第三章 晶体结构缺陷

合集下载

晶体缺陷

晶体缺陷

(1 2)
2ClCl CaCl2 KCl Cai 2VK
(1 3)

KCl
表示KCl作为溶剂。 以上三种写法均符合缺陷反应规则。
实际上(1-1)比较合理。
(2) MgO溶解到Al2O3晶格中
2 MgO 2 Mg V Al O 2OO Al2O3
(1-4)
3 MgO 2 Mg Al Mgi 3OO Al2O3
(1-5)
(1-5〕较不合理。因为Mg2+进入间隙位置不易发生。
练习
写出下列缺陷反应式:
(1) MgCl2固溶在LiCl晶体中(产生正离子空位,生成置换型SS)
(2) SrO固溶在Li2O晶体中(产生正离子空位,生成置换型SS)
有些情况下,价电子并不一定属于某个特定位置的原子,在 光、电、热的作用下可以在晶体中运动,原固定位置称次自 由电子(符号e/ )。同样可以出现缺少电子,而出现电子空 穴(符号h. ),它也不属于某个特定的原子位置。
(6)带电缺陷 不同价离子之间取代如Ca2+取代Na+——Ca · Na Ca2+取代Zr4+——Ca”Zr
Schottky空位的产生
2 杂质缺陷
概念——杂质原子进入晶体而产生的缺陷。原子进入 晶体的数量一般小于0.1%。 种类——间隙杂质 置换杂质 特点——杂质缺陷的浓度与温度无关, 只决定于溶解度。 存在的原因——本身存在
有目的加入(改善晶体的某种性能)
3 非化学计量结构缺陷(电荷缺陷) 存在于非化学计量化合物中的结构缺陷,化合物化学 组成与周围环境气氛有关;不同种类的离子或原子数之比 不能用简单整数表示。如: ;
占据在原来基体原子平衡位置上的异类原 子称为置换原子。 由于原子大小的区别也会造成晶格畸变, 置换原子在一定温度下也有一个平衡浓度值, 一般称之为固溶度或溶解度,通常它比间隙原 子的固溶度要大的多。

3_《材料科学基础》第三章_晶体结构缺陷((上)

3_《材料科学基础》第三章_晶体结构缺陷((上)

点缺陷(零维缺陷)--原子尺度的偏离.
按 缺
例:空位、间隙原子、杂质原子等
陷 线缺陷(一维缺陷)--原子行列的偏离.

例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.

例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
例:异相夹杂物、孔洞、亚结构等
1、 固溶体的分类
(1) 按杂质原子的位置分: 置换型固溶体—杂质原子进入晶格中正常结点位置而取代基
质中的原子。例MgO-CoO形成Mg1-xCoxO固溶体。 间隙型固溶体—杂质原子进入晶格中的间隙位置。
有时俩
(2)按杂质原子的固溶度x分: 无限(连续)固溶体—溶质和溶剂任意比例固溶(x=0~1)。
多相系统
均一单相系统
Compounds AmBn
原子间相互反应生成
均一单相系统
结构
各自有各自的结构
A structure
structure
+ B structure
结构与基质相同 A structure
结构既不同于A也不同于B New structure
化学计量 A/B
不定
固溶比例不定
m:n 整数比或接近整数比的一定范围内
四、固溶体Solid solution(杂质缺陷)
1、固溶体的分类 2、置换型固溶体 3、间隙型固溶体 4、形成固溶体后对晶体性质的影响 5、固溶体的研究方法
①固溶体:含有外来杂质原子的单一均匀的晶态固体。 例:MgO晶体中含有FeO杂质 → Mg1-xFexO
基质 溶剂 主晶相
杂质 溶质 掺杂剂
萤石CaF2(F-空位)

