函数图象的对称变换
函数图象变换和零点
函数图象变换和零点一、函数图像1、平移变换Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h 左移→y =f (x +h); 2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h 上移→y =f (x )+h ; 2)y =f (x ) h下移→y =f (x )-h 。
2、对称变换Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y =f (x ) xy =→直线x =f (y )Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y =f (x )ax =→直线y =f (2a -x )。
3、翻折变换Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到4、伸缩变换Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )ay ⨯→y =af (x )Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到。
函数的对称与平移变换
函数的对称与平移变换在数学中,函数的对称和平移变换是一种常见的数学概念。
通过对函数进行对称和平移操作,我们可以改变其形状、位置和性质,从而更好地理解和分析函数的特点。
本文将介绍函数的对称和平移变换的基本概念、性质及其在数学中的应用。
一、对称变换对称变换是指将函数绕某个轴线进行镜像翻转,使得函数在轴线两侧呈现完全对称的形状。
常见的对称轴包括x轴、y轴和原点。
1. 沿x轴对称:当函数关于x轴对称时,称之为沿x轴对称函数。
这意味着当函数中的任意一点(x, y)在曲线上时,点(x, -y)也在曲线上。
沿x轴对称的函数形状上下对称。
2. 沿y轴对称:当函数关于y轴对称时,称之为沿y轴对称函数。
这意味着当函数中的任意一点(x, y)在曲线上时,点(-x, y)也在曲线上。
沿y轴对称的函数形状左右对称。
3. 原点对称:当函数关于原点对称时,称之为原点对称函数。
这意味着当函数中的任意一点(x, y)在曲线上时,点(-x, -y)也在曲线上。
原点对称的函数形状在四个象限上对称。
对称变换不仅能够反映函数的对称性,还能够帮助我们简化函数的分析。
通过观察函数的对称轴和对称点,我们可以得到关于函数的重要信息,如函数的奇偶性、极值点和图像的对称性。
二、平移变换平移变换是指将函数沿着坐标轴的方向上平移一定的距离,从而改变函数的位置和形状。
平移变换可以是水平方向的平移(横向平移)或垂直方向的平移(纵向平移)。
1. 横向平移:当我们将函数沿着x轴的方向上移动a个单位,函数的数学表达式变为f(x-a)。
这个平移过程会改变函数图像在水平方向上的位置。
如果a为正数,函数图像会向右移动;如果a为负数,函数图像会向左移动。
2. 纵向平移:当我们将函数沿着y轴的方向上移动b个单位,函数的数学表达式变为f(x)+b。
这个平移过程会改变函数图像在垂直方向上的位置。
如果b为正数,函数图像会向上移动;如果b为负数,函数图像会向下移动。
平移变换不改变函数的形状,只是改变了函数图像在平面坐标系上的位置。
函数的对称性与函数的图象变换
(1)y=2-x (2)y=-2x (3)y=-2-x
y
y
y
1 Ox
1
O
-1
x
1
O
-1
x
函数图象对称变换的规律:
1.函数y=f(-x)与函数y=f(x)的图像关于y轴对称 2.函数y=-f(x)与函数y=f(x)的图像关于x轴对称 3.函数y=-f(-x)与函数y=f(x)的图像关于原点对称 4.函数y=f(x)与函数y=f(2a-x)的图像关于直线 x=a
,0
) 对称
(2)若y=f(x)满足f(a-x)=2c-f(b+x),
则函数图像关于点 (
a+b 2
,C
) 对称
轴对称 函数图像关于直线x=0对称
中心对称性 函数图像关于(0,0)中心对称
-x
x
f(-x)=a对称
函数图像关于(a,0)中心对称
x=a
y=f(x)图像关于(0,0)中心对称
f(-x)=-f(x)
y
-x
o xa
x
类比探究
中心对称性
从”形”的角度看,
从”数”的角度看,
y=f(x)图像关于(a,0)中心对称
f(x)=-f(2a-x)
y
2a-x o
a
xx
类比探究
中心对称性
从”形”的角度看,
从”数”的角度看,
y=f(x)图像关于(a,0)中心对称
②若函数f(x)关于直线x=1对称,则函数f(x-4)-2
关于直线 x=5 对称.
