列分式方程解应用题的步骤要点:七年级上册数学

合集下载

七年级方程应用题解题技巧

七年级方程应用题解题技巧

七年级方程应用题解题技巧
七年级方程应用题是数学学习中的一个重要部分,掌握解题技巧对于提高解题速度和准确性非常重要。

以下是一些七年级方程应用题的解题技巧:
1. 理解题意:首先,要仔细阅读题目,理解其背景和要求,找出关键信息,明确未知数和已知条件。

2. 建立方程:根据题意,用数学语言描述问题,建立方程。

方程可以是一个或多个,这取决于问题的复杂性。

3. 简化方程:如果方程过于复杂,可以尝试将其简化。

例如,合并同类项、移项、去括号等。

4. 求解方程:使用代数方法(如代入法、消元法、因式分解等)求解方程。

注意解的合理性,例如,解不能是负数或无意义的数。

5. 检验答案:最后,将解代入原方程进行检验,确保答案的正确性。

6. 总结反思:回顾解题过程,总结经验教训,提高解题能力。

下面是一个具体的例子:
题目:某班有男生27人,女生21人,男生人数是女生人数的几倍?
解题步骤:
1. 理解题意:找出关键信息,男生27人,女生21人。

2. 建立方程:设男生人数是女生人数的$x$倍。

则有方程 $27 = 21x$。

3. 简化方程:移项得 $21x = 27$。

4. 求解方程:除以21得 $x = \frac{27}{21}$。

5. 检验答案:将解代入原方程进行检验,确保答案的正确性。

6. 总结反思:回顾解题过程,总结经验教训。

通过掌握这些技巧,学生可以更好地理解和解决七年级的方程应用题。

列分式方程解应用题的步骤

列分式方程解应用题的步骤

列分式方程解应用题的步骤
一.列分式方程解应用题的步骤:
(1)设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;
(2)列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;
(3)列出方程:根据题目中明显的'或者隐含的相等关系列出方程;
(4)解方程并检验;
(5)写出答案。