固体物理 第三章_ 晶体中的缺陷

固体物理 第三章_ 晶体中的缺陷

4
由以上讨论可知: 刃位错: 外加切应力的方向、原子的滑移方向和位错 线的运动方向是相互平行的。 螺位错: 外加切应力的方向与原子的滑移方向平行, 原子的滑移方向与螺位错的运动方向垂直。 在左右两部分受到向上和向下的切应力的作 用时,位错线向前移动,直到位错线移动到 尽头表面,这时左右两部分整个相对滑移b 的距离,晶体产生形变。
固体物理第三章
1. 热缺陷:由热起伏的原因所产生的空位和填隙原 子,又叫热缺陷,它们的产生与温度直接有关
(a) 肖脱基缺陷
(b)弗伦克耳缺陷
(c) 间隙原子
固体物理第三章
( a )肖特基缺陷 (vacancy) :原子脱离正常格点 移动到晶体表面的正常位置,在原子格点位置 留下空位,称为肖特基缺陷。 (b)弗伦克尔缺陷(Frenkel defect),原子脱离格 点后,形成一个间隙原子和一个空位。称为弗 伦克尔缺陷。 (c)间隙原子(interstitial):如果一个原子从正常 表面位置挤进完整晶格中的间隙位置则称为间 隙原子,由于原子已经排列在各个格点上,为 了容纳间隙原子,其周围的原子必定受到相当 大的挤压。
固体物理第三章 固体物理第三章
产生位错的外力: 机械应力:挤压、拉伸、切割、研磨 热应力:温度梯度、热胀冷缩 晶格失配: 晶体内部已经存在位错,只用较小的外力就 可推动这些位错移动,原来的位错成为了位错 源,位错源引起位错的增殖,有位错源的晶体 屈服强度降低。 晶体的屈服强度强烈地依赖于温度的变化。 T升高,原子热运动加剧,晶体的屈服强度下 降,容易产生范性形变。
固体物理第三章
在实际晶体中,由于存在某种缺陷,所以晶 面的滑移过程,可能是晶面的一部分原子 先发生滑移,然后推动同晶面的另一部分 原子滑移。按照这样的循序渐移,最后使 上方的晶面相对于下方的晶面有了滑移。 1934 年, Taylor( 泰勒 ), orowan( 奥罗万 ) 和 Polanyi( 波拉尼)彼此独立提出滑移是借助 于位错在晶体中运动实现的,成功解释了 理论切应力比实验值低得多的矛盾。

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷

够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。

材料化学-晶体结构缺陷

材料化学-晶体结构缺陷
14
3. 质量平衡:缺陷方程两边必须保持质量平衡; 4. 电中性:缺陷反应两边必须具有相同数目的总有效电荷,
但不必为零; 5. 表面位置:不用特别表示,当一个M原子从晶体内部迁
移到表面时,M位置数增加。
15
有效电荷:缺陷及其周围的总电荷减去理想晶体中同一区 域的电荷之差。
—— 对于自由电子和空穴:有效电荷等于实际电荷;
平衡常数为:
Ag
Vi
Ag
• i
VAg
K
[ Agi• ][VAg ] [ Ag ][Vi ]
令N为晶体中格位总数,Ni为间隙总数,即:
[VAg
]
[
Ag
• i
]
Ni
[Ag ] N Ni
对于大多数规则晶体结构,有:
[Vi ] N
仅与体系自身结构特性有关
23
因此,
K
N
2 i
N
2 i
(N Ni )(N ) N 2
13
缺陷反应方程式
1. 位置关系:在化合物 MaXb 中,M 位置的数目必须与 X
位置的数目成一个正确的比例;
2. 位置增殖:当缺陷发生变化时,有可能引入或消除空位, 相当于增加或减少点阵位置数,这种变化必须服从位置 关系;
—— 引起位置增殖的缺陷:VM,VX,MM,MX,XM, XX,等等;
—— 不引起位置增殖的缺陷: e’,h˙,Mi,Li,等等;
35
俘获空穴中心
通过俘获空穴而形成色心。
卤素蒸气中加热
NaCl
NaCl1+
Vk心:两个相 邻卤素离子俘
获一个空穴
H心:一列卤 素离子中插入 一个卤素原子
36
非整比晶体中的空位和填隙子

《材料科学基础》 第03章 晶体缺陷

《材料科学基础》 第03章 晶体缺陷

第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。

第三章-晶体结构缺陷

第三章-晶体结构缺陷

第三章晶体结构缺陷【例3-1】写出MgO形成肖特基缺陷的反应方程式。

【解】MgO形成肖特基缺陷时,表面的Mg2+和O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为:该方程式中的表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷状态,则肖特基缺陷方程式可简化为:【例3-2】写出AgBr形成弗伦克尔缺陷的反应方程式。

【解】AgBr中半径小的Ag+离子进入晶格间隙,在其格点上留下空位,方程式为:【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。

