五种最优化方法

合集下载

约束问题的最优化方法

约束问题的最优化方法

可用于处理等式约束。
§5.3 外点惩罚函数法
三. 几个参数的选择:
r(0) 的选择:
r(0) 过大,会使惩罚函数的等值线变形或偏心,求极值困难。r (0) 过小,迭代次数太多。
建议 :r0 max ru0 u 1,2,...m
其中:ru0
m gu
0.02 x0 f
x0
x(0) 的选择:
2
若均满足,停止迭代,有约束优化问题的最优点为 x* = xk*; 若有一个准则不满足,则令 x(0) xk * (r(k) ),r(k1) c r(k) , k k 1 并转入第 3 步,继续计算。
§5.2 内点惩罚函数法
算法框图
§5.2 内点惩罚函数法
四. 几个参数的选择: 1. 惩罚因子初始值 r(0) 的选择:
§5.1 引言
有解的条件: ① f(x) 和 g(x) 都连续可微; ② 存在一个有界的可行域; ③ 可行域为非空集; ④ 迭代要有目标函数的下降性和设计变量的可行性。
三. 间接解法的基本思想: 目的:将有约束优化问题转化为无约束优化问题来解决。
方法:以原目标函数和加权的约束函数共同构成一个新的目标函数
(略) 2. 数学模型:
设计变量 : X x1,x2 T t f ,h T
目标函数 : min. f x 120x1 x2
单位长度的质量
§5.2 内点惩罚函数法
约束函数 : g1x x1 0 g 2 x x2 0 g3 x 1 0.25x2 0
g4
x
1
7 45
x1x2
0
g5
x
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想:
外点法将新目标函数 Φ( x , r ) 构筑在可行域 D 外, 随着惩罚因子 r(k) 的不断递增, 生成一系列新目标函数 Φ(xk ,r(k)),在可行域外逐步迭 代,产生的极值点 xk*(r(k)) 序 列从可行域外部趋向原目标函 数的约束最优点 x* 。

最优化理论与方法概述

最优化理论与方法概述
第一页,编辑于星期五:十点 四分。
1. 最优化问题
最优化问题:求一个一元函数或多元函数的极 值。 在微积分中,我们曾经接触过一些比较简单 的极值问题。下面通过具体例子来看看什么是最 优化问题。
第二页,编辑于星期五:十点 四分。
1.1 最优化问题的例子
例1 对边长为a的正方形铁板,在四个角处剪去相等
、大豆粉的量(磅)。
min Z 0.0164x1 0.0463x2 0.1250x3 s.t. x1 x2 x3 100
0.380 0.380
x1 x1
0.001x2 0.001x2
Байду номын сангаас
0.002x3 0.002x3
0.012 100 0.008100
0.09x2 0.50x3 0.22100
例:求目标函数 f (x) x12 x22 x32 2x1x2 2x2x3 3x3 的梯度和Hesse矩阵。
解:因为
则 又因为:
f X
x1
2
x1
2
x2
f X
x2
2x2
2
x1
2 x3
3
f X 2x1 2x2, 2x2 2x1 2x3 3, 2x3 2x2 T
f X
x3
2
x3
恒有 f x* f x 则称 x*是最优化问题的整体最优解。
定义2:局部最优解:若 x* D,存在某邻域 N ( x*,) 使得对于
一切 x N ( x* ) D ,恒有 f x* f x 则称 x *是最优化问题
的局部最优解。其中 N ( x* ) { x | x x* , 0}
配料
每磅配料中的营养含量

蛋白质
纤维

五章 优选法

五章 优选法

x2做试验得y2= f(x2),假定x2> x1,如果y2 > y1,则最大值 肯定不在区间(a, x1 )内,因此只考虑在( x1 ,b)内 求最大值的问题。再在( x1 ,b)内取一点x3,做试验 得y3= f(x3),如果x3> x2,而y3 < y2,则去掉( x3 ,b)内 取一点x4,…,不断做下去,通过来回调试,范围越 缩越小,总可以找到f(x)的做大值。
9
10
二、黄金分割法( 0.618法)
0.618法的要点是先在试验范围的0.618分点和 它的对称点0.382分点处作试验,比较两个点的结 果,去掉“坏点”部分,保留“好点”所在的区 间;然后在留下区间内再找到上一次“好点”的 对称点,作第二次试验,比较结果,决定取舍, 逐步缩小试验范围。这种方法每次可以去掉试验 范围的0.382倍,而且从第二次试验后每次只须做 一次试验,因此可以用较少的试验次数,迅速找 到最佳点.
2、如果f(x1)比f(x2)差, x2是好点,于是把试验范围( x1,
如果 x1 是“好点”,把试验范围[a, x2] 掉,保留 好点” x1 所在区间,得到新的搜索区间[x2, b] ,得
x 3 x 2 b x1
x2 b x3 x1 比较 x1 x3处试验结果,找出“好点”,保留“好点” 所在区间,依次进行下去…
式可以表示为: 第一点=小+0.618(大-小) 第二点=大+小-第一点
' (5-1)
14 ' (5-2)
a
x2
x1
b
用f(x1)和f(x2)分别表示x1和x2上的试验结果: x2)划去剩下( x2,b); b) 划去剩下(a, x1),下一步是在余下的范围内寻 找好点

