专题:平面直角坐标系内图形面积的计算

合集下载

平面直角坐标系中的面积计算专题

平面直角坐标系中的面积计算专题

平面直角坐标系中的面积计算知识点一:已知点的坐标求图形面积类型一:平面直角坐标系中三角形的面积①三角形有一边在坐标轴上例1:平面直角坐标系中,A(4,-4), B(1,0),C(6,0). 求△ABC 的面积. x yO A (4,-4)B (1,0)C (6,0)例2:平面直角坐标系中,A(0,3), B(0,-3),C(2,1). 求△ABC 的面积. x y123–1–2123–1–2–3OCB A②三角形有一边平行于坐标轴例3:平面直角坐标系中,A(-2,3), B(-2,-3),C(2,1). 求△ABC 的面积.xy –1–2–3123–1–2–3123OA (-2,3)B (-2,-3)C (2,1)③三角形没有一边平行于坐标轴变式1.保持A 、C 不动,改变点B 的位置:B (0,-3), 求△ABC 的面积. x y –1–2–3–4123–1–2–31234OA (-2,3)C (2,1)B x y –1–2–3–4123–1–2–31234O A (-2,3)C (2,1)B x y –1–2–3–4123–1–2–31234O A (-2,3)C (2,1)B练习:如图中,A 、B 两点的坐标分别为(2,3)、(4,1),求△ABO 的面积.类型二:平面直角坐标系中不规则多边形的面积例4:平面直角坐标系中,A(-3,-2),B(3,-2),C(1,3),D(-2,1),求四边形ABCD 的面积. xyO A (-3,-2)B (3,-2)C (1,3)D (-2,1)练习:如图,已知四边形ABCD 四个顶点的坐标分别是A (-5,2),B (1,5),C (5,-2),D (-4,-5).求四边形ABCD 的面积.知识点二:已知图形面积求点的坐标例5:(1)▲ABC 的两个顶点分别为A (2,3),B (-2,0),且▲ABC 的面积为9,若点C 在x 轴上,求点C 的坐标.(2)已知A (1,0),B (0,3),点P 在x 轴上,且▲PAB 的面积为6,求点P 的坐标.(3)已知O (0,0),B (3,2),点A 在坐标轴上,且6=∆OAB S ,求A 点的坐标.练习1.如图A (﹣4,0),B (6,0),C (2,4),D (﹣3,2).(1)求四边形ABCD 的面积;(2)在y 轴上找一点P ,使△APB 的面积等于四边形的一半.求P 点坐标.练习2.如图,已知A (﹣2,0),B (4,0),C (2,4),D (0,2)(1)求三角形ABC 的面积;(2)设P 为坐标轴上一点,若S △APC =S △ABC ,求P 点的坐标.练习3.如图,已知三点A (0,1),B (2,0),C (4,3)(1)求三角形ABC 的面积;(2)设点P 在坐标轴上,且三角形ABP 与三角形ABC 的面积相等,求点P 的坐标.。

专题在平面直角坐标系中求图形的面积(四大题型)(原卷版)

专题在平面直角坐标系中求图形的面积(四大题型)(原卷版)
解题技巧提炼
1.上面题主要考查坐标与图形性质,解题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.
2.由于点的位置不明确,因此在解题时要注意分情况讨论.
【变式41】已知点A(1,0),B(0,2),点P在x轴的负半轴上,且△PAB的面积为5,则点P的坐标为( )
A.(0,﹣4)B.(0,﹣8)C.(﹣4,0)D.(6,0)
(2)直接写出A1,B1,C1三点的坐标;
(3)求△ABC的面积.
【例题3】(2022春•长安区校级月考)如图所示,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCO的面积为( )
A.9B.10C.11D.12
解题技巧提炼
1、当四边形的其中有一边在坐标轴上(或与坐标轴平行)时,可以用分割法;
【变式45】(2022秋•渭滨区期末)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).
(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;
(2)若点D与点C关于y轴对称,则点D的坐标为;
(3)已知P为x轴上一点,若△ABP的面积为1,求点P的坐标.
【变式46】(2022•天津模拟)如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.
【变式24】(2022春•雷州市期末)如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标;
(2)求出S△ABC.
【变式25】在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).
(1)请在如图所示的网格平面内画出平面直角坐标系;

平面直角坐标系中如何求几何图形的面积

平面直角坐标系中如何求几何图形的面积

图1图2图3平面直角坐标系中如何求几何图形的面积一、 求三角形的面积1、有一边在坐标轴上或平行于坐标轴例1:如图1,平面直角坐标系中,△ABC 的顶点坐标分别为(-3,0)、(0,3)、(0,-1),你能求出三角形ABC 的面积吗2、无边在坐标轴上或平行于坐标轴例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。

二、求四边形的面积例3:如图3,你能求出四边形ABCD 的面积吗分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。

归纳:会将图形转化为有边与坐标轴平行的图形进行计算。

怎样确定点的坐标一、 象限点解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。

例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( )A 、1B 、2C 、3D 、0二、轴上的点解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。

例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( )A 、(0,-2)B 、(2,0)C 、(4,0)D 、(0,-4)三、象限角平分线上的点 所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。

