立体几何(小题)专题 历年高考真题模拟题汇总(解析版)
立体几何小题专题历年高考真题模拟题汇总原卷版
立体几何一、年考试大纲二、新课标全国卷命题分析三、典型高考试题讲评2011—年新课标全国(1卷、2卷、3卷)理科数学分类汇编——11.立体几何一、考试大纲1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.4.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.二、新课标全国卷命题分析立体几何小题常考的题型包括:(1)球体;(2)多面体的三视图、体积、表面积或角度,包括线线角、线面角以及面面角,要重视常见几何体的三视图、三视图还原几何体的常用方法、面积和体积的计算式以及点线面的位置关系等,也要注意提高空间想象能力与数学计算能力.立体几何解答题第1问主要集中考查空间中直线、平面的位置关系的判断,注重对公理、定理的考查,而第2问多考查空间向量在空间立体几何中的应用,在证明与计算中一般要用到初中平面几何的重要定理,空间思维要求较高,运算量较大,对学生的空间想象能力、转化能力、计算能力要求较高.在考查考生运算求解能力的同时侧重考查考生的空间想象能力和推理论证能力,给考生提供了从不同角度去分析问题和解决问题的可能,体现了立体几何教学中课程标准对考生的知识要求和能力要求,提升了对考生的数学能力和数学素养的考查.本试题能准确把握相关几何元素之间的关系,把推理论证能力、空间想象能力等能力和向量运算、二面角作图、建立空间直角坐标系等知识较好地融入试题中,使考生的空间想象能力、推理论证能力和运算求解能力得到了有效考查.1. (2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.) 2. (2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .56C .55D .223.(2018·新课标全国Ⅰ卷理7) 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .24.(2018·新课标Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .325.(2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .5C .5D .26.(2017·新课标Ⅱ,10)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A .3B .15C .10D .3 7.(2016·新课标Ⅰ,11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,α平面ABCDm =, α平面n A ABB =11,则n m ,所成角的正弦值为( ) (A )23 (B )22 (C )33 (D )31 8.(2015·新课标Ⅰ,6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛9.(2014·新课标Ⅱ,11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( )A .110B .25C .3010D .2210.(2013·新课标Ⅱ,4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A.α // β且l // αB.αβ⊥且l β⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l11.(2018·新课标Ⅱ,理16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为515,则该圆锥的侧面积为_________.12.(2017·新课标Ⅲ,)16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60角时,AB与b成30角;②当直线AB与a成60角时,AB与b成60角;③直线AB与a所称角的最小值为45;④直线AB与a所称角的最小值为60;其中正确的是________.(填写所有正确结论的编号)13.(2016·新课标Ⅱ,14)α、β是两个平面,m、n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m α,那么m∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有. (填写所有正确命题的编号.)。
高三立体几何专题练习(含答案)
立体几何专题练习卷一、填空题(本大题满分56分,每小题4分) 1.正方体DC B A ABCD 111-的棱长为a ,则异面直线1AB 与1BC 所成的角的大小是__________.2.已知某铅球的表面积是2484cm π,则该铅球的体积是___________2cm .3.若圆锥的侧面积为20π,且母线与底面所成的角为4arccos5,则该圆锥的体积为___________.4.在长方体1111ABCD A B C D -中,若12,1,3AB BC AA ===,则1BC 与平面11BB D D 所成的角θ可用反三角函数值表示为θ=____________.5.若取地球的半径为6371米,球面上两点A 位于东经O12127',北纬O 318',B 位于东经O12127',北纬O 255',则A B 、两点的球面距离为_____________千米(结果精确到1千米).6.已知圆锥的母线长为5cm ,侧面积为π15 2cm ,则此圆锥的体积为__________3cm .7.若圆锥的底面半径和高都是2,则圆锥的侧面积是_____________. 8.如图,是一个无盖正方体盒子的表面展开图,A B C 、、为其上的三个点,则在正方体盒子中,ABC ∠=____________.9.一个圆柱形容器的轴截面尺寸如右图所示,容器内有一个实心的球,球的直径恰等于圆柱的高.现用水将该容器注满,然后取出该球(假设球的密度大于水且操作过程中水量损失不计),则球取出后,容器中水面的高度为__________cm. (精确到0.1cm )10.如图,用铁皮制作一个无盖的圆锥形容器,已知该圆锥的母线与底面所在平面的夹角为45︒,容器的高为10cm .制作该容器需要铁皮面积为__________cm2.(衔接部分忽略不计,结果保留整第9题数)11.如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小是__________ .12.如右下图,ABC ∆中, 90=∠C ,30=∠A ,1=BC .在三角形内挖去半圆(圆心O 在边AC 上,半圆与BC 、AB 相切于点C 、M ,与AC 交于N ),则图中阴影部分绕直线AC 旋转一周所得旋转体的体积为__________ .13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥, 则该圆锥与圆柱等底等高。
专题04立体几何-2022年高考真题和模拟题数学分类汇编(解析版)
专题04 立体几何1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD―A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1 B所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设AB =a ,AD =b ,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=c B 1D =bB 1D ,即b =c ,B 1D =2c =a 2+b 2+c 2,解得a =2c .对于A ,AB =a ,AD =b ,AB =2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan ∠BAE =ca =22,所以∠BAE ≠30∘,B 错误;对于C ,AC =a 2+b 2=3c ,CB 1=b 2+c 2=2c ,AC ≠CB 1,C 错误;对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin ∠DB 1C =CD B1D=a2c =22,而0<∠DB 1C <90∘,所以∠DB 1C =45∘.D 正确.故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V甲V 乙=( )A .5B .22C .10D .5104【答案】C 【解析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r 1r 2=2,所以r 1=2r 2,又2πr 1l+2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l ,r 2=13l ,所以甲圆锥的高ℎ1=l 2―49l 2=53l ,乙圆锥的高ℎ2=l 2―19l 2=223l ,所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×53l 19l 2×223l =10.故选:C.4.【2022年全国乙卷】在正方体ABCD ―A 1B 1C 1D 1中,E ,F 分别为AB ,BC 的中点,则( )A .平面B 1EF ⊥平面BDD 1B .平面B 1EF ⊥平面A 1BDC .平面B 1EF //平面A 1ACD .平面B 1EF //平面A 1C 1D【答案】A 【解析】【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD .【详解】解:在正方体ABCD ―A 1B 1C 1D 1中,AC ⊥BD 且DD 1⊥平面ABCD ,又EF⊂平面ABCD,所以EF⊥DD1,因为E,F分别为AB,BC的中点,所以EF∥AC,所以EF⊥BD,又BD∩DD1=D,所以EF⊥平面BDD1,又EF⊂平面B1EF,所以平面B1EF⊥平面BDD1,故A正确;如图,以点D为原点,建立空间直角坐标系,设AB=2,则B1(2,2,2),E(2,1,0),F(1,2,0),B(2,2,0),A1(2,0,2),A(2,0,0),C(0,2,0),C1(0,2,2),=(0,1,2),DB=(2,2,0),DA1=(2,0,2),则EF=(―1,1,0),EB1AA1=(0,0,2),AC=(―2,2,0),A1C1=(―2,2,0),设平面B1EF的法向量为m=(x1,y1,z1),⋅EF=―x1+y1=0,可取m=(2,2,―1),⋅EB1=y1+2z1=0同理可得平面A1BD的法向量为n1=(1,―1,―1),平面A1AC的法向量为n2=(1,1,0),平面A1C1D的法向量为n3=(1,1,―1),则m⋅n1=2―2+1=1≠0,所以平面B1EF与平面A1BD不垂直,故B错误;因为m与n2不平行,所以平面B1EF与平面A1AC不平行,故C错误;因为m与n3不平行,所以平面B1EF与平面A1C1D不平行,故D错误,故选:A.5.【2022年全国乙卷】已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12C .33D .22【答案】C 【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为2r 2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则S ABCD =12⋅AC ⋅BD ⋅sin α≤12⋅AC ⋅BD ≤12⋅2r ⋅2r =2r 2(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为2r 2又r 2+ℎ2=1则V O―ABCD =13⋅2r 2⋅ℎ=23r 2⋅r 2⋅2ℎ2≤4327当且仅当r 2=2ℎ2即ℎ=33时等号成立,故选:C6.