【例3-3】写出NaF加入YF3中的缺陷反应方程式。

【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入的1个F -离子位于基质晶体中F-离子的位置上。

按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。

反应方程式为:可以验证该方程式符合上述3个原则。

再以负离子为基准,假设引入3个F-离子位于基质中的F-离子位置上,与此同时,引入了3个Na+离子。

根据基质晶体中的位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为:此方程亦满足上述3个原则。

当然,也可以写出其他形式的缺陷反应方程式,但上述2个方程所代表的缺陷是最可能出现的。

【例3-4】写出CaCl2加入KCl中的缺陷反应方程式。

【解】以正离子为基准,缺陷反应方程式为:以负离子为基准,则缺陷反应方程式为:这也是2个典型的缺陷反应方程式,与后边将要介绍的固溶体类型相对应。

【提示】通过上述2个实例,可以得出2条基本规律:(1)低价正离子占据高价正离子位置时,该位置带有负电荷。

为了保持电中性,会产生负离子空位或间隙正离子。

(2)高价正离子占据低价正离子位置时,该位置带有正电荷。

晶体结构缺陷

晶体结构缺陷
离子晶体中基本点缺陷类型
4)溶质原子:LM表达L溶质处于M位置,SX表达S溶质处 于X位置。 例:Ca取代了MgO晶格中旳Mg写作CaMg, Ca若填隙在MgO晶格中写作Cai。
5)自由电子及电子空穴:自由电子用符号e′表达。电子空 穴用符号h·表达。它们都不属于某一种特定旳原子全部, 也不固定在某个特定旳原子位置。
VO••
3OO
1 2
O2
例2:CaCl2溶解在KCl中:
产生K空位 ,合 理
CaCl2 KCl CaK• VK' 2ClCl
CaCl2 KCl CaK• Cli' ClCl
Cl-进入填隙位, 不合理
CaCl2 KCl Cai•• 2VK' 2ClCl
Ca进入填 隙位,不合

例3:MgO溶解到Al2O3晶格内形成有限置换型固溶体:
荷。为了保持电中性,会产生阴离子空位或间隙阳离子; 2、高价阳离子占据低价阳离子位置时,该位置带有正电
荷,为了保持电中性,会产生阳离子空位或间隙阴离子。
举例:
例1:TiO2在还原气氛下失去部分氧,生成TiO2-x旳反应能 够写为:
2TiO2
2TiT' i
VO••
3OO
1 2
O2
2Ti
4OO
2TiT' i
克罗格-明克符号系统
1、 缺陷符号旳表达措施 (以MX离子晶体为例) 1)空位:VM和VX分别表达M原子空位和X原子空位,V表达缺陷种类,
下标M、X表达原子空位所在位置。
VM〞=VM +2eˊ VX‥ = VX +2 h·
2)填隙原子:Mi和Xi分别表达M及X原子 处于晶格间隙位置 3)错放位置:MX表达M原子被错放在X位置上, 这种缺陷较少。

材料科学基础第三章 晶体缺陷

材料科学基础第三章 晶体缺陷

贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷
和缺陷数量变化呈非线与振动熵有关的常数玻尔兹曼常数变化每增加一个空位的能量阵点总数平衡空位数exp点缺陷并非固定不动而是处在不断改变位置的运动过程空位周围的原子由于热振动能量的起伏有可能获得足够的能量而跳入空位并占据这个平衡位置这时在这个原子的原来位置上就形成一个空位
材料科学基础第三章晶体缺陷
本章要求掌握的主要内容
b. 由于存在着这两个互为矛盾的因素,晶体中的点缺陷在一定温度下有一定的平衡数目,这时点 缺陷的浓度就称为它们在该温度下的热力学平衡浓度。
c. 在一定温度下有一定的热力学平衡浓度,这是点缺 陷区别于其它类型晶体缺陷的重要特点。
图 空位-体系能量曲线
1.形成缺陷带来晶格应变,内能U增加,一个缺陷带来的内能
过饱和点缺陷(如淬火空位、辐照缺陷)还提高了 金属的屈服强度。
例1:Cu晶体的空位形成能Ev为1.44×10-19J/atom, 材料常数A取为1,波尔兹曼常数为k=1.38×10-23J/K, 计算:
1)在500℃下,每立方米Cu中的空位数目; 2)500℃下的平衡空位浓度。 (已知Cu的摩尔质量63.54,500℃ Cu的密度为 8.96×106g/m3)
增加为u,所以内能增加
,故内能增加是线性的。
Unu
2.缺陷存在使体系的混乱度增加,引起熵值增加,缺陷存在使 体系排列方式增加,即熵值显著增加。和缺陷数量变化呈非线 性的。
C
n N
A exp( Ev / kT )
n 平衡空位数
N 阵点总数
Ev 每增加一个空位的能量 变化 K 玻尔兹曼常数
A 与振动熵有关的常数
晶体结构的特点是长程有序。结构基元或者构成物体的粒子(原子、离子或分子等)完全按照空间点阵 规则排列的晶体叫理想晶体。 在实际晶体中,粒子的排列不可能这样规则和完整,而是或多或少地存在着偏离理想结构的区域,出 现了不完整性。 把实际晶体中偏离理想点阵结构的区域称为晶体缺陷。 实际晶体中虽然有晶体缺陷存在,但偏离平衡位置很大的粒子数目是很少的,从总的来看,其结构仍 可以认为是接近完整的。