问题2. 设f(x)= 1 (x>0),求函数y=-f(x)、y=f(-x)、
x
y=-f(-x)的解析式及其定义域,并分别作出它们的图象。
三种图象变换:平移变换、对称变换和伸缩变换
三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。
③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。
函数对称性公式大总结
函数对称性公式大总结1. 引言在数学中,函数对称性是一个重要的概念,它描述了函数在某种变换下保持不变的性质。
函数对称性有多种形式,如轴对称性、中心对称性等。
本文将对函数对称性的一些常见公式进行总结,并提供示例说明。
2. 轴对称函数公式2.1 轴对称性的定义轴对称是指函数图像对于某一条直线对称,即函数图像在这条直线两侧对称。
设函数为 f(x),对称轴为 x = a,则函数 f(x) 在对称轴两侧的函数值相等,即 f(a + h) = f(a - h)。
2.2 轴对称函数公式•偶函数:若函数 f(x) 满足 f(-x) = f(x),则称 f(x) 为偶函数。
•奇函数:若函数 f(x) 满足 f(-x) = -f(x),则称 f(x) 为奇函数。
偶函数和奇函数都具有轴对称性,其中以偶函数更为常见。
3. 中心对称函数公式3.1 中心对称性的定义中心对称是指函数图像对于某一点对称,即函数图像关于这一点对称。
设函数为 f(x),对称中心为 (a, b),则函数 f(x) 在对称中心两侧的函数值相等,即 f(a + h) = f(a - h)。
3.2 中心对称函数公式•对数函数:对数函数 y = loga(x) 关于 y 轴对称,其中 a > 0,且a ≠ 1。
•幂函数:幂函数 y = ax^n 关于 y 轴对称,其中a ≠ 0,且 n 为任意整数。
•正弦函数和余弦函数:正弦函数 y = sin(x) 和余弦函数 y = cos(x) 关于原点对称。
4. 复合对称函数公式4.1 复合对称性的定义复合对称是指函数图像同时具有轴对称性和中心对称性。
函数 f(x) 在具有轴对称性的直线上的每一个点,同时也是具有中心对称性的点。
4.2 复合对称函数公式•奇次幂函数:奇次幂函数y = ax^(2n+1) 具有轴对称性和中心对称性,其中a ≠ 0,n 为任意整数。
5. 示例说明5.1 示例 1:偶函数考虑函数 f(x) = x^2,我们可以看到该函数关于 y 轴对称,即 f(x) = f(-x)。
高三函数对称性知识点汇总
高三函数对称性知识点汇总函数是数学中的重要概念,在高三数学学习中,函数的对称性是一个重要的知识点。
本文将对高三函数对称性的相关知识进行汇总,并介绍不同函数的对称性及其特点。
函数的对称性是指函数图像在某种变换下保持不变的性质。
在高三函数学习中,常见的函数对称性有以下几种:关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称。
一、关于x轴对称若函数图像在x轴两侧关于x轴对称,即对于函数中的每一个点(x, y),都存在另一个点(x, -y)也在函数图像上,则称函数关于x轴对称。
对于一个函数关于x轴对称的特点有:1. 函数的解析式中只含有偶次项,或不包含奇次项。
2. 函数图像关于y轴对称。
若函数图像在y轴两侧关于y轴对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, y)也在函数图像上,则称函数关于y 轴对称。
对于一个函数关于y轴对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。
2. 函数图像关于x轴对称。
三、关于原点对称若函数图像关于原点对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, -y)也在函数图像上,则称函数关于原点对称。
对于一个函数关于原点对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。
2. 函数图像关于原点对称。
当函数图像在直线L两侧对称时,我们称函数关于直线L对称。
对于关于直线对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。
2. 函数图像上关于直线L对称。
五、关于点对称若函数图像在点P两侧对称时,我们称函数关于点P对称。