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(7≈2.65)( )A .1.0×109m 3B .1.2×109m 3C .1.4×109m 3D .1.6×109m 3【答案】C 【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为MN =157.5―148.5=9(m),所以增加的水量即为棱台的体积V .棱台上底面积S =140.0km 2=140×106m 2,下底面积S ′=180.0km 2=180×106m 2,∴V =13ℎS +S ′+=13×9×(140×106+180×106+140×180×1012)=3×(320+607)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m 3).故选:C .7.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是( )A .18,BCD .[18,27]【答案】C 【解析】【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵ 球的体积为36π,所以球的半径R =3,设正四棱锥的底面边长为2a ,高为ℎ,则l 2=2a 2+ℎ2,32=2a 2+(3―ℎ)2,所以6ℎ=l 2,2a 2=l 2―ℎ2所以正四棱锥的体积V =13Sℎ=13×4a 2×ℎ=23×(l 2―l436)×l 264―所以V ′=l 3=19l 当3≤l ≤26时,V ′>0,当26<l ≤33时,V ′<0,所以当l =26时,正四棱锥的体积V 取最大值,最大值为643,又l =3时,V =274,l =33时,V =814,所以正四棱锥的体积V 的最小值为274,故选:C.8.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为( )A .100πB .128πC .144πD .192π【答案】A 【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径r 1,r 2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径r 1,r 2,所以2r 1=33sin60∘,2r 2=43sin60∘,即r 1=3,r 2=4,设球心到上下底面的距离分别为d 1,d 2,球的半径为R ,所以d 1=R 2―9,d 2=R 2―16,故|d 1―d 2|=1或d 1+d 2=1,即|R 2―9―R 2―16|=1或R 2―9+R 2―16=1,解得R 2=25符合题意,所以球的表面积为S =4πR 2=100π.故选:A.9.【2022年北京】已知正三棱锥P―ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={Q∈S|PQ≤5},则T表示的区域的面积为()A.3π4B.πC.2πD.3π【答案】B【解析】【分析】求出以P为球心,5为半径的球与底面ABC的截面圆的半径后可求区域的面积.【详解】设顶点P在底面上的投影为O,连接BO,则O为三角形ABC的中心,且BO=23×6×32=23,故PO=36―12=26.因为PQ=5,故OQ=1,故S的轨迹为以O为圆心,1为半径的圆,而三角形ABC内切圆的圆心为O,半径为2×34×363×6=3>1,故S的轨迹圆在三角形ABC内部,故其面积为π故选:B10.【2022年浙江】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A .22πB .8πC .223πD .163π【答案】C 【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1 cm ,圆台的下底面半径为2 cm ,所以该几何体的体积V =12×43π×13+π×12×2+13×2×(π×22+π×12+π×22×π×12)=22π3cm 3.故选:C .11.【2022年浙江】如图,已知正三棱柱ABC ―A 1B 1C 1,AC =AA 1,E ,F 分别是棱BC ,A 1C 1上的点.记EF 与AA 1所成的角为α,EF 与平面ABC 所成的角为β,二面角F ―BC ―A 的平面角为γ,则( )A .α≤β≤γB .β≤α≤γC .β≤γ≤αD .α≤γ≤β【答案】A 【解析】【分析】先用几何法表示出α,β,γ,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP ⊥AC 于P ,过P 作PM ⊥BC 于M ,连接PE ,则α=∠EFP ,β=∠FEP ,γ=FMP ,tan α=PEFP =PEAB ≤1,tan β=FPPE =ABPE ≥1,tan γ=FPPM ≥FPPE =tan β,所以α≤β≤γ,故选:A .12.【2022年新高考1卷】(多选)已知正方体ABCD ―A 1B 1C 1D 1,则( )A .直线BC 1与DA 1所成的角为90°B .直线BC 1与CA 1所成的角为90°C .直线BC 1与平面BB 1D 1D 所成的角为45°D .直线BC 1与平面ABCD 所成的角为45°【答案】ABD 【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接B 1C 、BC 1,因为DA 1//B 1C ,所以直线BC 1与B 1C 所成的角即为直线BC 1与DA 1所成的角,因为四边形BB 1C 1C 为正方形,则B 1C ⊥ BC 1,故直线BC 1与DA 1所成的角为90°,A 正确;连接A 1C ,因为A 1B 1⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,则A 1B 1⊥BC 1,因为B 1C ⊥ BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1C ,又A 1C ⊂平面A 1B 1C ,所以BC 1⊥CA 1,故B 正确;连接A 1C 1,设A 1C 1∩B 1D 1=O ,连接BO ,因为BB 1⊥平面A 1B 1C 1D 1,C 1O ⊂平面A 1B 1C 1D 1,则C 1O ⊥B 1B ,因为C 1O ⊥B 1D 1,B 1D 1∩B 1B =B 1,所以C 1O ⊥平面BB 1D 1D ,所以∠C 1BO 为直线BC 1与平面BB 1D 1D 所成的角,设正方体棱长为1,则C 1O =22,BC 1=2,sin ∠C 1BO =C 1O BC 1=12,所以,直线BC 1与平面BB 1D 1D 所成的角为30∘,故C 错误;因为C 1C ⊥平面ABCD ,所以∠C 1BC 为直线BC 1与平面ABCD 所成的角,易得∠C 1BC =45∘,故D 正确.故选:ABD13.【2022年新高考2卷】(多选)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED ,AB =ED =2FB ,记三棱锥E ―ACD ,F ―ABC ,F ―ACE 的体积分别为V 1,V 2,V 3,则( )A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1【答案】CD【解析】【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A―EFM+V C―EFM计算出V3,依次判断选项即可.【详解】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=22 a,EG=a,则EM =(2a )2+(2a )2=6a ,FM =a 2+(2a )2=3a ,EF =a 2+(22a )2=3a ,EM 2+FM 2=EF 2,则EM ⊥FM ,S △EFM =12EM ⋅FM =322a 2,AC =22a ,则V 3=V A―EFM +V C―EFM =13AC ⋅S △EFM =2a 3,则2V 3=3V 1,V 3=3V 2,V 3=V 1+V 2,故A 、B 错误;C 、D 正确.故选:CD.14.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,△EAB ,△FBC ,△GCD ,△HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明:EF //平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2)64033.【解析】【分析】(1)分别取AB ,BC 的中点M ,N ,连接MN ,由平面知识可知EM ⊥AB ,FN ⊥BC ,EM =FN ,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM //FN ,即可知四边形EMNF 为平行四边形,于是EF //MN ,最后根据线面平行的判定定理即可证出;(2)再分别取AD ,DC 中点K ,L ,由(1)知,该几何体的体积等于长方体KMNL ―EFGH 的体积加上四棱锥B ―MNFE 体积的4倍,即可解出.(1)如图所示:,分别取AB,BC的中点M,N,连接MN,因为△EAB,△FBC为全等的正三角形,所以EM⊥AB, FN⊥BC,EM=FN,又平面EAB⊥平面ABCD,平面EAB∩平面ABCD=AB,EM⊂平面EAB,所以EM⊥平面ABCD,同理可得FN⊥平面ABCD,根据线面垂直的性质定理可知EM //FN,而EM=FN,所以四边形EMNF为平行四边形,所以EF//MN,又EF⊄平面ABCD,MN ⊂平面ABCD,所以EF//平面ABCD.(2)如图所示:,分别取AD,DC中点K,L,由(1)知,EF//MN且EF=MN,同理有,HE//KM,HE=KM,HG //KL,HG=KL,GF//LN,GF=LN,由平面知识可知,BD⊥MN,MN⊥MK,KM=MN= NL=LK,所以该几何体的体积等于长方体KMNL―EFGH的体积加上四棱锥B―MNFE体积的4倍.因为MN=NL=LK=KM=42,EM=8sin60∘=43,点B到平面MNFE的距离即为点B×42×43到直线MN的距离d,d=22,所以该几何体的体积V=(42)2×43+4×13×22=1283+25633=64033.15.【2022年全国甲卷】在四棱锥P―ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)55.【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=32,BD=DE2+BE2=3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA⊂平面PAD,所以BD⊥PA;(2)解:如图,以点D为原点建立空间直角坐标系,BD=3,则A(1,0,0),B(0,3,0),P(0,0,3),则AP=(―1,0,3),BP=(0,―3,3),DP=(0,0,3),设平面PAB的法向量n=(x,y,z),则有{→n⋅→AP=―x+3z=0→n⋅→BP=―3y+3z=0,可取n=(3,1,1),则cos〈n,DP〉n DP =55,所以PD与平面PAB所成角的正弦值为55.16.