第三章 晶体缺陷

第三章 晶体缺陷

§3.1.3 缺陷化学反应表示法
⑴ 写缺陷反应方程式应遵循的原则 与一般的化学反应相类似,书写缺陷反应 方程式时,应该遵循下列基本原则: a. 位置关系 b. 质量平衡 c. 电中性
a.位置关系: 在化合物MaXb中,无论是否存在缺陷, 其正负离子位置数(即格点数)的之比始 终是一个常数a/b,即:M的格点数/X的格 点数a/b。如NaCl结构中,正负离子格点 数之比为1/1,Al2O3中则为2/3。
• 固溶体强度与硬度高于各组元,而塑性则较低。
• 5. 固溶体的研究方法
㈠ 理论密度的计算
• ㈡ 固溶体化学式的写法
• 例题:在ZrO2中加入CaO,生成固溶体,在1600℃, 该固溶体具有萤石结构,经XRD分析,当溶入0.15分 子CaO时,晶胞参数a=0.513nm,测得密度 D=5.447g/cm3,求计算密度,并判断固溶体的种类。
'' Ca
b. 弗仑克尔缺陷浓度的计算
AgBr晶体形成弗仑克尔缺陷的反应方程式为: AgAg Ag. 平衡常数K为:
' V i Ag
K
式中 [AgAg]1。
[ Ag ][V ] [ Ag Ag ]
. i ' Ag
. i
' Ag
G 又G=-RTlnK ,则 [ Ag ] [V ] exp( ) 2 RT
CaF2晶体形成肖特基缺陷反应方程式为:
O V 2V
'' Ca
. F
动态平衡
'' . 2 [VCa ][VF ] 4[VCa'' ]3 K [O] [O]
G=-RTlnK
. '' [ V ] 2 [ V 又[O]=1, F Ca ]

第三章晶体缺陷

第三章晶体缺陷
二. 表面及表面能
材料表面的原子核内部的原子所处的环境不同,内部的任一原子处于其它原子的包围 中,周围的原子对它的作用力对称分布,因此它处于均匀的力场中,总和力为零,即处于 能量最低的状态;而表面原子却不同,与外界接触,表面原子处于不均匀的力场之中,所 以其能量大大升高,高出的能量称为表面自由能(或表面能)。
三. 点缺陷的运动
点缺陷(空位)的运动过程
晶体的点缺陷处于不断的运动状态,当空位周围原子的热振动动能超过激活能时,就 可能脱离原来的结点位置而跳跃到空位,正是靠这一机制,空位发生不断的迁移,同时伴 随原子的反向迁移。间隙原子也是在晶格的间隙中不断运动。空位和间隙原子的运动是晶 体内原子扩散的内部原因,原子(或分子)的扩散就是依靠点缺陷的运动而实现的。
第一节 点缺陷
一. 点缺陷的类型
空位:如果晶体中某结点上的原子空缺了,则称为空位。
脱位原子一般进入其他空位或者逐渐迁移至晶界或表面,这样的空位通常称为肖脱基 空位或肖脱基缺陷。偶尔,晶体中的原子有可能挤入结点的间隙,则形成另一种类型的点 缺陷---间隙原子,同时原来的结点位置也空缺了,产生另一个空位,通常把这一对点缺陷 (空位和间隙原子)称为弗兰克耳缺陷。
界100
100
(θ< )和大角度晶界(θ> )。一般多晶体各晶粒之间的晶界属于大角度晶界。
实验发现:在每一个晶粒内原子排列的取向也不是完全一致,晶粒内又可分为位向差
只有几分到几度的若干小晶块,这些小晶块可称为亚晶粒,相邻亚晶粒之小角度晶界还是大角度晶界,这里的原子或多或少的偏离了平衡位置,所以相对 于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。
一. 刃型位错
第二节 位错
刃型位错 刃型位错的滑移过程

无机材料科学基础第三章晶体结构缺陷

无机材料科学基础第三章晶体结构缺陷
• 点缺陷的存在会引起性能的变化: (1)物理性质、如V、ρ 等; (2)力学性能:采用高温急冷(如淬火 quenching),大 量 的 冷 变 形 (cold working), 高 能 粒 子 辐 照 (radiation)等方法可获得过饱和点缺陷,如使屈服强 度σS提高; ( 3 ) 影 响 固 态 相 变 , 化 学 热 处 理 (chemical heat treatment)等。
(4)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。 (5)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在光、电、热 的作用下可以在晶体中运动,原固定位置称次自由电子(符号e/ )。同 样可以出现缺少电子,而出现电子空穴(符号h. ),它也不属于某个特定 的原子位置。
(5)热缺陷与晶体的离子导电性
纯净MX晶体:只有本征缺陷(即热缺陷) 能斯特-爱因斯坦(Nernst-Einstein)方程:
n k 2 e 2 z T [a 2cex k E c p ) T a ( 2a ex k E a p )T ]( n k 2 e 2 z T D
式中 D —— 带电粒子在晶体中的扩散系数; n —— 单位体积的电荷载流子数,即单位体 积的缺陷数。 下标c、a —— 阳离子、阴离子
离子晶体中:CaF2型结构。
从形成缺陷的能量来分析——
Schttky缺陷的形成能量小,Frankel 缺陷的 形成能量大,因此对于大多数晶体来说, Schttky 缺陷是主要的。
(4) 点缺陷对结构和性能的影响
• 点缺陷引起晶格畸变(distortion of lattice),能量升 高,结构不稳定,易发生转变。