解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。

平面直角坐标系中求几何图形的面积

平面直角坐标系中求几何图形的面积
y
5 • A(0,5)43 Nhomakorabea21

-4 -3 -2 -1
o

12345
x
B(-2,0) -1
C(3,0)
-2
-3
-4
人民教育出版社七年级数学下册
碟子湖学校:胡美丽
一:直接利用面积公式求面积
例1:如图,求△ABC的面积。
直接利用面积 公式求面积
解:由图知:A(0,2),
y4
B(-2,0),C(3,0)
• A(5,2)
s2
1 2 3 4 5P x
S=S梯形OPMB– S1 –S2
2.如图所示,求△ OAB的面积。
y
5
4N
3
s1
2
B(•3,4)
M
s2
• A(5,2)
1
-2 -1 o•
-1 -2
s3
1 2 3 4 5P x
S=S长方形OPMN– S1 – S2 –S3
2.如图所示,求△ OAB的面积。
y
5 4 3 2 1
-2 -1 o•
-1 -2
B(3,4) •
1 2 3M 4
• A(5,2)
5P x
S=S △ BOM+ S梯形BMPA– S △ AOP
三:与图形面积相关的点的存在性问题
例3:在平面直角坐标系中,已知点A(0,3),B(2,1),C(3,4). (1)求 三角形ABC的面积;
(2)在x轴上是否存在点P,使△OCP的面积为 △ABC面积的1.5倍?说明理由。
2.如图所示,求△ OAB的面积。
y
5
利用现在所学过 4
的知识你能确定
M点的坐标吗? 3

八年级数学上册第3章小专题_平面直角坐标系中计算图形的面积(北师大版)

八年级数学上册第3章小专题_平面直角坐标系中计算图形的面积(北师大版)

小专题平面直角坐标系中计算图形的面积——教材P73复习题T14的变式与运用【教材母题】(教材P73复习题T4)在如图所示的直角坐标系中,四边形ABCDA B C D,确定这个四边形的面积,各个顶点的坐标分别是(0,0),(3,6),(14,8),(16,0)你是怎么做的?与同伴进行交流.方法1:分割法(如图1)【解答】方法指导对于不规则图形,可考虑将图形分割成直角三角形、长方形或梯形,通过求其面积之和,得到要求图形的面积.方法2:补形法(如图2)【解答】方法指导当图形的各边均不在坐标轴上且不与坐标轴平行时,可考虑将图形补成常见的长方形或梯形,再通过常见图形面积的和差,得到要求图形的面积.【母题变式】如图在平面直角坐标系内,已知点80A (,),点B 的横坐标是2,AOB V 的面积为12.(1)求点B 的坐标;(2)如果P 是直角坐标平面内的点,那么点P 的纵坐标为多少时,2AOP AOB S S =V V ?【解答】方法指导已知坐标系中图形的面积,求点的坐标时,可将点的横(纵)坐标转化为到坐标轴的距离,利用面积求得线段长,从而转化为点的坐标.变式训练1.如图,已知(2,0),(4,0),(4,4)A B C --,则ABC V 的面积为__________.2.已知点00O (,),点32A -(,),点B 在y 轴的正半轴上.若AOB V 的面积为12,则点B 的坐标为___________.3.如图,已知点(3,1),(1,3),(3,4)A B C --,则ABC V 的面积为_________.4.(三门峡期中)如图,四边形ABCD 各顶点的坐标分别是(0,0),(8,0)A B ,(6,4)C ,(3,6)D ,求出四边形ABCD 的面积.参考答案【教材母题】方法1:按如图所示方法将四边形分割成四部分.其中,三个三角形的两条直角边都平行于坐标轴,一个长方形的两条边也平行于坐标轴.从而四边形的面积111361121168294222S =⨯⨯+⨯⨯+⨯+⨯⨯=.方法2:按如图所示方法将四边形补成一个梯形,则原四边形的面积可通过梯形的面积减去两个三角形的面积得到,即111(1416)88314294222S =⨯+⨯-⨯⨯-⨯⨯=. 【母题变式】(1)设点B 的纵坐标为y .因为80A (,),所以8OA =. 则1||122AOB S OA y =⋅=V ,解得3y =±.所以点B 的坐标为(23)(2,3)-,或. (2)设点P 的纵坐标为h .因为221224AOP AOB S S ==⨯=V V ,所以1||242OA h ⋅=,解得6h =±.所以点P 的纵坐标为6或6-.变式训练1.122.(0,8)3.184.解:过点D 作DE x ⊥轴,交x 轴于点E ,过点C 作CF x ⊥轴,交x 轴于点F. 因为(8,0),(6,4),(3,6)B C D 所以12AED BCF ABCD DEFC S S S S AE DE =++=⋅+V V 四边形梯形 11111()36(64)3242822222DE CF EF BF CF +⋅+⋅=⨯⨯+⨯+⨯+⨯⨯=.。

人教版七年级数学下册《平面直角坐标系中面积的计算问题》教学设计

人教版七年级数学下册《平面直角坐标系中面积的计算问题》教学设计

人教版七年级第二册第七章《平面直角坐标系中面积的计算问题》教学设计一、教学内容:平面直角坐标系中面积的计算问题。

二、设计理念:课堂中应该充分发挥学生的主体因素,让学生自主获取知识。

七年级学生的思维比较活跃,具有了一定的自主探究、分析问题和解决问题的能力,应培养学生的逻辑分析能力和准确语言表达能力,让学生通过操作、探究、讨论、总结得到平面直角坐标系中面积的计算方法。

教学中,教师是教学情景的设计着,是学生学习的引导者和促进者,应培养学生自主学习和探究学习的能力,培养学生良好的学习习惯和品质,培养学生的积极性、主动性、独立性和创造性。

三、教学目标:1.进一步认识平面直角坐标系,了解点、图形与坐标的对应关系,能求出给定坐标的点构成的图形的面积;2.通过对数学图形规律探究的过程中培养学生的数学思维;四、学情分析:本节课是一节复习课,在此之前,学生已经学习了平面直角坐标系的有关概念,了解了点的坐标意义以及学习了坐标的平移与应用,并且会计算三角形、正方形、长方形等简单图形的面积,本节课通过教师的引导,学生独立思考,将前面所学习的这些知识综合起来,逐步展开知识点,由简到难,让学生学会利用平面直角坐标系求解图形面积,进一步让学生体会数形结合、转化数学思想。