对于关于点对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。
2. 函数图像关于点P对称。
综上所述,高三数学中的函数对称性知识点主要包括关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称等几种形式。
函数对称性公式大总结
函数对称性公式大总结1. 引言在数学中,函数对称性是指函数在某种变换下保持不变的特性。
函数对称性广泛应用于各个数学分支,如代数、几何和微积分等。
本文将对常见的函数对称性公式进行总结,以帮助读者更好地理解和应用这些公式。
2. 对称轴对称轴是函数对称性的一个重要概念。
对称轴是指函数图像关于某一直线对称。
对称轴上的点与其对称点关于对称轴对称。
对称轴的方程可以通过观察函数的特性或运用特定的公式来确定。
2.1 y轴对称性若函数满足f(x) = f(-x),则函数具有y轴对称性。
对于奇函数来说,其图像关于y轴对称;对于偶函数来说,其图像与y 轴重合。
常见的函数对称于y轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)2.2 x轴对称性若函数满足f(x) = -f(x),则函数具有x轴对称性。
对于奇函数来说,其图像关于x轴对称;对于偶函数来说,其图像与x 轴重合。
常见的函数对称于x轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)3. 极限和导数对称性在微积分中,极限和导数也可以与函数的对称性相关联。
3.1 极限对称性若函数f(x)在某一点x=a的极限存在,并且与x=a的对称点x=-a的极限相等,即lim(x->a) f(x) = lim(x->-a) f(x),则函数具有极限对称性。
常见的函数具有极限对称性的公式有:•正弦函数的极限对称性:lim(x->0) sin(x) = lim(x->0) sin(-x)•余弦函数的极限对称性:lim(x->0) cos(x) = lim(x->0) cos(-x)3.2 导数对称性若函数f(x)在某一点x=a可导,并且其导数与x=a的对称点x=-a的导数相等,即f’(a) = f’(-a),则函数具有导数对称性。
常见的函数具有导数对称性的公式有:•正弦函数的导数对称性:(sin(x))’ = cos(-x)•余弦函数的导数对称性:(cos(x))’ = -sin(-x)4. 对称性的应用函数对称性是解决许多数学问题的重要工具。
【高中数学】05函数图像的对称变换
函数图像的对称变换函数y =f (x )与y =-f (x )、y =f (-x )及y =-f (-x )的图象分别关于x 轴、y 轴、原点对称 例1、设xx f 1)(= (x >0)作出y =-f (x )、y =f (-x )及y =-f (-x )的图象。
横坐标不变,纵坐标取相反数 纵坐标不变,横坐标取相反数 横坐标与纵坐标都取原来相反数图象关于x 轴对称 图象关于y 轴对称 图象关于原点对称定理:y =f (m -x )由函数y =f (-x )向右平移m 个单位得到。
证明:由于y =f (m -x )=f [-(x-m )],故可得知。
定理:y =f (m -x )与y =f (x-m )的图象关于直线x=m 对称。
证明:y =f (m -x )由函数y =f (-x )向右平移m 个单位得到;y =f (x-m )由函数y =f (x )向右平移m 个单位得到,而y =f (x )与y =f (-x )关于y 轴对称,故y =f (m -x )与y =f (x-m )的图象关于直线x=m 对称。
1.设函数y=f (x )定义在实数集R 上,则函数y=f (1﹣x )与y=f (x ﹣1)的图象关于( D )A .直线y=0对称B .直线x=0对称C .直线y=1对称D .直线x=1对称 2.若函数y=f (x )的图象如图所示,则函数y=f (1﹣x )的图象大致为( A ) yA.B.C.D.3.已知函数f(x)的值域是[﹣2,3],则函数f(x+2)的值域是(D)A.[﹣4,1] B.[0,5] C.[﹣4,1]∪[0,5]D.[﹣2,3]4.关于函数y=f(x)与函数y=f(x+1)的叙述一定正确的是(C)A.定义域相同B.对应关系相同C.値域相同D.定义域、値域、对应关系都可以不相同5.函数y=1+的图象是(A)A. B.C. D.6.