二.列分式方程解应用题的注意事项:
由于列方程解应用题是对实际问题的解答,所以检验时除从方面进行检验外,还应考虑题目中的实际情况,凡不符合实际的,应舍去。

列分式方程解应用题的步骤

列分式方程解应用题的步骤

列分式方程解应用题的步骤一、仔细读题,理解题意这是最开始的一步啦,一定要认真读题哦!把题目里的各种信息都看清楚,弄明白讲的是个什么事儿。

这看起来好像是个很基础的事儿,但我跟你说,可千万别小瞧它!好多时候,要是这一步没做好,后面就很容易出错。

我自己有时候读题读得太快,就会忽略一些关键信息呢,然后在解题的时候就会遇到麻烦。

二、设未知数接下来呢,我们要设一个未知数。

这个未知数设得好不好,对后面解题的难易程度有很大影响哦。

你可以根据题目里问的是什么,来合理地设这个未知数。

比如说,如果题目问的是某个物品的数量,那我们就可以设这个数量为x呀。

这一步要特别小心哦!有时候设错了未知数,后面列方程就会变得很复杂。

我通常会在这个环节多思考一会儿,确保设的未知数是最方便解题的。

三、找出等量关系这可是个关键的步骤呢!要从题目里找出那个等量关系。

等量关系就像是一把钥匙,找到了它,才能列出正确的分式方程。

有时候这个等量关系不是那么明显,你可能需要多读几遍题才能发现。

这时候可别着急,静下心来慢慢找。

你是不是也遇到过这种情况,找等量关系找得头都大了?哈哈,我也有过呢。

不过只要坚持找,总能找到的。

四、根据等量关系列出分式方程找到等量关系后,就可以根据这个关系列出分式方程啦。

这一步要按照数学的规则来写方程哦。

不过呢,在写的时候也要注意检查一下,看看方程有没有列错。

我有时候会在列完方程后,再对照一下等量关系,确认无误才进行下一步。

这一点真的很重要,我通常会再检查一次,真的,确认无误是关键。

五、解方程方程列好之后,就是解方程啦。

解方程的过程呢,就按照我们平时学的分式方程的解法来做就行。

在这一步,要注意计算不要出错哦。

分式方程有时候会涉及到一些比较复杂的运算,要是不小心算错了,那可就前功尽弃了。

我在解分式方程的时候,会一步一步地仔细计算,尤其是在通分和约分这些环节,可不能马虎。

六、检验解出方程的解之后,可不能以为就大功告成了哦!一定要进行检验。

列分式方程解应用题的一般步骤

列分式方程解应用题的一般步骤

列分式方程解应用题的一般步骤解分式方程应用题的一般步骤:
一、理解题意和变量定义
1. 仔细阅读题目,理解问题的背景和意图。

2. 确定需要解决的问题,并定义所涉及的变量。

二、列出分式方程
1. 根据问题中的条件和定义的变量,用数学语言将问题表达为分式方程。

2. 根据题目中所需求解的未知数,将分式方程进行变形,使得未知数只出现在一个分式中。

三、清除分母
1. 将方程两边的分母消除,使方程变为整式方程。

2. 方法一:将每个分母乘到方程两边的相应项上。

3. 方法二:求出各个分母的最小公倍数,并将每个分母乘以使其等于最小公倍数的倍数。

四、解整式方程
1. 如果分式方程已消去分母,得到的是一个整式方程。

2. 解整式方程的方法与一元一次方程的解法相同,例如使用等式两边的规律性质(加减反运算、去项、合并同类项等)进行计算。

五、检验解的有效性
1. 将求得的解代入原分式方程,验证是否满足方程的条件。

2. 如果解满足原方程,则解是有效的。

否则需要重新检查方程的推导过程。

六、书写解的结论
1. 根据题目要求和解的有效性,得出问题的解答。

2. 如果问题要求解是唯一的,需要明确指出解的唯一性。

这是解分式方程应用题的一般步骤,具体题目可能会有一些特殊的步骤或变形的需求,需要根据题目的具体要求来进行相应的考虑和解答。

同时,在解题过程中,需要注意每一步的合理性、准确性以及解的有效性的验证。

分式方程的解法与应用技巧

分式方程的解法与应用技巧

分式方程的解法与应用技巧分式方程是含有分数的方程,其求解过程相对复杂。

本文将介绍分式方程的解法与应用技巧,帮助读者更好地掌握这一内容。

一、简单分式方程的解法对于形如$\frac{a}{x}=b$的简单分式方程,其中$a$和$b$为已知数,$x$为未知数。

我们可以通过以下步骤求解:1. 将方程两边乘以$x$,消去分式:$a=bx$。

2. 将方程两边除以$b$,解出未知数:$x=\frac{a}{b}$。

例如,对于分式方程$\frac{2}{x}=3$,我们可以按照以上步骤解得$x=\frac{2}{3}$。

二、复杂分式方程的解法对于形如$\frac{ax+b}{cx+d}=e$的复杂分式方程,其中$a$、$b$、$c$、$d$和$e$为已知数,$x$为未知数。

我们可以通过以下步骤求解:1. 消去分母,得到线性方程:$ax+b=ecx+ed$。

2. 整理方程,将未知数放在一侧,已知数放在另一侧:$ax-ecx=ed-b$。

3. 合并同类项,得到线性方程:$x(a-ec)=ed-b$。

4. 解出未知数:$x=\frac{ed-b}{a-ec}$。

例如,对于分式方程$\frac{2x+1}{3x+2}=4$,我们可以按照以上步骤解得$x=\frac{7}{10}$。