运筹学与最优化方法习题集

运筹学与最优化方法习题集

一.单纯性法一.单纯性法1.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 122121212max 25156224..5,0z x x x x x s t x x x x =+£ìï+£ïí+£ïï³î 2.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 2322..2210,0z x x x x s t x x x x =+-³-ìï+£íï³î 3.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+£ìï-+++£íï³î4.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++£ìï-+£ïí+-£ïï³î 5.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++£ìï+£íï³î6.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 105349..528,0z x x x x s t x x x x =++£ìï+£íï³î7.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 16 分)分) 12121212max 254212..3218,0z x x x x s t x x x x =+£ìï£ïí+£ïï³î二.对偶单纯性法二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分)12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 121212212max 3510501..4,0z x x x x x x s t x x x =++£ìï+³ïí£ïï³î 3.用对偶单纯形法求解下列线性规划问题(共用对偶单纯形法求解下列线性规划问题(共 15 分)分) 1212121212min 232330210..050z x x x x x x s t x x x x =++£ìï+³ïï-³íï³ïï³î4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 124123412341234min 262335,,,0z x x x x x x x s t x x x x x x x x =+-+++£ìï-+-³íï³î5.运用对偶单纯形法解下列问题(共运用对偶单纯形法解下列问题(共 16 分)分) 12121212max 24..77,0z x x x x s t x x x x =++³ìï+³íï³î6.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分) 12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î三.0-1整数规划整数规划1.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-³ìï+--+³ïí--+++³ï=î 2.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+£ì++³ïí+³ïï=î 3.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++£ìï++++£ïí++++£ïï=î或 4.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+£ìï-+-+£íï=î或 5.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++³ì-+++³ïí+-+³ïï=î或6.7.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++£ìï+-+£ïí-+-³ï 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-£ìï++£ïï+£íï+£ïï=四.K-T 条件条件1.利用库恩-塔克(K-T )条件求解以下问题(共)条件求解以下问题(共 15 分)分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+£ìï+£íï³î2.利用库恩-塔克(K-T )条件求解以下非线性规划问题。

动态优化理论

动态优化理论

动态优化理论动态优化理论是一种应用于计算机科学和运筹学领域的重要理论。

它主要关注如何根据不断变化的信息和条件,对问题进行最优化的求解。

动态优化理论的应用广泛,从网络优化到资源分配,都能够从中受益。

一、概述动态优化理论是一种通过不断更新和调整解决方案的方法,以适应问题在时间和空间上的动态变化。

它通过分析和比较不同的决策路径,找到在特定条件下获得最优解的策略。

动态优化理论的核心思想是在每个时间步骤或状态下,基于当前信息做出最优的决策,以达到全局最优解。

二、动态规划动态规划是动态优化理论中最常用的方法之一。

它将问题划分为一系列子问题,并通过求解子问题的最优解来获得原始问题的最优解。

动态规划的关键是将问题划分为可重复的子问题,以及定义递推关系式。

通过计算和存储中间结果,可以大大减少计算量和时间复杂度,提高求解效率。

三、贪心算法贪心算法是另一种常用的动态优化方法。

它不同于动态规划,贪心算法每次只考虑局部最优解,而不管全局情况。

贪心算法的基本原理是每一步都选择当前状态下最优解,而不进行回溯和重新计算。

虽然贪心算法可能无法获得全局最优解,但在某些情况下,它可以提供较好的近似解。

四、动态优化的应用动态优化理论在实际问题中有广泛的应用。

例如,它在网络优化中可以用于路由算法的决策过程,根据不同的网络拓扑和实时负载情况,选择最优的路由路径。

另外,动态优化理论也可以应用于资源分配问题,如航空运输中的航班调度和货物装载优化。

五、案例分析为了更好地理解动态优化理论的应用,我们以货物装载优化为例进行分析。

假设有一艘货船需要在给定的货箱数量和总容量限制下,实现最优的货物装载方案。

根据动态优化理论,我们可以分别考虑不同船舱和货箱的组合,计算每种情况下的装载效益,然后选择最优的组合方案。

六、总结动态优化理论是一种重要的优化方法,它通过考虑问题的动态变化和调整,寻找最优解。

动态规划和贪心算法是动态优化理论中常用的方法。

它们在网络优化、资源分配等问题中有广泛的应用。

运筹学实验报告五最优化问题

运筹学实验报告五最优化问题

2018-2019学年第一学期《运筹学》实验报告(五)班级:交通运输171学号: **********姓名: *****日期: 2018.12.6654321m in x x x x x x z +++++=..ts 6,...,2,1,0302050607060655443322116=≥≥+≥+≥+≥+≥+≥+i x x x x x x x x x x x x x x i i 均为整数,且实验一:一、问题重述某昼夜服务的公共交通系统每天各时间段(每4个小时为一个时段)所需的值班人数如下表所示。

这些值班人员在某一时段开始上班后要连续工作8个小时(包括轮流用膳时间)。

问该公交系统至少需要多少名工作人员才能满足值班的需要?设该第i 班次开始上班的工作人员的人数为x i 人,则第i 班次上班的工作人员将在第(i+1)班次下班。

(i=1,2,3,4,5,6)三、数学模型四、模型求解及结果分析Global optimal solution found.Objective value: 150.0000Objective bound: 150.0000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 4Variable Value Reduced CostX1 60.00000 1.000000X2 10.00000 1.000000X3 50.000001.000000X4 0.000000 1.000000X5 30.00000 1.000000X6 0.000000 1.000000Row Slack or Surplus DualPrice1 150.0000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 10.00000 0.0000007 0.000000 0.000000根据Lingo程序运行结果分析可知:当第i班次开始上班的工作人员排布如下时,所需人力最少,为150人。

五种最优化方法

五种最优化方法

精心整理五种最优化方法1.最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);341.22.2.11232.23.3.11233.24.模式搜索法(步长加速法)4.1简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。