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求三棱锥F ―ABC 的体积.【答案】(1)证明详见解析(2)34【解析】【分析】(1)通过证明AC ⊥平面BED 来证得平面BED ⊥平面ACD .(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ―ABC 的体积.(1)由于AD =CD ,E 是AC 的中点,所以AC ⊥DE .由于AD =CD BD =BD ∠ADB =∠CDB,所以△ADB≅△CDB ,所以AB =CB ,故AC ⊥BD ,由于DE ∩BD =D ,DE ,BD ⊂平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)依题意AB =BD =BC =2,∠ACB =60°,三角形ABC 是等边三角形,所以AC =2,AE =CE =1,BE =3,由于AD =CD ,AD ⊥CD ,所以三角形ACD 是等腰直角三角形,所以DE =1.DE 2+BE 2=BD 2,所以DE ⊥BE ,由于AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC .由于△ADB≅△CDB ,所以∠FBA =∠FBC ,由于BF =BF ∠FBA =∠FBC AB =CB,所以△FBA≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值.过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =32,所以DF=12,BF =2―DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH //DE ,所以FH ⊥平面ABC ,且FH DE =BF BD =34,所以FH =34,所以V F―ABC =13⋅S △ABC ⋅FH =13×12×2×3×34=34.17.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD ,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF与平面ABD所成的角的正弦值为437【解析】【分析】(1)根据已知关系证明△ABD≌△CBD,得到AB=CB,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE⊥DE,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.(1)因为AD=CD,E为AC的中点,所以AC⊥DE;在△ABD和△CBD中,因为AD=CD,∠ADB=∠CDB,DB=DB,所以△ABD≌△CBD,所以AB=CB,又因为E为AC的中点,所以AC⊥BE;又因为DE,BE⊂平面BED,DE∩BE=E,所以AC⊥平面BED,因为AC⊂平面ACD,所以平面BED⊥平面ACD.(2)连接EF,由(1)知,AC⊥平面BED,因为EF⊂平面BED,AC⋅EF,所以AC⊥EF,所以S△AFC=12当EF⊥BD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CB=AB=2,又因为∠ACB=60°,所以△ABC是等边三角形,因为E为AC的中点,所以AE=EC=1,BE=3,AC=1,因为AD⊥CD,所以DE=12在△DEB中,DE2+BE2=BD2,所以BE⊥DE.以E为坐标原点建立如图所示的空间直角坐标系E―xyz,则A(1,0,0),B(0,3,0),D(0,0,1),所以AD=(―1,0,1),AB=(―1,3,0),设平面ABD的一个法向量为n=(x,y,z),―x+z=0,取y=3,则n=(3,3,3),―x+3y=0又因为C (―1,0,0),F 0,34,所以CF =1,34所以cos ⟨n ,CF⟩n ⋅CF |n ||CF |621×74=437,设CF 与平面ABD 所成的角的正弦值为θ0≤θ≤所以sin θ=|cos ⟨n ,CF⟩|=437,所以CF 与平面ABD 所成的角的正弦值为437.18.【2022年新高考1卷】如图,直三棱柱ABC ―A 1B 1C 1的体积为4,△A 1BC 的面积为22.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A ―BD ―C 的正弦值.【答案】(1)2(2)32【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC⊥平面ABB1A1,建立空间直角坐标系,利用空间向量法即可得解.(1)在直三棱柱ABC―A1B1C1中,设点A到平面A1BC的距离为h,则V A―A1BC=13S△A1BC⋅ℎ=223ℎ=V A1―ABC=13S△ABC⋅A1A=13V ABC―A1B1C1=43,解得ℎ=2,所以点A到平面A1BC的距离为2;(2)取A1B的中点E,连接AE,如图,因为AA1=AB,所以AE⊥A1B,又平面A1BC⊥平面ABB1A1,平面A1BC∩平面ABB1A1=A1B,且AE⊂平面ABB1A1,所以AE⊥平面A1BC,在直三棱柱ABC―A1B1C1中,BB1⊥平面ABC,由BC⊂平面A1BC,BC⊂平面ABC可得AE⊥BC,BB1⊥BC,又AE,BB1⊂平面ABB1A1且相交,所以BC⊥平面ABB1A1,所以BC,BA,BB1两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得AE=2,所以AA1=AB=2,A1B=22,所以BC=2,则A(0,2,0),A1(0,2,2),B(0,0,0),C(2,0,0),所以A1C的中点D(1,1,1),则BD=(1,1,1),BA=(0,2,0),BC=(2,0,0),设平面ABD的一个法向量m=(x,y,z),则{m⋅BD=x+y+z=0 m⋅BA=2y=0,可取m=(1,0,―1),设平面BDC的一个法向量n=(a,b,c),则{m⋅BD=a+b+c=0 m⋅BC=2a=0,可取n=(0,1,―1),则cos〈m,n〉=m⋅n|m|⋅|n|12×2=12,所以二面角A―BD―C的正弦值为1―(12)2=32.19.【2022年新高考2卷】如图,PO是三棱锥P―ABC的高,PA=PB,AB⊥AC,E是PB 的中点.(1)证明:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C―AE―B的正弦值.【答案】(1)证明见解析(2)1113【解析】【分析】(1)连接BO并延长交AC于点D,连接OA、PD,根据三角形全等得到OA=OB,再根据直角三角形的性质得到AO=DO,即可得到O为BD的中点从而得到OE//PD,即可得证;(2)过点A作Az//OP,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;(1)证明:连接BO并延长交AC于点D,连接OA、PD,因为PO是三棱锥P―ABC的高,所以PO⊥平面ABC,AO,BO⊂平面ABC,所以PO⊥AO、PO⊥BO,又PA=PB,所以△POA≅△POB,即OA=OB,所以∠OAB=∠OBA,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°,所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE //PD ,又OE⊄平面PAC ,PD ⊂平面PAC ,所以OE //平面PAC(2)解:过点A 作Az //OP ,如图建立平面直角坐标系,因为PO =3,AP =5,所以OA =AP 2―PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =43,所以AC =12,所以O (23,2,0),B (43,0,0),P (23,2,3),C (0,12,0),所以E 33,1,则AE =33,1,,AB =(43,0,0),AC =(0,12,0),设平面AEB 的法向量为n =(x,y,z )⋅AE =33x +y +32z =0n ⋅AB =43x =0,令z =2,则y =―3,x =0,所以n=(0,―3,2);设平面AEC 的法向量为m =(a,b,c )⋅AE =33a +b +32c =0m ⋅AC =12b =0,令a =3,则c =―6,b =0,所以m =(3,0,―6);所以cos ⟨n ,m⟩=n m|n ||m |―1213×39=―4313设二面角C ―AE ―B 为θ,由图可知二面角C ―AE ―B 为钝二面角,所以cos θ=―4313,所以sin θ=1―cos 2θ=1113故二面角C ―AE ―B 的正弦值为1113;20.【2022年北京】如图,在三棱柱ABC ―A 1B 1C 1中,侧面BCC 1B 1为正方形,平面BCC 1B 1⊥平面ABB 1A 1,AB =BC =2,M ,N 分别为A 1B 1,AC 的中点.(1)求证:MN ∥平面BCC 1B 1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB ⊥MN ;条件②:BM =MN .注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【解析】【分析】(1)取AB 的中点为K ,连接MK ,NK ,可证平面MKN //平面CBB 1C 1,从而可证MN //平面CB B 1C 1.(2)选①②均可证明BB 1⊥平面ABC ,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.(1)取AB的中点为K,连接MK,NK,由三棱柱ABC―A1B1C1可得四边形ABB1A1为平行四边形,而B1M=MA1,BK=KA,则MK//BB1,而MK⊄平面CBB1C1,BB1⊂平面CBB1C1,故MK//平面CBB1C1,而CN=NA,BK=KA,则NK//BC,同理可得NK//平面CBB1C1,而NK∩MK=K,NK,MK⊂平面MKN,故平面MKN//平面CBB1C1,而MN⊂平面MKN,故MN//平面CBB1C1,(2)因为侧面CBB1C1为正方形,故CB⊥BB1,而CB⊂平面CBB1C1,平面CBB1C1⊥平面ABB1A1,平面CBB1C1∩平面ABB1A1=BB1,故CB⊥平面ABB1A1,因为NK//BC,故NK⊥平面ABB1A1,因为AB⊂平面ABB1A1,故NK⊥AB,若选①,则AB⊥MN,而NK⊥AB,NK∩MN=N,故AB⊥平面MNK,而MK⊂平面MNK,故AB⊥MK,所以AB⊥BB1,而CB⊥BB1,CB∩AB=B,故BB1⊥平面ABC,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2),故BA=(0,2,0),BN=(1,1,0),BM=(0,1,2),设平面BNM的法向量为n=(x,y,z),则{n⋅BN=0n⋅BM=0,从而{x+y=0y+2z=0,取z=―1,则n=(―2,2,―1),设直线AB与平面BNM所成的角为θ,则sinθ=|cos〈n,AB〉|=42×3=23.若选②,因为NK//BC,故NK⊥平面ABB1A1,而KM⊂平面MKN,故NK⊥KM,而B1M=BK=1,NK=1,故B1M=NK,而B1B=MK=2,MB=MN,故△BB1M≅△MKN,所以∠BB1M=∠MKN=90°,故A1B1⊥BB1,而CB⊥BB1,CB∩AB=B,故BB1⊥平面ABC,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2),故BA=(0,2,0),BN=(1,1,0),BM=(0,1,2),设平面BNM的法向量为n=(x,y,z),则{n⋅BN=0n⋅BM=0,从而{x+y=0y+2z=0,取z=―1,则n=(―2,2,―1),设直线AB与平面BNM所成的角为θ,则sinθ=|cos〈n,AB〉|=42×3=23.21.