五、重、难点:学习重点:建立平面直角坐标系求解图形面积以及根据图形面积求点的坐标;学习难点:运用割补法求解平面直角坐标系中图形面积;六、教学课时:1课时七、教学准备:多媒体,PPT ,学案,三角板;八、教学过程:1.知识回顾:(1)平面直角坐标系中坐标点与线段之间的关系:①A (1x ,y ),B(2x ,y ) 纵坐标相等的两个点所形成的线段长度为: ②A (x ,1y ),B( x ,2y ) 横坐标相等的两个点所形成的线段长度为: 例1:1.若A(3,2),B(-1,2),则线段AB=2.若A(-2,-3),B(-2,-1),则线段AB=【设计意图:回顾平面直角坐标系中面积的计算问题中相关知识,结合坐标图形让学生更加直观明白平面直角坐标系中点坐标与线段长度之间联系】(2)平面直角坐标系中坐标点到坐标轴距离:①点A (x,y )到X 轴距离表示为:②点A (x,y )到Y 轴距离表示为:例2:若A(-3,2),则到X 轴的距离为: 到Y 轴的距离为:【设计意图:通过复习点到坐标轴的距离,进而为后面点到直线距离的理解铺垫,同时也让学生明白平面直角坐标中三角形的高是什么,高为多少】(3)思考:平面直角坐标系内的点与图形面积之间有何联系?【设计意图:进一步认识平面直角坐标系中坐标点、线段、图形面积之间对应关系,为在具体问题中应该如何规范解题提供依据】2.课堂探究:例3:在平面直角坐标系中,原点O(0,0),已知点A(0,3),B(4,0),求三角形OAB的面积;【设计意图:通过例题,引导学生利用数形结合思想解决此类问题,让学生感受求解三角形面积需要找到三角形的“底”和“高”对应线段,应用“底×高÷2”直接计算面积,同时规范学生作答,板书时紧扣思考3中平面直角坐标系内的点与图形面积联系】变式1:在平面直角坐标系中,已知点A(0,3),B(4,0),C(-2,0),求三角形CAB的面积;【设计意图:通过变式,让学生经历求平面直角直角坐标系中有关三角形面积问题,对此类问题的解决方案有一个系统的方法】练习1:在平面直角坐标系中,已知点A(3,4),B(4,0),C(-2,4),求三角形CAB的面积;【设计意图:由图形的差异,让学生明白三角形的底不一定在“下面”,引导学生去找钝角三角形的高,使学生更加熟练的掌握由点到线段再到三角形面积的求解过程】例4:已知A(-3,3),B(2,-2),C(6,1),求△ABC面积?思考1:此时△ABC的面积可以采用“底×高÷2”吗?为什么?思考2:那如何计算△ABC的面积?【设计意图:让学生明白平面直角坐标系内的三角形不是所有面积都可以用“底×高÷2”,让学生明白为什么此类三角形不能用直接法,进而让学生学会判断哪类图形不可以直接法求三角形面积,同时引出间接法“割补法”,将三角形问题转化为四边形问题进行解决。

如何求平面直角坐标系中三角形的面积

如何求平面直角坐标系中三角形的面积

如何求平面直角坐标系中三角形的面积在平面直角坐标系中,求解三角形的面积是几何学中的基本问题之一。

下面将介绍两种求解平面直角坐标系中三角形面积的方法。

方法一:行列式法行列式法是一种常用的求解三角形面积的方法。

设三角形的顶点为A(x1, y1),B(x2, y2),C(x3, y3)。

首先将三个顶点的坐标依次排列成行:A(x1, y1) B(x2, y2) C(x3, y3)然后将A点的坐标复制到下方形成两行:A(x1, y1) B(x2, y2) C(x3, y3)A(x1, y1) B(x2, y2) C(x3, y3)接下来按照主对角线往右上方的方向连线,并将相乘的结果写在对应的线上:A(x1, y1) B(x2, y2) C(x3, y3)A(x1, y1) B(x2, y2) C(x3, y3)计算两条斜线上的乘积之和,再减去两条副对角线上的乘积之和,最后除以2即可得到三角形的面积。

行列式法的计算较为繁琐,但是适用于所有类型的三角形。

方法二:海伦公式海伦公式是通过三角形的边长来求解三角形面积的一种方法。

假设三角形的三边长度分别为a、b、c,半周长为p。

首先计算半周长p:p = (a + b + c) / 2然后套用海伦公式进行计算:面积S = √(p * (p - a) * (p - b) * (p - c))海伦公式较为简单,适用于已知三边长度的情况。

根据不同的题目要求和数据提供的形式,可以选择适合的方法进行计算。

总之,无论使用哪种方法,都可以准确求解平面直角坐标系中三角形的面积。

三角形的面积计算在实际生活中有着广泛的应用。

例如,在建筑工程中,需要计算地基的面积以确定施工方案;在地理测量学中,需要求解地理图形的面积和边长,以准确描述地理实体特征。

因此,掌握求解三角形面积的方法是十分重要的。

总结起来,通过行列式法和海伦公式,我们可以准确求解平面直角坐标系中的三角形面积。

无论是使用繁琐的行列式法,还是简便的海伦公式,都能满足求解三角形面积的需求。

平面直角坐标系中的面积问题-专题练习

平面直角坐标系中的面积问题-专题练习

y
4 3
B2 (0,2) 2
1
A(2,1)
1 2 图(4) 3 4
O
x
SOAB2 2 2 2
1 2
Y
4 3 2 1
B3 (2,3)
A(2,1)
1 2 3 4
O
X
图(5)
SOAB3 2 2 2
1 2
y
4
B4 (4,4)
3
2 1
A(2,1)
1 2 3 图(6) 4
1 1 1 1 1 3 2 2 2
y
4 3 2 1
B4 (4,4)
方 法 3
E(4,1)
A(2,1)
F(4,0) 1 2 3 图(9) 4
O
x
SOAB4 SOFB4 S梯形AEOF SAEB4
1 1 1 4 4 ( 2 4) 1 2 3 2 2 2 2
y
4 G(0,4) 3 2 1
B4 (4,4)
方 法 4

