转化奥运会、残奥会志愿者工作成果,完善和健全志愿者服务体系及长效机制,北京市将力争实现每年提供志愿服务时间11000万小时. 11000万小时用科学记数法表示为A .61011.0⨯万小时B .5101.1⨯万小时 C .4101.1⨯万小时 D .31011⨯万小时3. 下列运算正确的是A .42263·2x x x =B .13222-=-x xC .2223232x x x =÷ D . 422532x x x =+ 4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12,则在这一周中,最低气温的众数和中位数分别是 A. 13和11 B. 12和13 C. 11和12 C. 13和12 5.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有 A .4个 B .5个 C .6个 D .7个6.不等式组240,321x x -<⎧⎨-<⎩的解集为A .1<xB .21><x x 或C .2>xD .21<<x7.估计40值A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间俯视图 主视图 (第5题)8.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点B ,则点的B 坐标是 A .(32,2) B .(32,-2) C .(4,-2)D .(2,-32)9.如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的度数是 A .60° B .50° C .40°D .30°10.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm ,如果一辆22型自行车的链条(没有安装前)共有50节链条组成,那么链条的总长度是( )A .75 cmB .85.8 cmC .85 cmD .84.2 cm11.将如图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是12.某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是A .16B.15 C.14D .13 13.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于A .αsin ⋅aB .cos a α⋅C .αtan ⋅aD .cot a α⋅11题图 A . B . C . D . 1节链条 2节链条 50节链条A BC a 第4题图(第13题)14.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.) 15.分解因式:24(3)x --= .16.如果方程042=+-c x x 的—个根是32+.那么此方程的另一个根是 .17.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b)进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到实数是 .18. 如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。
{3套试卷汇总}2018-2019临沂市中考数学阶段模拟试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知抛物线y=ax2+bx+c与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【答案】B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.2.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB 绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.3π2B.πC.2πD.3π【答案】A【解析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC =90°,∵OC =3,∴点A 经过的路径弧AC 的长=903180π⨯= 3π2, 故选:A .【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.3.方程(m –2)x 2+3mx+1=0是关于x 的一元二次方程,则( )A .m≠±2B .m=2C .m=–2D .m≠2 【答案】D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.故选D 4.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( ) A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<0 【答案】A【解析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.5.下列计算正确的是( )A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 6【答案】D【解析】根据合并同类项法则判断A 、C ;根据积的乘方法则判断B ;根据幂的乘方法判断D ,由此即可得答案.【详解】A 、2a 2﹣a 2=a 2,故A 错误;B 、(ab)2=a 2b 2,故B 错误;C 、a 2与a 3不是同类项,不能合并,故C 错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.6.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【答案】C【解析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4100%50=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13 B.14 C.15 D.16【答案】C【解析】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°.所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,.3317GI GH AI AB BG ∴==++=++=,7232DE HE HI EF FI ==--=--=,7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15;故选C .8.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31【答案】C 【解析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).A.50°B.40°C.30°D.25°【答案】B【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.10.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.3【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.二、填空题(本题包括8个小题)11.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.【答案】﹣1【解析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.【答案】1【解析】根据等腰三角形的性质以及三角形内角和定理在△ABC 中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD 中可求得∠CDB=∠CBD=12∠ACB=1°. 【详解】∵AB=AC ,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC ,∴∠CDB=∠CBD=12∠ACB=1°, 故答案为1.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.如图,在正六边形ABCDEF 的上方作正方形AFGH ,联结GC ,那么GCD ∠的正切值为___.【答案】31+【解析】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===解直角三角形可得DF ,根据正切的定义即可求得GCD ∠的正切值【详解】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===AF //CD ,90,CDG AFG ∴∠=∠=1209030,EDM ∠=-=3cos30,2DM DE a=⋅=23,DF DM a∴==()331,DG GF FD a a a∴=+=+=+()3131tan.aGDGCDCD a+∠===+故答案为:3 1.+【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.14.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.【答案】(-23,6)【解析】分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=23,得到答案.详解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,3则tan∠BOA=3ABOA=,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△HB 1O ,∴B 1H=OA=6,OH=AB=23,∴点B 1的坐标为(-23,6),故答案为(-23,6).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.15.如图△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC 的长为_____.【答案】4【解析】试题解析:∵3cos 5BDC ∠=,可 ∴设DC=3x ,BD=5x ,又∵MN 是线段AB 的垂直平分线,∴AD=DB=5x ,又∵AC=8cm ,∴3x+5x=8,解得,x=1,在Rt △BDC 中,CD=3cm ,DB=5cm , 222253 4.BC DB CD -=-=故答案为:4cm.16.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为_____【答案】2【解析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=22,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=2222+=+=,OA OC2222∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=1⨯=,2222故答案为2.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.17.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.【答案】【解析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎡⎤+⎣⎦的值为________.【答案】4【解析】根据规定,取101+的整数部分即可.【详解】∵103<<4,∴104<+1<5∴整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.三、解答题(本题包括8个小题)19.抛物线23y ax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D (m,-m-1) 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使PCB CBD ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=--(2)(0,-1)(3)(1,0)(9,0)【解析】(1)将A (−1,0)、C (0,−3)两点坐标代入抛物线y =ax 2+bx−3a 中,列方程组求a 、b 的值即可;(2)将点D (m ,−m−1)代入(1)中的抛物线解析式,求m 的值,再根据对称性求点D 关于直线BC 对称的点D'的坐标;(3)分两种情形①过点C 作CP ∥BD ,交x 轴于P ,则∠PCB =∠CBD ,②连接BD′,过点C 作CP′∥BD′,交x 轴于P′,分别求出直线CP 和直线CP′的解析式即可解决问题.【详解】解:(1)将A (−1,0)、C (0,−3)代入抛物线y =ax 2+bx−3a 中,得3033a b a a --=⎧⎨-=-⎩, 解得12a b =⎧⎨=-⎩∴y =x 2−2x−3;(2)将点D (m ,−m−1)代入y =x 2−2x−3中,得m 2−2m−3=−m−1,解得m =2或−1,∵点D (m ,−m−1)在第四象限,∴D (2,−3),∵直线BC 解析式为y =x−3,∴∠BCD =∠BCO =45°,CD′=CD =2,OD′=3−2=1,∴点D 关于直线BC 对称的点D'(0,−1);(3)存在.满足条件的点P 有两个.①过点C 作CP ∥BD ,交x 轴于P ,则∠PCB =∠CBD ,∵直线BD 解析式为y =3x−9,∵直线CP 过点C ,∴直线CP 的解析式为y =3x−3,∴点P 坐标(1,0),②连接BD′,过点C 作CP′∥BD′,交x 轴于P′,∴∠P′CB =∠D′BC ,根据对称性可知∠D′BC =∠CBD ,∴∠P′CB =∠CBD ,∵直线BD′的解析式为113y x =- ∵直线CP′过点C ,∴直线CP′解析式为133y x =-, ∴P′坐标为(9,0),综上所述,满足条件的点P 坐标为(1,0)或(9,0).【点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC 的特殊性求点的坐标,学会分类讨论,不能漏解.20.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).【答案】6+332【解析】如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB=x ,则AF=x-4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF=4tan30x -︒=BD ,同理,Rt △ABE 中,BE=tan60x ︒, ∵BD-BE=DE ,∴4tan30x -︒-tan60x ︒=3, 解得x=6+332. 答:树高AB 为(6+332)米 . 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键. 21.为上标保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A 港口的物资为x 吨,求总运费y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;求出最低费用,并说明费用最低时的调配方案.【答案】(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口.【解析】试题分析:(1)设从甲仓库运x 吨往A 港口,根据题意得从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,再由等量关系:总运费=甲仓库运往A 港口的费用+甲仓库运往B 港口的费用+乙仓库运往A 港口的费用+乙仓库运往B 港口的费用列式并化简,即可得总运费y (元)与x (吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x 的取值;(2)因为所得的函数为一次函数,由增减性可知:y 随x 增大而减少,则当x=1时,y 最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x 吨往A 港口,则从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,所以y=14x+20+10(1﹣x )+8(x ﹣30)=﹣8x+2560,x 的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y 随x 增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口.考点:一次函数的应用.22.如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.【答案】AED ACB ∠=∠.【解析】首先判断∠AED 与∠ACB 是一对同位角,然后根据已知条件推出DE ∥BC ,得出两角相等.【详解】解:∠AED=∠ACB .理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF ∥AB (内错角相等,两直线平行).∴∠3=∠ADE (两直线平行,内错角相等).∵∠3=∠B (已知),∴∠B=∠ADE (等量代换).∴DE ∥BC (同位角相等,两直线平行).∴∠AED=∠ACB (两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.23.如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;在图中画出以线段AB 为一腰,底边长为2的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.【答案】作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.24.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).【答案】(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a 元时0.9a-266.2>0解得:a >2662295.89≈ 故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题25.如图1,已知△ABC 是等腰直角三角形,∠BAC =90°,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,BG .试猜想线段BG 和AE 的数量关系是_____;将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC =DE =4,当AE 取最大值时,求AF 的值.【答案】(1)BG=AE .(2)①成立BG=AE .证明见解析.②AF=213【解析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论; (2)①如图2,连接AD ,由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论;②由①可知BG=AE ,当BG 取得最大值时,AE 取得最大值,由勾股定理就可以得出结论.【详解】(1)BG=AE.理由:如图1,∵△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点,∴AD ⊥BC ,BD=CD ,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得+,22AE EF+3616∴AF=213.【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.26.如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=14DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.【答案】(1)见解析;(2)BG=BC+CG=1.【解析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.2C.3D.3【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN =22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.2.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【答案】B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.3.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.22B.1 C2D2﹣l【答案】D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=22AC′=1,∴DC′=AC′2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×2-1)22-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.4.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【答案】B【解析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.5.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣6【答案】D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.6.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m【答案】D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.7.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.6【答案】D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S1.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S1=4+4-1×1=2.故选D.8.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac <0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2b a=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0,即4a-2b+c <0∵b=-2a ,∴4a+4a+c <0即8a+c <0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.10.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3- 【答案】D【解析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A (-2,3)关于原点对称的点的坐标是(2,-3), 故选D .【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.二、填空题(本题包括8个小题)11.如图,长方形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则△AFC 的面积等于___.【答案】263【解析】由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC ,由平行线的性质和折叠的性质可得∠DAC=∠ACE ,可得AF=CF ,由勾股定理可求AF 的长,即可求△AFC 的面积. 【详解】解:四边形ABCD 是矩形AB CD 4∴==,BC AD 6==,AD//BCDAC ACB ∠∠∴=,折叠ACB ACE ∠∠∴=,DAC ACE ∠∠∴=AF CF ∴=在Rt CDF 中,222CF CD DF =+,22AF 16(6AF)∴=+-,13AF 3∴= AFC 111326S AF CD 42233∴=⨯⨯=⨯⨯=. 故答案为:263. 【点睛】本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF 的长是本题的关键.12.在平面直角坐标系中,将点A (﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.【答案】(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A (-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,在Rt AOB ∆中,42OA OB ==.O 的半径为2,点P 是AB 边上的动点,过点P 作O的一条切线PQ (点Q 为切点),则线段PQ 长的最小值为______.【答案】23【解析】连接OQ ,根据勾股定理知222PQ OP OQ =-,可得当OP AB ⊥时,即线段PQ 最短,然后由勾股定理即可求得答案.【详解】连接OQ .∵PQ 是O 的切线,∴OQ PQ ⊥;∴222PQ OP OQ =-,∴当PO AB ⊥时,线段OP 最短,∴PQ 的长最短,∵在Rt AOB ∆中,42OA OB ==,∴28AB OA ==, ∴4OA OB OP AB⋅==, ∴2223PQ OP OQ =-=.故答案为:3【点睛】本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到PO AB ⊥时,线段PQ 最短是关键.14.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD。