【2022年浙江】如图,已知ABCD和CDEF都是直角梯形,AB//DC,DC//EF,AB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角F―DC―B的平面角为60°.设M,N分别为AE,BC的中点.(1)证明:FN⊥AD;(2)求直线BM与平面ADE所成角的正弦值.【答案】(1)证明见解析;(2)5714.【解析】【分析】(1)过点E、D分别做直线DC、AB的垂线EG、DH并分别交于点G、H,由平面知识易得FC=BC ,再根据二面角的定义可知,∠BCF =60∘,由此可知,FN ⊥BC ,FN ⊥CD ,从而可证得FN ⊥平面ABCD ,即得FN ⊥AD ;(2)由(1)可知FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N ―xyz ,求出平面ADE 的一个法向量,以及BM ,即可利用线面角的向量公式解出.(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,AB //DC ,CD //EF ,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,由平面几何知识易知,DG =AH =2,∠EFC =∠DCF =∠DCB =∠ABC =90°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt △EGD 和Rt △DHA ,EG =DH =23,∵DC ⊥CF ,DC ⊥CB ,且CF ∩CB =C ,∴DC ⊥平面BCF,∠BCF 是二面角F ―DC ―B 的平面角,则∠BCF =60∘,∴△BCF 是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴ FN ⊥BC ,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD ,而BC ∩CD =C ,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD ∴FN ⊥AD .(2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N ―xyz ,设A (5,3,0),B (0,3,0),D (3,―3,0),E (1,0,3),则M 3,32∴BM =3,―32,AD =(―2,―23,0),DE =(―2,3,3)设平面ADE 的法向量为n =(x ,y ,z )由n ⋅AD =0n ⋅DE =0 ,得―2x ―23y =0―2x +3y +3z =0,取n =(3,―1,3),设直线BM 与平面ADE 所成角为θ,∴sin θ=|cos 〈n ,BM〉|=|n ⋅BM ||n |⋅BM ||33+32+332|3+1+3⋅9+34+94=537⋅23=5714.1.(2022·全国·模拟预测)已知正方体中1111ABCD A B C D -,E ,G 分别为11A D ,11C D 的中点,则直线1A G ,CE 所成角的余弦值为( )A B C D 【答案】C 【解析】【分析】根据异面直线所成角的定义,取AB 的中点F ,则∠ECF (或其补角)为直线1A G 与CE 所成角,再解三角形即可得解.【详解】如图所示:,取AB 的中点F ,连接EF ,CF ,易知1A G CF ∥,则∠ECF (或其补角)为直线1A G 与CE 所成角.不妨设2AB =,则CF =,EF =3EC =,由余弦定理得cos ECF ∠==1A G 与CE 故选:C .2.(2022·全国·模拟预测(理))如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90ABC ∠=︒,111111AA A B B C ===,2AB =,则AC 与平面11BCC B 所成的角为( )A .30°B .45︒C .60︒D .90︒【答案】A 【解析】【分析】将棱台补全为棱锥,利用等体积法求A 到面11BCC B 的距离,结合线面角的定义求AC 与平面11BCC B 所成角的大小.【详解】将棱台补全为如下棱锥D ABC -,由90ABC ∠=︒,111111AA A B B C ===,2AB =,易知:2DA BC ==,AC =,由1AA ⊥平面ABC ,,AB AC ⊥平面ABC ,则1AA AB ⊥,1AA AC ⊥,所以BD =,CD =222BC BD CD +=,所以122BCD S =⨯⨯=△,若A 到面11BCC B 的距离为h ,又D ABC A BCD V V --=,则111222323h ⨯⨯⨯⨯=⨯,可得h =,综上,AC 与平面11BCC B 所成角[0,2πθ∈,则1sin 2h AC θ==,即6πθ=.故选:A3.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 【答案】C 【解析】【分析】对于A ,取BD 的中点M ,即可得到BD ⊥面PMC ,A 选项可判断对于B ,采用反证法,假设DP BC ⊥,则BC ⊥面PCD ,再根据题目所给的长度即可判断;对于C ,当面PBD ⊥面BCD 时,此时直线DP 与平面BCD 所成角有最大值,判断即可;对于D ,当面PBD ⊥面BCD 时,此时四面体PBCD 的体积有最大值,计算最大体积判断即可【详解】如图所示,取BD 的中点M ,连接,PM CMBCD △是以BD 为斜边的等腰直角三角形,BD CM ∴⊥ABD △为等边三角形,BD PM ∴⊥BD ∴⊥面PMC ,BD PC ∴⊥ ,故A 正确对于B ,假设DP BC ⊥,又BC CD ⊥BC ∴⊥面PCD ,BC PC ∴⊥,又2,PB BC ==1PC ⎤⎦,故DP 与BC 可能垂直,故B 正确当面PBD ⊥面BCD 时,此时PM ⊥面BCD ,PDB ∠即为直线DP 与平面BCD 所成角此时60PDB ︒∠=,故C 错误当面PBD ⊥面BCD 时,此时四面体PBCD 的体积最大,此时的体积为:111(332BCD V S PM ==⨯=,故D 正确故选:C4.(2022·河南安阳·模拟预测(理))已知球O 的体积为125π6,高为1的圆锥内接于球O ,经过圆锥顶点的平面α截球O 和圆锥所得的截面面积分别为12,S S ,若125π8S =,则2S =( )A.2B C D .【答案】C 【解析】【分析】根据给定条件,求出球O 半径,平面α截球O 所得截面小圆半径,圆锥底面圆半径,再求出平面α截圆锥所得的截面等腰三角形底边长及高即可计算作答.【详解】球O 半径为R ,由34π125π36R =得52R =,平面α截球O 所得截面小圆半径1r ,由21128π5πS r ==得1r因此,球心O 到平面α的距离1d r ==,而球心O 在圆锥的轴上,则圆锥的轴与平面α所成的角为45 ,因圆锥的高为1,则球心O 到圆锥底面圆的距离为132d =,于是得圆锥底面圆半径2r ===,令平面α截圆锥所得截面为等腰PAB △,线段AB 为圆锥底面圆1O 的弦,点C 为弦AB 中点,如图,依题意,145CPO ∠=,111CO PO ==,PC =AB ==,所以212AB S PC =⋅=.故选:C 【点睛】关键点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.5.(2022·浙江·模拟预测)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2,1BD DE ==,点P 在线段EF 上,给出下列命题:①存在点P ,使得直线//DP 平面ACF ②存在点P ,使得直线DP ⊥平面ACF③直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎦④三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π其中所有真命题的序号是( )A .①③B .①④C .②④D .①③④【答案】D 【解析】【分析】取EF 中点推理判断①;假定DP ⊥平面ACF ,分析判断②;确定直线DP 与平面ABCD 所成角,求出临界值判断③;求出ACF 外接圆面积判断④作答.【详解】令AC BD O = ,连接,FO DF ,令EF 中点为G ,连DG ,如图,依题意,O 是,BD AC 的中点,对于①,在矩形BDEF 中,//DO FG ,DO FG =,四边形DOFG 是平行四边形,直线//DG OF ,OF ⊂平面ACF ,DG ⊄平面ACF ,则//DG 平面ACF ,当P 是线段EF 中点G 时,直线//DP 平面ACF ,①正确;对于②,假定直线DP ⊥平面ACF ,由①知,DP OF ⊥,DP DG ⊥,当点P 在线段EF 上任意位置(除点G 外),PDG ∠均为锐角,即DP 不垂直于DG ,也不垂直于OF ,因此,不存在点P ,使得直线DP ⊥平面ACF ,②不正确;对于③,平面BDEF ⊥平面ABCD ,DP 在平面ABCD 内射影在直线BD 上,直线DP 与平面ABCD 所成角为PDB ∠,当点P 由点E 运动到点F 的过程中,PDB ∠逐渐减小,当P 与E 重合时,PDB ∠最大,为90EDB ∠= ,max (sin )1PDB ∠=,当P 与F 重合时,PDB ∠最小,为FDB ∠,min (sin )BF PDB DF∠==所以直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎦,③正确;对于④,在ACF 中,2AC =,|AF CF ==FO =,则sin OFFAC AF∠==由正弦定理得ACF 外接圆直径2sin FC r FAC ==∠半径r =圆面积为298S r ππ==,三棱锥A CDE -的外接球被平面ACF 所截取的截面是ACF 外接圆,因此三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π,④正确,所以所有真命题的序号是①③④.故选:D6.(2022·四川省泸县第二中学模拟预测(文))已知1O 是正方体1111ABCD A B C D -的中心O 关于平面1111D C B A 的对称点,则下列说法中正确的是( )A .11O C 与1A C 是异面直线B .11OC ∥平面11A BCD C .11O C AD ⊥D .11O C ⊥平面11BDD B 【答案】B 【解析】【分析】根据正方体的性质、空间直线与平面的位置关系,即可对选项做出判断.【详解】连接1A C 、1AC ,交于点O ,连接11AC 、11B D ,交于点P .连接AC 、BD 、1A B 、1D C 、1O O .由题可知,1O 在平面11A C CA 上,所以11O C 与1A C 共面,故A 错误;在四边形11OO C C 中,11//O O C C 且11O O C C =,所以四边形11OO C C 为平行四边形.11//O C OC ∴.OC ⊂Q 平面11A BCD ,11O C ⊄平面11A BCD ,11O C ∴∥平面11A BCD ,故B 正确;由正方体的性质可得1111AC B D ⊥,因为1111O B O D =,所以111O P B D ⊥,又111O P AC P = ,11B D ∴⊥平面111O A C , 1111B D O C ∴⊥,又11//B D BD ,11BD O C ∴⊥,而AD 与BD 所成角为45︒,所以显然11O C 与AD 不垂直,故C 错误;显然11O C 与11O B 不垂直,而11O B ⊂平面11BDD B ,所以11O C 与平面11BDD B 不垂直,故D 错误.