3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。

轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。

4.2模式搜索法步骤5.评价函数法5.1简介评价函数法是求解多目标优化问题中的一种主要方法。

在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min(f_1(x),f_2(x),...,f_k(x))s.t.g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。

常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。

选取其中一种线性加权求合法介绍。

5.2线性加权求合法6.遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。

6.1遗传算法基本概念1.个体与种群个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。

种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。

2.适应度与适应度函数适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。

适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。

该函数就是遗传算法中指导搜索的评价函数。

6.2遗传算法基本流程遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。

最优化计算方法(工程优化)第1章

最优化计算方法(工程优化)第1章

最优化在物质运输、自动控制、机械设计、采矿冶金、经 济管理等科学技术各领域中有广泛应用。下面举几个简单的实 例。
例1:把半径为1的实心金属球熔化后,铸成一个实心圆柱体, 问圆柱体取什么尺寸才能使它的表面积最小?
解:决定圆柱体表面积大小有两个决策变量:圆柱体底面半 径r、高h。
问题的约束条件是所铸圆柱体重量与球重相等。即
优化模型的分类
根据问题的不同特点分类
一般的约束优化问题
标准形式
min
xRn
f
x
s.t. gi x 0, i 1, 2, , m
1) gi x 0 -gi x 0
2)
hi
x
0
hi x 0
-hi
x
0
优化模型的分类
根据函数类型分类
线性规划:目标函数、约束条件都是线性的 非线性规划:目标函数、约束条件中的函数不全是线性
yi
a1
1
a3
ln 1
a2 exp
xi
a4 a5
最优化问题举例
例3已:知有从一v旅i 到行团v j从的v旅0费出为发要cij遍,游问城应市如何v1安, v排2 行,..程.,使vn总 ,
费用最小?
模型:
变量—是否从i第个城市到第j个城市
xij 1, 0;
约束—每个城市只能到达一次、离开一次
因此,我们在学习本课程时要尽可能了解如何 由实际问题形成最优化的数学模型。
数学模型: 对现实事物或问题的数学抽象或描述。
最优化问题的数学模型与分类
数学模型的建立
建立数学模型时要尽可能简单,而且要能完整地描 述所研究的系统。
过于简单的数学模型所得到的结果可能不符合实际情 况;而过于详细复杂的模型又给分析计算带来困难。

五种最优化方法

五种最优化方法

五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。

1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。

化过程就是优选X,使目标函数达到最优值。

2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。

2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。

3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。

轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。

4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。

在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。

常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。

选取其中一种线性加权求合法介绍。

5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。

五大算法

五大算法

一、分治算法在计算机科学中,分治法是一种很重要的算法。

字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。

问题的规模越小,越容易直接求解,解题所需的计算时间也越少。

例如,对于n个元素的排序问题,当n=1时,不需任何计算。

n=2时,只要作一次比较即可排好序。

n=3时只要作3次比较即可,…。

而当n较大时,问题就不那么容易处理了。

要想直接解决一个规模较大的问题,有时是相当困难的。

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。

这种算法设计策略叫做分治法。

如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。

由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。

在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。

这自然导致递归过程的产生。

分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

分治法所能解决的问题一般具有以下几个特征:1) 该问题的规模缩小到一定的程度就可以容易地解决2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3) 利用该问题分解出的子问题的解可以合并为该问题的解;4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

五种最优化方法范文

五种最优化方法范文

五种最优化方法范文最优化是一个数学领域,在解决实际问题时,通过寻找最优解的方法,使得目标函数的值最小或最大化。

在最优化问题中,有许多不同的方法可以用来求解。

以下是五种常见的最优化方法。

1.梯度下降法梯度下降法是一种基于梯度信息的迭代算法,用于求解最小化目标函数的最优解。

其基本思想是从初始点开始,根据负梯度方向进行迭代求解,直到达到预定的停止条件或收敛到最优解。

梯度下降法的优点是简单易实现,适用于大规模问题。

缺点是容易陷入局部最优或鞍点,并且收敛速度可能较慢。

2.牛顿法牛顿法是一种基于二阶导数信息的迭代算法,用于求解非线性最优化问题。

其基本思想是通过二阶泰勒展开近似目标函数,以牛顿法的更新方程进行迭代求解。

与梯度下降法相比,牛顿法收敛速度更快。

但牛顿法的缺点是需要计算目标函数的二阶导数矩阵,计算代价较大,并且需要满足一定的收敛条件。

3.拟牛顿法拟牛顿法是一种通过拟合目标函数的局部特征来逼近牛顿法的方法。

常用的拟牛顿法有DFP(Davidon-Fletcher-Powell)方法和BFGS (Broyden-Fletcher-Goldfarb-Shanno)方法。