三、分式方程的应用技巧1. 化简分式:在处理分式方程时,我们可以通过化简分式来简化计算过程。

例如,对于分式方程$\frac{3x^2+6x}{2x}=5$,我们可以化简分式为$\frac{3(x+2)}{2}=5$,然后继续求解。

2. 注意特殊解:有些分式方程存在特殊解。

例如,对于分式方程$\frac{x-1}{x}=0$,我们可以通过化简分式得到$x=1$,但这并不是方程的解,因为分母为0时方程无解。

3. 检验解的合法性:在求解分式方程时,我们应该检验解的合法性。

即将解代入原方程,检验等式是否成立。

如果不成立,则解是无效的。

4. 借助整体思维:在处理分式方程的过程中,我们可以借助整体思维,将分数表示为整体,并通过整体与部分的关系,简化方程求解。

如何列分式方程解应用题

如何列分式方程解应用题

如何列分式方程解应用题列分式方程解简单的实际应用问题的方法和步骤与列一元一次方程解应用题基本相同.简单地可分为:设、找、列、解、检、答等六个步骤.具体是:(1)设弄清题意和题目中的数量关系,用字母(如x)表示题目中的一个未知数;(2)找找到能够表示应用题全部含义的一个相等的关系;(3)列根据这个相等的数量关系式,列出所需的代数式,从而列出分式方程;(4)解解这个所列的分式方程,求出未知数的值;(5)检检验;(6)答写出答案(包括单位名称).这六个步骤关键是“列”,难点是“找”.如:(山西省)甲、乙两个建筑队完成某项工程,若两队同时开工,12天就可以完成工程;乙队单独完成该工程比甲队单独完成该工程多用10天.问单独完成此项工程,乙队需要多少天?由上述的六个步骤求解如下:(1)设乙单独完成工程需x天,则甲单独完成工程需(10x-)天;(2)甲做1天的工作量+乙做1天的工作量=甲、乙两人合做1天的工作量;(3)根据题意,得1111012x x+=-;(4)解这个方程:去分母,得x 2-34x+120=0,配方,得(x-17)2=169,两边开平方,得x-17=±13,即x 1=30,x 2=4;(5)经检验,x 1=30,x 2=4都是原方程的根,当x=30时,x-10=20,当x=4时,x-10=-6,因为时间不能为负数,所以只能取x=30;(6)答:乙队单独完成此项工程需要30天.为了能说明问题,下面我们再举几例:例1(上海市)为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固.由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米?解:设现在计划每天加固河堤x米,则原计划每天加固河堤(x-20)米;原计划完成全部工程需224020x-天,现在只需2240x天,由题意可得224020x--2240x=2,去分母,整理,得x2-20 x-2240=0.解得x1=160,x2=-140(舍去).所以224-160=64(米).答:在现在计划的基础上,每天加固的长度还要再增加64米.说明:这是一道工程问题,常用的基本关系有:工程总量工作效率=工程完成时间.例2(湖南省)便民服装店的老板在株洲看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍每件进价比第一次多了4元,服装店仍按每件58元出售,全部售完,问该服装店这笔生意盈利多少元?解:设从株洲第一次进货每件为x 元,则第二次进货每件为(x +4)元. 由题意可得2×8000x=176004x +.去分母,整理,得16000(x +4)=17600 x . 解得 x =40. 经检验,x =40是原方程的解.所以共进衬衫数为:8000176004044+=600,所以盈利数为600×58-(8000+17600)=9200(元). 答:该服装店这笔生意盈利9200元.说明:这是一道与市场营销有关的问题,常见的数量关系有:商品单价×销售数量=销售额;销售利润=(商品售价-进货价)×销售量;利润率=商品净利润这批商品的进价×100%;商品打折销售中,a 折销售价=原价×10a (0<a <10,a 取整数).例3 (湖北省)一自行车队进行训练,训练的路程是55千米,出发后所有队员都保持相同的速度前进,行进一段路程后,1号队员将速度提高10千米超出队伍,当其余队员又前进20千米后,2号队员的速度也提高了10千米,结果2号队员比1号队员晚101小时到达终点,问车队从出发至最后的队员到达终点所花的时间是多少?解:设车队出发时的速度是x 千米/时, 由题意可得20x-2010x +=110.去分母,整理,得x 2+10 x -2000=0. 解得x 1=40,x 2=-50(舍去). 所以55÷40=118(小时)答:整个车队从出发至最后的队员到达终点所花的时间是118小时.说明:这是一道行程类问题,常见关系量有:路程速度=时间;追及问题时的数量关系是:同一路程同一路程-慢速快速=时间差.列分式方程解应用题与列整式方程解应用题的步骤基本相同.但也要注意以下两个问题:一是明确列分式方程解应用题的关键是用公式表示一些基本的数量关系;二是列分式方程解应用题一定要验根,还要保证其结果符合实际意义;三是要注意单位的统一.。

列方程解应用题的一般步骤是什么(精)