故选:B.7.(2022·北京·北大附中三模)已知平面,,αβγ,直线m 和n ,则下列命题中正确的是( )A .若,m m αβ⊥⊥,则αβ∥B .若,αγβγ⊥⊥,则αβ∥C .若,m n m α⊥⊥,则n α∥D .若,m n αα∥∥,则m n∥【答案】A 【解析】【分析】对于A 选项,垂直于同一条直线的两个平面互相平行;对于B 选项,垂直于同一个平面的两个平面有可能相交,也有可能互相平行;对于C 选项,由线面垂直的性质即可判断;对于D 选项,平行于同一个平面的两条直线有可能相交、平行或异面.【详解】选项A 正确,因为垂直于同一直线的两个平面互相平行;选项B 错误,平面α和β也可以相交;选项C 错误,直线n 可能在平面α内;选项D 错误,直线m 和n 还可能相交或者异面.故选:A.8.(2022·云南师大附中模拟预测(理))已知正方形ABCD 的边长为ABC 沿对角线AC 折起,使得二面角B AC D --的大小为90°.若三棱锥B ACD -的四个顶点都在球O 的球面上,G 为AC 边的中点,E ,F 分别为线段BG ,DC 上的动点(不包括端点),且BE =,当三棱锥E ACF -的体积最大时,过点F 作球O 的截面,则截面面积的最小值为( )A .B .2πC .32πD .89π【答案】D 【解析】【分析】根据面面垂直的判定定理得BG ⊥平面ACD ,继而表示出三棱锥E ACF -的体积,求出x =V 取得最大值,在△GCF 中,由余弦定理,得GF =当GF 垂直于截面时,截面圆的面积最小,继而得解.【详解】因为正方形ABCD 的边长为4AC =.如图,由于平面ABC ⊥平面ACD ,平面ABC 平面ACD AC =,又G 为AC 边的中点,则有BG AC ⊥,所以BG ⊥平面ACD .设CF x =(0x <<,则BE ,所以三棱锥E ACF -的体积13ACF V S EG ==△211112sin 4))32323AC CF ACF EG x x ⨯∠=⨯⨯=- ,当x =时,V 取得最大值.由于GA GB GC GD ===,则球O 的球心即为G ,且球O 的半径2R =.又在△GCF 中,由余弦定理,得GF ==知,当GF 垂直于截面时,截面圆的面积最小,设其半径为r ,所以r ===3π2.故选:D .9.(2022·浙江·乐清市知临中学模拟预测)如图,正方体1111ABCD A B C D -的棱长为a ,E 是棱1DD 的动点,则下列说法正确的( )个.①若E 为1DD 的中点,则直线1//B E 平面1A BD ②三棱锥11C B CE -的体积为定值313a③E 为1DD 的中点时,直线1B E 与平面11CDD C。
专题07 立体几何小题常考全归类(精讲精练)(原卷版)
专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
2022年全国高考数学真题及模拟题汇编:立体几何(附答案解析)
2022年全国高考数学真题及模拟题汇编:立体几何一.选择题(共8小题)1.(2021秋•海淀区期末)如图,A,B是两个形状相同的杯子,且B杯高度是A杯高度的,则B杯容积与A杯容积之比最接近的是()A.1:3B.2:5C.3:5D.3:42.(2021秋•爱民区校级期末)一个正方体的顶点都在球面上,若球的表面积为4π,则正方体的棱长为()A.B.C.D.3.(2021秋•齐齐哈尔期末)已知互不重合的直线m,n,互不重合的平面α,β,下列命题正确的是()A.若n⊂α,m∥n,则m∥αB.若n⊂α,m⊥n,则m⊥αC.若α∥β,m∥α,则m∥βD.若m⊥β,m⊂α,则α⊥β4.(2021秋•1月份月考)某几何体的三视图(单位:cm)如图所示,则该几何体的外接球的表面积(单位:cm2)为()A.18πB.20πC.22πD.24π5.(2021秋•南岗区校级期末)已知向量=(1,1,k),,,且向量与互相垂直,则k的值是()A.1B.﹣2C.﹣3D.﹣46.(2021秋•河南月考)将正方形ABCD沿着对角线AC折成一个直二面角,此时BD=2,则边长AB=()A.B.1C.D.27.(2021秋•长宁区期末)在三棱锥D﹣ABC中,DA⊥平面ABC,AB⊥BC,DA=AB=BC;记直线DB与直线AC所成的角为α,直线DC与平面ABD所成的角为β,二面角D﹣BC ﹣A的平面角为γ,则()A.β<γ<αB.γ<β<αC.β<α<γD.α<γ<β8.(2021秋•重庆期末)已知空间中四点A(﹣1,1,0),B(2,2,1),C(1,1,1),D (0,2,3),则点D到平面ABC的距离为()A.B.C.D.0二.多选题(共4小题)9.(2021秋•保定期末)如图,M,N为正方体中所在棱的中点,过M,N两点作正方体的截面,则截面的形状可能为()A.三角形B.四边形C.五边形D.六边形10.(2021秋•南海区校级月考)如图,在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点,若,则下列等式正确的是()A.B.C.D.11.(2021秋•黄陂区校级月考)设α是给定的平面,A,B是不在α内的任意不同两点,则()A.一定存在过直线AB的平面β与平面α垂直B.在α内一定存在直线l与直线AB平行C.在α内一定存在直线l与直线AB相交D.在α内一定存在直线l与直线AB垂直12.(2021秋•历下区校级月考)已知点P,C,D是圆锥表面上的点,该圆锥的侧面展开图为以点P为圆心,4为半径的半圆,点C是的中点,点D是的中点(如图),则下列说法正确的是()A.圆锥的体积为B.直线PD与圆锥底面夹角为C.圆锥的内切球半径为D.以圆锥底面圆心为球心、半径为2的球被平面PCD所截,则截面面积为三.填空题(共4小题)13.(2021秋•房山区期末)如图,长方体ABCD﹣A1B1C1D1,若=(2,2,1),则的坐标为.14.(2021秋•湖北期末)已知一个圆台的上、下底面半径之比为1:2,母线长为,其母线与底面所成的角为45°,则这个圆台的体积为.15.(2021秋•黑龙江期末)已知P,A,B,C四点共面且对于空间任意一点O,都有=2,则t=.16.(2021秋•房山区期末)《九章算术》是我国古代数学名著,其中提到的“阳马”是指底面为矩形,有一侧棱垂直于底面的四棱锥.在阳马P﹣ABCD的表面三角形中,直角三角形的个数为.四.解答题(共6小题)17.(2021秋•爱民区校级期末)如图,在四棱锥O﹣ABCD中,底面ABCD是正方形,M 为OA的中点,N为OB的中点.求证:MN∥平面OCD.18.(2021秋•长宁区期末)已知ABCD是边长为2的正方形,正方形ABCD绕BC旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕BC顺时针旋转至A1D1CB,求异面直线AD1与CD所成角的大小.19.(2021秋•榆林期末)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面为直角梯形,CD∥AB,AD⊥AB,且P A=AD=CD=2,AB=3,E为PD的中点.(1)证明:AE⊥平面PCD;(2)过A,B,E作四棱锥P﹣ABCD的截面,请写出作法和理由,并求截面的面积.20.(2021秋•房山区期末)如图,正方体ABCD﹣A1B1C1D1的棱长为2,点E为BB1的中点.(Ⅰ)求证:BC1∥平面AD1E;(Ⅱ)求点C1到平面AD1E的距离;(Ⅲ)判断B1C1的中点M是否在平面AD1E上?说明理由.21.(2021秋•三门县校级期末)如图所示,已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别为BC,CD的中点.(1)求A1到平面C1EF的距离;(2)求平面C1EF与平面AB1D1夹角的余弦值.22.(2021秋•佛山期末)如图,四棱锥P﹣ABCD中,四边形ABCD是矩形,AD⊥平面P AB,P A⊥PB,E是AD的中点.(1)在线段BP上找一点M,使得直线EM∥平面PCD,并说明理由;(2)若P A=AD,AB=AD,求平面PCE与平面P AB所成二面角的正弦值.2022年全国高考数学真题及模拟题汇编:立体几何参考答案与试题解析一.选择题(共8小题)1.(2021秋•海淀区期末)如图,A,B是两个形状相同的杯子,且B杯高度是A杯高度的,则B杯容积与A杯容积之比最接近的是()A.1:3B.2:5C.3:5D.3:4【考点】棱柱、棱锥、棱台的体积.【专题】计算题;整体思想;演绎法;空间位置关系与距离;逻辑推理;数学运算.【分析】根据两个杯子形状相同可得底面积之比为高之比的平方,因此容积之比为高之比的立方即可求解.【解答】解:因为A,B是两个形状相同的杯子,且B杯高度是A杯高度的,所以底面半径比也是,所以两个杯子的底面积之比为,所以B杯容积与A杯容积之比,故选:B.【点评】本题主要考查体积的计算,立体几何的实际应用等知识,属于基础题.2.(2021秋•爱民区校级期末)一个正方体的顶点都在球面上,若球的表面积为4π,则正方体的棱长为()A.B.C.D.【考点】球的体积和表面积.【专题】计算题;整体思想;综合法;空间位置关系与距离;逻辑推理;直观想象;数学运算.【分析】求得球的半径,由此求得正方体的体对角线长,进而求得正方体的棱长.【解答】解:设正方体的棱长为a,则其体对角线长为,设球的半径为r,则4πr2=4π,r=1,所以.故选:B.【点评】本题主要考查球与多面体的切接问题,属于基础题.3.(2021秋•齐齐哈尔期末)已知互不重合的直线m,n,互不重合的平面α,β,下列命题正确的是()A.若n⊂α,m∥n,则m∥αB.若n⊂α,m⊥n,则m⊥αC.若α∥β,m∥α,则m∥βD.若m⊥β,m⊂α,则α⊥β【考点】直线与平面垂直.【专题】数形结合;数形结合法;空间位置关系与距离;直观想象.【分析】可通过分别对线在面内和面外两种情况结合直线与平面平行以及垂直的性质分别进行分析判断即可.【解答】解:对于A选项,n⊂α,m∥n,则m∥α或m⊂α,故A错误;对于B选项,n⊂α,m⊥n,则m⊥α或m⊂α,故B错误;对于C选项,α∥β,m∥α,则m∥β或m⊂β,故C错误;对于D选项,m⊥β,m⊂α,则必有α⊥β,故D正确,故选:D.【点评】本题考查了直线与平面的位置关系,属于基础题.4.(2021秋•1月份月考)某几何体的三视图(单位:cm)如图所示,则该几何体的外接球的表面积(单位:cm2)为()A.18πB.20πC.22πD.24π【考点】由三视图求面积、体积;球的体积和表面积;球内接多面体.【专题】转化思想;综合法;球;数学运算.【分析】首先把三视图转换为几何体的直观图,进一步求出外接球的表面积.【解答】解:根据几何体的三视图转换为直观图为:该几何体为由一个底面为直角三角形的三棱柱体ABC﹣DEF,(倒着放)如上图所示:AB=2,AC=3,AD=3,设外接球的半径为R,所以(2R)2=22+32+32=22,则R=,所以S=4π•()2=22π(cm2).故选:C.【点评】本题考查的知识要点:三视图和直观图之间的转换,球的表面积公式,主要考查学生的运算能力和转换能力及思维能力,属于基础题.5.(2021秋•南岗区校级期末)已知向量=(1,1,k),,,且向量与互相垂直,则k的值是()A.1B.﹣2C.﹣3D.﹣4【考点】空间向量的数量积运算;向量的数量积判断向量的共线与垂直.【专题】方程思想;定义法;空间向量及应用;数学运算.【分析】先求出=(3,1,k+2),再由向量与互相垂直,列方程能求出k.【解答】解:∵向量=(1,1,k),,,∴=(3,1,k+2),∵向量与互相垂直,∴=0+2+k+2=0,解得k=﹣4.故选:D.【点评】本题考查实数值的求法,考查空间向量坐标运算法则、向量垂直的性质等基础知识,考查推理论证能力,是基础题.6.