已知函数y=f(x)的图象与函数y=的图象关于原点对称,则f(x)=(B)A.B.C.﹣D.﹣7.若函数y=f(x)的图象过点(1,1),则函数f(4﹣x)的图象一定经过定点(C)A.(1,3)B.(﹣5,1)C.(3,1)D.(1,﹣5)8.为了得到函数y=f(﹣2x)的图象,可以把函数y=f(1﹣2x)的图象适当平移,这个平移是(B)A.沿x轴向右平移1个单位B.沿x轴向右平移个单位C.沿x轴向左平移1个单位D.沿x轴向左平移个单位9.已知函数f(x)=ax2+x(a为常数),则函数f(x﹣1)的图象恒过点(D)A.(﹣1,0)B.(0,1)C.(1,1)D.(1,0)10.函数f(x)的图象向右平移1个单位长度,所得图象与y=e x关于y轴对称,则f(x)=(D)A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1由函数y=f(x)的图象作出y=|f(x)|与y=f(|x|)的图象例2、作出函数y=|x2-2x-1|及y=|x|2-2|x|-1的图象。
一次函数图象的变换--对称
一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。
知识点:1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。
设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。
2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。
设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。
下面我们通过例题的讲解来反馈知识的应用:例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。
分析:关于x轴对称时,横坐标不变纵坐标互为相反数;关于y轴对称时,纵坐标不变横坐标互为相反数;关于某条直线(垂直坐标轴)对称时,则相关点解:1、关于x轴对称设点( x , y )在直线l上,则点( x , -y )在直线y=2x+6上。
即:-y=2x+6y=-2x-6所以关于x轴对称的直线l的解析式为:y=-2x-6.关于直线对称。
2、关于y轴对称设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。
即:y=2(-x) +6y=-2x+6所以关于y轴对称的直线l的解析式为:y=-2x+6.3、关于直线x=5对称(作图)由图可知:AB=BC则C点横坐标:-x+5+5=-x+10所以点C (-x+10, y)设点(x,y)在直线l上,则点(-x+10, y)在直线y=2x+6上。
即:y=2(-x+10)+6y=-2x+26所以关于直线x=5对称的直线l的解析式为:y=-2x+26.总结:根据对称求直线的解析式关键在找对称的坐标点。
关于x轴对称,横坐标不变纵坐标互为相反数;关于y轴对称,纵坐标不变横坐标互为相反数;关于某条直线(垂直对称轴)对称,可见例题中分析的方法去求对称点。
(整理版)第四讲函数图象的对称性与变换
第四讲:函数图象的对称性与变换一、 两个函数的图象的对称性:1、y=f 〔x 〕与y=-f 〔x 〕关于x 轴对称。
2、y=f 〔x 〕与y=f 〔-x 〕关于y 轴对称。
3、 y=f 〔x 〕与y=-f 〔-x 〕关于原点对称。
4、y=f 〔x 〕与y=f 1-〔x 〕关于直线y=x 对称,〔或y=f 〔x 〕与x=f 〔y 〕关于直线y=x 对称〕。
5、y=f 〔x 〕与y=f 〔2a -x 〕{注:y=f 〔a+x 〕与y=f 〔a -x 〕关于直线x=0对称}关于直线x=a 对称。
6、y=f 〔x 〕与y=-f 〔2a -x 〕+2b 关于点〔a,b 〕对称.二、 一个函数的图象的对称性:1、关于直线x=a 对称时,f 〔x 〕=f 〔2a -x 〕或f 〔a -x 〕=f 〔a+x 〕,特例:a=0时,关于y 轴对称,此时 f 〔x 〕=f 〔-x 〕为偶函数。
2、y=f 〔x 〕关于〔a,b 〕对称时,f 〔x 〕=2b -f 〔2a -x 〕,特别a=b=0时, f 〔x 〕=-f 〔-x 〕,即f 〔x 〕关于原点对称,f 〔x 〕为奇函数。
3、y=f 〔x 〕关于直线y=x+b 对称时,由上面知y=f 〔x 〕关于直线y=x+b 对称的函数的解析式是y=f 1-〔x+b 〕+b 。