拟牛顿法利用目标函数的一阶导数信息来近似目标函数的二阶导数矩阵,从而避免了计算二阶导数的复杂性,且收敛速度比梯度下降法更快。

拟牛顿法的缺点是需要存储和更新一个Hessian矩阵的逆或近似逆。

4.线性规划线性规划是一种最优化问题的形式,其中目标函数和约束条件都是线性的。

线性规划问题可以通过线性规划算法求解,如单纯形法、内点法等。

线性规划问题具有良好的理论基础和高效的求解方法。

线性规划在工业、供应链管理、运输问题等方面有广泛的应用。

5.整数规划整数规划是一种最优化问题的形式,其中决策变量只能取整数值。

整数规划问题可以通过整数规划算法求解,如分支定界法、割平面法等。

整数规划在许多实际情况下具有重要的应用,例如在生产计划、线路设计、货物装载等问题中。

五种最优化方法范文

五种最优化方法范文

五种最优化方法范文最优化方法是指为了在给定的条件和约束下,找到一个最优解或者接近最优解的问题求解方法。

这些方法可以用于解决各种实际问题,例如优化生产计划、项目管理、机器学习、数据分析等。

下面将介绍五种常见的最优化方法。

1. 线性规划(Linear Programming):线性规划是一种数学优化技术,用于解决线性目标函数和线性约束条件下的问题。

线性规划方法可以用于优化生产计划、资源分配、供应链管理等问题。

它的基本思想是将问题转化为一个线性目标函数和线性约束条件的标准形式,然后使用线性规划算法求解最优解。

2. 非线性规划(Nonlinear Programming):与线性规划不同,非线性规划处理非线性目标函数和约束条件。

非线性规划方法适用于一些复杂的问题,例如优化机器学习模型、最优化投资组合配置等。

非线性规划方法通常使用梯度下降、牛顿法等迭代算法来逐步优化目标函数,找到最优解。

3. 整数规划(Integer Programming):整数规划是一种数学优化技术,用于求解在决策变量为整数的情况下的优化问题。

整数规划方法通常用于优化工程排程、选址和布局问题等。

整数规划在求解时需要考虑变量取值范围的整数要求,使用分支定界、割平面等方法求解,保证最优解是整数。

4. 动态规划(Dynamic Programming):动态规划是一种将复杂问题分解为一系列子问题来求解的最优化方法。

它通常用于处理具有重叠子问题和最优子结构特性的问题,例如最优路径问题、背包问题等。

动态规划方法通过记忆化或者状态转移的方式来求解最优解,可以有效避免重复计算,提高求解效率。

5. 元启发式算法(Metaheuristic Algorithm):元启发式算法是一类基于启发式的最优化方法。

与传统的优化方法不同,元启发式算法通常不需要依赖目标函数的导数信息,适用于处理复杂问题和无法建立数学模型的情况。

常见的元启发式算法包括遗传算法、蚁群算法、粒子群算法等,它们通过模拟自然界中的生物群体行为来最优解。

最优化计算方法-第5章(线性规划)

最优化计算方法-第5章(线性规划)

第五章线性规划线性规划(Linear Programming,简记为LP)是数学规划的一个重要的分支,其应用极其广泛.1939年,前苏联数学家康托洛维奇(Л.B.Kah )在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题.1947年美国数学家丹泽格(G. B. Dantzig)提出了一般线性规划的数学模型及求解线性规划的通用方法─单纯形方法,为这门科学奠定了基础.此后30年,线性规划的理论和算法逐步丰富和发展.1979年前苏联数学家哈奇扬提出了利用求解线性不等式组的椭球法求解线性规划问题,这一工作有重要的理论意义,但实用价值不高.1984年在美国工作的印度数学家卡玛卡(N. Karmarkar)提出了求解线性规划的一个新的内点法,这是一个有实用价值的多项式时间算法.这些为线性规划更好地应用于实际提供了完善的理论基础和算法.第一节线性规划问题及其数学模型一、问题的提出例1 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知条件如表所示。

问应如何安排计划使该工厂获利最多?ⅠⅡ现有资源设备原材料A 原材料B 14248台时16kg12kg每件利润23ⅠⅡ现有资源设备原材料A 原材料B 1402048台时16kg12kg每件利润23解: 设x 1、x 2 分别表示在计划期内产品Ⅰ、Ⅱ的产量。