3第三章-晶体结构缺陷

3第三章-晶体结构缺陷
当晶体中剩余空隙比较小时,如NaCl型结构,容易形 成肖特基缺陷;当剩余空隙比较大时,如 CaF2型结构, 易形成弗仑克尔缺陷。
(2). 杂质缺陷 一般反应式: 杂质
CaCl2溶解在KCl中
• 每引进一个CaCl2分子,同时带进二个Cl-和一个Ca2+离子。1个Ca2+置
基质
产生的各种缺陷
换一个K+,但由于引入2个Cl-,为保持原有格点数之比K:Cl=1:1,必
2. 产生原因(cause of produce)
弗仑克尔缺陷
热缺陷 肖特基缺陷
由产生原因分类 杂质缺陷 非化学计量结构缺陷
(1) 热缺陷(thermal defect)
a. 定义:当晶体温度高于绝对0K时,由于晶格内原 子热振动,使一部分能量较大的原子偏离 平衡位置造成缺陷。 b. 特点:由原子热振动引起,缺陷浓度与温度有关。
• (3) 在同一晶体中生成弗伦克尔缺陷与肖特基缺陷的能量往往 存在很大差别。 • (4) 缺陷形成能的大小与晶体结构、离子极化率等有关。 • NaCl型结构的离子晶体,生成一个间隙离子和一个空位缺陷 需要7~8 eV。所以即使温度到2000度,离子缺陷浓度也很小 • 对于CaF2晶体,F-离子生成弗伦克尔缺陷与肖特基缺陷的形 成能分别为2.8 eV和5.5eV,所以晶体中以弗伦克尔缺陷为主。
b.特点:由气氛或压力变化引起,缺陷浓度与气氛性质、
压力有关。
[例] TiO2 晶体
Ti格点数 1 Ti原子数 1 TiO2 : ,如果 ,化学计量 O格点数 2 O原子数 2 Ti格点数 1 Ti原子数 1 TiO1.998 : ,但 ,非化学计量 O格点数 2 O原子数 1.998
V (V V ) VNa

晶体结构缺陷

晶体结构缺陷

第三章晶体结构缺陷内容提要在讨论晶体结构时,人们认为质点在三维空间的排列遵循严格的周期性,这是一种仅在绝对零度才可能出现的理想状况。

通常把这种质点严格按照空间点阵排列的晶体称为理想晶体。

由于质点排列的周期性和规则性,使得晶体中的势场也具有严格的周期性。

在实际晶体中,因其所处的温度高于绝对零度,因而其质点排列总会或多或少地偏离理想晶体中的周期性、规则性排列,即实际晶体中存在着各种尺度上的结构不完整性。

通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。

正是由于缺陷的存在,才使晶体表现出各种各样的性质,使材料制备过程中的动力学过程得以进行,使材料加工、使用过程中的各种性能得以有效控制和改变,使材料性能的改善和复合材料的制备得以实现。

缺陷的产生、类型、数量及其运动规律,对晶体的许多物理与化学性质会产生巨大的影响。

晶体材料所固有的电、磁、声、光、热和力学等性能和材料加工、使用过程中所表现出来的行为大都具有结构敏感性,晶体缺陷则是研究晶体结构敏感性的关键问题和研究材料质量的核心内容。

有位科学家说过:―能够控制晶体中的缺陷,就等于拿到了控制实际晶体的钥匙‖。

由此可见,了解和掌握各种缺陷的成因、特点及其变化规律,对于材料工艺过程的控制,材料性能的改善,新型结构和功能材料的设计、研究与开发具有非常重要意义。

本章从微观层次上介绍晶体中缺陷产生的原因和缺陷的类型,阐述缺陷的产生、复合、运动以及缺陷的控制与利用,建立缺陷与材料性质和材料加工之间的相互联系,为最终利用或控制缺陷对材料实施改性奠定科学基础。