E(4,1)
A(2,1)
F(4,0) 1 2 3 图(10) 4
x
O
SOAB4 S正方形OFB4G SOB4G S四边形OFB4 A
1 4 4 4 4 6 2 2
y
4 3 2 1
B4 (4,4)
方 法 5
例5
在图(3)中,以OA为边的△OAB的面积为2,试找 出符合条件的且顶点是格点的点C,你能找到几 个这样的点?(在图中现有的网格中找)
y
4 3 2 1
A(2,1)
1 2 图(3) 3 4
O
x
y
4
3 2 1

平面直角坐标系中三角形面积的求法

平面直角坐标系中三角形面积的求法

平面直角坐标系中三角形面积的求法嘿,伙计们!今天我们来聊聊一个很有趣的话题——平面直角坐标系中三角形面积的求法。

你们知道吗,三角形可是我们生活中无处不在的东西,从房子到衣服再到冰淇淋,都离不开三角形。

而我们要学的就是如何计算这些三角形的面积。

别着急,我会用最简单的语言和你们分享这个知识点,让我们一起来看看吧!我们要知道什么是三角形。

三角形是由三条线段相互连接而成的图形,这三条线段叫做三角形的边。

我们可以用三个顶点来表示一个三角形,这三个顶点分别是A、B和C。

现在我们要用平面直角坐标系来表示这个三角形。

在平面直角坐标系中,每个点都有一个坐标。

比如说,A点的坐标是(x1, y1),B点的坐标是(x2, y2),C点的坐标是(x3, y3)。

我们就可以用这三个坐标来表示这个三角形了。

我们要做的就是计算这个三角形的面积。

说到计算三角形的面积,我们首先要知道一个概念——底和高。

底是指三角形的一条边,而高是指从这条边的对顶点垂直于这条边的线段。

有了底和高,我们就可以用一个公式来计算三角形的面积了。

这个公式叫做“海伦公式”,它的名字来源于古希腊数学家海伦。

海伦公式是这样的:面积 = sqrt(p * (p a) * (p b) * (p c)),其中a、b、c分别是三角形的三条边的长度,p是半周长,即(a + b + c) / 2。

有了这个公式,我们就可以轻松地计算出任何一个三角形的面积了。

我们现在就来试试看吧!假设我们要计算一个三角形的面积,它的三条边的长度分别是3、4和5。

我们要计算半周长p:p = (3 + 4 + 5) / 2 = 6。

我们把这个值代入海伦公式:面积 = sqrt(6 * (6 3) * (6 4) * (6 5)) = sqrt(6 * 3 * 2 * 1) = 6。

这个三角形的面积就是6平方单位。

我们在实际生活中遇到的三角形可能会更复杂一些,但是只要我们掌握了海伦公式,就可以轻松地计算出它们的面积。

【初一方法归纳专题】平面直角坐标系中图形面积的求法

【初一方法归纳专题】平面直角坐标系中图形面积的求法

1.面积公式:(1)三角形的面积:S三角形=1/2×底×高(2)梯形的面积:S梯形=1/2×(上底+下底)×高2.两点间的距离:(1)当两点横坐标相同时,两点间的距离为这两点纵坐标差的绝对值(2)当两点纵坐标相同时,两点间的距离为这两点横坐标差的绝对值基础篇——三角形面积的求法题型1 三角形有一边在坐标轴上【例1】如图,平面直角坐标系中,已知三角形ABC的三个顶点的坐标分别是A(2,3),B(-4,0),C(4,0),求三角形ABC的面积.温馨提示:【思路及解答】请观看视频【方法归纳】当三角边有一边在坐标轴上时,将此边作为底边,那么高便垂直于坐标轴,底和高就能通过两点间的距离很快求出.题型2 三角形有一边与坐标轴平行【例2】如图,平面直角坐标系中,已知三角形ABC的三个顶点的坐标分别是A(-1,-4),B(2,0),C(-4,-4),求三角形ABC 的面积.温馨提示:【思路及解答】请观看视频【方法归纳】当三角边有一边与坐标轴平行时,将此边作为底边,那么高便垂直于坐标轴,底和高就能通过两点间的距离很快求出.根据图形特殊,我们通常把平行于坐标轴的一边作为底边.题型3 三角形三边均不与坐标轴平行【例3】在如图所示的正方形网格中,每个小正方形的单位长度均为1,三角形ABC的三个顶点恰好是正方形网格的格点.(1)写出图中所示各顶点的坐标;(2)求三角形ABC的面积.温馨提示:【思路及解答】请观看视频【方法归纳】当三角边的三边均不与坐标轴平行时:(1)将原三角形围在一个梯形或长方形中,用长方形或梯形的面积,减去长方形或梯形边缘的直角三角形的面积,即可求得原三角形的面积,这种方法叫做补形法;(2)若三角形内一割线长度已知,并且它平行于坐标轴,那么可将其作为底边,把原三角形拆分为两个三角形,则两高的长度可得,面积即可求得,这种方法叫做分割法.以上两种方法就是数学几何图形运算中常用的割补法.例题讲授视频三角形面积的求法同学们,例题看明白了吗?方法掌握了吧!快来试试下面的变式训练吧!变式训练【变式训练1】如图,在平面直角坐标系中,三角形ABC的顶点坐标分别为A(-3,0),B(0,3),C(0,-1),则三角形ABC的面积为.。