它与y=f 〔x 〕应是同一函数,所以:f 〔x 〕=f1-〔x+b 〕+b 。
特别当b =0时,f 〔x 〕=f 1-〔x 〕,即一个函数关于直线y=x 对称时,它的反函数就是它本身。
4、类似4有y=f 〔x 〕关于直线y=-x+b 对称时, f 〔x 〕=b -f 1-〔b -x 〕。
特别当b =0时,f 〔x 〕=-f 1-〔-x 〕, f 〔x 〕关于直线y=-x 对称.5、假设f(a+x)=f(b-x),那么f(x)的图像关于直线2b a x +=对称, 三:图象平移与伸缩变换、翻折变换。
1、平移变换〔向量平移法那么〕:y=f 〔x 〕按a =〔h,k 〕平移得y=f 〔x -h 〕+k,即F 〔x,y 〕=0按a =〔h,k 〕平移得F 〔x -h,y -k 〕=0,当m>0时,向右平移,m<0时,向左平移。
函数图像的变换(周期,平移,对称)
函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。
高中数学中的函数与图像对称性质与图形变换
高中数学中的函数与图像对称性质与图形变换在高中数学中,函数与图像的对称性质以及图形的变换是非常重要的概念。
这些概念不仅有助于我们理解数学中的抽象概念,还有助于我们解决实际问题。
本文将探讨函数与图像的对称性质以及图形的变换,并分析其在数学中的应用。
函数与图像的对称性质是指函数图像在某个特定操作下的不变性。
常见的对称性质包括轴对称和中心对称。
轴对称是指函数图像关于某条直线对称,而中心对称是指函数图像关于某个点对称。
这些对称性质在数学中的应用非常广泛。
例如,在解方程时,我们可以利用函数图像的对称性质来简化问题。
另外,在几何学中,对称性质也是研究图形性质的重要工具。
图形的变换是指将一个图形按照一定规则进行移动、旋转、翻转等操作,从而得到一个新的图形。
常见的图形变换包括平移、旋转和翻转。
平移是指将图形沿着平行于坐标轴的方向进行移动,旋转是指将图形按照一定角度进行旋转,翻转是指将图形关于某条直线进行镜像。
这些图形变换在数学中有着广泛的应用。
例如,在几何学中,我们可以利用图形变换来证明两个图形是否全等。
此外,在计算机图形学中,图形变换也是生成动画和模拟现实世界的重要工具。
函数与图像的对称性质和图形变换之间存在着密切的联系。
例如,我们可以利用函数图像的对称性质来进行图形变换。
具体而言,如果一个函数图像关于某条直线对称,那么我们可以通过将函数图像沿着该直线进行翻转来得到一个新的函数图像。
同样地,如果一个函数图像关于某个点对称,那么我们可以通过将函数图像沿着该点进行旋转180度来得到一个新的函数图像。
这些图形变换不仅可以帮助我们理解函数与图像的对称性质,还可以帮助我们解决实际问题。
除了函数与图像的对称性质和图形变换,高中数学中还涉及到其他一些与对称性质和图形变换相关的概念。
例如,我们可以通过函数的奇偶性来判断函数图像的对称性质。
具体而言,如果一个函数满足$f(-x)=-f(x)$,那么它是奇函数,其图像关于原点对称;如果一个函数满足$f(-x)=f(x)$,那么它是偶函数,其图像关于y轴对称。
函数的图像及其变换
的图像可由y=f(x)的图像向上平移b个单位 而得到.总之, 对于平移变换,记忆口诀为:左加右减,上加下减.
(2)对称变换 y=f(-x)与y=f(x)的图像关于 y轴 y=-f(x)与y=f(x)的图像关于 x轴 对称; 对称; 对称;
y=-f(-x)与y=f(x)的图像关于 原点
y=|f(x)|的图像可将y=f(x)的图像在x轴下方的部分
AD,当点C落在X轴上时,h′=CF,显然AD=CF,即 当“中心点”M位于最高处时,“最高点”与X轴的距离 相等,选项B不符,故选A.
【答案】 A
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
► 探究点3 判断、证明函数的单调性 题型三:函数图象的应用及对称问题 3. 已知f(x)=| x2 -4x+3|. (1)求f(x)的单调区间; (2)求m的取值范围, 使方程f(x)=mx有4个不同实根.
方法二 y=f(x-1)与y=f(1-x)的图像分别由y=f(x) 与y=f(-x)的图像同时向右平移一个单位而得,又y=f(x) 与y=f(-x)的图像关于y轴对称. ∴y=f(x-1)与y=f(1-x)的图像关于直线x=1对 称.