2018年山东省临沂市中考数学模拟试卷(样卷)含答案解析
2018年山东省临沂市中考数学模拟试卷(样卷)一、选择题(共14小题,每小题3分,满分42分)1.的绝对值是()A.B. C.2 D.﹣22.如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°3.下列计算正确的是()A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a44.某市6月某周内每天的最高气温数据如下(单位:℃):24 26 29 26 29 32 29则这组数据的众数和中位数分别是()A.29,29 B.26,26 C.26,29 D.29,325.如图所示,该几何体的主视图是()A.B.C.D.6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.7.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.8.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°9.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)210.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2018个单项式是()A.2018x2018 B.4029x2018 C.4029x2018 D.4031x201812.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE13.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位14.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程2x2﹣2x﹣k=0有解.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)15.比较大小:2(用“>”或“<”号填空).16.计算:﹣=.17.如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是.18.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则=.19.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.三、解答题(共7小题,满分63分)20.计算:(+﹣1)(﹣+1)21.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2018年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.22.小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?23.如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).24.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,A B()求这辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.25.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是,位置关系是;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.26.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.2018年山东省临沂市中考数学模拟试卷(样卷)参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.的绝对值是()A.B. C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.2.如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°【考点】平行线的性质.【分析】根据对顶角相等和利用三角形的内角和定理列式计算即可得解.【解答】解:如图:∵∠4=∠2=40°,∠5=∠1=60°,∴∠3=180°﹣60°﹣40°=80°,故选C.3.下列计算正确的是()A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方进行计算即可.【解答】解:A、a2+a2=2a2B,故A错误;B、(﹣a2b)3=﹣a6b3,故B正确;C、a2•a3=a5,故C错误;D、a8÷a2=a6,故D错误;故选B.4.某市6月某周内每天的最高气温数据如下(单位:℃):24 26 29 26 29 32 29则这组数据的众数和中位数分别是()A.29,29 B.26,26 C.26,29 D.29,32【考点】众数;中位数.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将这组数据从小到大的顺序排列24,26,26,29,29,29,32,在这一组数据中29是出现次数最多的,故众数是29℃.处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29℃;故选A.5.如图所示,该几何体的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤2,故不等式组的解集为:﹣3<x≤2.在数轴上表示为:.故选C.7.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先用A,B,C分别表示给九年级的三辆车,然后根据题意画树状图,再由树状图求得所有等可能的结果与小明与小红同车的情况,然后利用概率公式求解即可求得答案.【解答】解:用A,B,C分别表示给九年级的三辆车,画树状图得:∵共有9种等可能的结果,小明与小红同车的有3种情况,∴小明与小红同车的概率是:=.故选C.8.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.9.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别将多项式mx2﹣m与多项式x2﹣2x+1进行因式分解,再寻找它们的公因式.【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.10.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=【考点】根据实际问题列反比例函数关系式.【分析】根据路程=时间×速度可得vt=20,再变形可得t=.【解答】解:由题意得:vt=20,t=,故选:B.11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2018个单项式是()A.2018x2018 B.4029x2018 C.4029x2018 D.4031x2018【考点】单项式.【分析】系数的规律:第n个对应的系数是2n﹣1.指数的规律:第n个对应的指数是n.【解答】解:根据分析的规律,得第2018个单项式是4029x2018.故选:C.12.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE【考点】矩形的判定;平行四边形的性质.【分析】先证明四边形ABCD为平行四边形,再根据矩形的判定进行解答.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴BE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选B.13.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位【考点】二次函数图象与几何变换.【分析】原抛物线顶点坐标为(﹣1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2+2x+3向右移1个单位,再向下平移2个单位.故选:D.14.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程2x2﹣2x﹣k=0有解.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】反比例函数与一次函数的交点问题.【分析】①根据题意可以求得AD、OA的长,点C和点B的坐标,从而可以求出△ADB 和△ADC的面积,从而可以判断该结论是否正确;②根据函数图象可以判断该结论是否正确;③根据函数图象可以得到0<x<3时,两个函数的大小情况,从而可以判断该结论是否成立;④根据两个函数图象有交点,然后联立方程组可知有解,通过变形可以得到方程2x2﹣2x ﹣k=0,从而可以判断该结论是否正确.【解答】解:将x=0代入y1=2x﹣2得,y=﹣2;将y=0代入y1=2x﹣2得x=1,即点A的坐标为(1,0),点B的坐标为(0,﹣2),∵OA=AD,∴点D的坐标是(2,0),将x=2代入y1=2x﹣2得,y=2,∴点C的坐标是(2,2),∴,,故①正确;由图象可知,当0<x<2时,y1<y2,当x>2时,y1>y2;故②错误;∵点C(2,2)在双曲线y2=上,∴,得k=4,∴双曲线y2=,将x=3代入双曲线y2=,得y=;将x=3代入y1=2x﹣2得y=4,∴EF=,故③正确;由图象可知,y1=2x﹣2与y2=在第一象限有解,∴2x﹣2=有解,即2x2﹣2x﹣k=0有解,故④正确;由上可得,①③④正确.故选C.二、填空题(共5小题,每小题3分,满分15分)15.比较大小:2>(用“>”或“<”号填空).【考点】实数大小比较.【分析】先估算出的值,再根据两正数比较大小的法则进行比较即可.【解答】解:∵≈1.732,2>1.732,∴2>.故答案为:>.16.计算:﹣=.【考点】分式的加减法.【分析】为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣==,故答案为:.17.如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是3.【考点】平行四边形的性质;解直角三角形.【分析】先由三角函数求出BD,再根据勾股定理求出AD,▱ABCD的面积=AD•BD,即可得出结果.【解答】解:∵AD⊥BD,∴∠ADB=90°,∵AB=4,sinA=,∴BD=AB•sinA==4×=3,∴AD===,∴▱ABCD的面积=AD•BD=3;故答案为:3.18.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则=2.【考点】三角形的重心;相似三角形的判定与性质.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍列式进行计算即可求解.【解答】证明:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.19.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有①③(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】根据一次函数、二次函数、反比例函数的性质进行分析即可得到答案.【解答】解:y=2x,2>0,∴①是增函数;y=﹣x+1,﹣1<0,∴②不是增函数;y=x2,当x>0时,是增函数,∴③是增函数;y=﹣,在每个象限是增函数,因为缺少条件,∴④不是增函数.故答案为:①③.三、解答题(共7小题,满分63分)20.计算:(+﹣1)(﹣+1)【考点】实数的运算.【分析】先根据平方差公式展开得到原式=[+(﹣1)][﹣(﹣1)]=()2﹣(﹣1)2,再根据完全平方公式展开后合并即可.【解答】解:原式=[+(﹣1)][﹣(﹣1)]=()2﹣(﹣1)2=3﹣(2﹣2+1)=3﹣2+2﹣1=2.21.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2018年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以量所占的百分比,可得样本容量,根据样本容量乘以轻度污染所占的百分比,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.22.小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?【考点】解直角三角形的应用-仰角俯角问题.【分析】求这栋楼的高度,即BC的长度,根据BC=BD+DC,在Rt△ABD和Rt△ACD中分别求出BD,CD即可.【解答】解:在Rt△ABD中,∵∠BDA=90°,∠BAD=30°,AD=42m,∴BD=ADtan30°=42×=14(m).在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=ADtan60°=42×=42(m).∴BC=BD+CD=14+42=56(m).答:这栋楼的高度为56m.23.如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).【考点】切线的性质;扇形面积的计算.【分析】(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD 平分∠CAB.(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.【解答】(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD , 即AD 平分∠CAB ;(2)设EO 与AD 交于点M ,连接ED . ∵∠BAC=60°,OA=OE , ∴△AEO 是等边三角形, ∴AE=OA ,∠AOE=60°, ∴AE=AO=OD ,又由(1)知,AC ∥OD 即AE ∥OD ,∴四边形AEDO 是菱形,则△AEM ≌△DMO ,∠EOD=60°, ∴S △AEM =S △DMO ,∴S 阴影=S 扇形EOD ==.24.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A 、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式.(3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用. 【考点】一次函数的应用. 【分析】(1)设大货车用x 辆,小货车用y 辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A 村的大货车为x 辆,则前往B 村的大货车为(8﹣x )辆,前往A 村的小货车为(10﹣x )辆,前往B 村的小货车为[7﹣(10﹣x )]辆,根据表格所给运费,求出y 与x 的函数关系式;(3)结合已知条件,求x 的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x 辆,小货车用y 辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.25.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是相等,位置关系是互相垂直;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.【考点】四边形综合题.【分析】(1)易证△ADE≌△DCF,即可证明AF与BE的数量关系是:AF=BE,位置关系是:AF⊥BE.(2)证明△ADE≌△DCF,然后证明△ABE≌△ADF即可证得BE=AF,然后根据三角形内角和定理证明∠AMB=90°,从而求证;(3)与(2)的解法完全相同.【解答】解:(1)AF与BE的数量关系是:AF=BE,位置关系是:AF⊥BE.答案是:相等,互相垂直;(2)结论仍然成立.理由是:∵正方形ABCD中,AB=AD=CD,∴在△ADE和△DCF中,,∴△ADE≌△DCF,∴∠DAE=∠CDF,又∵正方形ABCD中,∠BAD=∠ADC=90°,∴∠BAE=∠ADF,∴在△ABE和△ADF中,,∴△ABE≌△ADF,∴BE=AF,∠ABM=∠DAF,又∵∠DAF+∠BAM=90°,∴∠ABM+∠BAM=90°,∴在△ABM中,∠AMB=180°﹣(∠ABM+∠BAM)=90°,∴BE⊥AF;(3)第(1)问中的结论都能成立.理由是:∵正方形ABCD中,AB=AD=CD,∴在△ADE和△DCF中,,∴△ADE≌△DCF,∴∠DAE=∠CDF,又∵正方形ABCD中,∠BAD=∠ADC=90°,∴∠BAE=∠ADF,∴在△ABE和△ADF中,,∴△ABE≌△ADF,∴BE=AF,∠ABM=∠DAF,又∵∠DAF+∠BAM=90°,∴∠ABM+∠BAM=90°,∴在△ABM中,∠AMB=180°﹣(∠ABM+∠BAM)=90°,∴BE⊥AF.26.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.【考点】二次函数综合题.【分析】(1)联立两直线解析式可求得B点坐标,由关于原点对称可求得C点坐标,由直线y=﹣2x﹣1可求得A点坐标,再利用待定系数法可求得抛物线解析式;(2)①当四边形PBQC为菱形时,可知PQ⊥BC,则可求得直线PQ的解析式,联立抛物线解析式可求得P点坐标;②过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,由∠PED=∠AOC,可知当PE最大时,PD也最大,用t可表示出PE的长,可求得取最大值时的t的值.【解答】解:(1)联立两直线解析式可得,解得,∴B点坐标为(﹣1,1),又C点为B点关于原点的对称点,∴C点坐标为(1,﹣1),∵直线y=﹣2x﹣1与y轴交于点A,∴A点坐标为(0,﹣1),设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣x﹣1;(2)①当四边形PBQC为菱形时,则PQ⊥BC,∵直线BC解析式为y=﹣x,∴直线PQ解析式为y=x,联立抛物线解析式可得,解得或,∴P点坐标为(1﹣,1﹣)或(1+,1+);②当t=0时,四边形PBQC的面积最大.理由如下:如图,过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,=2S△PBC=2×BC•PD=BC•PD,则S四边形PBQC∵线段BC长固定不变,∴当PD最大时,四边形PBQC面积最大,又∠PED=∠AOC(固定不变),∴当PE最大时,PD也最大,∵P点在抛物线上,E点在直线BC上,∴P点坐标为(t,t2﹣t﹣1),E点坐标为(t,﹣t),∴PE=﹣t﹣(t2﹣t﹣1)=﹣t2+1,∴当t=0时,PE有最大值1,此时PD有最大值,即四边形PBQC的面积最大.2018年6月3日。
2019年临沂市中考数学第一次模拟试卷(及答案)
一、选择题
1.在庆祝新中国成立 70 周年的校园歌唱比赛中,11 名参赛同学的成绩各不相同,按照成
绩取前 5 名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要
知道这 11 名同学成绩的( )
A.平均数
B.中位数
C.众数
D.方差
2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
A.25°
B.75°
C.65°
D.55°
5.如图,在直角坐标系中,直线
y1
2x
2
与坐标轴交于
A、B
两点,与双曲线
y2
k x
( x 0 )交于点 C,过点 C 作 CD⊥x 轴,垂足为 D,且 OA=AD,则以下结论:
① SΔADB SΔADC ; ②当 0<x<3 时, y1 y2 ;
③如图,当 x=3 时,EF= 8 ; 3
10%;乙超市连续两次降价 15%;丙超市一次性降价 30%.则顾客到哪家超市购买这种商品更
合算( )
A.甲
B.乙
C.丙
D.一样
8.甲种蔬菜保鲜适宜的温度是 1℃~5℃,乙种蔬菜保鲜适宜的温度是 3℃~8℃,将这两种
蔬菜放在一起同时保鲜,适宜的温度是( )
A.1℃~3℃
B.3℃~5℃
C.5℃~8℃
D.1℃~8℃
故选 C. 【点睛】
本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.
5.C
解析:C 【解析】
试题分析:对于直线 y1 2x 2 ,令 x=0,得到 y=2;令 y=0,得到 x=1,∴A(1,0),B
2019年山东省临沂市沂南县中考数学一模试卷
s(km)与时间 t(h)的关系,请结合图象解答下列问题:
(1)表示乙离 A 地的距离与时间关系的图象是
(填 l1 或 l2);甲的速度是
km/h,乙的速度是
km/h;
(2)甲出发多少小时两人恰好相距 5km?
25.(11 分)已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点 D 为直线 BC 上一动点(点 D 不与点 B,C 重 合).以 AD 为边作正方形 ADEF,连接 CF (1)如图 1,当点 D 在线段 BC 上时.求证:CF+CD=BC; (2)如图 2,当点 D 在线段 BC 的延长线上时,其他条件不变,请直接写出 CF,BC,CD 三条线段之间的关系; (3)如图 3,当点 D 在线段 BC 的反向延长线上时,且点 A,F 分别在直线 BC 的两侧,其他条件不变; ①请直接写出 CF,BC,CD 三条线段之间的关系; ②若正方形 ADEF 的边长为 2 ,对角线 AE,DF 相交于点 O,连接 OC.求 OC 的长度.
当﹣1﹣a<0 时,有 a>﹣1,
∴C 选项不符合题意;
D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,
∴二次函数图象的对称轴为 x=1.
若 a>0,则当 x≥1 时,y 随 x 的增大而增大,
∴D 选项符合题意.
故选:D.
12.【解答】解:3 =
,3 得被开方数是 的被开方数的 30 倍,
3 在第六行的第 5 个,即(6,5)
.
17.(3 分)化简:(
)
=
.