12max 23z x x =+..s t 1228x x +≤1416x ≤2412x ≤12,0x x ≥二、线性规划问题的标准型112211112211211222221122123max ..,,0n nn n n n m m m mn n mn z c x c x c x s t a x a x a x b a x a x a x b a x a x a x b x x x x =+++⎧⎪+++=⎪⎪+++=⎨⎪⎪+++=⎪≥⎩,,其中1,,0m b b ≥11max ..,1,2,,0,1,2,,nj jj nij j i j j z c x s t a x b i mx j n=====≥=∑∑ 12(,,,)T n c c c =c 12(,,,)Tn x x x =x 12(,,,)Tm b b b =b 111212122212n nm m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 12[,,,]n = p p pmax ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 001max ..()Tnj j j z s tx =⎧=⎪⎪=≥⎨⎪⎪≥⎩∑c xp bb x 00对于不是标准形式的线性规划问题,可以通过下列方法将线性规划的数学模型化为标准形式:(1)目标函数的转换对min z 可以化max()z -(2)右端项的转换对0i b <,给方程两边同时乘以1-(3)约束条件的转换约束条件为≤方程左边加上一个变量,称为松弛变量约束条件为≥方程左边减上一个变量,称为剩余变量(4)变量的非负约束变量j x 无限制时,令,,0j j j j j x x x x x ''''''=-≥变量0j x ≤时,令j jx x '=-例将下列线性规划模型转化为标准形式12312312312312min 23..7232500x x x s t x x x x x x x x x x x -+-⎧⎪++≤⎪⎪-+≥⎨⎪--=-⎪≥≥⎪⎩,解(1)变量的非负约束令345x x x =-1245max 233x x x x -+-..s t 612457x x x x x ++-+=712452x x x x x -+--=12453225x x x x -++-=§2 两变量线性规划问题的图解法例1 求下列线性规划的解12121212max ..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,120x x z +=将等值线沿梯度方向移动当等值线即将离开可行例2 求下列线性规划的解12121212max 2..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,1202x x z +=将等值线沿梯度方向移动当等值线即将离开可行域时与可行域“最后的交点点为问题的最优解例3 求下列线性规划的解12121212max ..2200z x x s t x x x x x x =+⎧⎪-≤⎪⎨-≥-⎪⎪≥≥⎩,c2x 1x O无解例4 求下列线性规划的解12121212min 3..123600z x x s t x x x x x x =-⎧⎪≤⎪⎨≥⎪⎪≥≥⎩++,2x 1x O线性规划问题的性质:(1)线性规划的可行域为凸集,顶点个数有限.若可行域非空有界,则可行域为凸多边形.(2)线性规划可能有唯一最优解,可能有无数多个最优解,也可能无解最优解.无最优解可能是目标函数在可行域上无界,也可能可行域为空集.(3)若线性规划有最优解,则最优解必可在可行域的某个顶点达到.若两个顶点都为最优解,那么这两点连线上的所有点都是线性规划的最优解.§3 线性规划解的概念及其性质1 线性规划解的概念考虑线性规划问题max ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 00定义.1 矩阵A 中任何一组m 个线性无关的列向量构成的可逆矩阵B 称为线性规划的一个基矩阵与这些列向量对应的变量称为基变量(basis variable )其余变量称为基对应的非基变量(nonbasis variable )B 若设一个基为12(,,)m B p p p = ,12,,,m x x x ——为基B 对应的基变量1,,m n x x + ——为基B 对应的非基变量1B m x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1m N n x x x +⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦12(,,,)m m n ++= N p p p (,)=A B N 从而令=Ax b 则(,)N x ⎡⎤=⎢⎥⎣⎦B x B N b11B Nx B b B Nx --=-B N Bx Nx b+=令0N x =则1B x B b-=10B b -⎡⎤⎢⎥⎣⎦——基本解(basis solution )满足10B b -⎡⎤≥⎢⎥⎣⎦,=≥0Ax b x 的基本解——基本可行解(basis feasible solution )对应的基称为可行基(feasible basis ).B 可以写成即:定义4 若基本可行解中所有基变量都为正,这样的基本可行解称为非退化解(non-degenerate solution).若基本可行解中某基变量为零,这样的基本可行解称为退化解(degenerate solution).例1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:12123141234max ..28400,00z x x s t x x x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥≥≥⎩,,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点2 解的判别定理定理1 最优解的判别准则设B 为线性规划LP 的一个基,1(1)0-≥B b 1(2)T T--≥0Bc B A c 则基对应的基本可行解1-⎡⎤⎢⎥⎣⎦0B b 是LP 的最优解.1(1,2,,)σ--== TBj j j c B p c j n 为变量对应的检验数j x 112[0,,0,,,]σσσ-++-= ,T TBm m n c B A c 显然基变量对应得检验数为零.定理2 无穷多个最优解的判别定理在线性规划的最优解中,某个非基变量对应的检验数为零,则线性规划有无数多最优解.定理3 无界解的判别定理设B 为线性规划的一个可行基,若基本可行解中s x 对应的检验数0σ<s ,且1-≤0s B p 则线性规划具有无界解(或称无解).某非基变量§3.4 单纯形表设B 为线性规划的一个基,x 为对应的可行解,则=Ax b两边同乘得1-B 11--=B Ax B b两边同乘得T Bc 11T T --=BBc B Ax c B b T z =c xTz -=c x 11T T --+-=TBBz c B Ax c x c B b 11(T T --+-=)TBBz c B A c x c B b1111()T TT z ----⎧+-=⎨=⎩BBc B A c x c B b B Ax B b 11111T T Tz ----⎡⎤⎡⎤-⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0BBc B b c B A c x B A B b 定义矩阵1111TT----⎡⎤-⎢⎥⎣⎦T BBc B b c B A c B bB A 为基B 对应的单纯形表(table of simplex ),记为()T B1111()T T----⎡⎤-=⎢⎥⎣⎦T BBc B b c B A c T B B bB A 检验数函数值基变量的值各变量的系数100T b -=Bc B b 101020(,,,)--= T TBn c B A c b b b 10201-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥ b b B b则单纯形表可写成000101011102()⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦B n n m m mn b b b b b b T b b b 1112121222111112(,,)---⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦n n n m m mn b b b b b b B A B p B p bb b上例中1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:121231412max ..28400z x x s t x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥⎩,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点13410(,)01⎡⎤==⎢⎥⎣⎦B p p 231(,)=B p p 12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p T(0,0)=B C 10()T⎡⎤-=⎢⎥⎣⎦c T B b A 34011008121041001z x x -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦23140101()4021141001x x ⎡⎤⎢⎥=-⎢⎥⎢⎥z T B 121101--⎡⎤=⎢⎥⎣⎦B 31401014021141001z x x ⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦T(0,1)=B C单纯形表的特点:1、基变量对应的检验数为零2、基变量的系数构成单位阵§5旋转变换(基变换)设已知12(,,,,,)= r m j j j j B p p p p T()=B 1 r m j j j z x x x 1sn x x x 0001001011110102⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦sn s n r r rs rn m m ms mn b b b b b b b b b b b b b b b b为了将s x 变为基变量,而将r j x 变为非基变量,必须使表中的第s 列向量变为单位向量,变换按下列步骤进行:(1)将()T B 中第r 行,第s 列的元素化为1.01(,,,,,1,,) rj r rnr rs rs rs rsb b b b b b b b (2)将()T B 中第s 列的的其余元素化为0.0101(,,,,,0,,)---- is rn is rj is r is r i i ij in rs rs rs rsb b b b b b b b b b b b b b b b由此得出变换后矩阵中各元素的变换关系式如下,其中,01== ,,,rjrj rsb b j nb ,,01,01=-≠== ,,,,,,is rjij ij rsb b b b i r i m j nb 变换式称为旋转变换rs b 称为旋转元,r称为旋转行称为旋转列,s s x 称为入基变量,称为出基变量,r j x {,}r s定理3.5.1,01== ,,,rj rj rsb b j n b ,,0,01=-≠== ,,,,,is rj ij ij rsb b b b i r i m j n b 在变换之下,将基12(,,,,,)= r m j j j j B p p p p 的单纯形表变为基12(,,,,,)= m j s j j B p p p p 的单纯形表第6节单纯形法基本思路是:线性规划(通常是求最小值的形式)若有最优解,其必定在可行域(在相应几何空间中是一个凸多面体)的顶点达到,故从某一个顶点出发,沿着凸多面体的棱向另一顶点迭代,使得目标函数的值增加,经过有限次迭代,将达到最优解点.1.入基变量及出基变量的确定入基变量的确定由上面可知,目标函数用非基变量表示的形式为01n j jj m z z x σ=+=-∑若某检验数0j σ<则j x 的系数大于零,将j x 由零变为非零,目标函数值增大.所以,为了使的取值目标函数值增加,可以将某检验数0j σ<对应的非基变量j x 中的某个变为基变量.{}min 0j s j σ=<则s x 可选作为入基变量.即:在负检验数中,列标最小的检验数对应的非基变量入基.2.出基变量的确定在确定出基变量时应满足两个原则:(1)目标函数值不减;(2)保证新的基本解为基本可行解.0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,2 单纯形法设已知一个初始可行基及B T()B 基变量指标集合为{}1,,B m J j j = 非基变量的指标集合为{}1,2,,\N BJ n J =单纯形法若所有()00j N b j J ≥∈,则停止,最优解为0,1,,0,ij i j N x b i m x j J **⎧==⎪⎨=∈⎪⎩否则转(2).(1)最优性检验(2)选入基变量{}0min 0,j N s j b j J =<∈若()01~is b i m ≤=,则停止,(LP)无最优解,否则转(3)(3)选出基变量0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭0min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,(4)作{},r s 旋转运算,01rj rj rsb b j n b == ,,,,,01,01is rj ij ij rsb b b b i r i m j n b =-≠== ,,,,,,得B 的单纯形表()()ijT B b =,以ij b 代替ij b ,转(1)例1 求线性规划问题的解解标准型为:121231425max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 2328416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/408-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x08-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/40140244011/201001/40002-15z x 12345x x x x x 3/21/80⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 1/2例2求线性规划问题的解解标准型为:121231425max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 228416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/404-2441202101001/400400135z x x 12345x x x x x 01/40⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x0-2441202101001/400400135z x x 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/4080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 41/42-1/2080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 2x 2T 0803280101/410101/2-004-12z 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣01x 2x 42-1/25x 11212x k x k x =+12120,1,1k k k k ≤≤+=全部最优解为§7 两阶段法第二阶段从初始可行基开始,用单纯形法求解原问题.(LP )max ..(0)0T z c x s t Ax b b x ⎧=⎪=≥⎨⎪≥⎩(ALP )max ..0()T w s t z ⎧=-⎪-=⎪⎨+≥⎪⎪≥⎩00T e y c x A =b b x y x 第一阶段引入人工变量,构造辅助问题,求辅助问题的最优解,得出原问题的初始可行基及对应的基本可行解.(ALP)12112211112211121122222211212312max..0 ,,,,0mn nn nn nm m mn n m mn mw y y ys t z c x c x c xa x a x a x y ba x a x a x y ba x a x a x y bx x x x y y y=----⎧⎪----=⎪⎪++++=⎪++++=⎨⎪⎪++++=⎪⎪≥⎩,,,,,121111211112122122212000000100()010001m m m m i i i in i=1i i i n n n m m m mn b a a a c c c b a a a T B b a a a b a a a ===⎡⎤----⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑∑∑。