列方程解应用题的一般步骤是什么(精)
解此方程得 x=300
经检验x=300为原方程的根
答:利息为300元。
练一练
练习: 1、一组学生乘汽车去春游,预计
共需车费120元,后来人数增加了 用仍不变,这样每人少摊3元,原来这组 学生的人数是多少个?
1 ,费 4
2、解一组方程,先用小计算器解20 分钟,再改用大计算器解25分钟可解完, 如果大计算器的运算速度是小计算器的4 倍,求单用大计算器解这组方程需多少时 间?
王明同学准备在课外活动时间组织部分 同学参加电脑网络培训,按原定的人数估计 共需费用300元。后因人数增加到原定人数 的2倍,费用享受了优惠,一共只需480元, 参加活动的每个同学平均分摊的费用比原计 划少4元。原定人数是多少?
3、(03苏州)为了绿化江山,某村计划在荒 山上种植1200棵树,原计划每天种x棵,由于邻村 的支援,每天比原计划多种了40棵,结果提前了5 天完成了任务,则可以列出方程为( )
列方程解应用题的 步骤是怎样的呢?
归纳概括
列分式方程解应用题的一般步骤: (1)审清题意; (2)设未知数(要有单位); (3)根据题目中的数量关系列出式子,找 出相等关系,列出方程; (4)解方程,并验根,还要看方程的解是 否符合题意; (5)写出答案(要有单位)。
练习:求解本章导图中的 问题.
三、例题讲解与练习
A,B两地相距135千米,两辆汽车从A开往B,大 汽车比小汽车早出发5小时,大汽车又比小汽车 早到30分钟,已知小汽车与大汽车的速度之比 为5:2,求两车的速度。 分析: 已知两边的速度之比为5:2,所以 设大车的速度为2x千米/时,小说车的速度为5x千 米/时,而A、B两地相距135千米,则大车行驶时 135 135 间 2 x 小时,小车行驶时间 5 x 小时,由题意可知大 车早出发5小时,又比小车早到30分钟,实际大车 行驶时间比小车行驶时间多4.5小时,由此可得等 量关系

七年级数学列方程(组)解应用题的方法及步骤

七年级数学列方程(组)解应用题的方法及步骤

七年级数学列方程(组)解应用题的方法及步骤(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。

(2)根据题意找出能够表示应用题全部含义的一个相等关系。

(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。

(4)解方程:求出未知数的值。

(5)检验后明确地、完整地写出答案。

检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。

2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。

(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。

(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。

(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。

(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。

(6)行程类应用题基本关系:路程=速度×时间。

相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。

追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。

环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。

(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。

1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?甲处乙处原有人数27 18现有人数27+18-相等关系解设应调往甲处人,根据题意,得27+ =2(18- ).解这个方程,得=3.答:从乙处调3人到甲处.2变题学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析设应调往甲处人,题目中涉及的有关数量及其关系可以用下表表示:甲处乙处原有人数27 18增加人数20-现有人数27+18+20-等量关系 +2解设应调往甲处人,根据题意,得27+ =2(18+20- )+2.解这个方程,得=17.∴20- =3.答:应调往甲处17人,乙处3人.3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?解:设在这5立方米木料中,用x立方米木料做桌面,用y立方米木料做桌子腿,由题意可得:即用3立方米木料做桌面,2立方米木料做桌腿。