18.(3 分)如图,矩形 ABOC 的顶点 A 的坐标为(﹣4,5),D 是 OB 的中点,E 是 OC 上的一点,当△ADE 的周
长最小时,点 E 的坐标是
临沂市2019年中考数学模拟试卷及答案
临沂市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
1. 一个数的绝对值是5,这个数是A.5 B 、-5 C .5和-5 D .02. 2017年我省粮食总产量695.2亿斤,居历史第二高位,695.2亿用科学记数法表示为A.695.2×108B.6.952×109C.6.952×1010D.6.952×10113. 下列运算正确的是 D A .2a 2•a 3=2a6B .(3ab )2=6a 2b2C .2abc +ab =2D .3a 2b +ba 2=4a 2b4.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是5.设一元二次方程(1x +)(3x -)=m (m >0)的两实数分别为α、β且α<β,则α、β满足 A.-1<α<β<3 B.α<-1且β>3 C.α<-1<β<3 D.-1<α<3<β 6. 如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示的点是A. 点MB. 点NC. 点PD. 点Q7. 如图,在⊙O 中,AB =AC ,∠AOB =40°,则∠ADC 的度数是 A .40° B .30° C .20° D .15°8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是N A .①B .②C .①③D .②③9.如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为A.B.C.D.10.. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米. 设甲车的速度为x 千米/小时,依题意列方程正确的是 A.304015x x =+ B. 304015x x =+ C. 304015x x =- D. 304015x x =- 二、填空题(本大共6小题,每小题4分,满分24分) 11.分解因式:a 3-9a= ___________.12.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°,得到的点A ′的坐标 为 .13.关于x 的不等式组2131x a x +>⎧⎨->⎩的解集为1<x <4,则a 的值为 .14.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .15.若一个等腰三角形有两边长为3和4,则它的周长为 .16.若圆锥的底面积为216cm π,母线长为cm 12,则它的侧面展开图的圆心角为 °第11题图三、(本大题共2小题 ,满分80分)17. (本题满分6分)计算:18. (本题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2.(1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.19.(本题满分10分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.20.(10分)某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有 篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率. 21. (本题满分12分)在正方形网格中,建立如图所示的平面直角坐标系的三个顶点都在格点上,点A 的坐标,请解答下列问题:画出关于y 轴对称的,并写出点、、的坐标;2021*******-⎪⎭⎫⎝⎛+---将绕点C逆时针旋转,画出旋转后的,并求出点A到的路径长.22.(本小题满分8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23.(本题满分12分)如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y. 求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2ab,仅当a=b时,a+b=2ab).24.(本题满分14分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,N ⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
2024年山东省临沂市沂南县中考数学一模试卷及参考答案
2024年山东省临沂市沂南县初中学业水平一轮模拟考试试题数学注意事项:试卷共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.13的相反数是( )A .13 B .13± C .13−D .3 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.如图,AB CD ∥,若38,26A D ∠=∠=︒︒,则E ∠的度数是( )(第3题图)A .114︒B .116︒C .124︒D .126︒ 4.下列运算正确的是( )A .()235224a b a b −=B .842a a a ÷=C .()222a b a b −=−D .2222a b a b a b −= 5.如图是物理学中经常使用的U 型磁铁示意图,其左视图是( )A .B .C .D .6.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有2个黑色棋子和1个白色棋子,每个棋子除颜色外都相同.从中随机摸出一个棋子,记下颜色后放回,再从中随机摸出一个棋子,则两次摸到相同颜色的棋子的概率是( )A .49B .12C .59D .237.AD 是O 的直径,弦BC 与AD 交于点E ,连接,,AB AC CD .若AD 平分,65BAC B ∠∠=︒,则BAC ∠的度数是( )(第7题图)A .45︒B .55︒C .40︒D .50︒8.不等式组()3151131722x x x x ⎧+<−⎪⎨−≤−⎪⎩的解集为( ) A .24x <≤ B .2x > C .4x ≤ D .无解9.如图,已知AOB ∠,以点O 为圆心,适当长为半径作圆弧,与角的两边分别交于C ,D 两点,分别以点,C D 为圆心,大于12CD 长为半径作圆弧,两条圆弧交于AOB ∠内一点P ,连接OP ,过点P 作直线PE OA ∥,交OB 于点E ,过点P 作直线PF OB ∥,交OA 于点F .若60,8cm AOB OP ︒∠==,则四边形PFOE 的周长是( )A .32cmB .C .cm 3D .cm 310.在矩形ABCD 中,AC 为矩形对角线,AB BC >,有一动点P ,沿AB BC CA →→方向运动,每秒运动1个单位长度,设点P 运动的时间为x 秒,线段AP 的长为,y y 随x 变化的函数图象如图所示,则线段BC 的长为( )(第10题图)A .3B .4C .5D .2.5第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共6个小题.每小题3分,共18分)11.比较大小:______1−(填“>”“=”或“<”)12.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A B C 、、都在横格线上.若线段2cm AB =,则线段BC =______cm .(第12题图)13.分式方程32=的解为______.14.如图,AB 是O 的直径,分别以点A 和点B 为圆心、AB 长为半径作圆弧,两弧交于点C 和点D ,若2AB =,则图中阴影部分图形的周长和为______.(结果保留π)(第14题图)15.按一定规律排列的单项式:35794,9,16,25,36,a a a a a −−⋅⋅⋅,则第n 个单项式用含n 的式子可表示为______.16.如图,已知抛物线242y x x =−+−和线段MN ,点M 和点N 的坐标分别为()()0,4,5,4.将抛物线向上平移()0k k >个单位长度后与线段MN 仅有一个交点,则k 的取值范围是______.(第16题图)三、解答题(本大题共8小题,共72分)17.(本小题满分8分)计算:(1)112sin453−⎛⎫ ⎪⎝⎭︒;(2)2344111x x x x x ++⎛⎫−+÷ ⎪++⎝⎭. 18.(本小题满分8分)某市开展“山河诗长安,唐诗诵经典”活动,参加者限时背诵唐诗,活动中统计了每人背诵唐诗的数量(单位:首).现场有少年组和青年组,两组各有100人参加.【数据整理】为了解两组背诵的情况,从少年组和青年组各随机抽取20人,将他们背诵唐诗的数量整理如下: 少年组20人背诵唐诗的数量(第18题图)【问题解决】(1)请补全条形统计图,并填空:数据分析的表格中a=______,b=______;(2)琳琳参加了活动,且她背了5首唐诗,琳琳背诵唐诗的数量在她所在的组处于中下游,则琳琳属于______组;(填“少年”或“青年”)(3)背诵唐诗不少于7首的人会获得一把折扇,请估计两组获得折扇的总人数.19.(本小题满分8分)小伟站在一个深为3米的泳池边,他看到泳池内有一块鹅卵石,据此他提出问题:鹅卵石的像到水面的距离是多少米?小伟利用光学知识和仪器测量数据解决问题,具体研究方案如下:请你根据上述信息解决以下问题:(1)求CBN ∠的大小;(2)求鹅卵石的像G 到水面的距离GH .(结果精确到0.1m ) (参考数据:sin41.70.665,cos41.70.747,tan41.7 1.73︒︒≈≈︒≈≈)20.(本小题满分8分)为拓展公园绿地服务功能,更好地满足市民亲近自然、休闲游憩、运动健身需求,郑州市园林局积极开展绿地开放共享试点工作,自2023年9月1日正式对外开放36个试点公园广场、廊道,共计共享绿地71处,共享面积约24万平方米.小明计划购置一批露营桌椅供游客租赁,已知购买20套甲型桌椅和40套乙型桌椅需要5200元;若购买30套甲型桌椅和10套乙型桌椅需要2800元.(1)求每套甲型桌椅和每套乙型桌椅的价格.(2)若小明需要购买甲型和乙型桌椅共计200套(两种型号均需购买),购买甲型桌椅的数量不超过乙型桌椅数量的13,为使购买桌椅的总费用最低,应购买甲型桌椅和乙型桌椅各多少套?购买桌椅的总费用最低为多少? 21.(本小题满分9分)如图,AB 为O 的直径,在BA 的延长线上取一点,C CD 与O 相切于点D ,AE CD ∥交O 于点E ,且30BAE ∠=︒,连接DE .(1)求证:四边形ACDE 为平行四边形;(2)已知F 为AB 的中点,连接EF .若CD =EF 的长.22.(本小题满分9分)如图,平行于y 轴的直尺(一部分)与反比例函数()0m y x x=>的图象交于点,A C ,与x 轴交于点B D 、,连接AC ,若点A B 、的刻度分别为52、,直尺的宽度为2,2OB =.(第22题图)(1)求直线AC 的解析式;(2)平行于y 轴的直线()24x n n =<<与AC 交于点E ,与反比例函数图象交于点F ,若线段EF 的长为14,求n 的值.23.(本小题满分10分)问题初探:如图1,四边形ABCD 是正方形,点,E F 分别是,AB BC 边上的动点,若点E 运动到AB 的中点处,点F 运动到BC 的中点处,连接,,,CE DF CE DF 相交于点G .(1)请写出CE 与DF 的数量和位置关系______,______;猜想证明:(2)如图2,在点,E F 运动过程中,若AE BF =,则(1)中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(3)在图1的基础上,连接AG ,得到图3,求证:AD AG =.(第23题图)24.(本小题满分12分)某俱乐部购进一台如图1的篮球发球机,用于球员篮球训练.该发球机可以以不同力度发射出篮球,篮球运行的路线都是抛物线.出球口离地面高1米,以出球口为原点,平行于地面的直线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系.力度变化时,抛物线的顶点在直线y kx =上移动,从而产生一组不同的抛物线2y ax bx =+(如图2).(第24题图)(1)若1k =.①发球机发射出的篮球运行到距发球机水平距离为6m 时,离地面的高度为1m .请求出该球在运行过程中离地面的最大高度;②若发球机发射出的篮球在运行过程中离地面的最大高度为3m ,求该球运行路线的解析式,及此球落地点离发球机的水平距离;(2)球员小刚训练时发现:当篮球运行到离地面高度为1m 至2.2m 之间(包含端点)是最佳接球区间,若12k =,直接写出当a 满足什么条件时,距发球机水平距离12m 的小刚在前后不挪动位置的前提下,能在最佳区间接到球.2024年初中学业水平一轮模拟考试试题答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)11.< 12.6 13.15x =− 14.14π3 15.()()122111n n n a +−−+ 16.611k <≤或2k = 三、解答题(本题共8小题,共72分)17.(本题每小题4分,共8分)解:(1)112sin453−⎛⎫ ⎪⎝⎭︒322=+⨯ 3=−3=;(2)2344111x x x x x ++⎛⎫−+÷ ⎪++⎝⎭()()()2311112x x x x x −−++=⋅++ ()22312x x −+=+()()()2222x x x +−=+22x x −=+. 18.(本小题满分8分)解:(1)根据题意可知背诵6首唐诗的人数为:20245117−−−−−=(人), 据此补全条形统计图如图:5.2;5.(2)5 5.5<,属于中下游;55=,属于中游;所以,琳琳属于少年组.(3)32111002020++⎛⎫⨯+ ⎪⎝⎭710020=⨯35=(人), 答:两组获得折扇的总人数约有35人.19.(本小题满分8分)解:(1)sin 1.33,sin sin41.70.665sin ABM ABM CBN∠=∠=≈︒∠, sin 1sin 1.332ABM CBN ∠∴∠==,30CBN ∴∠=︒,CBN ∴∠的大小为30︒; (2)41.7,3m ABM NBG BN CH ∠=∠===︒,BN HC ∥,30,41.7CBN BCH BGH NBG ∴∠=∠=∠=∠=︒︒,在Rt BCH △中,)tan 3m 3BH CH BCH =⋅∠=⨯=, 在Rt BHG △中,()1.9m tan tan41.7BH BH HG BGH ==≈∠︒, ∴鹅卵石的像G 到水面的距离GH 为1.9m .20.(本小题满分8分)解:(1)设每套甲型桌椅x 元,每套乙型桌椅y 元,由题意列方程组得:2040520030102800x y x y +=⎧⎨+=⎩,解得60100x y =⎧⎨=⎩, 答:每套甲型桌椅60元,每套乙型桌椅100元;(2)设购买甲型桌椅m 套,总费用为w 元,则购乙型桌椅()200m −套, 购买甲型桌椅的数量不超过乙型桌椅数量的13, ()12003m m ∴≤−,解得50m ≤, 根据题意得()601002004020000w m m m =+−=−+,400−<,w ∴随m 的增大而减小,∴当50m =时,w 取最小值,最小值40502000018000=−⨯+=(元),答:购买购买甲型桌椅50套,乙型桌椅150套,总费用最低,最低总费用为18000元.21.(本小题满分9分)(1)证明:连接OD ,如图1,CD 与O 相切于点,90D CDO ∠=︒. AB 为O 的直径,90AEB ∴∠=︒,30BAE =︒∠,12BE AB ∴=, AE CD ∥,BAE C ∴∠=∠,()AAS OCD BAE ∴≌△△,CD AE ∴=,∴四边形ACDE 为平行四边形;(2)解:连接,OF BF ,过点B 作BH EF ⊥于点H ,如图2,由(1)知AE CD ==2,4BE AB ∴==,122OB OF AB ∴===.F 为AB 的中点,90BOF ∴∠=︒,BF ∴=.1452BEF BOF ∠=∠=︒,BH EH FH ∴===,EF EH FH ∴=+=22.(本小题满分9分)解:(1)由题意得:2,523OB AB ==−=,()2,3A ∴,236m xy ∴==⨯=,6y x ∴=, 又4OD =,34,2C ⎛⎫∴ ⎪⎝⎭, 设直线AC 的解析式为y kx b =+将()2,3A 和34,2C ⎛⎫ ⎪⎝⎭分别代入y kx b =+,得:23342k b k b +=⎧⎪⎨+=⎪⎩,解得:3492k b ⎧=−⎪⎪⎨⎪=⎪⎩, ∴直线AC 的解析式为3942y x =−+; (2)解:当x n =时,点E 的纵坐标为3942n −+,点F 的纵坐标为6n , 依题意得:3961424n n −+−=,解得:83n =或3n =,n ∴的值为83或3. 23.(本小题满分10分)解:(1),CE DF CE DF =⊥;(2)成立; 证明:四边形ABCD 是正方形,,90AB BC DC B BCD ∴==∠=∠=︒, AE BF =,AB AE BC BF ∴−=−,即BE CF =,在BCE △和CDF △中,BE CF B BCD BC CD =⎧⎪∠=∠⎨⎪=⎩,()SAS BCE CDF ∴≌△△,,CE DF BCE CDF ∴=∠=∠,90BCE DCE ∠︒∠+=,90CDF DCE ∴∠+∠=︒,90CGD ∴∠=︒,CE DF ∴⊥;(3)证明:延长DA 和CE 交于点K ,点E 是AB 的中点,AE BE ∴=,在AKE △和BCE △中,AEK BEC AE BE EAK B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA AKE BCE ∴≌△△,AK BC ∴=,,AD BC AD AK =∴=, 在Rt DGK △中,12AG AD AK DK ===,AD AG ∴=.24.(本小题满分12分)解:(1)①当1k =时,抛物线的顶点在直线y x =上移动, 由题意可知抛物线经过()6,0,∴对称轴为直线3x =,把3x =代入y x =,得3y =∴抛物线的顶点为()3,3,∴该球在运行过程中离地面的最大高度为4m ; ②由题意可知物线顶点的纵坐标为2,把2y =代入y x =,得2x =,∴抛物线的顶点为()2,2,由顶点为()2,2,得22422b a a b ⎧−=⎪⎨⎪+=⎩,解得122a b ⎧=−⎪⎨⎪=⎩,∴抛物线的解析式为2122y x x =−+, 把1y =−代入2122y x x =−+,得21212x x −+=−,解得1222x x =+=,∴此球落地点离发球机的水平距离为(2m ; (2)当12k =时,一次函数解析式为12y x =, 由抛物线2y ax bx =+,对称轴为直线2b x a =−, 得抛物线的顶点为2,24b b a a ⎛⎫−− ⎪⎝⎭,把2,24b b a a ⎛⎫−− ⎪⎝⎭代入12y x =, 得21224b b a a⎛⎫⋅−=− ⎪⎝⎭,整理得1b =,∴抛物线的解析式为2y ax x =+, 将()12,0代入2y ax x =+,得144120a +=,解得112a =−, 将()12,1.2代入2y ax x =+,得14412 1.2a +=,解得340a =−, ∴当131240a −≤≤−时,距发球机水平距离12m 的小刚在前后不挪动位置的前提下,能在最佳区间接到球.。
2020届山东省临沂市沂南县中考数学一模试卷(有答案)(加精)
山东省临沂市沂南县中考数学一模试卷一、选择题(本大题共14下题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在0,1,﹣2,3这四个数中,最小的数是()A.﹣2 B.1 C.0 D.32.(3分)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°3.(3分)下列计算正确的是()A.(﹣x3)2=x5B.x8÷x4=x2C.x3•x2=x6D.(﹣3x2)2=9x44.(3分)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.6.(3分)“服务他人,提升自我”,某学校积极开展志愿者服务活动,来自初三的5名同学(3男2女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.7.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+18.(3分)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃9.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°10.(3分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=211.(3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.2612.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形13.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:x﹣1013y﹣1353下列结论错误的是()A.ac<0B.当x>1时,y的值随x的增大而减小C.3是方程ax2+(b﹣1)x+c=0的一个根D.当﹣1<x<3时,ax2+(b﹣1)x+c>014.(3分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10 C.2≤k≤6 D.2≤k≤二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)若=3﹣x,则x的取值范围是.16.(3分)计算:﹣(a+1)=.17.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB 的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.18.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.19.(3分)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.三、解答题(本大题共7小题,共63分,解答应写出文字说明、证明过程或演算步骤)20.(7分)计算: +|2﹣8|﹣()﹣1﹣2cos30°.21.(7分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=,n=;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.22.(7分)如图,大楼B右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)23.(9分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.24.(9分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.25.(11分)某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图①,当点D在线段BC上时.①BC与CF的位置关系为:;②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸如图③,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.26.(13分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.