计算平面直角坐标系内图形的面积

计算平面直角坐标系内图形的面积

计算平面直角坐标系内图形的面积在平面直角坐标系中,求一个三角形的面积,则需要根据三角形的各顶点的坐标,确定边长或高,进而求出三角形的面积.而对于四边形,五边形等图形面积的计算,则往往需要转化为三角形解决.一、计算三角形的面积例1 如图1,△ABC 的三个顶点的坐标分别是A (2,3),B (4,0),C (-2,0).求△ABC 的面积.分析:观察图形可知,BC 在x 轴上,BC 的长为4-(-2)=6.要求三角形的面积,还应确定BC 边上的高.点A 到x 轴的距离恰好点BC 边上的高.解:因为BC =4-(-2)=6,BC 边上的高就点A 到横轴的距离,因为点A 的坐标是(2,3),所以BC 边上的高是3,所以S △ABC =21×6×3=9. 【评注】当三角形有一边在横轴上时,则以坐标轴上的边为底边,其长等于坐标轴上的两个顶点的横坐标差的绝对值;则这边上的高,等于另一顶点纵坐标的绝对值;当三角形的一边在纵轴上时,则以坐标轴上的边为底边,其长等于坐标轴上的两个顶点纵坐标差的绝对值,这边上的高,等于另一顶点的横最最坐标的绝对值.图1 图2例2 如图2,平面直角坐标系中,已知点A (-3,-2),B (0,3),C (-3,2).求△ABC 的面积. 分析:在△ABC 中只有边AC 的长度是比较求得的,所以找到AC 边上的高,而点A 到纵坐标的距离恰好是AC 边上的高.解:AC =|2-(-2)|=4,作AC 边上的高BD ,而BD 就等于点A 到纵轴的距离,因为点A 的坐标是(-3,-2),所以BD =|-3|=3,所以S △ABC =21×4×3=6. 【评注】当三角形的一边和坐标轴平行时,这条边的长等于两个顶点横坐标(平行横轴)或纵坐标(平行纵轴)的差的绝对值;这边上的高等于平行坐标轴的边与坐标轴的距离.例3 如图3,平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (-3,-1),B (1,3),C (2,-3).求△ABC 的面积.分析:三角形的三边都不和坐标轴平行,根据平面直角坐标系的特点,可以将三角形面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求到此三角形的面积.解:过点A ,C 分别作平行于y 轴的直线,与过B 点作平行于x 轴的直线交于点D 、E .则四边形ACED 为梯形.根据点A (-3,-1),B (1,3),C (2,-3), 可求得AD =4,CE =6, DB =4,BE =1,DE =5,所以△ABC 的面积为:S △ABC =21(AD +CE )·DE -21AD ·DB -21CE ·BE =21(4+6)×5-21×4×4-21×6×1=14. 【评注】当三角形的三边都不和坐标轴平行时,可将通过过三角形的顶点作坐标轴的平行线,将三角形的面积转化为梯形或长方形的面积与直角三角形的面积差求解.图3 图4例4 如图4,四边形ABCD 的四个顶点的坐标分别是A (4,2),B (4,-2),C (0,-4),D (0,1).求四边形ABCD 的面积.分析:因为点A 、B 的横坐标相同,点CD 在纵轴上,所以AB //CD ,则四边形ABCD 为梯形,可以过A 作CD 上的高AE ,则AE 的长就是点A 到y 轴的距离.解:因为CD =1-(-4)=5,AB =2-(-2)=4,AE =4,S ABCD =21(AB +CD )·AE =21(5+4)×4=18. 【评注】一般四边形的面积的计算,可将四边形的面积转化为特殊的四边形(如梯形)与特殊的三角形(如直角三角形)的面积和或差的形式计算.。

(完整)平面直角坐标系中三角形面积的求法(例题及对应练习)

(完整)平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧。

现举例说明如下。

一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y 轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解。

解:因为B(0,3),C(0,—1),所以BC=3—(—1)=4。

因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(—1)=5,所以=。

三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,—3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法。

根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行。

这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积。

解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D、E,则四边形ADEC为梯形.因为A(—3,—1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5。

平面直角坐标系中的图形面积问题

平面直角坐标系中的图形面积问题

例3 如图3,平面直角坐标系中,已知 △ABC三个顶点的坐标分别是A(-3,-1), B(1,3),C(2,-3).
求△ABC的面积.
第6页/共9页
例4 如图,四边形ABCD的 四个顶点的坐标分别是A(4, 2),B(4,-2),C(0,-4), D(0,1). 求四边形ABCD的面积.
第7页/共9页
例1 如图1,△ABC的三个顶点的坐标分别 是A(2,3),B(4,0),C(-2,0).
求△ABC的面积.
第1页/共9页
例1 如图1,△ABC的三个顶点的坐标分别 是A(2,3),B(4,0),C(-2,0).
求△ABC的面积.Zxxk
第2页/共9页
例2 如图,平面直角坐标系中,已知 点A(-3,-2),B(0,3),C(-3,2).
求△ABC的面积.
第3页/共9页
例2 如图,平面直角坐标系中,已知 点A(-3,-2),B(0,3),C(-3,2).
求△ABC的面积.
第4页/共9页
例3 如图3,平面直角坐标系中,已知 △ABC三个顶点的坐标分别是A(-3,-1), B(1,3),C(2,-3).
求△ABC的面积.
第5页/共9页
例4 如图,四边形ABCD的四个顶点的 坐标分别是A(4,2),B(4,-2),C(0,4),D(0,1).
Zx。xk
求四边形ABCD的面积.
第8页/共9页