【答案】 (1)g(x)=-ln(x-1) (2)D
变式
(1)已知函数 f(2x+1)是奇函数, 则函数 y=f(2x) )
【解析】 如图所示,不妨设正三角形ABC的边长 为a,记“中心点”M与X轴的距离为h,记“最高点”与 X轴的距离为h′.由图可知,当三段弧的中点落在X轴上 时,h最小,此时h=MD;当点A、B、C落在X轴上时, h最大,h=MC,故“中心点”M的位置先低后高,呈周 期性变化,排除选项C与D.当点D落在X轴上时,h′=
函数图象的几种常见变换
函数图象的几种常见变换⑪ 平移变换:左右平移---“左加右减”(注意是针对x 而言);上下平移----“上加下减”(注意是针对()f x 而言).⑫翻折变换:()|()|→f x f x ;“下沿X 轴翻折到上面”()(||)→f x f x .“右往左翻折—沿Y 轴”⑬对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上.②证明图像1C 与2C 的对称性,即证1C 上任意点关于对称中心(轴)的对称点仍在2C 上,反之亦然.③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数()y f x =-的图像关于直线0y =(x 轴)对称;④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关 于直线x a =对称;⑤若()y f x =对x R ∈时,()()f a x f b x +=-恒成立,则()y f x =图像关于直线2a b x +=对称;⑥函数()y f a x =+,()y f b x =-的图像关于直线2b a x -=对称(由a x b x +=-确定);⑦函数()y f x a =-与()y f b x =-的图像关于直线2a b x +=对称;⑧函数()y f x =,()y A f x =-的图像关于直线2A y =对称(由()()2f x A f x y +-=确定);⑨函数()y f x =与()y f x =--的图像关于原点成中心对称;函数()y f x =,()y n f m x =--的图像关于点22(,)m n对称;⑩函数()y f x =与函数1()y f x -=的图像关于直线y x =对称;曲线1C :(,)0f x y =,关于y x a =+,y x a =-+的对称曲线2C 的方程为(,)0f y a x a -+=(或(,)0f y a x a -+-+=;曲线1C :(,)0f x y =关于点(,)a b 的对称曲线2C 方程为:(2,2)0f a x b y --=. 9.函数的周期性:⑪若()y f x =对x R ∈时()()f x a f x a +=-恒成立,则 ()f x 的周期为2||a ;⑫若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 的周期为2||a ;⑬若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 的周期为4||a ;⑭若()y f x =关于点(,0)a ,(,0)b 对称,则()f x 的周期为2||a b -;⑮()y f x =的图象关于直线x a =,()x b a b =≠对称,则函数()y f x =的周期为2||a b -;⑯()y f x =对x R ∈时,()()f x a f x +=-或1()()f x f x a +=-,则()y f x =的周期为2||a ;。
函数对称性知识点归纳总结
函数对称性知识点归纳总结函数对称性是数学中一个重要的概念,它涉及到函数图像在某种变换下的性质和特点。
本文将针对函数对称性的相关知识进行归纳总结,包括函数关于x轴对称、y轴对称和原点对称的特点以及应用。
希望通过本文的介绍,读者能够全面了解函数对称性,并能够应用到实际问题中。
1. 函数关于x轴对称函数关于x轴对称是指函数图像在x轴旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(x, -y)。
如果函数的表达式为f(x),那么函数关于x轴对称可以表示为f(x) = f(-x)。
常见的函数关于x轴对称的例子有二次函数和正弦函数。
2. 函数关于y轴对称函数关于y轴对称是指函数图像在y轴旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, y)。
如果函数的表达式为f(x),那么函数关于y轴对称可以表示为f(x) = f(-x)。
常见的函数关于y轴对称的例子有二次函数和余弦函数。
3. 函数关于原点对称函数关于原点对称是指函数图像以原点为对称中心,旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, -y)。
如果函数的表达式为f(x),那么函数关于原点对称可以表示为f(x) = -f(-x)。
常见的函数关于原点对称的例子有奇次函数和正切函数。
除了以上三种常见的对称性,函数还可能具有其他特殊的对称性,比如关于直线y=x的对称性、关于直线y=-x的对称性等。
这些对称性在函数的研究和应用中都有重要的意义。
函数对称性的应用十分广泛。
其中一项重要的应用是利用对称性来求函数的零点。
如果函数关于x轴对称,也就是满足f(x) = f(-x),那么我们可以通过找到函数图像上的一个零点,得到一个对称的零点。