山东省临沂市沂南县中考数学一模试卷参考答案与试题解析一、选择题(本大题共14下题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在0,1,﹣2,3这四个数中,最小的数是()A.﹣2 B.1 C.0 D.3【分析】根据正数大于负数,两个负数比较大小,绝对值大的数反而小,可得答案.【解答】解:∵﹣2<0<1<3,∴最小的数是﹣2,故选:A.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.【点评】本题主要考查的是平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.3.(3分)下列计算正确的是()A.(﹣x3)2=x5B.x8÷x4=x2C.x3•x2=x6D.(﹣3x2)2=9x4【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,先把积的每一个因式分别乘方,再把所得的幂相乘对各选项分析判断即可得解.【解答】解:A、(﹣x3)2=x3×2=x6,故本选项错误;B、x8÷x4=x8﹣4=x4,故本选项错误;C、x3•x2=x3+2=x5,故本选项错误;D、(﹣3x2)2=(﹣3)2•(x2)2=9x4,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法、幂的乘方、积的乘方,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:从几何体的上面看所得到的图形是两个同心圆,故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出两个不等式的解,然后表示出解集,并在数轴上表示出来.【解答】解:解不等式x+1>0得:x>﹣1,解不等式2x﹣4≤0得:x≤2,则不等式的解集为:﹣1<x≤2,在数轴上表示为:.故选B.【点评】本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,解答本题的关键是熟练掌握不等式的解法以及求不等式解集的规律.6.(3分)“服务他人,提升自我”,某学校积极开展志愿者服务活动,来自初三的5名同学(3男2女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.【分析】画出树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有20种情况,恰好是一男一女的有12种情况,所以,P(恰好是一男一女)==.故选:D.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+1【分析】分别将各选项利用公式法和提取公因式法分解因式进而得出答案.【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.8.(3分)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.10.(3分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.11.(3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26【分析】仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式后代入n=11后即可求解.【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3×(3﹣1)=8个黑色正方形,图④中有2+3×(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,当n=10时,2+3×(10﹣1)=29,故选B.【点评】本题是对图形变化规律的考查,难点在于利用求和公式求出第n个图形的黑色正方形的数目的通项表达式.12.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【分析】首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.【点评】此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.13.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:x﹣1013y﹣1353下列结论错误的是()A.ac<0B.当x>1时,y的值随x的增大而减小C.3是方程ax2+(b﹣1)x+c=0的一个根D.当﹣1<x<3时,ax2+(b﹣1)x+c>0【分析】利用表中各对应点的特征和抛物线的对称性得到c=3,抛物线的对称轴为直线x=,顶点坐标为(1,5),所以抛物线开口向上,则可对A进行判断;根据二次函数的性质可对B 进行判断;利用抛物线过点(﹣1,﹣1),(3,3)得到抛物线与直线y=x相交于点(﹣1,﹣1),(3,3),则可对C进行判断;利用函数图象可得当﹣1<x<3时,ax2+bx+c>x,则可对D进行判断.【解答】解:∵抛物线经过点(0,3)和(3,3),∴c=3,抛物线的对称轴为直线x=,顶点坐标为(1,5),∴抛物线开口向上,∴a<0,∴ac<0,所以A选项的结论正确;当x>时,y的值随x的增大而减小,所以B选项的结论错误;∵抛物线过点(﹣1,﹣1),(3,3),即抛物线与直线y=x相交于点(﹣1,﹣1),(3,3),∴3和﹣1是方程ax2+bx+c=x的根,所以C选项的结论正确;当﹣1<x<3时,ax2+bx+c>x,即ax2+(b﹣1)x+c>0,所以D选项的结论正确.故选B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).也考查了二次函数的性质.14.(3分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10 C.2≤k≤6 D.2≤k≤【分析】根据反比例函数图象上点的坐标特征,反比例函数和三角形有交点的临界条件分别是交点为A、与线段BC有交点,由此求解即可.【解答】解:反比例函数和三角形有交点的第一个临界点是交点为A,∵过点A(1,2)的反比例函数解析式为y=,∴k≥2.随着k值的增大,反比例函数的图象必须和线段BC有交点才能满足题意,经过B(2,5),C(6,1)的直线解析式为y=﹣x+7,,得x2﹣7x+k=0根据△≥0,得k≤综上可知2≤k≤.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,两函数交点坐标的求法,有一定难度.注意自变量的取值范围.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)若=3﹣x,则x的取值范围是x≤3.【分析】根据二次根式的性质得出3﹣x≥0,求出即可.【解答】解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.【点评】本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.16.(3分)计算:﹣(a+1)=.【分析】根据分式的运算即可求出答案.【解答】解:原式=﹣=故答案为:【点评】本题考查分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB 的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.18.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为(,).【分析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=A O=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).【点评】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.19.(3分)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.lo g N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.【分析】先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:先由公式log N M=得:log1001000=,由公式log a a n=n得:①log101000==3;②log10100==2;∴log1001000===.故答案为:.【点评】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.三、解答题(本大题共7小题,共63分,解答应写出文字说明、证明过程或演算步骤)20.(7分)计算: +|2﹣8|﹣()﹣1﹣2cos30°.【分析】本题涉及特殊角的三角函数值、负整数指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解: +|2﹣8|﹣()﹣1﹣2cos30°=3+8﹣2﹣3﹣2×=3+8﹣2﹣3﹣3=+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、负整数指数幂、二次根式、绝对值等考点的运算.21.(7分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=4,n=1;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)m=4,n=1.故答案是:4,1;(2);(3)行走步数的中位数落在B组,故答案是:B;(4)一天行走步数不少于7500步的人数是:120×=48(人).答:估计一天行走步数不少于7500步的人数是48人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(7分)如图,大楼B右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【分析】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).故障碍物B,C两点间的距离约为52.7m.【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.23.(9分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)解:在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC⊥DE,解(2)的关键是求出扇形OBC的面积,此题难度一般.24.(9分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.【分析】(1)根据普通消费方式,算出健身6次的费用,再与280、560进行比较,即可得出结论;关于x的函数关系式;再根据“白金卡消费(2)根据“普通消费费用=35×次数”即可得出y普通关于x的函数关系式;费用=卡费+超出部分的费用”即可得出y白金卡(3)先算出健身18次普通消费和白金卡消费两种形式下的费用,再令白金卡消费费用=钻石卡消费的卡费,算出二者相等时的健身次数,由此即可得出结论.【解答】解:(1)35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算.(2)根据题意得:y普通=35x.x>12时,y白金卡=280+35(x﹣12)=35x﹣140.当x≤12时,y白金卡=280;当∴y白金卡=.18=630;y白金卡=35×18﹣140=490;(3)当x=18时,y普通=35×35x﹣140=560,令y白金卡=560,即解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系找出函数关系式;(3)令y白金卡=560,算出白金卡消费和钻石卡消费费用相同时健身的次数.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列式计算(或列出函数关系式)是关键.25.(11分)某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图①,当点D在线段BC上时.①BC与CF的位置关系为:垂直;②BC,CD,CF之间的数量关系为:BC=CF+CD;(将结论直接写在横线上)(2)数学思考如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸如图③,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.【解答】解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM(AAS),∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.【点评】本题考查了四边形综合题,需要掌握全等三角形的判定和性质,正方形的性质,余角的性质,勾股定理,等腰直角三角形的判定和性质,矩形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.26.(13分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.【分析】(1)由直线y=x﹣2交x轴、y轴于B、C两点,则B、C坐标可求.进而代入抛物线y=ax2﹣x+c,即得a、c的值,从而有抛物线解析式.(2)求证三角形为直角三角形,我们通常考虑证明一角为90°或勾股定理.本题中未提及特殊角度,而已知A、B、C坐标,即可知AB、AC、BC,则显然可用勾股定理证明.。
2019年山东省临沂市沂南县八校联考中考模拟数学试题及答案(PDF版)
2019年中考模拟联考数 学 试 题第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.计算:3的倒数是 A .23 B .23- C .32D .32-2.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为 A .34° B .54° C .66° D .56°3.下列计算正确的是A .422x x x =+ B .3332x x x =- C .632x x x =⋅ D .532)(x x =4. 不等式组⎩⎨⎧>-≥-02401x x 的解集在数轴上表示为A .B .C .D .5.下面所给几何体的俯视图是A .B .C .D .6.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程. 若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是 A .21B .31 C .61 D .91 7.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是A .4﹣6小时B .6﹣8小时C .8﹣10小时D .不能确定8.如图,△ABC 的顶点均在⊙O 上,若∠A =36°,则∠BOC 的度数为 A .18°B .36°C .60°D .72°9. 正多边形的一个内角为135°,则该多边形的边数为 A .5 B .6 C .7 D .810. 已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x 千米/时,依题意列方程正确的是 A .154030+=x x B .x x 401530=- C .154030-=x x D .xx 401530=+ 11.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,下列结论中不一定成立的是 A .∠BAC =∠DACB .AC =BD C .AC ⊥BD D .OA =OC12. 将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是A .56B .58C .63D .7213.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为 (﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2; ②方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3; ③3a +c >0 ④当y >0时,x 的取值范围是﹣1≤x <3 ⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是 A .4个 B .3个 C .2个 D .1个14. 如图,点A 是反比例函数xy 1=(x >0)上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB =2OA ,连接AB . 当点A 在反比例函数图象上移动时,点B 也在某一反比例函数xky =图象上移动,则k 的值为 A .﹣4 B .4C .﹣2D .2第Ⅱ卷(非选择题 共78分)二、填空题(本题共5小题,每小题3分,共15分) 15用“>” 或“<”填空) 16.计算若2a b -=,3a b +=,则22a b -= .17. 如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =25°,则∠ADE 的度数为 .18.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB ,垂足为D ,则tan ∠BCD 的值是 . 19. 观察下列各式及其展开式:2222)(b ab a b a ++=+, 3223333)(b ab b a a b a +++=+, 4322344464)(b ab b a b a a b a ++++=+,第17题第18题543223455510105)(b ab b a b a b a a b a +++++=+,…,根据以上规律,请你猜想写出6)(b a +的展开式中第三项的系数是_______. 三、解答题(本大题共7小题,共63分) 20. (满分7分) 计算: 212(1)121x x x x x --+÷--+21. (满分7分) 某中学开展以“我最喜爱的职业”为主题的调查活动,围绕在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类),在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题: (1)本次调查共抽取了______名学生;(2)求在被调查的学生中最喜爱教师职业的人数,并补全条形统计图;(3)若该中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?22. (满分7分) 如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.23. (满分9分) 如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠CAD.(1)求证:直线MN是⊙O的切线;(2)若CD=3,∠CAD=30°,求⊙O的半径.24. (满分9分) 学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.25. (满分11分) 在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.图1 图226. (满分13分) 如图,已知抛物线)0(2≠++=a c bx ax y 的对称轴为直线1-=x ,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线n mx y +=经过B 、C 两点,求抛物线和直线BC 的解析式;(2)在抛物线的对称轴x =1-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =1-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.备用图1备用图2参考答案二、填空题(本大题共5小题,每小题3分,共15分) 15. < 16.6 17. 40° 18. 4319. 15 三、解答题 20.(满分7分)解:原式221(1)2[]11(1)x x x x x --=-÷--- -----------------------3分 221(1)(1)12x x x x ---=--g ----------------------------5分(1)x x =--2x x =-+ ---------------------------------7分-------------------------------------------------------------------------------------------------------------- 21. (满分7分)解:(1)60 ------------2分(2)60﹣12﹣9﹣6﹣24=9, -----------------3分 补图所示:----------------4分(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.-----------------------7分22. (满分7分)解:由题意可得,α=30°,β=60°,AD=100米,∠ADC=∠ADB=90°,∴在Rt△ADB中,α=30°,AD=100米,∴tanα===,∴BD=米,------------2分在Rt△ADC中,β=60°,AD=100米,∴tanβ=,--------------------------4分∴CD=100米,∴BC=BD+CD=米,即这栋楼的高度BC是米.------------------------7分--------------------------------------------------------------------------------------------------------------- 23. (满分9分)(1)证明:连接OC,因为OA=OC,所以∠BAC=∠ACO.------------------------1分因为∠BAC=∠CAD,故∠ACO=∠CAD.------------------------2分所以OC∥AD,又已知AD丄MN,所以OC丄MN,所以,直线MN是⊙O的切线;------------------------4分(2)解:已知AB是⊙O的直径,则∠ACB=90°,又AD丄MN,则∠ADC=90°.因为CD=3,∠CAD=30°,所以AD=3,AC=6 -------------------------5分在Rt△ABC和Rt△ACD中,∠BAC=∠CAD,所以Rt△ABC∽Rt△ACD,---------------------------7分则,则AB=4,所以⊙O的半径为2.----------------------------9分---------------------------------------------------------------------------------------------------------------24. (满分9分) 解:(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据题意,得:⎩⎨⎧=+=+2923263y x y x 解得:⎩⎨⎧==75y x答:一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元。
2019年山东省临沂市沂南县八校联考中考数学模拟试卷(6月份)解析版
( 1)本次调查共抽取了多少名学生?