(2021秋•河南月考)将正方形ABCD沿着对角线AC折成一个直二面角,此时BD=2,则边长AB=()A.B.1C.D.2【考点】二面角的平面角及求法;点、线、面间的距离计算.【专题】计算题;整体思想;演绎法;空间位置关系与距离;逻辑推理;直观想象;数学运算.【分析】取AC的中点为O,连接OB,OD,根据题意得,,进而根据勾股定理得AB=2.【解答】解:如图,取AC的中点为O,连接OB,OD,由正方形的性质得△ACD,△ABC为等腰直角三角形,所以OD⊥AC,OB⊥AC,所以∠BOD是二面角B﹣AC﹣D的平面角,因为正方形ABCD沿着对角线AC折成一个直二面角,所以.因为△BOD是等腰直角三角形,,所以,解得AB=2.故选:D.【点评】本题主要考查折叠问题的处理方法,空间中距离的计算等知识,属于基础题.7.(2021秋•长宁区期末)在三棱锥D﹣ABC中,DA⊥平面ABC,AB⊥BC,DA=AB=BC;记直线DB与直线AC所成的角为α,直线DC与平面ABD所成的角为β,二面角D﹣BC ﹣A的平面角为γ,则()A.β<γ<αB.γ<β<αC.β<α<γD.α<γ<β【考点】二面角的平面角及求法.【专题】数形结合;向量法;空间角;数学运算.【分析】由题意把三棱锥D﹣ABC放置在正方体CD中,设正方体的棱长为1,利用空间向量求解α,在正方体中分别求解β与γ,则答案可求.【解答】解:如图,把三棱锥D﹣ABC放置在正方体CD中,设正方体的棱长为1,以A为坐标原点,建立如图所示空间直角坐标系,则A(0,0,0),C(1,1,0),B(0,1,0),D(0,0,1),∴,,则cosα=|cos<>|=||=||=,则;由已知可得,DA⊥BC,又AB⊥BC,且DA∩AB=A,∴CB⊥平面DAB,则β=∠CDB,DB=,DC=,则cosβ=>;由BC⊥平面DAB,得γ=∠DBA=,∴β<γ<α.故选:A.【点评】本题考查空间角的求法,考查空间想象能力与思维能力,训练空间向量的应用,是中档题.8.(2021秋•重庆期末)已知空间中四点A(﹣1,1,0),B(2,2,1),C(1,1,1),D (0,2,3),则点D到平面ABC的距离为()A.B.C.D.0【考点】点、线、面间的距离计算.【专题】转化思想;向量法;立体几何;直观想象;数学运算.【分析】用向量数量积计算点到平面距离即可.【解答】解:=(3,1,1),=(2,0,1),=(1,1,3),令=(﹣1,1,2),因为•=0,•=0,所以是平面ABC的法向量,所以==,故选:A.【点评】本题考查了点到平面距离问题,属于中档题.二.多选题(共4小题)9.(2021秋•保定期末)如图,M,N为正方体中所在棱的中点,过M,N两点作正方体的截面,则截面的形状可能为()A.三角形B.四边形C.五边形D.六边形【考点】空间中直线与直线之间的位置关系;空间点、线、面的位置.【专题】计算题;方程思想;转化思想;综合法;立体几何;数学运算.【分析】根据题意,由正方体的几何结构分析可得答案.【解答】解:根据题意,过M,N两点作正方体的截面,则截面的形状可能为四边形和六边形,如图:故选:BD.【点评】本题考查平面的基本性质,涉及正方体的几何结构,属于基础题.10.(2021秋•南海区校级月考)如图,在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点,若,则下列等式正确的是()A.B.C.D.【考点】空间向量及其线性运算.【专题】转化思想;综合法;空间向量及应用;逻辑推理;数学运算.【分析】直接利用向量的加法运算判断A、B、C、D的结论.【解答】解:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点,若,对于A:=,故A正确;对于B:,故B正确;对于C:,故C正确;对于D:,故D正确.故选:ABCD.【点评】本题考查的知识要点:向量的线性运算,向量的加法,主要考查学生的运算能力和数学思维能力,属于基础题.11.(2021秋•黄陂区校级月考)设α是给定的平面,A,B是不在α内的任意不同两点,则()A.一定存在过直线AB的平面β与平面α垂直B.在α内一定存在直线l与直线AB平行C.在α内一定存在直线l与直线AB相交D.在α内一定存在直线l与直线AB垂直【考点】空间中直线与平面之间的位置关系.【专题】转化思想;综合法;空间位置关系与距离;逻辑推理.【分析】利用空间中线线、线面、面面间的位置关系直接求解.【解答】解:设α是给定的平面,A,B是不在α内的任意不同两点,在A中,∵A,B是不在α内的任意两点,∴直线AB与α相交或平行,∴存在过直线AB的平面与平面α垂直,故A正确;对于B,在当直线AB与α相交时,在α内不存在直线l与直线AB平行,故B错误;在C中,∵AB∥α时,在α内不存在直线l与直线AB相交,故C错误;在D中,当直线AB与平面α平行或相交时,在α内一定存在直线l与直线AB垂直,故D正确.故选:AD.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力,是中档题.12.(2021秋•历下区校级月考)已知点P,C,D是圆锥表面上的点,该圆锥的侧面展开图为以点P为圆心,4为半径的半圆,点C是的中点,点D是的中点(如图),则下列说法正确的是()A.圆锥的体积为B.直线PD与圆锥底面夹角为C.圆锥的内切球半径为D.以圆锥底面圆心为球心、半径为2的球被平面PCD所截,则截面面积为【考点】棱柱、棱锥、棱台的体积;球的体积和表面积;直线与平面所成的角.【专题】计算题;整体思想;综合法;空间位置关系与距离;立体几何;数学运算.【分析】由已知条件,还原圆锥,根据锥体体积的计算公式、线面角的求解,圆锥内切球的求解方法,以及球体截面面积的计算,对每个选项进行逐一分析,即可容易判断和求解.【解答】解:根据题意,还原圆锥如下所示:不妨设该圆锥底面半径为r,高为h,底面圆圆心为O,根据题意,P A=4,圆锥底面圆周长为2πr=,解得r=2,由勾股定理可得h==2,A:圆锥的体积为==π,故A正确;B:显然直线PD与圆锥底面夹角为∠PDO,在Rt△PDO中,cos∠PDO===,故∠PDO=,则直线PD与圆锥底面的夹角为,故B错误;C:设内切球的球心为O,半径为1,画出圆锥轴截面和内切球的示意图如下:由三角形PHO1与三角形POC相似可得:,即,解得r1=,故C正确;D:易知:平面PCD截以圆锥底面圆心为球心,半径为2的球的截面为一个圆,不妨设截面圆半径为2,设球心到面PCD的距离为h1,在△PCD中,PC=PD=4,CD=2,则S△PCD==2,由等体积法可得,V O﹣PCD=V P﹣OCD,即=,解得h1=,故可得,r2==,故截面圆面积为=,故D正确;故选:ACD.【点评】本题考查了立体几何综合,属于难题.三.填空题(共4小题)13.(2021秋•房山区期末)如图,长方体ABCD﹣A1B1C1D1,若=(2,2,1),则的坐标为(﹣2,2,﹣1).【考点】空间中的点的坐标;空间向量运算的坐标表示.【专题】计算题;转化思想;综合法;空间位置关系与距离;直观想象;数学运算.【分析】利用长方体的特征,结合已知向量,转化求解即可.【解答】解:长方体ABCD﹣A1B1C1D1,若=(2,2,1),可知AB=AD=2,AA1=1,则=++=(﹣2,2,﹣1).故答案为:(﹣2,2,﹣1).【点评】本题考查空间向量的应用,向量坐标的求法,是基础题.14.(2021秋•湖北期末)已知一个圆台的上、下底面半径之比为1:2,母线长为,其母线与底面所成的角为45°,则这个圆台的体积为.【考点】旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积.【专题】计算题;转化思想;综合法;空间位置关系与距离;逻辑推理;直观想象;数学运算.【分析】根据圆台的轴截面性质,结合题意利用勾股定理,算出圆台的上底面半径为r =2,下底面半径为R=4,高h=2,再由圆台的体积公式加以计算,即可得出该圆台的体积.【解答】解:根据题意,设圆台的上、下底面半径分别为x,2x,母线长为,母线与底面所成的角为45°,圆台的高为x,并且x2+x2=(2)2,解得x=2,所以圆台的上底面半径为r=2,下底面半径为R=4,高h=2.由此可得圆台的体积为V=πh(r2+R2+rR)=π.故答案为:π.【点评】本题给出圆台的上、下底面半径和高之比,在已知母线长情况下求圆台的体积.着重考查了圆台的轴截面性质、圆台的体积公式与勾股定理等知识,属于中档题.15.(2021秋•黑龙江期末)已知P,A,B,C四点共面且对于空间任意一点O,都有=2,则t=﹣2.【考点】空间向量的夹角与距离求解公式.【专题】计算题;方程思想;综合法;平面向量及应用;数学运算.【分析】分别用,,表示出,,,根据平面向量的基本定理可知=m+n,列出方程组解出t.【解答】解:=﹣=,=﹣=2,=﹣=2,∵P,A,B,C四点共面,∴存在m,n∈R使得=m+n,∴=m(2)+n[2]=(2m+2n)+n+(mt+nt ﹣n),∴,解得m=﹣,n=1,t=﹣2.故答案为:﹣2.【点评】本题考查了平面向量的基本定理及线性运算,列出方程组是解题的关键,属于中档题.16.(2021秋•房山区期末)《九章算术》是我国古代数学名著,其中提到的“阳马”是指底面为矩形,有一侧棱垂直于底面的四棱锥.在阳马P﹣ABCD的表面三角形中,直角三角形的个数为4.【考点】棱锥的结构特征.【专题】计算题;对应思想;分析法;空间位置关系与距离;逻辑推理.【分析】利用线面垂直的判定定理求解即可.【解答】解:不妨设P A⊥底面ABCD,如下图所示:∵P A⊥底面ABCD,AB、BC⊂平面ABCD,∴P A⊥AB,P A⊥BC,∵BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,∵PB⊂平面P AB,∴BC⊥PB,故△P AB、ΔPBC均为直角三角形,同理可知△P AD、△PCD均为直角三角形.因此,在阳马P﹣ABCD表面三角形中,直角三角形的个数为4.故答案为:4.【点评】本题考查棱锥的结构的特征,考查学生的推理能力,属于中档题.四.解答题(共6小题)17.(2021秋•爱民区校级期末)如图,在四棱锥O﹣ABCD中,底面ABCD是正方形,M 为OA的中点,N为OB的中点.求证:MN∥平面OCD.【考点】直线与平面平行.【专题】数形结合;数形结合法;空间位置关系与距离;直观想象.【分析】因为M为OA的中点,N为OB的中点.所以由三角形中位线可知MN∥AB,所以MN∥CD,根据线面平行的判定即可求证.【解答】证明:因为M为OA的中点,N为OB的中点.所以MN∥AB,又因为底面ABCD是正方形,所以AB∥CD,所以MN∥CD,因为CD⊂面OCD,MN⊄面OCD,所以MN∥面OCD.【点评】本题考查了空间中直线与平面平行的判定,属于基础题.18.(2021秋•长宁区期末)已知ABCD是边长为2的正方形,正方形ABCD绕BC旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕BC顺时针旋转至A1D1CB,求异面直线AD1与CD所成角的大小.【考点】异面直线及其所成的角.【专题】转化思想;综合法;空间角;数学运算.【分析】(1)由圆柱的侧面积公式和表面积公式,计算可得所求;(2)由异面直线所成角的定义和解三角形,计算可得所求角.【解答】解:(1)圆柱的表面是由上下两个半径为2的圆面和一个长为4π,宽为2的矩形构成.∴该圆柱的表面积S圆柱=4π×2+2π×22=16π;(2)由正方形ABC1D1,可得CD1⊥BC,又∠DCD1=,∴CD1⊥CD,DD1=,AD1=,过D1作D1H∥CD,且CD=D1H,连接DH,AH,可得∠AD1H(或其补角)为异面直线AD1与CD所成角.