这是因为如果f(x) = 0,则f(-x) = 0,对称点也是零点。
同样,对于关于y 轴对称或原点对称的函数,我们也可以利用对称性来求解零点。
初二数学函数图像对称变换分析
初二数学函数图像对称变换分析函数图像对称变换是数学中常见的基本概念,它能够帮助我们更好地理解函数的性质和变化。
在这篇文章中,我们将详细分析初二数学中函数图像的对称变换,包括关于x轴、y轴和原点的对称变换。
1. x轴对称变换当函数图像关于x轴对称时,我们可以观察到以下特点:首先,对于函数图像上任意一点P(x, y),其对称点P'关于x轴,其y坐标为-P的y坐标。
也就是说,如果点P的坐标为(x, y),则其对称点P'的坐标为(x, -y)。
其次,对于函数的方程,如果原方程为y=f(x),经过x轴对称变换后,新方程为y=-f(x)。
例如,如果原函数为y=x^2,经过x轴对称变换后新函数为y=-x^2。
2. y轴对称变换当函数图像关于y轴对称时,我们可以观察到以下特点:首先,对于函数图像上任意一点P(x, y),其对称点P'关于y轴,其x坐标为-P的x坐标。
也就是说,如果点P的坐标为(x, y),则其对称点P'的坐标为(-x, y)。
其次,对于函数的方程,如果原方程为y=f(x),经过y轴对称变换后,新方程为y=f(-x)。
例如,如果原函数为y=x^2,经过y轴对称变换后新函数还是y=x^2。
3. 原点对称变换当函数图像关于原点对称时,我们可以观察到以下特点:首先,对于函数图像上任意一点P(x, y),其对称点P'关于原点,其坐标为(-P的x坐标, -P的y坐标)。
也就是说,如果点P的坐标为(x, y),则其对称点P'的坐标为(-x, -y)。
其次,对于函数的方程,如果原方程为y=f(x),经过原点对称变换后,新方程为y=-f(-x)。
例如,如果原函数为y=x^2,经过原点对称变换后新函数为y=-x^2。
通过对函数图像的对称变换分析,我们可以更好地理解函数的性质和变化。
这种对称变换在数学和实际问题中都有广泛的应用。
例如,在几何中,我们可以利用对称变换来证明图形的性质;在物理中,对称变换可以帮助我们分析物体的运动轨迹。
一次函数图象的变换--对称
一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。
知识点:1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。
设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。
2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。
设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。
下面我们通过例题的讲解来反馈知识的应用:例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。
分析:关于x轴对称时,横坐标不变纵坐标互为相反数;关于y轴对称时,纵坐标不变横坐标互为相反数;关于某条直线(垂直坐标轴)对称时,则相关点解:1、关于x轴对称设点(x , y )在直线l上,则点(x , -y )在直线y=2x+6上。
即:-y=2x+6y=-2x-6所以关于x轴对称的直线l的解析式为:y=-2x-6.关于直线对称。
2、关于y轴对称设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。
即:y=2(-x) +6y=-2x+6所以关于y轴对称的直线l的解析式为:y=-2x+6.3、关于直线x=5对称(作图)由图可知:AB=BC则C点横坐标:-x+5+5=-x+10所以点C (-x+10, y)设点(x,y)在直线l上,则点(-x+10, y)在直线y=2x+6上。
即:y=2(-x+10)+6y=-2x+26所以关于直线x=5对称的直线l的解析式为:y=-2x+26.总结:根据对称求直线的解析式关键在找对称的坐标点。
关于x轴对称,横坐标不变纵坐标互为相反数;关于y轴对称,纵坐标不变横坐标互为相反数;关于某条直线(垂直对称轴)对称,可见例题中分析的方法去求对称点。
函数图像的三种变换平移变换
函数图像的三种变换一 、平移变换函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 沿水平方向左右平行移动比如函数()y f x =与函数()(0)y f x a a =->,由于两函数的对应法则相同,x a -与x 取值范围一样,函数的值域一样。
以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数()y f x =的图象水平移动才能得到函数()y f x =的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()y f x a =-上对应的点为11(,)x a y +,因此若将()y f x =沿水平方向向右平移a 个单位即可得到()(0)y f x a a =->的图象。
同样,将()y f x =沿水平方向向左平移a 个单位即可得到()(0)y f x a a =+>的图象。