( 2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;
( 3)若海静中学共有 1500 名学生,请你估计该中学最喜爱律师职业的学生有多少名?
22.(7 分)如图,热气球探测器显示,从热气球 A 处看一栋楼顶部 B 处的仰角为 30°,看 这栋楼底部 C 处的俯角为 60°,热气球与楼的水平距离 AD 为 100 米,试求这栋楼的高 度 BC.
某一反比例函数 y= 图象上移动,则 k 的值为(
)
B 也在
A .﹣ 4
B.4
C.﹣ 2
二、填空题(本题共 5 小题,每小题 3 分,共 15 分)
D.2
15.( 3 分)比较大小:
1(填“<”或“>”或“=” ).
16.( 3 分)若 a﹣ b= 2, a+b=3,则 a2﹣ b2=
.
17.( 3 分)如图,在△ ABC 中,∠ ACB= 90°,沿 CD 折叠△ CBD ,使点 B 恰好落在 AC
边上的点 E 处.若∠ A= 25°,则∠ ADE=
°.
18.( 3 分)如图,在 Rt△ ABC 中,∠ ACB =90°, AC= 8, BC= 6, CD⊥AB ,垂足为 D,
则 tan∠ BCD 的值是
.
19.( 3 分)观察下列各式及其展开式
(
a+b)
2=
a2+2
2
ab+b
(
a+b)
3=
a3+3
23.( 9 分)如图, AB 是 ⊙ O 的直径, C 是 ⊙ O 上的一点,直线 MN 经过点 C,过点 A 作直 线 MN 的垂线,垂足为点 D ,且∠ BAC=∠ CAD . ( 1)求证:直线 MN 是 ⊙O 的切线; ( 2)若 CD = 3,∠ CAD = 30°,求 ⊙O 的半径.
2019沂南九年级数学一模
2018-2019学年度下学期期中教学质量检测九年级数学试题注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共8页.共120分.考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,只将答题卡收回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.-4的相反数是A .4B .-4C .14-D . 142.如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE =40°,则∠FGA 的度数为A .40°B .50°C .130°D .140° 3.下列运算正确的是 A .84a a ÷=2aB .32()a =6aC .23a a ⋅=6aD .44a a +=82a 4.如图所示的几何体的左视图是5.不等式组21102x x x +⎧⎪⎨-<⎪⎩≥的解集在数轴上表示正确的是A .B .C .D .(第2题图)6.如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为A .30°B .36°C .54°D .72°7. 某校举行以“唱响青春”为主题的演讲比赛.决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学得前两名的概率是A .21 B .31 C .41 D .61 8.学校为了了解学生课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:读书时间(小时)7 8 9 10 11 学生人数610987则该班学生一周读书中位数和众数分别是A .9,8B .9,9C .9.5,9D .9.5,89.如图,若△ABC 内接于半径为r 的⊙O ,且 ∠A =60°,连接OB 、OC ,则边BC 的长为A .rB . 3rC .2rD .3r10.“绿水青山就是金山银山”.某村承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面方程正确的是A .()606030125x x -=+% B .()606030125x x -=+% C . ()601256030x x +-=% D .()601256030x x+-=% (第6题图)ABCO(第9题图)(第14题图)11.已知函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是 A .当a =1时,函数图象经过点(-1,0) B .当a =-2时,函数图象与x 轴没有交点 C .若a <0,函数图象的顶点始终在x 轴的下方D .若a >0,则当1x ≥时,y 随x 的增大而增大123,…,3,…若1,4),的位置记为(2,3),则这组数中最大的有理数的位置记为A .(5,2)B .(5,3)C .(6,2)D .(6,5)13.如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使点B 落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长交AD 于点Q .给出以下结论:①四边形AECF 为平行四边形;②∠PBA =∠APQ ;③△FPC 为等腰三角形;④△APB ≌△EPC .其中正确结论为A .①②B .①②③C .①③④D .②③ 14.如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 反比例函数y =kx(k ≠0,x >0点C ,D .若点C 的横坐标为5,BE =3DE ,则k 的值为A .52 B .154C .3D .5 第Ⅱ卷(非选择题 共78分)QPDF E ACB(第13题图)注意事项:1.第Ⅱ卷分填空题和解答题. 2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、 填空题 (本大题共5个小题.每小题3分,共15分)15. 因式分解: ()()24aa b a b ---=______ .16.如图,Y ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若AB =8,ta n ∠ACB =23,则BD 的长是_________.17.化简:12121222222-÷⎪⎪⎭⎫ ⎝⎛+----+a a a a a a a a a = . 18.如图,矩形ABOC 的顶点A 的坐标为)5,4(-,D 是OB 的中点,E 是OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是 .19.对于给定的两个函数,任取自变量x 的一个值,当x<0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y =x -1,它的相关函数为()()1010x x y x x -+<⎧⎪=⎨-≥⎪⎩. 已知二次函数2142y x x =-+-,当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值为__ ___.三、解答题(本大题共7小题,共63分) 20.(本小题满分7分)计算:111()27223--+⨯4-3cos30°23--21.(本小题满分7分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、(第16题图)(第18题图)C夹球跑、跳大绳、绑腿跑和拔河赛五种.为了解学生对这五项运动的喜欢情况,随机调查了该校a 名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如下不完整的统计图表:项目 学生数(名)百分比(%) 袋鼠跳 45 15 夹球跑 30 c 跳大绳 75 25 绑腿跑 b m 拔河赛9030根据图表中提供的信息,解答下列问题:(1)a =____________,b =_______,c =_______. (2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;22.(本小题满分7分)如图所示,在某海域,一艘指挥船在C 处收到渔船在B 处发出的求救信号,经确定,遇险抛锚的渔船所在的B 处位于C 处的南偏西45°方向上,且BC =60海里;指挥船搜索发现,在C 处的南偏西60°方向上有一艘海监船A ,恰好位于B 处的正西方向.于是命令海监船A 前往救援,已知海监船A 的航行速度为30海里/小时,问渔船在B 处需要等待多长时间才能得到海监船A 的救援?(参考数据:2≈1.41,3≈1.73,6≈2.45,结果精确到0.1小时)23.(本小题满分9分)(第22题图)学生数(名)090753045306090学生最喜欢的活动项目的人数条形统(第21题图)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)求证DE是⊙O切线;(2)过点D作DF⊥AB于点F,若BE =33,DF =3,求图中阴影部分的面积.24.(本小题满分9分)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填l1或l2);甲的速度是km/h,乙的速度是km/h;(2)甲出发多少小时两人恰好相距5km?25.(本小题满分11分)(第24题图)(第23题图)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合)。
精品解析:2019年山东省临沂市沂南县八校联考中考数学模拟试卷(解析版)
山东省临沂市沂南县八校联考2019年中考模拟数学试卷(6月份)一、选择题(本大题共14小题,每小题3分,共42分)1.23的倒数是()A. 32B. -32C.23D. -23【答案】A【解析】【分析】直接根据倒数的定义进行解答即可.【详解】∵23×32=1,∴23的倒数是32.故选:A.【点睛】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.2.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A. 34°B. 54°C. 66°D. 56°【答案】D【解析】分析】首先根据垂线的性质可得∠CED为直角,然后根据平角为180°即可求得∠CEB的度数;接下来再根据两直线平行,内错角相等.【详解】∵DE⊥CE,∴∠CED=90°,∴∠BEC=180°-∠CED-∠1=180°-34°-90°=56°.∵AB∥CD,∴∠DCE=∠CEB=56°.故答案选:D.【点睛】本题考查的知识点是两直线平行,内错角相等,垂线的定义及性质,解题的关键是熟练的掌握两直线平行,内错角相等,垂线的定义及性质.3.下列计算正确的是()A. x2+x2=x4B. 2x3﹣x3=x3C. x2•x3=x6D. (x2)3=x5【答案】B【解析】【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则分别化简求出答案.【详解】解:A、x2+x2=2x2,故此选项错误;B、2x3﹣x3=x3,正确;C、x2•x3=x5,故此选项错误;D、(x2)3=x6,故此选项错误;故选:B.【点睛】此题主要考查了合并同类项以及同底数幂的乘法运算和幂的乘方运算等知识,正确掌握相关运算法则是解题关键.4.不等式组10420xx-≥⎧⎨->⎩的解集在数轴上表示为()A.B.C.D.【答案】D 【解析】解:10420xx-≥⎧⎨->⎩①②,由①得,x≥1;由②得,x<2,故此不等式组的解集为:1≤x<2.在数轴上表示为:故选D.点睛:本题考查的是在数轴上表示不等式的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.5.下面所给几何体的俯视图是()A. B. C. D.【答案】B【解析】【分析】直接利用俯视图的观察角度从上往下观察得出答案.【详解】解:由几何体可得:圆锥的俯视图是圆,且有圆心.故选:B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A. 12B.13C.16D.19【答案】B【解析】【分析】先画树状图(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)展示所有9种可能的结果数,再找出小波和小睿选到同一课程的结果数,然后根据概率公式求解.【详解】画树状图为:(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)共有9种可能的结果数,其中小波和小睿选到同一课程的结果数为3,所以小波和小睿选到同一课程的概率=31 =93.故选B.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7. 某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A. 4﹣6小时B. 6﹣8小时C. 8﹣10小时D. 不能确定【答案】B【解析】试题分析:100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选B.考点:中位数;频数(率)分布直方图;数形结合.8. 如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A. 18°B. 36°C. 60°D. 72°【答案】D【解析】试题分析:由题意得∠BOC=2∠A=72°.故选D.考点:圆周角定理.9.正多边形的一个内角为135°,则该多边形的边数为()A. 5B. 6C. 7D. 8【答案】D【解析】解:∵正多边形的一个内角为135°,∴外角是180﹣135=45°.∵360÷45=8,则这个多边形是八边形.故选D.10.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()A. 304015x x=+B.304015x x=-C.304015x x=-D.304015x x=+【答案】A【解析】【分析】设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据甲车行驶30千米与乙车行驶40千米所用时间相同,列方程.【详解】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,由题意得,3040 x15x=+故选:A.【点睛】本题考查了由实际问题中的路程问题,解答本题的关键是读懂题意,明确路程问题中的数量关系,设出未知数,找出合适的等量关系,列方程.11.如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论中不一定成立的是()A. ∠BAC=∠DACB. AC=BDC. AC⊥BDD. OA=OC【答案】B【解析】【分析】根据菱形的性质逐项分析即可得到问题答案.【详解】解:由菱形的性质:菱形具有平行四边形的一切性质可知OA=OC,故选项D成立;由菱形的性质:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角可知选项A,C成立;所以B不一定正确.故选:B.【点睛】本题考查菱形的性质,属于基础题,比较容易解答,关键是掌握菱形的定义与性质.12.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A. 56B. 58C. 63D. 72【答案】B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.考点:规律题13.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A. 4个B. 3个C. 2个D. 1个【答案】B 【解析】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x =﹣2ba=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误; ∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故答案为:①②⑤.点睛:本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b2﹣4ac <0时,抛物线与x 轴没有交点.14.如图,点A 是反比例函数y =1x(x >0)上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB =2OA ,连接AB ,当点A 在反比例函数图象上移动时,点B 也在某一反比例函数y =kx图象上移动,则k 的值为( )A. ﹣4B. 4C. ﹣2D. 2 【答案】A【解析】解:∵点A是反比例函数1yx=(x>0)上的一个动点,∴可设A(x,1x),∴OC=x,AC=1x,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∵OB=2OA,∴12AC OC AOOD BD BO===,∴OD=2AC=2x,BD=2OC=2x,∴B(﹣2x,2x),∵点B反比例函数kyx=图象上,∴k=﹣2x•2x=﹣4,故选A.点睛:本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A点坐标表示出B点坐标是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)15._____1(填“<”或“>”或“=”).【答案】<【解析】0.62,0.62<1,1; 故答案为:<.16.若a ﹣b =2,a +b =3,则a 2﹣b 2=_____. 【答案】6 【解析】分析:把22a b -用平方差公式分解因式,然后把2,3a b a b -=+=整体代入计算即可. 详解:∵2,3a b a b -=+=, ∴22a b - =(a b -)( a b +) =2×3 =6.故答案为:6.点睛:本题考查了平方差公式因式分解和整体代入法求代数式的值,解答本题的关键是把22a b -用平方差公式分解因式.17.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =25°,则∠ADE =_____°.【答案】40 【解析】 【分析】根据三角形内角和定理可得∠B =65°,再由折叠可得∠CED 的度数,再根据三角形外角的性质可得∠EDA 的度数.【详解】解:∵在△ABC 中,∠ACB =90°,∠A =25°, ∴∠B =180°﹣90°﹣25°=65°,根据折叠可得∠CED=65°,∴∠EDA=65°﹣25°=40°,故答案为:40.【点睛】此题主要考查了三角形内角和定理,以及三角形外角的性质,关键是掌握三角形内角和是180°.18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是_____.【答案】3 4【解析】试题分析:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A=68BCAC.故答案:34.考点:解直角三角形.【此处有视频,请去附件查看】19.观察下列各式及其展开式(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)6的展开式第三项的系数是_____,(a﹣b)4的系数和是_____.【答案】(1). 15 (2). 0【解析】【分析】根据题意得出n次幂展开项的系数规律,分别表示出(a+b)6与(a﹣b)4的展开式,得到所求即可.【详解】解:(a+b)2=a 2+2ab+b 2(a+b)3=a 3+3a 2b+3ab 2+b 3(a+b)4=a 4+4a 3b+6a 2b 2+4ab 3+b 4(a+b)5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5得到(a+b)6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6,(a ﹣b)4=a 4﹣4a 3b+6a 2b 2﹣4ab 3+b 4,则(a+b)6的展开式第三项的系数是15,(a ﹣b)4的系数和是0,故答案为:15;0【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、解答题(本大题共7小题,共63分) 20.2121121x x x x x -⎛⎫⎛⎫-+÷ ⎪ ⎪--+⎝⎭⎝⎭. 【答案】﹣x 2+x .【解析】【分析】根据分式的减法和除法可以解答本题. 【详解】解:2121121x x x x x -⎛⎫⎛⎫-+÷ ⎪ ⎪--+⎝⎭⎝⎭ 21(x 1)(x 1)(x 1)x 1x 2----=⋅-- 22121(1)12x x x x x -+--=⋅-- 2(2)(1)12x x x x x ---=⋅-- =﹣x(x ﹣1)=﹣x 2+x .【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.21. 海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【答案】(1)60;(2)9,图形见解析;(3)150.【解析】试题分析:(1)用演员人数除以演员所占百分比可得到共抽取了学生总数;(2)用总数减去其他的人数可得出教师职业的人数,再补全统计图;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.试题解析:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)(名)答:该中学最喜爱律师职业的学生有150名.考点:1条形统计图;2扇形统计图;3样本估计总体.22.如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .【答案】这栋楼高度BC 【解析】 试题分析:在直角三角形ADB 中和直角三角形ACD 中,根据锐角三角函数中的正切可以分别求得BD 和CD 的长,从而可以求得BC 的长.