初一解方程的步骤及格式

初一解方程的步骤及格式

初一解方程的步骤及格式解方程,这可是咱初一数学里的重头戏啊!就好像是打开数学大门的一把钥匙。

咱先来说说步骤。

好比要解开一个神秘的谜题,第一步得先观察方程,看看它长啥样。

这就像认识一个新朋友,得先瞧瞧他的模样特点不是?然后呢,根据方程的样子,选择合适的方法。

比如,如果有括号,那就得先去括号,把这个“小障碍”给除掉。

这就像是剥洋葱,一层一层地剥开,才能看到里面的核心。

接下来,移项啦!把那些带着未知数的项都移到一边,把常数项移到另一边。

这感觉就像是给它们分家,让它们各归各位。

移项的时候可得注意啦,要变号哦!不然就会出大乱子。

合并同类项呢,就像是把一群志同道合的小伙伴聚在一起,让它们变得更整齐、更简洁。

最后一步,系数化为 1。

这就好比给最后的答案来个“瘦身”,让它以最清爽的样子出现。

再来说说格式,这可重要啦!就像一个人要有良好的举止一样。

解方程的时候,每一步都要写清楚,就像走楼梯,一步一步稳稳当当的。

等号要对齐,就像排队一样整齐。

这样别人一看,就知道你的思路清晰不清晰,有没有条理。

举个例子吧,比如说解方程 3x + 5 = 14。

咱先写个“解”字,这就像是给这个方程一个开始的信号。

然后呢,先减去 5,得到 3x = 9。

这一步一步的,不就把方程给解开了嘛。

解方程就像是一场冒险,每一步都充满了挑战和乐趣。

咱不能马虎,要认真对待,就像对待一件珍贵的宝贝一样。

你想想,要是步骤错了,那答案不就错得离谱啦?那可不行,咱得保证咱解出来的答案是准确无误的。

格式也是一样,乱糟糟的格式让人看着都头疼,更别说理解你的思路啦。

初一解方程啊,真的是特别重要。

它就像是数学世界里的基石,只有把这个基础打好了,后面的路才能走得更稳、更顺。

所以啊,同学们可千万别小瞧了它。

解方程的步骤和格式,一定要牢记在心,多练习,多琢磨。

相信自己,只要认真对待,解方程根本就不在话下!加油吧,小伙伴们!让我们在解方程的海洋里畅游,解开一个又一个数学的奥秘!。

【解分式方程的一般步骤】 解分式方程步骤6步

【解分式方程的一般步骤】 解分式方程步骤6步

【解分式方程的一般步骤】解分式方程步骤6步初一列方程解应用题的一般步骤列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵ 速度=路程÷时间⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程⑵ 各段时间和=总时间⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:① 时针的速度是0.5°/分② 分针的速度是6°/分③ 秒针的速度是6°/秒1. 一列火车通过隧道,从车头进入道口到车尾离开隧道共需45 秒,当整列火车在隧道里需32 秒,若车身长为180 米,隧道x 米,可列方程为_______________。

列方程解应用题的一般步骤

列方程解应用题的一般步骤

列方程解应用题的一般步骤
解应用题的一般步骤如下:
1. 阅读题目:仔细阅读题目,并理解题目所描述的情境和要求。

2. 确定未知数:确定需要求解的未知数,可以用一个或多个字母表示。

3. 建立关系式:建立数学模型,将问题中的已知条件和未知数之间的关系用方程表示。

4. 解方程:根据建立的方程,用数学方法解方程。

5. 检验答案:将求得的解代入原方程中进行检验,确保答案符合题目要求。

6. 回答问题:根据问题要求,用正确的语言回答问题。

每一步都需要细致的分析和思考,有效地将问题转化为数学问题,并通过解方程求解得到正确的答案。

分式方程的应用题解题技巧

分式方程的应用题解题技巧

分式方程的应用题解题技巧
以下是 8 条分式方程的应用题解题技巧:
1. 找准等量关系呀,这就像在大海中找到灯塔一样关键!比如,一辆汽车从 A 地到 B 地,去的时候速度是每小时 60 千米,回来的时候速度是每
小时 40 千米,来回时间差 1 小时,那等量关系不就出来了吗,设个路程为x,列方程 x/40 - x/60 = 1。

2. 单位要统一呀,可别稀里糊涂的!像计算做一批零件,有的给你分钟,有的给你小时,咱就得统一一下,不然怎么算呀!
3. 设未知数要巧妙呀,这就跟走捷径一样!比方说,甲乙两人干活,已知两人效率比,那就设个份数,多方便呀!
4. 计算过程要认真,可别粗心大意呀!就像盖房子,一砖一瓦都得稳当,一个数字算错了,全白费啦!比如算一个分式方程,约分都约错了,那不就悲剧了!
5. 一定要检验呀,这可不能偷懒!万一算出来个负数长度啥的,那不是搞笑嘛!像那种算出人数是小数的,肯定不对呀,得检查检查。