概述一、晶体结构缺陷的概念在学习晶体结构的时候,我们知道了晶体结构的特征是晶体中的质点在三维空间规则与周期性排列。

晶体中的每一个质点都是处在相邻质点的周期性势场之中,具有这种性质的晶体称之为理想晶体,这是为了研究晶体面总结出来的理想状态。

在自然界中绝对完整的晶体是不存在的,在绝对零度以上,由于热运动等种种原因,晶体中质点的排列都或多或少不那么完全有规则。

第三章 晶体结构缺陷

第三章  晶体结构缺陷

3.2 热缺陷的统计平衡
热缺陷是由于热振动引起的。在热 平衡条件下,热缺陷的多少仅和晶体所 处的温度有关。在给定的温度下,热缺 陷的数量可以用热力学中的自由能最小 原理来进行计算。
以 Schottky 缺陷为例
设构成完整单质晶体的原子数为N,在T K时形 成了 n 个孤立的空位。每个空位的形成能为 h。相应地,这个过程的自由能变化为 G, 热焓的变化为H,熵的变化为S,则可以得到
固溶体、机械混合物和化合物三之间是有本
质区别的。
固溶体在无机固体材料中所占的比例很大。
常常采用固溶原理来制造各种新型材料。
在 Al2O3 晶体中溶入 Cr2O3,由于 Cr3+ 能产生 受激辐射,使得原来没有激光性能的白宝石 (Al2O3) 变为了有激光性能的红宝石。 碳钢中的铁素体是 C 在 -Fe 中的填隙固溶体, 属体心立方结构。C 只是随机地填入其间的一 些八面体空隙。
d ln x! 注意 ln x dx
( N n)! d ln G N!n! kT h TS n dn
d ln(N n)! d ln N! d ln n! h TS kT dn dn d( N n)
n h TS kT ln 0 N n
如果 C 的填隙呈有序状态,所得到的结构就成为体 心四方结构。相应形成的是马氏体。马氏体的硬度、 强度比铁素体高,但塑性变差了。
固溶体的分类
按溶质原子在溶剂晶格中的位置分类
置换性固溶体、填隙型固溶体
按溶质原子在溶剂晶体中的溶解度分类
连续固溶体、有限固溶体
固溶度
固溶度指的是固溶体中溶质的最大含量。可以
本征缺陷 非本征缺陷
两种典型的热缺陷

第三章 晶体缺陷

第三章 晶体缺陷
刃位错和螺位错的特征。 刃:ξ⊥b ; 螺: ξ∥b ; 位错环(dislocation loop)是一种典型的混合位错。
A、B为刃位错,C、D为螺位错。
位错能够在金属的结晶、塑性变形和相变等过程中 形成,实际晶体中形成的是混合位错。
三.柏氏矢量
1柏氏矢量(Burgers vector)的确定
能量较高的位错倾向分解为多个能量较低的位错,使 系统自由能降低。

高温淬火、冷变形、高能粒子辐照后,晶体中产生过饱 和点缺陷,有利于攀移!
位错特点 a.位错导致晶格畸变,产生内应力。 对于刃型位错: 原子较密区域原子受到压应力。 原子较疏区域原子受到拉应力。
Hebei university of engineering
b.刃型位错容易吸纳异类原子。 原子较密区域吸纳小直径的异类原子。 原子较疏区域吸纳大直径的异类原子。
Hebei university of engineering
c.位错具有易动性。 在外力作用下,位错能产生移动。 刃型位错移动的方向与切应力的方向相同。 螺型位错移动的方向与切应力的方向垂直。
完整晶体滑移的理论剪切强度要远高于实际晶体 滑移的对应强度,从而促进了位错理论的产生和发 展。
⑴刃型位错(edge dislocation)的产生
完整晶体滑移的理论剪切强度要远高于实际晶体 滑移的对应强度,从而促进了位错理论的产生和发 展。
⑵刃型位错图示
刃型位错线:多余半原子面与滑移面的交线。
实际上是已滑移区和未滑移区在滑移 面上的交线或分界线。
1点缺陷(point defect):特征是三维空间的各个方向上尺寸 都很小,尺寸范围约为一个或几个原子尺度,又称零维缺陷, 包括空位、间隙原子、杂质和溶质原子。

第三章 晶体结构缺陷

第三章 晶体结构缺陷
较低,即晶体中剩余空隙比较大,则Frankel defects是一种 常见的点缺陷,如CaF2;相反,正负离子结构配位数较高, 即排列比较密集的晶体,则Schottky defects比较重要,如
NaCl
材料科学基础
9/84
第三章 晶体结构缺陷
杂质缺陷(Impurity Defects):由于外部杂质进入晶体而引 起的缺陷,可分为臵换杂质缺陷和间隙杂质缺陷两种
14/84
第三章 晶体结构缺陷
(2)间隙质点:用下标“i”表示 即:Mi 表示M原子进入了晶格的间隙位臵; Xi 表示X原子进入了晶格的间隙位臵。 NOTE: 显然,在MX离子晶体中形成一个M2+离子间隙 缺陷必然带有两个正电荷(即为带电缺陷),则M2+离

子间隙缺陷应表示为 M i ,同理可知形成X2-离子间隙缺
有利于缔合的库仑引力。在库仑力的驱动下,点缺陷可能
会缔合成一组或一群,产生一个缔合中心。
例如:在MX离子晶体中,有可能形成
等缔合中心 (6) 错位原子:用MX、XM表示
材料科学基础