平面直角坐标系中如何求几何图形的面积

平面直角坐标系中如何求几何图形的面积

图1图2图3平面直角坐标系中如何求几何图形的面积一、 求三角形的面积1、 有一边在坐标轴上或平行于坐标轴例1:如图1,平面直角坐标系中,△ABC 求出三角形ABC 的面积吗2、无边在坐标轴上或平行于坐标轴例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。

二、求四边形的面积例3:如图3,你能求出四边形ABCD 的面积吗分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。

归纳:会将图形转化为有边与坐标轴平行的图形进行计算。

怎样确定点的坐标一、 象限点解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。

例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( ) A 、1 B 、2 C 、3 D 、0二、轴上的点解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。

例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( ) A 、(0,-2) B 、(2,0) C 、(4,0) D 、(0,-4)三、象限角平分线上的点所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。

解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。

例3:已知点Q (8,4m 222++++m m m )在第一象限的角平分线上,则m=_________.四、对称点对称点的横、纵坐标之间有很密切的关系,点P (a ,b )关于x 轴对称的点的坐标上(a ,-b );关于y 轴对称的点的坐标是(-a ,b );关于原点对称的点的坐标是(-a ,-b );关于一、三象限角平分线对称的点的坐标是(b ,a );关于二、四象限角平分线对称的点的坐标是(-b,-a ). 例4:点(-1,4)关于原点对称的点的坐标是( )A、(-1,-4)B、(1,-4)C、(1,4)D、(4,-1)五、平行于坐标轴的直线上的点平行于x轴的直线上点的纵坐标相同,平行于y轴的直线上点的横坐标相同。

专题05平面直角坐标系中求图形面积(解析版)

专题05平面直角坐标系中求图形面积(解析版)