在信息技术教学中培养学生的优化思想

在信息技术教学中培养学生的优化思想

在信息技术教学中培养学生的优化思想摘要:人们在日常生活中,为完成某件事,总有多种方法,通常会选择最省时最省力,效果最好的方法,这个选择的过程需要采用对比、试验、评价、反馈等方式,经过反复验证,最终达到比较完美的结果,这就是优化。

优化的目的是为了办事效率及做事效果的最大化。

通过多年教学,笔者总结了“SECRS五原则”优化方法,在信息技术教学中培养学生优化思想。

关键词:SECRS五原则优化思想解决问题人们在日常生活中,为完成某件事,总有多种方法,通常会选择最省时最省力,效果最好的方法,这个选择的过程需要采用对比、试验、评价、反馈等方式,经过反复验证,最终达到比较完美的结果,这就是优化;信息技术教学中,设计程序、网页、绘画作品等教学内容,学生通过优化方法,拿出最完美的作品,选择优化方法的思想就是优化思想,优化思想就是在有限种或无限种可行方案(决策)中挑选最优的方案(决策)的思想。

优化的目的是为了办事效率及做事效果的最大化。

随着现代科技的发展优化思想的应用越来越广泛,它的潜在价值也日渐明显,学生是祖国的未来,肩负着建设祖国的使命,更应该具备优化思想,那么教师在教学中怎样培养学生的优化思想呢?优化方法有那些呢,通过多年教学,笔者总结了“SECRS五原则”。

一、“SECRS五原则”优化方法信息技术内容设定了做什么,接下来就是怎么做的问题,在学生有了初步的设想,方案,关键在于研究和探讨改进的可能性,通过多年教学,笔者认为下面五种方法简单实用,循序渐进,可以让学生在优化中按“SECRS五原则”来训练应用。