试题解析:解:∵90ADB ADC ∠∠==°,30BAD ∠=°,60CAD ∠=°,AD =100, ∴在Rt ABD 中,tan BD AD BAD ⋅∠= 在Rt ACD 中,tan CD AD CAD ⋅∠==.∴3BC BD CD =+=. 点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.23. 如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠CAD.(1)求证:直线MN是⊙O的切线;(2)若CD=3,∠CAD=30°,求⊙O的半径.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接OC,易证∠OCA=∠OAC=∠CAD,从而OC∥AD,推出OC⊥MN,可得出直线MN 是⊙O的切线;(2)由条件在Rt△ADC中,可求得AD、AC的长,易证△ADC∽△ACB,利用对应边成比例求出AB的长,半径即可求出.试题解析:(1)证明:连接OC,∵OA=OC,∴∠BAC=∠ACO.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠ACO=∠CAD.∽OC∥AD,又∵AD丄MN,∴OC丄MN,∴直线MN是⊙O的切线;(2)解:∵AB 是⊙O的直径,∴∠ACB=90°.∵AD丄MN,∴∠ADC=90°.∵CD=3,∠CAD=30°,∴AD=6,.∵∠BAC=∠CAD,∠ACB=∠ADC,∴△ABC∽△ACD,∴=,∴,AB=4,∴⊙O的半径为2.考点:1切线的判定;2解直角三角形;3相似三角形;4等腰三角形.24.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B 型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【答案】(1)一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)当购买A型灯37只,B 型灯13只时,最省钱.【解析】试题分析:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意列方程组,解方程组即可;(2)设购进A型节能灯m只,总费用为w元,根据题意求出w与x的函数关系式,再求得m 的取值范围,根据一次函数的性质确定最省钱方案即可.试题解析:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元.依题意得,解得.所以一只A型节能灯的售价是5元,一只B型节能灯的售价是7元.(2)设购进A型节能灯m只,总费用为w元,依题意得w=5m+7(50-m)=-2m+350,因-2<0,∴当m取最大值时w有最小值.∵m≤3(50-m),解得m≤37.5.而m为整数,∴当m=37时,w最小=-2×37+350=276.此时50-37=13.所以最省钱的购买方案是购进A型节能灯37只,B型节能灯13只.考点:二元一次方程组的应用;一次函数的应用.【此处有视频,请去附件查看】25.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE 的长.【答案】(1)理由见解析;【解析】(1)延长EB交DG于点H,先证出Rt△ADG≌Rt△ABE,得出∠AGD=∠AEB,﹢根据∠HBG=∠EBA,得出∠HGB+∠HBG=90°即可;(2)过点A作AP⊥BD交BD于点P,根据△DAG≌△BAE得出DG=BE,∠APD=90°,求出AP、DP,利用勾股定理求出PG,﹢根据DG=DP+PG求出DG,最后根据DG=BE即可得出答案.解:(1)如解图①所示,延长EB交DG于点H.∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB.在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°.在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,即DG⊥BE(2)如解图②,连结DG,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°.∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE.在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴DG=BE.∵BD为正方形ABCD的对角线,∴∠MDA=45°.在Rt△AMD中,∠MDA=45°,∵AD=2,∴DM=AM=,在Rt△AMG中,根据勾股定理得:GM==.∵DG=DM+GM=+,∴BE=DG=+26.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【答案】(1)抛物线解析式为y=﹣x2﹣2x+3,直线的解析式为y=x+3;(2)当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1或(﹣1).【解析】【分析】()1先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y mx n =+,解方程组求出m 和n 的值即可得到直线解析式;()2设直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小.把1x =-代入直线3y x =+得y 的值,即可求出点M 坐标;()3设()1,P t -,又因为()3,0B -,()0,3C ,所以可得218BC =,2222(13)4PB t t =-++=+,2222(1)(3)610PC t t t =-+-=-+,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.【详解】解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解之得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线解析式为y =﹣x 2﹣2x +3∵对称轴为x =﹣1,且抛物线经过A (1,0),∴把B (﹣3,0)、C (0,3)分别代入直线y =mx +n ,得303m n n -+=⎧⎨=⎩ , 解之得:13m n =⎧⎨=⎩, ∴直线y =mx +n 解析式为y =x +3;(2)设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小.把x =﹣1代入直线y =x +3得,y =2,∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);(3)设P (﹣1,t ),又∵B (﹣3,0),C (0,3),∴BC 2=18,PB 2=(﹣1+3)2+t 2=4+t 2,PC 2=(﹣1)2+(t ﹣3)2=t 2﹣6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2﹣6t +10解之得:t =﹣2;②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2﹣6t +10=4+t 2解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2﹣6t +10=18解之得:t 1=32+,t 2=32-;综上所述P 的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1或(﹣1. 【点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.。
∥3套精选试卷∥临沂市2018-2019中考数学考前模拟题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5 B.6 C.7 D.8【答案】B【解析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=12AB=7在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+(7)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键2.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC【答案】D【解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.熟悉掌握锐角三角函数的定义是关键.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()()22a b a b a b -=+- 【答案】D 【解析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【详解】阴影部分的面积相等,即甲的面积=a 2﹣b 2,乙的面积=(a+b )(a ﹣b ).即:a 2﹣b 2=(a+b )(a ﹣b ).所以验证成立的公式为:a 2﹣b 2=(a+b )(a ﹣b ).故选:D .【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.4.如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若PM =2.5cm ,PN =3cm ,MN =4cm ,则线段QR 的长为( )A .4.5cmB .5.5cmC .6.5cmD .7cm【答案】A 【解析】试题分析:利用轴对称图形的性质得出PM=MQ ,PN=NR ,进而利用PM=2.5cm ,PN=3cm ,MN=3cm ,得出NQ=MN-MQ=3-2.5=2.5(cm ),即可得出QR 的长RN+NQ=3+2.5=3.5(cm ).考点:轴对称图形的性质5.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A .125B .95C .65D .165【答案】A【解析】连接AM ,根据等腰三角形三线合一的性质得到AM ⊥BC ,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长.【详解】解:连接AM ,∵AB=AC ,点M 为BC 中点,∴AM ⊥CM (三线合一),BM=CM ,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt △ABM 中,AB=5,BM=3,∴根据勾股定理得:AM=22AB BM - = 2253-=4,又S △AMC =12MN•AC=12AM•MC , ∴MN=·AM CM AC= 125 . 故选A .【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.6.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+6【答案】D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D 方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m【答案】D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.8.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是(). A.m>-1且m≠0B.m<1且m≠0C.m<-1 D.m>1【答案】A【解析】∵一元二次方程mx2+2x-1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故选A.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.9.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.【答案】D【解析】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.10.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【答案】B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;2x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.二、填空题(本题包括8个小题)11.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.【答案】1【解析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12∠ACB=1°.【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=12∠ACB=1°,故答案为1.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.12.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】4 yx【解析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=kx,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=4x,故答案为y=4 x .【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.13.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).【答案】1002.【解析】解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=22AN=1002(米),故答案为1002.点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.14.函数y x的取值范围是_________.【答案】x≤1且x≠﹣1【解析】由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:2020xx-≥⎧⎨+≠⎩,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)1.【解析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案为a(a﹣b)1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.当x为_____时,分式3621xx-+的值为1.【答案】2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.17.计算:=_________ .【解析】利用平方差公式求解,即可求得答案. 【详解】()()5353+-=(5)2-(3)2=5-3=2. 故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.18.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于O ,A 两点,点A 的坐标为(6,0),⊙P 的半径为13,则点P 的坐标为_______.【答案】(3,2).【解析】过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案.【详解】过点P 作PD ⊥x 轴于点D ,连接OP ,∵A (6,0),PD ⊥OA ,∴OD=12OA=3, 在Rt △OPD 中 ∵13 OD=3,∴PD=2∴P(3,2) .故答案为(3,2).【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三、解答题(本题包括8个小题)19.如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=,求DMC ∠的度数.【答案】阅读发现:90°;(1)证明见解析;(2)100°【解析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=,即可证明. 拓展应用:()1欲证明ED FC =,只要证明ADE ≌DFC △即可. ()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=, ADE ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=,15DFC DCF ADE AED ∴∠=∠=∠=∠=,601575FDE ∴∠=+=,90MFD FDM ∴∠+∠=,90FMD ∴∠=,故答案为90()1ABE 为等边三角形,60EAB ∴∠=,EA AB =. ADF 为等边三角形,60FDA ∴∠=,AD FD =.四边形ABCD 为矩形,EA DC ∴=.150EAD EAB BAD ∠=∠+∠=,150CDF FDA ADC ∠=∠+∠=,EAD CDF ∴∠=∠.在EAD 和CDF 中,AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴≌CDF .ED FC ∴=;()2EAD ≌CDF ,20ADE DFC ∴∠=∠=,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=.【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.20.先化简,再求值:22144(1)1a a a a a-+-÷--,其中a 是方程a (a+1)=0的解. 【答案】13【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【详解】解:原式=()()2a a 1a 11a 1a 2---⨯-- =a a 2- ∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0,∴a=-1,将a=-1代入a a 2-得, 原式=13【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.21.如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:125,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).【答案】(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,∴1512125DEEC==,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=ABAC,∴2=ABAC,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.22.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.【答案】(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.【解析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF 是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,在△ADE和△CBF中,{AD BC A C AE CF=∠=∠=,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四边形BEDF是平行四边形,连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.【点睛】1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定23.如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B .求证:AD 是⊙O 的切线.若BC=8,tanB=12,求⊙O 的半径.【答案】(1)证明见解析;(2)35r =. 【解析】(1)连接OD ,由OD=OB ,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r ,利用锐角三角函数定义求出AB 的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【详解】(1)证明:连接OD ,OB OD =,3B ∴∠=∠,1B ∠=∠,13∴∠=∠,在Rt ACD ∆中,1290∠+∠=︒,()41802390∴∠=︒-∠+∠=︒,OD AD ∴⊥,则AD 为圆O 的切线;(2)设圆O 的半径为r ,在Rt ABC ∆中,tan 4AC BC B ==,根据勾股定理得:224845AB =+=,45OA r ∴=-,在Rt ACD ∆中,1tan 1tan 2B ∠==, tan 12CD AC ∴=∠=,根据勾股定理得:22216420AD AC CD =+=+=,在Rt ADO ∆中,222OA OD AD =+,即()224520r r -=+,解得:35r =. 【点睛】 此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键. 24.