6. 注意隐含条件呀,别视而不见!比如一个水池一边进水一边出水,水池总量是不是固定的,这就是隐藏信息呀!
7. 多画图呀,形象直观!就跟地图一样,一下子就清楚啦!像那种行程问题,画个图,一切都明了了。

8. 要耐心呀,解题不能急躁!分式方程有时候是有点麻烦,但你别急,慢慢算,肯定能算出来的!就像爬山,一步一步来,总会登顶的!
总之,分式方程应用题不难,只要掌握这些技巧,多练习,就一定能搞定!。

七上数学列方程解应用题公式

七上数学列方程解应用题公式

七上数学列方程解应用题公式
七年级上册数学列方程解应用题公式主要包括以下几种:
1. 追及问题:甲、乙两物体在同一直线上运动,如果甲、乙做匀速直线运动,那么追及问题的等量关系为:甲的路程+乙的路程=甲与乙的初始距离。

2. 相遇问题:甲、乙两物体在某地相向而行,经过一段时间它们相遇了。

相遇问题的等量关系是:甲的路程+乙的路程=两地的距离。

3. 航行问题:航行问题可以分为顺水航行和逆水航行两种情况。

在顺水航行中,船的速度等于船在静水中的速度加上水流的速度;在逆水航行中,船的速度等于船在静水中的速度减去水流的速度。

4. 劳力调配问题:这类问题一般涉及三个等量关系,设工作总量为“1”,
若完成某项工作的人数增加,则工作时间减少;若完成某项工作的人数减少,则工作时间增加。

5. 比例问题:若甲、乙两数的比是 k,那么我们可以得到以下等量关系:甲/乙=k,或者甲=k×乙。

6. 工程问题:在工程问题中,工作量、工作时间和工作效率之间的关系非常重要。

一般来说,工作量=工作时间×工作效率。

这些是七年级上册数学列方程解应用题的主要公式和等量关系。

需要注意的是,这些公式和等量关系都是根据实际问题的情况而定的,具体问题需要具体分析。

在解题过程中,还需要注意单位的统一和换算。

分式方程的解题过程示范

分式方程的解题过程示范

分式方程的解题过程示范分式方程是代数中的一个非常重要的概念,它是指含有分式(即分数)的方程式,其特点是分数中含有一个或多个变量,这些变量在方程中需要求解。

解决分式方程,需要对分式进行化简,将方程转化为一般的代数方程式,然后进行化简后求解。

下面我们将详细介绍分式方程的解题过程,供大家参考。

首先需要清楚的是,对于分式方程的求解,我们有一些固定的方法。

例如,可以将分式中的变量通过通分,消去分母,这样可以将方程转化为一般的代数方程式。

此时在左右二边用等号连接,将所有未知数移到等号前面,常数移到等号后面即可。

其次,我们可以通过交叉相乘法来解决分数方程。

具体方法是将方程两边通分,消去分母,然后采用交叉相乘法求解。

另外,对于一些较为复杂的分式方程,我们可以借助"齐次方程"和"全部提公因数"等方法来解决。

下面我们举一个具体的例子来进行解题操作。

假设我们需要解决如下的分数方程:(x - 1)/ 2 - (x + 2)/ 3 = -1/ 6首先,我们可以将分数通分,消去分母。

这里我们可以将所有的分式通分为6,得到:3(x - 1) - 2(x + 2) = -1然后将所有的未知数移到等号左边,将常数移到等号右边,并进行化简,得到:3x - 3 - 2x - 4 = -1x = 2因此,我们得到了这个分式方程的解,其解为x=2。