沿竖直方向上下平行移动比如函数()y f x =与函数()(0)y f x b b =+>,由于函数()y f x =函数()(0)y b f x b -=>中函数y 与y b -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数()y f x =的图象上下移动得到函数()y b f x -=的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()(0)y b f x b -=>上对应的点为11(,)x y b +,因此若将()y f x =沿竖直方向向上平移a 个单位即可得到()(0)y b f x b -=>的图象。
同样,将()y f x =沿竖直方向向下平移a 个单位即可得到()(0)y b f x b +=>的图象。
据此,可以推断()y f x a b =±±(0,0)a b >>为水平方向移动a 个单位,“左加右减”,竖直方向移动b 个单位,“上加下减”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:函数图像的对称变换(2课时)
学情分析:相对于函数图象的平移变换,对称变换是学生的难点,对于具体函数,学生还有一定的思路,但结论性的结果,学生掌握的不是很好。
教学目标:
(1) 通过具体实例的探讨与分析,得到一些对称变换的结论。
(2) 通过一定的应用,加强学生对对称变换结论的理解。
(3) 能数形结合解决想过题目。
教学过程:
欣赏图片,感受对称
一、师生共同分析讨论完成下列结论的形成。
1、(1)函数()y f x =-与()y f x =的图像关于 对称;
(2)函数()y f x =-与()y f x =的图像关于 对称;
(3)函数()y f x =--与()y f x =的图像关于 对称.
2、奇函数的图像关于 对称,偶函数图像关于 对称.
3、(1)若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则
()y f x =的图像关于直线 对称.
(2)若对于函数()y f x =定义域内的任意x 都有()2()f a x b f a x +=--,则()y f x =的图像关于点 对称.
4、对0a >且1a ≠,函数x y a =和函数log a y x =的图象关于直线 对
称.
5、要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以 为轴翻折到x 轴上方,其余部分不变.
6、要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于 的对称性,作出(),0x ∈-∞时的图像.
二、学生先独立完成,再分析点评
2
3、函数x y e =-的图象与函数 的图象关于坐标原点对称.
4、将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .
5、设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关
于 对称.
6、若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 .
二、典例教学
【例1】填空题:
(1
(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为 .
①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有
(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.
(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是 .
(4)当1a >时,已知1x ,2x 分别是方程1x x a +=-和log 1a x x +=-解,则12x x +的值为 .
【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12x
y ⎛⎫=- ⎪⎝⎭; (3)2log y x =;(4)21y x =-.
【例3】(利用图象的变换解决相应的问题)
设函数)(x f y =图象进行平移变换得到曲线C ,这时)(x f y =图象上一点)1,2(-A 变为曲线C 上点)3,3('-A ,则曲线C 的函数解析式为( )
A. 2)1(+-=x f y
B. 2)1(++=x f y
C. 2)1(--=x f y
D. 2)1(-+=x f y
【例4】(有关图象问题的综合应用)
1.若函数)10(1≠>-+=a a b a y x 且的图象经过第二、三、四象限,则一定有 .
2.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( )
A .0,1<>b a
B .0,1>>b a
C .0,10><<b a
D .0,10<<<b a
3.关于x 的方程x a x x =-+-342有三个不相等的实数根,则实数a 的值是多
少?
四、归纳小结
图象的对称变换
①)(x f y =与)(x f y -=的图象关于y 轴对称
②)(x f y =与)(x f y -=的图象关于x 轴对称
③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。
⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。
⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形。