19/84
第三章 晶体结构缺陷
三、缺陷反应方程式的书写格式及基本规则
(一)、缺陷反应方程式书写格式: 反应物 基质 各种缺陷
特点:缺陷的产生及浓度与环境的气氛性质、压力有密切关系;
其他缺陷如电荷缺陷和辐射缺陷
材料科学基础
11/84
第三章 晶体结构缺陷
思考:以下几个示意图各为何种点缺陷?
材料科学基础
12/84
第三章 晶体结构缺陷
二、点缺陷的表示方法——Kroger-Vink符号
核心思想:在晶体中加入或取出一个质点时,视为取出一个 中性原子,这样可以避免判断键型的麻烦,若为离子晶体, 则分别考虑加入或取出电子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章晶体结构缺陷【例3-1】写出MgO形成肖特基缺陷得反应方程式。

【解】MgO形成肖特基缺陷时,表面得Mg2+与O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为:该方程式中得表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷状态,则肖特基缺陷方程式可简化为:【例3-2】写出AgBr形成弗伦克尔缺陷得反应方程式。

【解】AgBr中半径小得Ag+离子进入晶格间隙,在其格点上留下空位,方程式为:【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。

【例3-3】写出NaF加入YF3中得缺陷反应方程式。

【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入得1个F-离子位于基质晶体中F-离子得位置上。

按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。

反应方程式为:可以验证该方程式符合上述3个原则。

再以负离子为基准,假设引入3个F-离子位于基质中得F-离子位置上,与此同时,引入了3个Na+离子。

根据基质晶体中得位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为:此方程亦满足上述3个原则。

当然,也可以写出其她形式得缺陷反应方程式,但上述2个方程所代表得缺陷就是最可能出现得。

【例3-4】写出CaCl2加入KCl中得缺陷反应方程式。

【解】以正离子为基准,缺陷反应方程式为:以负离子为基准,则缺陷反应方程式为:这也就是2个典型得缺陷反应方程式,与后边将要介绍得固溶体类型相对应。

【提示】通过上述2个实例,可以得出2条基本规律:(1)低价正离子占据高价正离子位置时,该位置带有负电荷。

为了保持电中性,会产生负离子空位或间隙正离子。

(2)高价正离子占据低价正离子位置时,该位置带有正电荷。

为了保持电中性,会产生正离子空位或间隙负离子。

【例3-5】TiO2在还原气氛下失去部分氧,生成非化学计量化合物TiO2-x,写出缺陷反应方程式。

【解】非化学计量缺陷得形成与浓度取决于气氛性质及其分压大小,即在一定气氛性质与压力下到达平衡。

该过程得缺陷反应可用或方程式表示,晶体中得氧以电中性得氧分子得形式从TiO2中逸出,同时在晶体中产生带正电荷得氧空位与与其符号相反得带负电荷得来保持电中性,方程两边总有效电荷都等于零。

可以瞧成就是Ti4+被还原为Ti3+,三价Ti占据了四价Ti得位置,因而带一个单位有效负电荷。

而二个Ti3+替代了二个Ti4+,Ti∶O由原来2∶4变为2∶3,因而晶体中出现一个氧空位,带二个单位有效正电荷。

【例3-6】假定把一个Na原子从钠得晶体内部移到边界上所需得能量就是1ev,计算定温时(300K)得肖特基空位浓度。

【解】∵=1ev=1×1、6×10-19J∴=exp(-)=1、643×10-15%【例3-7】在MgO晶体中,肖特基缺陷得生成能为6ev,计算在25℃与1600℃时热缺陷得浓度;如果MgO 晶体中,含有百万分之一得Al2O3杂质,则在1600℃时,MgO晶体中就是热缺陷占优势还就是杂质缺陷占优势?请说明原因。

【解】(1)根据MX型晶体中肖特基缺陷浓度公式:已知:当T=25℃=298K及T=1600℃=1873K时,(2)在MgO中加入Al2O3得杂质缺陷反应为:此时产生得缺陷为[]杂质,而[Al2O3]=[]杂质当加入10-6 Al2O3时,杂质缺陷得浓度为[]杂质=[Al2O3]=10-6由(1)计算在1873K时,[]热=8×10-9所以:[]杂质>[]热,即1873K时杂质缺陷占优势。

【例3-8】许多晶体在高能射线照射下产生不同得颜色,经退火后晶体得颜色又消失,试解释原因。

【解】可通过“色心”得概念来解释。

“色心”就是由于电子补偿而引起得一种缺陷。

一些晶体受到X射线、γ射线、中子或电子辐照,往往会产生颜色。

例如,金刚石用电子轰击,产生蓝色;石英在反应堆中用中子辐照以后,产生棕色。

这些颜色得产生就是由于辐照破坏晶格,并产生各种类型得点缺陷得缘故。

为在缺陷区域保持电中性,过剩得电子或过剩正电荷(电子空穴)就处在缺陷得位置上,与原子周围得电子具有一系列分离得允许能级一样,束缚在点缺陷上得电荷,也具有这样得一组能极。