需要注意的是,在实际解题过程中,我们需要注意分式方程中分母的取值范围。

在进行分数化简的过程中,需要排除所有可能导致分母出现零值的情况。

此外,在进行通分的过程中,也需要注意分母的取值范围。

对于此类问题,我们需要仔细分析每个分式的取值范围,在最终求解时排除不合法的答案。

解分式方程应用题的步骤

解分式方程应用题的步骤

解分式方程应用题的步骤分式方程应用题及解析。

一、行程问题。

1. 题目。

- 一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?- 解析。

- 设江水的流速为x千米/时。

- 顺流速度 = 轮船在静水中的速度+水流速度,即(30 + x)千米/时;逆流速度=轮船在静水中的速度 - 水流速度,即(30 - x)千米/时。

- 根据时间 = 路程÷速度,顺流航行100千米所用时间为(100)/(30 + x)小时,逆流航行60千米所用时间为(60)/(30 - x)小时。

- 因为顺流航行100千米所用时间与逆流航行60千米所用时间相等,所以可列方程(100)/(30+x)=(60)/(30 - x)。

- 交叉相乘得:100(30 - x)=60(30 + x)。

- 展开括号:3000-100x = 1800+60x。

- 移项:-100x-60x=1800 - 3000。

- 合并同类项:-160x=-1200。

- 解得:x = 7.5。

- 经检验,当x = 7.5时,(30 + x)(30 - x)=(30+7.5)(30 - 7.5)=37.5×22.5≠0,所以x = 7.5是原分式方程的解。

2. 题目。

- 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度。

- 解析。

- 设步行速度为x千米/时,则骑自行车速度为4x千米/时。

- 步行7千米所用时间为(7)/(x)小时,骑自行车(19 - 7)=12千米所用时间为(12)/(4x)小时。

- 根据共用了2小时到达乙地,可列方程(7)/(x)+(12)/(4x)=2。

- 方程可化为(7)/(x)+(3)/(x)=2。

- 合并同类项得(10)/(x)=2。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是指方程中含有分式的方程,通常形式为分子中含有未知数的方程。

解决分式方程问题的关键是找到其中的未知数的值,使等式成立。

本文将介绍常见的分式方程解法以及其在实际问题中的应用。

一、基本解法1. 消去分母将分数方程中的分母通过乘以最小公倍数或通分的方法消去,从而得到一个等式。

然后继续将未知数移到方程的一边,常数移到另一边,最终求得未知数的值。

2. 通分并整理将分式方程的分子进行通分,并整理为一个等式。

然后通过移项和整理,将未知数移到一边,常数移到另一边,继而求解未知数的值。

3. 求最小公倍数对于一些特殊的分式方程,我们可以先求出方程中分母的最小公倍数,然后将方程中的所有分式统一化。

接着,将分母消去,得到一个整式方程,进而解决。

二、分式方程的应用1. 比例问题分式方程经常用于解决比例相关的问题。

比如,A车和B车以不同的速度驶向一个目的地,已知A车比B车快1小时到达目的地,而A 车比B车慢1小时赶上B车。

求A车和B车单独行驶到达目的地所需的时间。

通过建立分式方程可得到两车的速度比,从而解决问题。

2. 涉及水池、容器等物理问题假设有一个水池,一根管子可以独立进行排水,另一根管子可以独立进行注水。

已知两根管子独立工作时分别需要6小时和8小时将水池排干或注满。

求填满一半的水池所需的时间。

通过建立分式方程可得到两根管子的工作效率,进而解决问题。

3. 财务问题分式方程在解决财务问题时也具有重要应用。

例如,某人通过两种不同的投资方式投资了一笔钱,两种方式的年利率分别为4%和6%。

已知一年后获得的总收益为800元。

求该人分别投资了多少钱。

通过建立分式方程可得到两种投资的金额比例,从而解决问题。

4. 混合液体问题当涉及到两种不同浓度的液体混合时,我们可以利用分式方程解决问题。

例如,混合含有30%盐的溶液和50%盐的溶液,已知混合后的溶液含有40%盐。

求两种溶液的混合比例。

通过建立分式方程可得到两种溶液的体积比例,进而解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列分式方程解应用题的步骤要点:七年级上
册数学
一.列分式方程解应用题的步骤:
列分式方程解应用题的一般步骤为:
(1)设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;
(2)列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;
(3)列出方程:根据题目中明显的或者隐含的相等关系列出方程;
(4)解方程并检验;
(5)写出答案。

二.列分式方程解应用题的注意事项:
由于列方程解应用题是对实际问题的解答,所以检验时除从方面进行检验外,还应考虑题目中的实际情况,凡不符合实际的,应舍去。

以上就是为大家整理的列分式方程解应用题的步骤要点:七年级上册数学,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!
相关标签搜索:七年级期中复习。

相关文档
最新文档