如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且OA=AB .求双曲线的解析式;求点C 的坐标,并直接写出y 1<y 2时x 的取值范围.【答案】(1)24y x=;(1)C (﹣1,﹣4),x 的取值范围是x <﹣1或0<x <1. 【解析】(1)作高线AC ,根据等腰直角三角形的性质和点A 的坐标的特点得:x=1x ﹣1,可得A 的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C 的坐标,根据图象可得结论.【详解】(1)∵点A 在直线y 1=1x ﹣1上,∴设A (x ,1x ﹣1),过A 作AC ⊥OB 于C ,∵AB ⊥OA ,且OA=AB ,∴OC=BC ,∴AC=12OB=OC , ∴x=1x ﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.25.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?【答案】(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,21204140k bk b+=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为:y =10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.26.如图,已知点D 在△ABC 的外部,AD ∥BC ,点E 在边AB 上,AB•AD =BC•AE .求证:∠BAC =∠AED ;在边AC 取一点F ,如果∠AFE =∠D ,求证:AD AF BC AC=.【答案】见解析【解析】(1)欲证明∠BAC =∠AED ,只要证明△CBA ∽△DAE 即可;(2)由△DAE ∽△CBA ,可得AD DE BC AC =,再证明四边形ADEF 是平行四边形,推出DE =AF ,即可解决问题;【详解】证明(1)∵AD ∥BC ,∴∠B =∠DAE ,∵AB·AD =BC·AE ,∴AB BC AE AD=, ∴△CBA ∽△DAE ,∴∠BAC =∠AED .(2)由(1)得△DAE∽△CBA∴∠D=∠C,AD DE=,BC AC∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴AD AF=.BC AC【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=kx的图象恰好经过点A′、B,则k 的值是()A.9 B.133C.16915D.33【答案】C【解析】设B(2k,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k=xy建立方程求k.【详解】如图,过点C作CD⊥x轴于D,过点A′作A′G⊥x轴于G,连接AA′交射线OC于E,过E作EF⊥x 轴于F,设B(2k,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC222232OD CD++13由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=AE CDOA OC=,∴AE=213213kCD OAOC⨯⋅==,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE=EF ODAE OC==sin∠OCD,∴EF=133131313OD AEkOC⋅==,∵cos ∠OAE =AF CD AE OC ==cos ∠OCD , ∴1321313CD AF AE k k OC =⋅=⨯=, ∵EF ⊥x 轴,A′G ⊥x 轴,∴EF ∥A′G ,∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==, ∴14521326OG OA AG k k k =-=-=, ∴A′(526k ,613k ), ∴562613k k k ⋅=, ∵k≠0,∴169=15k , 故选C .【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B 的坐标,表示出点A′的坐标.2.已知函数y =ax 2+bx+c 的图象如图所示,则关于x 的方程ax 2+bx+c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根【答案】A 【解析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax 2+bx+c ﹣4=0的根的情况即是判断函数y =ax 2+bx+c 的图象与直线y =4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y =4与抛物线只有一个交点,∴方程ax 2+bx+c ﹣4=0有两个相等的实数根,故选A .【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键. 3.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵【答案】D 【解析】试题解析:A 、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A 正确;B 、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B 正确;C 、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C 正确;D 、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D 不正确.故选D .考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.4.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40【答案】D【解析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.5.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是()A.70︒B.65︒C.60︒D.55︒【答案】B【解析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故选B.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.6.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.【答案】C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y=308x⨯=240x,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x-1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x-1)=13【答案】A【解析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.8.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B2C.32D.42【答案】A【解析】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=42,∴AG=22AB BG-=2,∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.9.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6【答案】D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.10.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【答案】B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定二、填空题(本题包括8个小题)11.因式分解:3x2-6xy+3y2=______.【答案】3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用12.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.【答案】3.1或4.32或4.2【解析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴22AB BC=5,S△ABC=12AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=APAC•S△ABC=35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC 的高BD ,则BD=·34 2.45AB BC AC ⨯==, ∴AD=DP=223 2.4-=1.2,∴AP=2AD=3.1,∴S 等腰△ABP =AP AC •S △ABC =3.65×1=4.32; ③当CB=CP=4时,如图3所示,S 等腰△BCP =CP AC •S △ABC =45×1=4.2; 综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.13.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围. 【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠1,故答案为m >2且m≠1.14.已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n m m n += . 【答案】225-. 【解析】试题分析:由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解.试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-.∴原式=22m nmn+=2()2m n mnmn+-=2522()223553-⨯-=--,故答案为225-.考点:根与系数的关系.15.若|a|=20160,则a=___________.【答案】±1【解析】试题分析:根据零指数幂的性质(01(0)a a=≠),可知|a|=1,座椅可知a=±1.16.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。
2024年山东省临沂市沂南县中考数学第一次模拟试题(含答案与解析)_2108
2024年山东省临沂市沂南县中考第一次模拟考试数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页.满分120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将区县、毕业学校、姓名、考试号、座号填写在 答题卡和试卷规定的位置上,并核对监考教师粘贴的考号条形码是否与本人信息一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动, 用橡皮擦干净后,再选涂其他答案标号.答案不能写在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应 的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;需要在答题卡上作图时,可用2B 铅笔,但必须把所画线条加黑.4.答案不能使用涂改液、胶带纸、修正带修改.不按以上要求作答的答案无效.不允许使用计算器.第Ⅰ卷(选择题 共48分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超过一个,均记0分.1. 计算()()35-+-的结果是( ) A. 8- B. 2- C. 2+ D. 82. 下列计算中,正确是( )A. 336x x x +=B. 326x x x ⋅=C. ()326x x -=-D. ()239x x -= 3. 如图,一块含角的直角三角板ABC 的直角顶点A 在直线DE 上,且BC //DE ,则CAE ∠等于( )A. 30︒B. 45︒C. 60︒D. 90︒4. 如图是一个由6个相同的正方体组成的立体图形,它的主视图是( )的A. B. C. D. 5. 下列运算正确的是( )A. ()22525a a -=-B. 426x x x +=C. ()232482--=--b a b ab bD. ()3263x y x y = 6. 正十边形的外角和为( ) A. 180° B. 360° C. 720° D. 1440°7. 如图,将置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A'OB'.已知∠AOB=30°,∠B=90°,AB=1,则B'点的坐标为 ( )A. 32⎫⎪⎪⎭B. 32⎛ ⎝ C12⎛ ⎝D. 12⎫⎪⎪⎭8. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边正方形EFGH 的周长为( )A.B.C. 1+D. 19. 如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF和弧.DF ,连接AD ,则图中阴影部分面积是( )A. πB. 54πC. 3+πD. 8﹣π10. 如图,正方形ABCD 边长为4,点E 在对角线BD 上,且BAE 22.5°∠=,EF ⊥AB ,垂足为F ,则EF 的长为A. 1B.C. 4-D. 4-11. 如图,已知顶点为(﹣3,﹣6)抛物线y =ax 2+bx +c 经过点(﹣1,﹣4),则下列结论中错误的是( )A. b 2>4acB. ax 2+bx +c ≥﹣6C. 若点(﹣2,m ),(﹣5,n )在抛物线上,则m >nD. 关于x 的一元二次方程ax 2+bx +c =﹣4的两根为﹣5和﹣112. 如图,Rt △ABC 中∠C=90°,∠BAC=30°,AB=8,以DEFG 的一边GD 在直线AB 上,且点D 与点A 重合,现将正方形DEFG 沿A ﹣B 的方向以每秒1个单位的速度匀速运动,当点D 与点B 重合时停止,则在这个运动过程中,正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( )的的A. B. C. D.二、填空题(共5小题,每小题4分,满分20分)13. 如图,正方形二维码的边长为2cm ,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm 2.14. 如图,电线杆的顶上有一盏高为6 m 的路灯,电线杆底部为A ,身高1.5 m 的男孩站在与点A 相距6 m 的点B 处.若男孩以6 m 为半径绕电线杆走一圈,则他在路灯下的影子BC 扫过的面积为___m 2.15. 如图,点B 是反比例函数k y x=(0x >)图象上一点,过点B 作x 轴的平行线,交y 轴于点A ,点C 是x 轴上一点,△ABC 的面积是2,则k =______.16. 如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上一个动点,当PAB ∆的周长最小时,PAB S ∆=_.的17. 已知O 的直径AB 为4cm ,点C 是O 上的动点,点D 是BC 的中点,AD 延长线交O 于点E ,则BE 的最大值为_______________.三、解答题(共7小题,共70分)18. 先化简,再求值:2223226939a a a a a a a --+÷-+--并在2,3,-3,4这四个数中取一个合适的数作为a 的值代入求值.19. 如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠C =∠D . (1)求证:四边形BCED 是平行四边形;(2)已知DE =3,连接BN ,若BN 平分∠DBC ,求CN 的长.20. 关于体育选考项目统计图 项目 频数 频率 A80 b B c 0.3C20 0.1D40 0.2合计a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.a,b=,c=.表中=(2)如果有3万人参加体育选考,会有多少人选择篮球?21. 如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)22. 在□ABCD中,经过A、B、C三点的⊙O与AD相切于点A,经过点C的切线与AD的延长线相交于点P,连接AC.(1)求证:AB=AC;(2)若AB=4,⊙O PD的长.23. 已知在Rt △ABC 中,∠ABC=90°,AB=BC ,将△ABC 绕点A 逆时针方向旋转,得到△ADE ,旋转角为α(0°<α<90°),直线BD 与CE 交于点F .(1)如图1,当α=45°时,求证:CF=EF ;(2)如图2,在旋转过程中,当α为任意锐角时,① ∠CFB 的度数是否变化?若不变,请求出它的度数;② 结论“CF=EF”,是否仍然成立?请说明理由.24. 已知,抛物线y =-12x 2 +bx+c 交y 轴于点C (0,2),经过点Q (2,2).直线y =x+4分别交x 轴、y 轴于点B 、A. (1)直接填写抛物线的解析式________;(2)如图1,点P 为抛物线上一动点(不与点C 重合),PO 交抛物线于M ,PC 交AB 于N ,连MN. 求证:MN∥y 轴;(3)如图,2,过点A 的直线交抛物线于D 、E ,QD 、QE 分别交y 轴于G 、H.求证:CG •CH 为定值.参考答案一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超过一个,均记0分.1. 计算()()35-+-的结果是( ) A. 8-B. 2-C. 2+D. 8 【答案】A【解析】【分析】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键,根据有理数加法法则计算即可得答案【详解】解:()()()35358-+-=-+=-,故选A2. 下列计算中,正确的是( )A. 336x x x +=B. 326x x x ⋅=C. ()326x x -=-D. ()239x x -=【答案】C【解析】【分析】本题考查了合并同类项、同底数幂的乘法、幂的乘方,根据合并同类项、同底数幂的乘法、幂的乘方的运算法则逐项判断即可,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】解:A 、3332x x x +=,故原选项计算错误,不符合题意;B 、325x x x ×=,故原选项计算错误,不符合题意;C 、()326x x -=-,故原选项计算正确,符合题意; D 、()236x x -=,故原选项计算错误,不符合题意; 故选:C .3. 如图,一块含角的直角三角板ABC 的直角顶点A 在直线DE 上,且BC //DE ,则CAE ∠等于( )A. 30︒B. 45︒C. 60︒D. 90︒【答案】A【解析】 【详解】解:由图可知∠C =30︒,又∵BC //DE ,∴∠∠=30CAE C =︒.故选A .【点睛】本题考查了平行线的性质,解决此题的关键是熟练运用平行线的性质.4. 如图是一个由6个相同的正方体组成的立体图形,它的主视图是( )A. B. C. D.【答案】B【解析】【分析】找到从前面看所得到的图形即可.【详解】解:从前面看可得到从左到右第1列有1个正方形,第2列有个1正方形,第3列有个2正方形, 故选B .【点睛】本题考查了三视图的知识,主视图是指从前面看所得到的图形.5. 下列运算正确的是( )A. ()22525a a -=-B. 426x x x +=C. ()232482--=--b a bab b D. ()3263x y x y =【答案】D【解析】 【分析】根据完全平方公式,合并同类项,单项式乘以多项式,积的乘方等运算法则分别计算,分别判断即可.【详解】解:A 、()2225102525a a a a -=-+≠-,本选项不符合题意;B 、4x 与2x 不是同类项,不能合并,本选项不符合题意;C 、()233248282b a bab b ab b --=-+≠--,本选项不符合题意; D 、()3263x y x y =,本选项符合题意;故选:D .【点睛】本题考查了完全平方公式,合并同类项,单项式乘以多项式,积的乘方等知识点,熟练掌握相关运算法则是解本题的关键.6. 正十边形的外角和为( )A. 180°B. 360°C. 720°D. 1440°【答案】B【解析】【分析】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选B .【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.7. 如图,将置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A'OB'.已知∠AOB=30°,∠B=90°,AB=1,则B'点的坐标为 ( )A. 32⎫⎪⎪⎭B. 32⎛ ⎝C. 12⎛ ⎝D. 12⎫⎪⎪⎭【答案】A【解析】 【分析】利用含30度的直角三角形和勾股定理求出BC 和OC ,再用旋转的性质得出OC',B'C',即可解决问题.