专题05平面直角坐标系中求图形面积类型一、直接用公式求面积例1.如图,在平面直角坐标系中,点()0,4A b 为y 轴正半轴上一点,点()3,0B b 是x 轴正半轴上一点,其中b 满足()316b +=.(1)求点A ,B 的坐标.(2)点C 为x 轴上一点,且ABC 的面积为12,求C 点的坐标.【答案】(1)()0,4A ,()3,0B ;(2)点C 的坐标为()3,0-或()9,0【解析】(1)由()316b +=得1b =,∴()04A ,,()30B ,.(2)设点C 的坐标为()0x ,,则3BC x =-,由1()可知4OA =,∴1432ABC S x =⨯⨯-= 12,解得:9x =或3-.∴点C 的坐标为()30-,或()90,.【变式训练1】在平面直角坐标系中,已知点(),0A a ,(),0B b ,a 、b 满足方程组24a b a b +=-⎧⎨-=-⎩,(1)求A 、B 两点的坐标;(2)C 为y 轴正半轴上一点,且6ABC S = ,请求出C 的坐标.【答案】(1)A (-3,0),B (1,0);(2)C (0,3)【解析】(1)解方程组24a b a b +=-⎧⎨-=-⎩,解得:31a b =-⎧⎨=⎩,∴A (-3,0),B (1,0);(2)由(1)可知:AB =4,∵S △ABC =12AB •OC =6,∴12×4×OC =6,解得OC =3,∴C (0,3).故答案为:(1)A (-3,0),B (1,0);(2)C (0,3)类型二、割补法求面积例1.如图,三角形ABC 的面积等于()A .12B .1122C .13D .1132【答案】D【解析】过点A 作AD x ⊥轴于D ,如图所示:由题意可得,3BO =,3OC =,6AD =,3CD =,∴6OD =,∴ABC BOC ACDBODA S S S S ∆∆∆=--梯形111()222BO AD OD BO OC CD AD=+⋅-⋅⋅-⋅⋅111(36)63336222=+⨯-⨯⨯-⨯⨯54918222=--272=,即272ABC S ∆=,故选:D .【变式训练1】如图,连接AB 、BC 、AC ,则△ABC 的面积是()A .312B .3C .212D .2【答案】C【解析】长方形AGDE 的面积为:3×2=6,AGC 的面积:3×1÷2=1.5,CDB △的面积:2×1÷2=1,ABE △的面积:2×1÷2=1,故ABC 的面积为:6-1.5-1-1=2.5,故答案为:C ;【变式训练2】如图,三角形ABO 中,()2,3A --,()2,1B -,A B O ''' 是ABO 平移之后得到的图形,并且O 的对应点O '的坐标为()5,4.(1)作出ABO 平移之后的图形A B O ''' ,并写出A '、B '两点的坐标分别为A '______,B '_____;(2)()00,P x y 为ABO 中任意一点,则平移后对应点P 的坐标为______.(3)求ABO 的面积;【解析】(1)如图,△A 'B 'O '即为所求,A '、B '两点的坐标分别(3,1),(7,3).故答案为:(3,1),(7,3).(2)点P '的坐标为(x 0+5,y 0+4).故答案为:(x 0+5,y 0+4).(3)S △ABO =3×4-12×2×3-12×1×2-12×4×2=4.【变式训练3】在平面直角坐标系xoy 中,△ABC 的位置如图所示,点A ,B ,C 都在格点上.(1)分别写出下列顶点的坐标:A ________;B ________;(2)请在图中画出△ABC 关于y 轴对称的图形△A ′B ′C ′;(3)计算出△ABC 的面积.【答案】(1)(-1,6),(-2,0);(2)见解析;(3)152【解析】(1)由图知,点A 的坐标为(-1,6),点B 的坐标为(-2,0),故答案为:(-1,6),(-2,0)(2)由图得,点C 的坐标为(-4,3),则点A 、B 、C 关于y 轴的对称点A ′,B ′,C ′坐标分别为(1,6),(2,0),(4,3),依次连接A ′,B ′,C ′,即得△A ′B ′C ′,所得图形如图所示(3)过A 、C 作x 轴的垂线,垂足分别为D 、E则ABC AOD CED ADEC S S S S =-- 梯形111(36)31623222=⨯+⨯-⨯⨯-⨯⨯152=类型三、点的存在性问题例1.如图,在平面直角坐标系中,点B ,C 的坐标分别为(),2a a -、()3,2a a ,其中0a >,点A 为BC 的中点,若4BC =,解决下列问题:(1)BC 所在直线与x 轴的位置关系是;(2)求出a 的值,并写出点A ,C 的坐标;(3)在y 轴上是否存在一点P ,使得三角形PAC 的面积等于5?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)平行;(2)()1,2A ,()3,2C ;(3)存在,P 点坐标为()0,3-或()0,7【解析】(1)∵点B ,C 的坐标分别为(),2a a -、()3,2a a ,∴BC 所在直线与x 轴的位置关系是平行.故答案为:平行.(2)∵4BC =,∴()34a a --=,∴1a =,∴B (-1,2),C (3,2),∵A 为BC 的中点,∴()1,2A .(3)存在点P .设()0,P m ,∵2AC =,∴12252m ⨯⨯-=,∴3m =-或7.∴P 为()0,3-或()0,7.【变式训练1】如图,在直角坐标系中,已知()0,2A ,()3,0B ,()3,4C 三点.(1)求四边形AOBC 的面积;(2)是否存在点()0.5P x x ,,使2ABC AOBC S S = 四边形?若存在,求出点P 的坐标.若不存在,请说明理由.【答案】(1)9;(2)存在,()189P --,或(18,9)【解析】如图,∵34C (,),∴33CD ==.∵()34C ,,30B (,),∴404CB =-=,∴4312DCBO S =⨯=四边形.∵()04D ,,()02A ,,∴422DA =-=,∴11236322DCA S =⨯⨯=⨯= .∵DCA AOBC DCBO S S S =- 四边形四边形,∴1239AOBC S =-=四边形.(2)由(1)得1239AOBC S =-=四边形设存在点()0.5P x x ,,使△AOP 的面积为四边形AOBC 的面积的两倍.∵△AOP 的面积=122x x ⨯⨯=,∴29x =⨯,∴18x =±∴存在点P (18,9)或(-18,-9),使△AOP 的面积为四边形AOBC 的面积的两倍.【变式训练2】如图,A (0,3)是直角坐标系y 轴上一点,动点P 从原点O 出发,沿x 轴正半轴运动,速度为每秒2个单位长度,以P 为直角顶点在第一象限内作等腰Rt △APB .设P 点的运动时间为t 秒.(1)若AB ∥x 轴,求t 的值;(2)如图2,当t =2时,坐标平面内有一点M (不与A 重合)使得以M 、P 、B 为顶点的三角形和△ABP 全等,请直接写出点M 的坐标.【答案】(1)t 的值为1.5;(2)点M 的坐标为(3,7),(8,﹣3),(11,1).【解析】(1)过点B 作BC ⊥x 轴于点C ,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为矩形,∴AO=BC=3,∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°-∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=3,∴t=3÷2=1.5(秒),故t的值为1.5;(2)当t=2时,OP=4,①如图3,若△ABP≌△MBP,则AP=PM,过点M作MD⊥OP于点D,∵∠AOP=∠PDM,∠APO=∠DPM,∴△AOP≌△MDP(AAS),∴OA=DM=3,OP=PD=4,∴M(8,-3);②如图,若△ABP≌△MPB,连接AM,则AP=PB=BM,∠APB=∠MBP=90︒,∴AP∥MB,且AP=MB,∴四边形APBM是平行四边形,y轴于点E,又∠APB=∠MBP=90︒,∴四边形APBM是正方形,∴AP=AM,过点M作ME⊥同理可证△AOP≌△MEA(AAS),∴OA=EM=3,OP=AE=4,∴M(3,7);③如图,若△ABP≌△MPB,则AP=BP=BM,过点M 、B 分别作x 轴的垂线,垂足分别为点F 、G ,过点M 作MH ⊥BF 于点H ,∴四边形FGMH 是矩形,∴MH =FG ,MG =HF ,同理可证△AOP ≌△PFB ≌△BHM (AAS ),∴OA =PF =BH =3,OP =BF =MH =4,∴MG =HF =BF -BH =1,OG =OP +PF +FG =11,∴M (11,1);综合以上可得点M 的坐标为(3,7),(8,-3),(11,1).【变式训练3】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为()1,0,点D 的坐标为()0,2.延长CB 交x 轴于点1A ,作第1个正方形111A B C C ;延长11C B 交x 轴于点2A ,作第2个正方形2221A B C C ,…,按这样的规律进行下去,第2021个正方形的面积是______.【答案】404235(2⨯【解析】()()1,0,0,2,A D 正方形ABCD ,1,2OA OD ∴==,,AD AB ===190,DAO ADO DAO BAA ∠+∠=︒=∠+∠1,ADO BAA ∴∠=∠190,DOA ABA ∠=∠=︒ 1,AOD A BA ∴ ∽1,AO OD A B AB ∴=15,2AO AB A B OD ∴== 正方形111A B C C,1113222A B A C ∴====⨯同理可得:22232442A B ⎛⎫=+==⨯ ⎪⎝⎭33332A B ⎛⎫= ⎪⎝⎭······20212021202132A B ⎛⎫= ⎪⎝⎭所以第2021个正方形的面积是22021404233=5.22⎡⎛⎫⎛⎫⨯⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎣⎦故答案为:404235.2⎛⎫⨯ ⎪⎝⎭。