在△AHD1中D1H=CD=2,AH=,AD1=2,由D1H2+AH2=AD12,可得△AHD1为直角三角形,∴cos∠AD1H===,故异面直线AD1与CD所成角的大小arccos.【点评】本题考查圆柱的表面积的求法,以及异面直线所成角的求法,考查转化思想和运算能力,属于中档题.19.(2021秋•榆林期末)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面为直角梯形,CD∥AB,AD⊥AB,且P A=AD=CD=2,AB=3,E为PD的中点.(1)证明:AE⊥平面PCD;(2)过A,B,E作四棱锥P﹣ABCD的截面,请写出作法和理由,并求截面的面积.【考点】直线与平面垂直.【专题】计算题;转化思想;综合法;空间位置关系与距离;数学运算.【分析】(1)由线面垂直的性质定理可得CD⊥P A,由已知可得CD⊥AD,由线面垂直的判定定理可得CD⊥平面P AD,推出CD⊥AE,由AE⊥PD,即可证明结论;(2)过E作EF∥CD,交PC于F,连接BF,推导出EF∥AB,可得截面为四边形ABFE,计算可得面积.【解答】(1)证明:因为P A⊥平面ABCD,所以CD⊥P A.又CD∥AB,AD⊥AB,所以CD⊥AD.因为AD∩P A=A,所以CD⊥平面P AD,则CD⊥AE.因为P A=AD,E为PD的中点,所以AE⊥PD.又CD∩PD=D,所以AE⊥平面PCD.(2)解:如图,过E作EF∥CD,交PC于F,连接BF,则截面为四边形ABFE.理由如下:因为AB∥CD,EF∥CD,所以EF∥AB,所以A,B,F,E四点共面,从而过A,B,E 的截面为四边形ABFE.由(1)知AE⊥平面PCD,所以AE⊥EF,又,,AB=3,所以四边形ABFE为直角梯形,其面积.【点评】本题主要考查线面垂直的判定与性质定理,截面面积的求法,考查逻辑推理与运算求解能力,属于中档题.20.(2021秋•房山区期末)如图,正方体ABCD﹣A1B1C1D1的棱长为2,点E为BB1的中点.(Ⅰ)求证:BC1∥平面AD1E;(Ⅱ)求点C1到平面AD1E的距离;(Ⅲ)判断B1C1的中点M是否在平面AD1E上?说明理由.【考点】直线与平面平行;点、线、面间的距离计算.【专题】计算题;整体思想;演绎法;空间向量及应用;逻辑推理;数学运算.【分析】(Ⅰ)先判断出四边形C1D1AB是平行四边形,再由线面平行的判断定理可得答案;(Ⅱ)以A为原点,分别ADABAA1所在的直线为xyz的正方向建立空间直角坐标系,求出平面D1AE的法向量,再由点到平面的距离的向量公式可得答案;(Ⅲ)由EM是三角形△C1B1B的中位线,得出C1B∥ME,再由C1B∥D1A得出ME∥D1A可得答案.【解答】(Ⅰ)证明:在正方体中,C1D1∥AB,C1D1=AB,所以四边形C1D1AB是平行四边形,所以BC1∥AD1,BC1⊄平面AD1E,AD1⊂平面AD1E,所以BC1∥平面AD1E;(Ⅱ)解:在正方体中,以A为原点,分别ADABAA1所在的直线为xyz的正方向建立如图所示的空间直角坐标系,所以A(0,0,0),D1(2,0,2),E(0,2,1),C1(2,2,2),,,,设平面D1AE的一个法向量为,所以,即,令z=2,则y=﹣1,x=﹣2,所以,点C1到平面AD1E的距离为.(Ⅲ)解:连接D1MEM,因为EM是三角形△C1B1B的中位线,所以C1B∥ME,因为C1B∥D1A,所以ME∥D1A,所以MED1A确定平面MED1A,因为ED1A三点在平面MED1A内,所以四点MED1A共面,所以B1C1的中点M在平面AD1E上.【点评】本题主要考查线面平行的证明,点面距离的计算,立体几何中的探索性问题等知识,属于中等题.21.(2021秋•三门县校级期末)如图所示,已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别为BC,CD的中点.(1)求A1到平面C1EF的距离;(2)求平面C1EF与平面AB1D1夹角的余弦值.【考点】二面角的平面角及求法;点、线、面间的距离计算.【专题】数形结合;数形结合法;立体几何;数学运算.【分析】(1)根据题意建立空间直角坐标系,利用坐标表示向量,求出平面C1EF的法向量,再求点A1到平面C1EF的距离;(2)求出平面AB1D1的法向量,利用法向量求平面C1EF与平面AB1D1夹角的余弦值.【解答】解:(1)根据题意建立空间直角坐标系,如图所示:则A1(2,0,2),C1(0,2,2),E(1,2,0),F(0,1,0),所以=(﹣2,2,0),=(﹣1,﹣1,0),=(1,0,﹣2),设平面C1EF的法向量为=(x,y,z),则,即,令z=1,得x=2,y=﹣2,所以=(2,﹣2,1),所以点A1到平面C1EF的距离为d===;(2)因为A(2,0,0),B1(2,2,2),D1(0,0,2),所以=(0,2,2),=(﹣2,0,2),设平面AB1D1的法向量为=(x,y,z),则,即,令z=1,解得x=1,y=﹣1,所以=(1,﹣1,1),所以平面C1EF与平面AB1D1夹角的余弦值为|cosθ|===.【点评】本题考查了空间中的距离与夹角的余弦值计算问题,也考查了运算求解能力,是中档题.22.(2021秋•佛山期末)如图,四棱锥P﹣ABCD中,四边形ABCD是矩形,AD⊥平面P AB,P A⊥PB,E是AD的中点.(1)在线段BP上找一点M,使得直线EM∥平面PCD,并说明理由;(2)若P A=AD,AB=AD,求平面PCE与平面P AB所成二面角的正弦值.【考点】直线与平面平行;二面角的平面角及求法.【专题】转化思想;向量法;立体几何;直观想象;数学运算.【分析】(1)取M为PB中点,只要说明ME平行于平面PCD内直线ND即可;(2)用向量数量积计算二面角的余弦值,进而求解.【解答】(1)解:M为PB中点M时,EM∥平面PCD,理由如下:取PB中点M,取PC中点N,连接MN、EM、DN,所以MN∥BC,MN=BC,因为四边形ABCD是矩形,E是AD的中点,所以DE∥BC,DE=BC,所以DE∥MN,DE=MN,所以四边形MNDE是平行四边形,所以DN∥ME,因为DN⊂平面PCD,ME⊄平面PCD,所以EM∥平面PCD.(2)解:因为P A⊥PB,建系如图,因为AD⊥平面P AB,所以平面ABCD⊥平面P AB,P A=AD,AB=AD=P A,所以PB==P A,不妨设P A=1,则P(0,0,0),A(0,1,0),B(1,0,0),E(0,1,),C(1,0,1),=(0,1,),=(1,0,1),令=(2,1,﹣2),因为•=0,•=0,所以是平面PCE的法向量,=(0,0,1)是的平面P AB的法向量,设平面PCE与平面P AB所成二面角为θ,θ∈(0,π),|cosθ|===,sinθ==.【点评】本题考查了直线与平面的位置关系,考查了二面角计算问题,属于中档题.。
2020-2021高考数学真题《立体几何》专项汇编(含答案)
2020-2021高考数学真题《立体几何》专项汇编(含答案)一、空间几何体的体积、面积1.(2021·全国·高考真题)若圆锥的轴截面为等腰直角三角形,则它的底面积与侧面积之比是( )A .√2:1B .2:1C .1:√2D .1:2 2.(2021·全国·高考真题)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .2√2C .4D .3.(2021·全国·高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+12√3B .28√2C .563D 4.(2021·全国·高考真题)在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=1,点P 满足BP⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( )A .当λ=1时,△AB 1P 的周长为定值B .当μ=1时,三棱锥P −A 1BC 的体积为定值C .当λ=12时,有且仅有一个点P ,使得A 1P ⊥BPD .当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P5.(2020·海南·高考真题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________6.(2021·全国·高考真题(文))如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.二、平行、垂直的命题判定7.(2021·全国·高考真题)已知α,β表示平面,m,n表示直线,以下命题中正确的选项是()A.假设m⊥α,m⊥n,那么n//αB.假设m⊂α,n⊂β,α//β,那么m//nC.假设α//β,m⊂α,那么m//βD.假设m⊂α,n⊂α,m//β,n//β,那么α//β8.(2021·全国·高考真题)设m,n为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是()A.若m//n,n//α,则m//αB.若m//n,m//α,n//β,则α//βC.若α⊥β,m⊂α,n⊂β,则m⊥nD.若m⊥n,m⊥α,n⊥β,则α⊥β9.(2020·山东·高考真题)已知正方体ABCD−A1B1C1D1(如图所示),则下列结论正确的是()A.BD1//A1A B.BD1//A1D C.BD1⊥A1C D.BD1⊥A1C110.(2021·浙江·高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B 的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B111.(2021·全国·高考真题)-(多选)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足MN⊥OP的是()A.B.C.D.12.(2021·全国·高考真题)如下图,在四棱锥S ABCD-中,底面ABCD是正方形,平面SAD⊥平面ABCD,SA=SD=2,3AB=.(1)求SA与BC所成角的余弦值;(2)求证:AB⊥SD.三、球体-能力拓展13.(2020·天津·高考真题)若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π14.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π15.(2020·全国·高考真题(理))已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1D.√3216.(2021·全国·高考真题(理))已如A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O−ABC的体积为()A.√212B.√312C.√24D.√3417.(2020·全国·高考真题(理))已知,,A B C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π18.(2020·海南·高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为________.四、立体几何的数学应用19.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km 的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为S=2πr2(1−cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%20.