1、S(Share),共享。

身处变革大时代,一定要教会学生紧跟代潮流和最新技术,否则,设计出来的作品再完美无缺,也是纸上谈兵。

共享新技术,共享新应用,这是优化的基础。

2、E(Eliminate),消除。

删除键是学生在电脑学习中应用最多的键,在优化思想上,首先要会使用“删除键”。

编程、设计网页、电脑作品时,在决定了做什么之后,在具体实施的环节,列出方案,准备了诸多元素候,首先要问自己,某些元素、操作是否必要,若答复为不必要,则予以取消,取消是改善的最佳效果,如取消不必要的程序、动作,消除冗余功能,这是信息化技术遵循的最重要的原则,取消是改善的最高原则。

5 常用无约束最优化方法

5 常用无约束最优化方法

0.22152 f ( X 1 ) 0.06134 , g 2 f ( X 2 ) , g 2 0.91335. 0.88008
因为
T g1 g0 0.0000, T g 2 g1 0.0000,
说明相邻两个搜索方向是正交的.
有关说明
最速下降法的优点是算法简单,每 次迭代计算量小,占用内存量小, 即使从一个不好的初始点出发,往 往也能收敛到局部极小点,但它有 一个严重缺点就是收敛速度慢. 沿负梯度方向函数值下降很快的说法,容易使人们产生 一种错觉,认为这一定是最理想的搜索方向,沿该方向 搜索时收敛速度应该很快,然而事实证明,梯度法的收 敛速度并不快.特别是对于等值线(面)具有狭长深谷 形状的函数,收敛速度更慢.其原因是由于每次迭代后 下一次搜索方向总是与前一次搜索方向相互垂直,如此 继续下去就产生所谓的锯齿现象.即从直观上看,在远 离极小点的地方每次迭代可能使目标函数有较大的下降, 但是在接近极小点的地方,由于锯齿现象,从而导致每 次迭代行进距离缩短,因而收敛速度不快.
第 五 章 常 用 无 约 束 优 化 方 法
在基本迭代公式 X k 1 X k tk Pk 中,每次迭代搜索方向 Pk 取为目标函数 f (X )的负梯度方向,即 Pk f ( X k ),而 每次迭代的步长 t k 取为最优步长,由此所确定的算法 称为最速下降法.
第 五 章 常 用 无 约 束 优 化 方 法
f ( X * ) f ( X ) (5.2)
成立.点 X *就是问题(5.1)的全局最优点.但是, 大多数最优化方法只能求到局部最优点.这个矛盾对 于实际问题来讲一般容易解决,因为根据问题的实际 意义多半可以直接判定用优化方法求出的局部最优解 是否为全局最优解.但在理论上这是个比较复杂的问 题,本书不涉及. 无约束优化方法是优化技术中极为重要,它不仅可以直 接用来求解无约束优化问题,而且很多约束优化问题 也常将其转化为无约束优化问题,然后用无约束优化 方法来求解.同时,有些无约束优化方法只需略加处 理,即可用于求解约束优化问题.

五种最优化方法

五种最优化方法

五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。

1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。

化过程就是优选X,使目标函数达到最优值。

2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。

2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。

3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。

轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。

4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。

在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。

常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。

选取其中一种线性加权求合法介绍。

5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。

巴班斯基教学过程最优化理论及其现实反思

巴班斯基教学过程最优化理论及其现实反思

巴班斯基教学过程最优化理论及其现实反思尤•康•巴班斯基(1927.1~1987.8)是当代著名的教育家、教学论专家,前苏联教育科学博士、教授、教育科学院院士。

他在全面总结顿河一罗斯托夫地区克服大面积留级现象教学经验的基础上,从探讨预防学生学业不良问题入手,以马克思主义辩证法思想为核心,结合系统论、控制论等原理,对教育教学中许多重大问题进行了全面和系统的研究,形成了“教学教育过程最优化”的教育教学思想。

一、教学过程最优化的概念“最优的”这个术语,意思是说“根据一定的标准衡量对当时条件来说最佳的”。

教学过程最优化,综合一个比较完整的定义:教学过程最优化是指在教学过程中, 教师在全面考虑教学规律和原则, 教学任务、内容、方法和形式,以及该系统的特征及其内外部条件的基础上,选择教学过程的最佳方案,组织对教学过程的控制,从而在规定的时间内使学生在教养、教育和发展三个方面获得最大可能的效果。

这里着重指出的是在巴班斯基教学过程最优化的理论中, “最优的一词并不等于“理想的” , 也不是一般所指的“最好的” ”。

“最优的是从一定标准来看, 对一定条件来说是最好的意思” 更具体地说“是指一定学校、一定班级在具体条件的制约下所能得到的最大成果,也就是指学生和教师在一定场合下所具有的全部可能性”。

发挥了全部可能性, 获得该条件所能达到的最大成果, 就可认为是实现了最优化。

可见最优化不是一种抽象、僵化的模式,它是相对于一定条件而言的,这充分显示出辨证法对具体事物作具体分析的灵魂。

二、教学过程最优化理论的起源顿河—罗斯托夫地区的教学科学实验是巴班斯基教学过程最优化理论的起源。

任何一门学科要想成为一门独立的科学,必须有其自身独特的理论和实践基础。

巴班斯基的教学过程最优化理论来源于教育科学实验和教学实践,是在教学实践的基础上进行的教学科学实验。

纵观巴班斯基走过的教育科学化道路,经历了两个重大的发展阶段。

第一阶段,六十年代初,顿河—罗斯托夫地区创造了大面积客服留级现象的经验,后在全国范围内推广。

约束问题的最优化方法

约束问题的最优化方法

3. 优化方法: 选用内点惩罚法,惩罚函数形式为: 6 1 T k k x,r f x r 取 x 0 1,30 , r 0 3 , c 0.7 u 1 g x u 调用 Powell 法求序列无约束优化极值,以逐渐逼近原问 题的极值点。
k 2 x r ( 1 x ) x 1时; x, r k x 1时。 x
4
min.
s.t
f (x) = x
x ∈ R1
g (x) = 1-x ≤ 0