平面直角坐标系面积

平面直角坐标系面积

平面直角坐标系面积哎呀,说到平面直角坐标系的面积,大家一定会想,这玩意儿和我有什么关系呢?它跟我们生活的每个角落都息息相关呢!想想看,咱们日常生活中,那个画图、设计、建房子,甚至画画的朋友,都是在用这套东西。

没错,平面直角坐标系就是那个把我们的生活整理得井井有条的小帮手。

你看,横轴、纵轴,一竖一横,像两位老朋友,默默地守护着我们的空间。

想象一下,一个长方形,左上角在(1, 2),右下角在(4, 5),看着就心里美滋滋的。

怎么计算它的面积呢?你知道的,面积就是宽乘以高。

咱们先算宽,右边的x坐标减去左边的x坐标,4减去1,哎,得出个3。

再算高,5减去2,得出个3。

然后,你把这俩数相乘,3乘3,嘿,出来个9!这就是咱这个长方形的面积,简单明了,是吧?除了长方形,咱们还可以玩玩三角形,或者圆圈。

哎哟,三角形就有点意思了。

拿个三角形来,三个顶点分别在(1, 2)、(4, 2)、(2, 5),你想,它的面积怎么算呢?别急,先画出来,画得不好没关系,咱们先感受一下。

这个三角形的底边就是从(1, 2)到(4, 2),长是3。

然后高,就是从底边到对面的顶点(2, 5),这段垂直的距离是多少呢?一量,哦,发现是3。

面积的公式是底乘高再除以二,3乘3再除以2,嘿嘿,最后得到个4.5,咋样?看起来还挺有意思的。

说到这里,不禁让我想起小时候的数学课,那个时候总是觉得公式枯燥无味,谁能想到,现在却觉得它们充满了生活的乐趣呢。

真是,老话说得好,活到老,学到老。

想当年我在黑板前那种“小心翼翼”的样子,现在回想起来,简直忍俊不禁。

坐在教室里,心里想着放学后去玩,结果老师一讲公式,我就像被雷打中似的,瞬间清醒。

但如今,反倒觉得这玩意儿真有意思。

而圆的面积,哎,那可就更神奇了。

你知道圆周率π吗?嘿,那可是个无尽的数,几乎让人晕头转向。

但是,它又是计算圆面积的必备材料。

一个圆的面积公式是πr²,r 是半径。

想象一下,半径如果是3,那面积就是π乘以9,结果大概是28.27,嘿嘿,虽然有点复杂,但想想这个圆就像生活一样,越转越圆满,真是妙不可言。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:平面直角坐标系内图形面积的计算
一.本节目标:
1.复习平面直角坐标系的相关内容,学会在平面直角坐标系中计算简单的图形的面积;
2.学会作适当的辅助线,利用“割补法”计算较为复杂的图形面积,体会转化思想和数形结合思想的应用.
二.复习巩固:
1.坐标轴上两点间距离:
1)x轴上有 A、 B两点, A点坐标为(4, 0), B点坐标为(-2,0),则AB =
2)平面内有 A、B两点,A点坐标为(4,-1),B点坐标为(-2,-1),则 A AB = .3)平面内有 A、 B两点, A点坐标为(a, c), B点坐标为(b, c),则AB = .
2.点到坐标轴的距离:
(1)点( 2,3)到 x 轴的距离是,到 y 轴的距离是.
(2)点 P(x,y)到 x轴的距离是 6,到 y轴的距离是 3,则 P点坐标为
(3)点 P(x,y)到 x 轴的距离是,到 y轴的距离是.
三.合作探究:
(一)求三角形的面积:
例1 △ABC的三个顶点的坐标分别是 A(2, 3),B(4,0),C(-2,0),求△ ABC的面积.
变式:若△ABC的的三个顶点的坐标分别是 A(2,3),B(m, 0), C(-2,0),且面积等于9,则 m 的值为.
练习:若△ABC的三个顶点的坐标分别是 A(2, 3), B(4, -1), C(-2, -1),则△ABC的面积为.
总结: 1.三角形的哪条边落在(或平行于),就选哪条边作为底边;
2.由于距离计算中带有,要关注问题的多解性 .
例2 已知△ABC三个顶点的坐标分别是 A(-3,-1),B(1,3),C(2,-3).求△ABC的面积.
总结:三角形没有任何一条边落在坐标轴或平行于坐标轴,一般过作
,转化成简单图形()的面积和或差 .
(二)求四边形的面积:
例4 如图,四边形 OABC的顶点坐标分别为 O(0,0),A(5,0),B(3,4),C(0,3),计算这个四边形的面积.
O
3 5
变式:如图,四边形 OABC的顶点坐标分别为 O(0,0),A( 5,0),B(3,b),C(0,3),且四边形的面积为 14.5,求 b 的值.
总结:一般四边形的面积常利用四.自我反
馈:
1.已知点 A(-3,-2), B(0,3),C(-
3,2).求△ ABC的面积.
转化成形或形的面积问题
2.已知△ ABC三个顶点的坐标分别是 A(-2, -2),
B(0,-1),C(1,1).求△ ABC的面
积.
3.已知点 A(2, 5), B(6, -4), Q-2, 0).求 AABC的面积∙
4.根据图中给出的坐标,计算四边形ABCO的面积.。

相关文档
最新文档