【详解】解:在Rt △AOB 中,∠AOB=30°,AB=1,∴OA=2(30°角所对的直角边是斜边的一半)根据勾股定理得,过点B 作BC ⊥OA 于C ,在Rt △BOC 中,BC=12,根据勾股定理得,=32, 过点B'作B'C'⊥OA'于C',由旋转知,,OC'=OC=32,,∴B′,32). 故选A . 【点睛】此题主要考查了含30°的直角三角形的性质,勾股定理,旋转的性质,解本题的关键是求出OC 和BC .8. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边正方形EFGH 的周长为( )A. B. C. 1+ D. 1【答案】B【解析】【分析】由正方形的性质和已知条件得出,∠BCD=90°,CE=CF=12,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【详解】解:∵正方形ABCD的面积为1,∴,∠BCD=90°.∵E、F分别是BC、CD的中点,∴CE=12BC=12,CF=12CD=12,∴CE=CF,∴△CEF是等腰直角三角形,∴,∴正方形EFGH的周长=4EF=4=.故选:B.【点睛】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.9. 如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是( )A. πB. 54πC. 3+πD. 8﹣π【答案】D【解析】【详解】试题分析:作DH⊥AE于H,已知∠AOB=90°,OA=3,OB=2,根据勾股定理求出AB=,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,所以DH=OB=2,所以阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故答案选D.考点:扇形面积的计算;旋转的性质.10. 如图,正方形ABCD的边长为4,点E在对角线BD上,且BAE22.5°∠=,EF⊥AB,垂足为F,则EF的长为A. 1B.C. 4-D. 4-【答案】C【解析】【详解】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°.在△ADE中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠ADE.∴AD=DE=4.∵正方形的边长为4,∴BD=∴BE=BD-DE=4-.∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形.∴4)=4-.故选:C.11. 如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是( )A. b2>4acB. ax2+bx+c≥﹣6C. 若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD. 关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【答案】C【解析】【分析】根据二次函数图象与系数的关系,二次函数和一元二次方程的关系进行判断.【详解】A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C 选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.【点睛】本题考查了二次函数图象与系数的关系,二次函数与一元二次方程的关系,熟练运用数形结合是解题的关键.12. 如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D 与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A. B. C. D.【答案】A【解析】【详解】解:如图1,CH是AB边上的高,与AB相交于点H,∵∠C=90°,∠BAC=30°,AB=8,∴AC=ABBC=AB×sin30°=8×12=4,∴CH=AC×BC÷AB=AH=2AC÷AB=286÷=;(1)当0≤t≤时,S=1(tan30)2t t⋅2;的(2)当6t <≤时,S=11(tan 30)(tan 30]22t t t t ⋅---⋅=2t -; (3)当6<t ≤8时,S=11[(tan 30[6([(8)tan 60(6)22t t t t -⋅+⨯--+-⋅+⨯-=2(2t ++-; 综上,可得:S=22(026)(28)t t t t t ≤≤⎪-<≤⎨⎪⎪++-<≤⎪⎩,∴正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是A 图象. 故选A .二、填空题(共5小题,每小题4分,满分20分)13. 如图,正方形二维码的边长为2cm ,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm 2.【答案】2.8【解析】【分析】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的70%,计算即可.【详解】∵正方形二维码的边长为2cm ,∴正方形二维码的面积为4cm 2,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,∴黑色部分的面积占正方形二维码面积的70%,∴黑色部分的面积约为:4×70%=2.8,故答案为:2.8.【点睛】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的70%,计算即可.14. 如图,电线杆的顶上有一盏高为6 m 的路灯,电线杆底部为A ,身高1.5 m 的男孩站在与点A相距6 m 的点B 处.若男孩以6 m 为半径绕电线杆走一圈,则他在路灯下的影子BC 扫过的面积为___m 2.【答案】28π【解析】【分析】根据△CBD ∽△CAE ,即可得到CB=2,AC=8,再根据男孩以6m 为半径绕电线杆走一圈,即可得出他在路灯下的影子BC 扫过的面积.【详解】解:如图所示,∵AE ∥BD ,∴△CBD ∽△CAE ,CB BD CA AE ∴=,即 1.566CB CB =+ 解得CB=2,∴AC=8,∴男孩以6m 为半径绕电线杆走一圈,他在路灯下的影子BC 扫过的面积为π×82-π×62=28πm 2. 故答案为28π.【点睛】本题考查了相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键. 15. 如图,点B 是反比例函数k y x=(0x >)图象上一点,过点B 作x 轴的平行线,交y 轴于点A ,点C 是x 轴上一点,△ABC 的面积是2,则k =______.【答案】4【解析】【分析】根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |=2,再根据反比例函数的图象位于第一象限即可求出k 的值.【详解】连接OB .∵AB ∥x 轴,∴S △AOB =S △ACB =2,根据题意可知:S △AOB 12=|k |=2,又反比例函数的图象位于第一象限,k >0,则k =4.故答案为4.【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.16. 如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=_.【答案】125.【解析】【分析】根据轴对称,可以求得使得PAB ∆的周长最小时点P 的坐标,然后求出点P 到直线AB 的距离和AB 的长度,即可求得PAB ∆的面积,本题得以解决.【详解】联立得2145y x y x x =+⎧⎨=-+⎩, 解得,12x y =⎧⎨=⎩或45x y =⎧⎨=⎩, ∴点A 的坐标为()1,2,点B 的坐标为()4,5,∴AB ==,作点A 关于y 轴的对称点'A ,连接'A B 与y 轴的交于P ,则此时PAB ∆的周长最小,点'A 的坐标为()1,2-,点B 的坐标为()4,5,设直线'A B 的函数解析式为y kx b =+, 245k b k b -+=⎧⎨+=⎩,得35135k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线'A B 的函数解析式为31355y x =+, 当0x =时,135y =, 即点P 的坐标为130,5⎛⎫ ⎪⎝⎭, 将0x =代入直线1y x =+中,得1y =,∵直线1y x =+与y 轴的夹角是45︒,∴点P 到直线AB的距离是:1381sin 4555⎛⎫-⨯︒== ⎪⎝⎭∴PAB ∆125=, 故答案为125.【点睛】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.17. 已知O 的直径AB 为4cm ,点C 是O 上的动点,点D 是BC 的中点,AD 延长线交O 于点E ,则BE 的最大值为_______________.【答案】4cm 3【解析】【分析】本题考查了圆周角定理、相似三角形的判定与性质、三角形中位线定理,连接AC 、OD ,由圆周角定理和三角形中位线定理得出点D 在以OB 为直径的圆上运动,以OB 为直径作K ,当直线AE 切K 于D 时,BE 的值最大,由圆周角定理得出ADK AEB ∠=∠,从而得出DK BE ∥,进而得出ADK AEB ∽,由相似三角形的性质可得DK AK BE AB=,代入计算即可,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】解:如图,连接AC 、OD ,,AB 是直径,90ACB ∴∠=︒,点D 是BC 的中点,O 是AB 的中点,OD ∴是ACB △的中位线,OD AC ∴∥,90ODB ∴∠=︒,∴点D 在以OB 为直径的圆上运动,以OB 为直径作K ,连接DK ,当直线AE 切K 于D 时,此时EAB ∠的度数最大,对应的边BE 的值也最大,则1cm OK BK ==,2cm AO =,213cm AK OA OK ∴=+=+=,AE 是K 的切线,DK AE ∴⊥,90ADK ∴∠=︒,AB 是直径,90AEB ∴∠=︒,ADK AEB ∴∠=∠,B DK E ∴∥,ADK AEB ∴ ∽,DK AK BE AB ∴=,即134BE =, 4cm 3BE ∴=, 故答案为:4cm 3. 三、解答题(共7小题,共70分)18. 先化简,再求值:2223226939a a a a a a a --+÷-+--并在2,3,-3,4这四个数中取一个合适的数作为a 的值代入求值. 【答案】-2221856a a a a +--+;a=4时,原式=-3. 【解析】【分析】按照先乘除后加减进行化简,再代入能使原式有意义的a 值4即可求出结论;【详解】解:原式=2(3)2(3)(3)(3)32a a a a a a a --++⨯--- =2(3)32a a a a +--- =-2221856a a a a +--+. ∵a≠-3,2,3,∴取a=4,原式=-2248184206+--+=-3. 【点睛】本题考查分式的化简求值,代入求值时代入的数值必须能使分式有意义.19. 如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠C =∠D . (1)求证:四边形BCED 是平行四边形;(2)已知DE =3,连接BN ,若BN 平分∠DBC ,求CN 的长.【答案】(1)见解析;(2)3【解析】【分析】(1)先证明//,DF AC 再证明//,DB EC 从而可得结论;(2)先证明,CBN CNB ∠=∠可得,CB CN = 再结合平行四边形的性质可得答案.【详解】解:(1)证明:∵∠A =∠F ,∴DF ∥AC ,∴∠C =∠FEC ,又∵∠C =∠D ,∴∠FEC =∠D ,∴DB ∥EC ,∴四边形BCED 是平行四边形;(2)∵BN平分∠DBC,∴∠DBN=∠CBN,∵BD∥EC,∴∠DBN=∠BNC,∴∠CBN=∠BNC,∴CN=BC,又∵四边形BCED是平行四边形;∴BC=DE=3,∴CN=3.【点睛】本题考查的是平行四边形的判定与性质,等腰三角形的判定与性质,角平分线的定义,平行线的性质与判定,掌握平行四边形的判定方法与等腰三角形的判定是解题的关键.20. 关于体育选考项目统计图项目频数频率A80 bB c0.3C20 0.1D40 0.2合计a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.a,b=,c=.表中=(2)如果有3万人参加体育选考,会有多少人选择篮球?【答案】(1)200;0.4;60;补全条形统计图见解析.(2)会有12000人选择篮球.【解析】 【分析】(1)本题考查频数(率)分布表、频数分布直方图、频数、频率和总量的关系,用C 的频数除以频率求出a ,用总数乘以B 的频率求出c ,用A 的频数除以总数求出b ,再画图即可.(2)本题考查用样本估计总体,用总人数乘以A 的频率即可.【小问1详解】解:200.1200a =÷=,2000.360c =⨯=,802000.4b =÷=.补全条形统计图如下:【小问2详解】解:300000.412000⨯=(人).答:3万人参加体育选考,会有12000人选择篮球.21. 如图,为了测量山顶铁塔AE 的高,小明在27m 高的楼CD 底部D 测得塔顶A 的仰角为45°,在楼顶C 测得塔顶A 的仰角36°52′.已知山高BE 为56m ,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE .(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)【答案】52【解析】【分析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则29411636520.7533AF xCF xtan+=≈=+︒',在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴41165633x x+=+,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.22. 在□ABCD 中,经过A 、B 、C 三点的⊙O 与AD 相切于点A ,经过点C 的切线与AD 的延长线相交于点P ,连接AC .(1)求证:AB =AC ;(2)若AB =4,⊙OPD 的长.【答案】(1)见解析,(2【解析】 【分析】(1)连接AO 并延长交BC 于点E ,交⊙O 于点F ,由切线的性质可得∠FAP=90°,根据平行四边形的性质可得∠AEB=90°,由垂径定理点BE=CE ,根据垂直平分线的性质即可得AB=AC ;(2)连接FC ,OC ,设OE =x ,则EFx ,根据AF 为直径可得∠ACF=90°,利用勾股定理可得CF 的长,利用勾股定理可证明OC 2-OE 2=CF 2-EF 2,即可求出x 的值,进而可得EC 、BC 的长,由平行线性质可得∠PAC=∠ACB ,由切线长定理可得PA=PC ,即可证明∠PAC=∠PCA ,由AB=AC 可得∠ABC=∠ACB ,利用等量代换可得∠ABC=∠PAC ,即可证明△PAC ∽△ABC ,根据相似三角形的性质可求出AP 的长,根据PD=AP-AD 即可得答案.详解】(1)连接AO 并延长交BC 于点E ,交⊙O 于点F .∵AP 是⊙O 的切线,AF 是⊙O 的直径,∴AF ⊥AP ,∴∠FAP =90°.【∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AEB=∠FAP=90°,∴AF⊥BC.∵AF是⊙O的直径,AF⊥BC,∴BE=CE.∵AF⊥BC,BE=CE,∴AB=AC.(2)连接FC,OC.设OE=x,则EF-x.∵AF是⊙O的直径,∴∠ACF=90°.∵AC=AB=4,AF=∴在Rt△ACF中,∠ACF=90°,∴CF2.∵在Rt△OEC中,∠OEC=90°,∴CE2=OC2-OE2.∵在Rt△FEC中,∠FEC=90°,∴CE2=CF2-EF2.∴OC2-OE2=CF2-EF2.即2-x2=22-x)2.解得x.∴EC∴BC=2EC.∵四边形ABCD是平行四边形,∴AD=BC.∵AD∥BC,∴∠PAC=∠ACB.∵PA,PC是⊙O的切线,∴PA=PC.∴∠PAC=∠PCA.∵AB=AC,∴∠ABC=∠ACB.∴∠PAC=∠ABC,∠PCA=∠ACB.∴△PAC∽△ABC,∴APAB=ACBC.∴AP=ACBC·AB=∴PD=AP-AD.【点睛】本题考查切线的性质、圆周角定理的推论、垂径定理、平行四边形的性质及相似三角形的判定与性质,直径所对的圆周角是直角;圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,且平分弦所对的两条弧;有两个角对应相等的两个三角形相似;熟练掌握相关性质及定理是解题关键.23. 已知在Rt△ABC中,∠ABC=90°,AB=BC,将△ABC绕点A逆时针方向旋转,得到△ADE,旋转角为α(0°<α<90°),直线BD与CE交于点F.(1)如图1,当α=45°时,求证:CF=EF;(2)如图2,在旋转过程中,当α为任意锐角时,①∠CFB的度数是否变化?若不变,请求出它的度数;②结论“CF=EF”,是否仍然成立?请说明理由.【答案】(1)见解析;(2)①不变,45°;②仍然成立,理由见解析【解析】【分析】(1)首先证明∠ACE=∠CDF,推出CF=DF ,再证明∠CED=∠EDF,推出CF=EF即可解决问题;(2))①由△ABD与△ACE均为顶角为α的等腰三角形,所以∠ABD=∠ACE.由∠ABD+∠AOB+∠CAB=∠ACE+∠COF+∠CFB=180°可得∠CFB=∠CAB=45°;②作EG∥CB交BF延长线于点G.可推出∠EDG=∠CBF.由EG∥CB,可得∠G=∠CBF=∠EDG,可证明△FEG≌△FCB,即可的答案.【详解】解:(1)当α=45°时,由旋转可知:AB=AD,AC=AE,∠CAB=∠CAE=45°,∠ADE=∠ABC=90°∵AB=AD,∴∠ABD=∠ADB=67.5°,∴∠CDF=∠ADB=67.5°,∵AC=AE,∠AEC=∠ACE=67.5°.∴∠ACE=∠CDF=67.5°,∴CF=DF.在Rt△CDE中,∠CED=∠EDF=90°-67.5°=22.5°,∴EF=DF.∴CF=EF(2)①∠CFB的度数不变,∠CFB=45°.∵△ABD与△ACE均为顶角为α的等腰三角形,所以底角相等,即∠ABD=∠ACE.设AC与BF的交点为O,则∠AOB=∠COF.∵∠ABD+∠AOB+∠CAB=∠ACE+∠COF+∠CFB=180°,∴∠CFB=∠CAB=45°.②结论“CF=EF”,仍然成立.证明如下:如图,作EG∥CB交BF延长线于点G.∵∠ABD=∠ADB ,又∵∠EDG+∠ADB=∠CBF+∠ABD=90°,∴∠EDG=∠CBF .∵ EG ∥CB ,∴∠G=∠CBF=∠EDG ,∴EG=ED .又ED=BC ,∴EG=BC .∴△FEG ≌△FCB .∴EF=CF【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形性质,能够熟悉旋转的性质,等腰三角形的性质是解题的关键.24. 已知,抛物线y =-12x 2 +bx+c 交y 轴于点C (0,2),经过点Q (2,2).直线y =x+4分别交x 轴、y 轴于点B 、A.(1)直接填写抛物线的解析式________;(2)如图1,点P 抛物线上一动点(不与点C 重合),PO 交抛物线于M ,PC 交AB 于N ,连MN. 求证:MN∥y 轴;(3)如图,2,过点A 的直线交抛物线于D 、E ,QD 、QE 分别交y 轴于G 、H.求证:CG •CH 为定值.的为【答案】(1)2122y x x =-++;(2)见详解;(3)见详解. 【解析】 【分析】(1)把点C 、D 代入y =-12x 2 +bx+c 求解即可;(2)分别设PM 、PC 的解析式,由于PM 、PC 与抛物线的交点分别为:M 、N.,分别求出M 、N 的代数式即可求解;(3)先设G 、H 的坐标,列出QG 、GH 的解析式,得出与抛物线的交点D 、E 的横坐标,再列出直线AE 的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】详解:(1)∵y =-12x 2 +bx+c 过点C (0,2),点Q (2,2), ∴2122222b c c ⎧-⨯++⎪⎨⎪=⎩=, 解得:12b c =⎧⎨=⎩. ∴y=-12x 2+x+2;(2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由22122y kx y x x =+⎧⎪⎨=-++⎪⎩得12x 2+(k-1)x=0,解得:120,22x x k ==-, x p =22p x k =- 由21=22y mx y x x =⎧⎪⎨-++⎪⎩得12x 2+(m-1)x-2=0, ∴124b x x a⋅=-=- 即x p•x m =-4,∴x m =4p x -=21k -. 由24y kx y x =+⎧⎨=+⎩得x N =21k -=x M , ∴MN ∥y 轴.(3)设G (0,m )H (0,n ). 设直线QG 的解析式为y kx m =+, 将点()2,2Q 代入y kx m =+ 得22k m =+22m k -∴= ∴直线QG 的解析式为22m y x m -=+ 同理可求直线QH 的解析式为22n y x n -=+; ,由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩得221=222m x m x x -+-++ 解得:122,2x x m ==- 2D x m ∴=-同理,2E x n =-设直线AE 的解析式为:y=kx+4, 由24122y kx y x x =+⎧⎪⎨=-++⎪⎩, 得12x 2-(k-1)x+2=0 124b x x a∴⋅=-= 即x D x E =4, 即(m-2)•(n-2)=4 ∴CG•CH=(2-m )•(2-n )=4.。