§5.3 外点惩罚函数法
二. 惩罚函数的形式:

x, r ( k ) f x r k maxg u x ,0 I u g u x 0 u 1,2,...,m,
(k ) (k ) m
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
§5.2 内点惩罚函数法
4. 求解过程分析:
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想: 外点法将新目标函数
Φ( x , r )
构筑在可行域 D
外,随着惩罚因子 r(k) 的不断 递增,生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k)) 序列从可行域外部趋向原目标 函数的约束最优点 x* 。 例:求下述约束优化问题的最优点。 新目标函数:

五章 优选法

五章   优选法

24
利用这组分数进行安排试验,进行优选的方法, 称为分数法。 分数法也是适合单峰函数的方法,该方法要求预先 知道试验总数,适用于试验点只能取整数的情况。
f(x)
a
单峰函数
b
25

例:在配制某种清洗液时,要优选某材料的加入量,其加入 量用150ml的量杯来计算,该量杯的量程分为15格,每格 代表10ml. 由于量杯是锥形的,所以每格的高度不等,很难量出几 毫升或几点几毫升,因些不便使用0.618法.这时可将试验 范围定为0-130ml,以8/13代替0.618,第一个点在8/13处, 即80ml处,第二个点在5/13处,即50ml处,这样作几 次试验后,就能找到满意结果。
第一个试验点x1设在范围(a,b)的0.618位置上(距左端 点a),第二个试验点x2取成x1的对称点,即:
a
x2
x2 a b x1
x1
b
x1 a 0.618(b a ) 也可 式可以表示为: 第一点=小+0.618(大-小) 第二点=大+小-第一点 x2 a 0.382(b a )

6
基本命题

试验指标f(x)是定义区间(a,b)的单峰函数

用尽量少的试验次数,来确定f(x)的最大值的近似位置
7
常用的单因素优选法

1、来回调试方法、 2、黄金分割法、
3、分数法、
4、对分法、 5、抛物线法、 6、分批试验法、 7、逐步提高法
8
一.来回调试法

如图5-1所示,选取一点x1做试验得y1= f(x1),再选取一点
?均分法?比例分割法40每批做2n个试验?先把试验范围等分为2n1段在2n个分点上作第一批试验?比较结果留下较好的点及其左右一段?然后把这两段都等分为n1段?分点处做第二批试验1均分法412比例分割法?每一批做2n1个试验?把试验范围划分为2n2段相邻两段长度为a和bab?在2n1个分点上做第一批试验比较结果在好试验点左右留下一长一短试验范围变成ab?把a分成2n2段相邻两段为a1b1a1b1且a1b42?长短段的比例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五种最优化方法
1.最优化方法概述
1.1最优化问题的分类
1)无约束和有约束条件;
2)确定性和随机性最优问题(变量是否确定);
3)线性优化与非线性优化(目标函数和约束条件是否线性);
4)静态规划和动态规划(解是否随时间变化)。

1.2最优化问题的一般形式(有约束条件):
式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。

化过程就是优选X,使目标函数达到最优值。

2.牛顿法
2.1简介
1)解决的是无约束非线性规划问题;
2)是求解函数极值的一种方法;
3)是一种函数逼近法。

2.2原理和步骤
3.最速下降法(梯度法)
3.1最速下降法简介
1)解决的是无约束非线性规划问题;
2)是求解函数极值的一种方法;
3)沿函数在该点处目标函数下降最快的方向作为搜索方向;
3.2最速下降法算法原理和步骤
4.模式搜索法(步长加速法)
4.1简介
1)解决的是无约束非线性规划问题;
2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。

3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。

轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。

4.2模式搜索法步骤
5.评价函数法
5.1简介
评价函数法是求解多目标优化问题中的一种主要方法。

在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))
s.t. g(x)<=0
传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。

常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。

选取其中一种线性加权求合法介绍。

5.2线性加权求合法
6.遗传算法
智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进
而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。

6.1遗传算法基本概念
1. 个体与种群个体就是模拟生物个体而对问题中的对象(一般就是问题的解)
的一种称呼。

种群就是模拟生物种群而由若干个体组成的群体, 它一般是整个搜索空间的一个很小的子集。

2. 适应度与适应度函数适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。

适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。

该函数就是遗传算法中指导搜索的评价函数。

6.2遗传算法基本流程
遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。

遗传算法步骤
步 1 在搜索空间 U 上定义一个适应度函数 f(x) ,给定种群规模 N ,交叉率 Pc 和变异率 Pm,代数 T;
步 2 随机产生 U 中的 N 个个体 s1, s2, … , sN,组成初始种群 S={s1, s2, …, sN},置代数计数器 t=1;
步 3 计算 S 中每个个体的适应度 f() ;
步 4 若终止条件满足,则取 S 中适应度最大的个体作为所求结果,算法结束。

步 5 负责继续进行选择、交叉、变异等遗传操作,重复以上步骤,直到达到最优结果。

相关文档
最新文档