这些允许能极相当于在可见光谱区域得光子能级。

因而,在缺陷位置上也就能吸收一定波长得光,这样材料就出现某种颜色。

把这种经过辐照而变色得晶体加热,能使缺陷扩散而消失或产生复合,使辐照破坏得到修复,晶体失去颜色。

【提示】研究最详细得色心就是F-色心(F-centre)(由德语Farbe-Colout而得),当碱金属卤化物晶体在碱金属蒸汽中加热,然后快速淬火时,就产生F-色心。

例如,NaCl在Na蒸汽中加热得到黄棕色。

当NaCl晶体被加热时,Na扩散到晶体得内部,以过剩得Na+离子存在。

由于缺乏C1-离子,过剩得Na+离子将伴随相当数目得氯离子空位。

为了保持电中性,从Na来得一个价电子被吸引到负离子空位上,并在那里被捕获(正象在理想晶体中,一个价电子将被一个C1原子所吸引,生成一个C1-离子一样)。

因此,F-色心就是由一个负离子空位与一个在此位置上得电子组成得。

它就是一个陷落电子中心(captured traopped-electron centre),F-色心如教材图3-11所示,F-色心也就就是捕获了电子得负离子空位。

前面曾提到负离子空位带正电荷,对于氯离子空位就是带一个正电荷,现在它又捕获了一个电子,因此,F-色心得构造很象一个氯原子。

【例3-9】在MgO-Al2O3与PbTiO3-PbZrO3,哪一对形成有限固溶体,哪一对形成无限固溶体?为什么?【解】(1)MgO-Al2O3只能形成有限固溶体。

原因:MgO与Al2O3得结构类型不同,虽然可以通过不等价离子代换并且形成空位来平衡电荷以形成置换型固溶体,但就是置换量总就是有限得。

固溶方程:Al2O3 2 Al+3O+V固溶体分子式为:Mg1-3x Al2x O(2)PbTiO3-PbZrO3能形成完全互溶得置换型固溶体。

原因:1)结构类型相同2)=0、068nm,,=0、079 nm=×100%=13、9%<15%【例3-10】将CaO外加到ZrO2中去生成固溶体,具有立方萤石结构,试验测定:当溶入量为0、15molCaO 时,晶胞常数a=0、5131nm,密度D=5、477g/cm3。

试通过计算判断生成哪种类型固溶体(置换性型或间隙型)。

已知:原子量Ca 40、08,Zr 91、22 , O 16、00【解】(1)设形成置换型固溶体则:CaO++固溶体分子式为:Zr1-x Ca x O2-x,x=0、15即:Zr0、85Ca0、15O1、85置换型固溶体得密度为:D1===5、568g/cm3其中M——置换型固溶体得分子量——阿佛加德罗常数(2)又设形成间隙型固溶体则CaO++固溶体分子式为:x=0、15即:形成间隙型固溶体得密度为:D2===6、017g/cm3将计算结果与实验测定结果比较D1更接近于实测值,所以生成置换型固溶体。

【例3-11】非化学计量化合物Fe x O中,Fe3+/Fe2+=0、1,求Fe x O中空位浓度及x值。

【解】非化学计量化合物Fe x O,可认为就是a(mol)得Fe2O3溶入FeO中,缺陷反应式为:a2a a此固溶体(非化学计量化合物)得组成为:已知:Fe3+/Fe2+=0、1则:a=0、044x=2a+(1-3a)=1-a=0、956又正常格点数N=1+x=1+0、956=1、956空位浓度为(热缺陷浓度可忽略不计)【例3-12】非化学计量缺陷得浓度与周围气氛得性质、压力大小相关,如果增大周围氧气得压,非化学计量化合物及得密度将发生怎样得变化?增大?减小?为什么?【解】化学计量化合物Fe1-x O,就是由于正离子空位,引起负离子过剩按质量作用定律,平衡常数得:即:铁空位浓度与氧分压得次方成正比,故当周围氧分压增大时,铁空位浓度增加,晶体质量减小,则Fe1-x O得密度也将减小。

化学计量化合物Zn1+x O,由于正离子填隙,使金属离子过剩:按质量作用定律:得:即:间隙离子得浓度与氧分压得次方成反比,故增大周围氧分压,间隙离子浓度减小,晶体质量减小,则Zn1+x O得密度也减小。

【例3-13】试确定面心立方晶体在()[110]滑移系统滑移时得伯氏矢量。

【解】晶体在()[110]滑移系统滑移时,其滑移矢量在[110]晶向上。

从任一原子位置向前方另一原子位置引出得矢量,也就就是从晶胞坐标原点[0,0,0]向(001)晶面得晶胞面心[1/2, 1/2,0]所引出得矢量。

该矢量在晶胞坐标轴X、Y、Z三轴上得分量依次为a/2、a/2、0,因此,用它表示得伯氏矢量得符号为:b,此即位错得单位滑移矢量。

【提示】对于面心立方晶体而言,其密排面得密排方向在面对角线方向,因此,晶体滑移时,每次滑移得距离即为面对角线得一半,即。

这与滑移矢量b得模得大小就是一致得。

相关文档
最新文档