(2021·北京·高考真题)某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm).24h降雨量的等级划分如下:在综合实践活动中,某小组自制了一个底面直径为200 mm,高为300 mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150 mm(如图所示),则这24h 降雨量的等级是A.小雨B.中雨C.大雨D.暴雨21.(2020·海南·高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°22.(2020·全国·高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .√5−14BC .√5+14D .√5+1223.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是____cm.五、立体几何与空间向量的综合应用24.(2021·全国·高考真题(理))在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π625.(2021·全国·高考真题)如图,四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB//平面ACE;(2)设PA=1,AD=√3,直线PB与平面ABCD所成的角为45°,求四棱锥P−ABCD 的体积.中,底面ABCD是正方形,若AD= 26.(2021·全国·高考真题)在四棱锥Q ABCD2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.27.(2021·天津·高考真题)如图,在棱长为2的正方体ABCD−A1B1C1D1中,E为棱BC的中点,F为棱CD的中点.(I)求证:D1F//平面A1EC1;(II)求直线AC1与平面A1EC1所成角的正弦值.(III)求二面角A−A1C1−E的正弦值.28.(2021·全国·高考真题(理))已知直三棱柱ABC−A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC的中点,D为棱A1B1上的点.BF⊥A1B11(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?29.(2021·北京·高考真题)如图:在正方体ABCD −A 1B 1C 1D 1中,E 为A 1D 1中点,11B C 与平面CDE 交于点F .(1)求证:F 为11B C 的中点;(2)点M 是棱A 1B 1上一点,且二面角M −FC −E 的余弦值为√53,求A 1MA1B 1的值.30.(2020·全国·高考真题(理))如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底DO.面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=√66(1)证明:PA⊥平面PBC;(2)求二面角B−PC−E的余弦值.2020-2021真题精编-立体几何解析版一、空间几何体的体积、面积1.(2021·全国·高考真题)若圆锥的轴截面为等腰直角三角形,则它的底面积与侧面积之比是()A.√2:1B.2:1C.1:√2D.1:2【答案】C【分析】根据题意作图,由轴截面得出母线与底面圆半径的等量关系,再套公式求解.【详解】根据题意作图,设圆锥的底面圆半径为r,高为ℎ,母线长为l.若圆锥的轴截面为等腰直角三角形,则有2r cos45°=l,l=√2r.该圆锥的底面积与侧面积比值为πr 2πrl =2πr⋅√2r=√2.故选:C.2.(2021·全国·高考真题)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2√2C.4D.【答案】B【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得l的值,即为所求.【详解】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则πl=2π×√2,解得l= 2√2.故选:B.3.(2021·全国·高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A .20+12√3B .28√2C .563D 【答案】D 【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2, 所以该棱台的高ℎ=√22−(2√2−√2)2=√2, 下底面面积S 1=16,上底面面积S 2=4,所以该棱台的体积V =13ℎ(S 1+S 2+√S 1S 2)=13×√2×(16+4+√64)=283√2.故选:D.4.(2021·全国·高考真题)在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=1,点P 满足BP ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( ) A .当λ=1时,△AB 1P 的周长为定值 B .当μ=1时,三棱锥P −A 1BC 的体积为定值 C .当λ=12时,有且仅有一个点P ,使得A 1P ⊥BP D .当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P 【答案】BD 【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形BCC 1B 1内部(含边界).对于A ,当λ=1时,BP ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +μCC 1⃗⃗⃗⃗⃗⃗⃗ ,即此时P ∈线段1CC ,△AB 1P 周长不是定值,故A 错误;对于B ,当μ=1时,BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +λB 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,故此时P 点轨迹为线段11B C ,而B 1C 1//BC ,B 1C 1//平面A 1BC ,则有P 到平面A 1BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当λ=12时,BP ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,取BC ,11B C 中点分别为Q ,H ,则BP ⃗⃗⃗⃗⃗ =BQ ⃗⃗⃗⃗⃗ +μQH ⃗⃗⃗⃗⃗⃗ ,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,A 1(√32,0,1),P (0,0,μ),B (0,12,0),则A 1P ⃗⃗⃗⃗⃗⃗⃗ =(−√32,0,μ−1),BP ⃗⃗⃗⃗⃗ =(0,−12,μ),()110A P BP μμ⋅=-=,所以μ=0或μ=1.故H,Q 均满足,故C 错误;对于D ,当μ=12时,BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +12BB 1⃗⃗⃗⃗⃗⃗⃗ ,取1BB ,1CC 中点为M,N .BP ⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ +λMN ⃗⃗⃗⃗⃗⃗⃗ ,所以P 点轨迹为线段MN .设P (0,y 0,12),因为A (√32,0,0),所以AP ⃗⃗⃗⃗⃗ =(−√32,y 0,12),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(−√32,12,−1),所以34+12y 0−12=0⇒y 0=−12,此时P 与N 重合,故D 正确.故选:BD . 【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.5.(2020·海南·高考真题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【分析】利用V A−NMD1=V D1−AMN计算即可.【详解】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以V A−NMD1=V D1−AMN=13×12×1×1×2=13故答案为:1 3【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 6.(2021·全国·高考真题(文))如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.【答案】(1)证明见解析;(2)√23.【分析】(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD ⊥AM ,又PB ⊥AM ,PB ∩PD =P , 所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM ⊥BD , 从而△DAB~△ABM ,设BM =x ,AD =2x ,则BMAB =ABAD ,即2x 2=1,解得x AD =√2. 因为PD ⊥底面ABCD ,故四棱锥P −ABCD 的体积为V =13×(1×√2)×1=√23.【点睛】本题第一问解题关键是找到平面PAM 或平面PBD 的垂线,结合题目条件PB ⊥AM ,所以垂线可以从PB,AM 中产生,稍加分析即可判断出AM ⊥平面PBD ,从而证出;第二问关键是底面矩形面积的计算,利用第一问的结论结合平面几何知识可得出△DAB~△ABM ,从而求出矩形的另一个边长,从而求得该四棱锥的体积. 二、平行、垂直的命题判定7.(2021·全国·高考真题)已知α,β表示平面,m ,n 表示直线,以下命题中正确的选项是( )A .假设m ⊥α,m ⊥n ,那么n //αB .假设m ⊂α,n ⊂β,α//β,那么m //nC .假设α//β,m ⊂α,那么m //βD .假设m ⊂α,n ⊂α,m //β,n //β,那么α//β 【答案】C 【分析】根据线面垂直的性质定理,可判断A ;根据面面平行的性质定理,可判断B 、C ;根据面面平行的判定定理,可判定D 【详解】选项A :假设m ⊥α,m ⊥n ,那么n //α或n 在α内,故选项A 错误;选项B :假设m ⊂α,n ⊂β,α//β,那么m //n 或m 与n 异面,故选项B 错误; 选项D :假设m ⊂α,n ⊂α,m //β,n //β,且m 、n 相交才能判定α//β,故选项C 错误;选项C :依照两平面平行的性质可知C 正确.故选:C8.(2021·全国·高考真题)设m,n为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是()A.若m//n,n//α,则m//αB.若m//n,m//α,n//β,则α//βC.若α⊥β,m⊂α,n⊂β,则m⊥nD.若m⊥n,m⊥α,n⊥β,则α⊥β【答案】D【分析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.【详解】对于A:若m//n,n//α,则m//α或m⊂α,故选项A不正确;B C为m,直线BC为对于B:如图平面ADD1A1为平面α,平面A1B1C1D1为平面β,直线11n,满足m//n,m//α,n//β,但α与β相交,故选项B不正确;对于C:如图在正方体ABCD−A1B1C1D1中,平面ADD1A1为平面α,平面A1B1C1D1为平面B C为n,满足α⊥β,m⊂α,n⊂β,则m//n,故选项C不正β,直线AD为m,直线11确;对于D:若m⊥n,m⊥α,可得n⊂α或n//α,若n⊂α,因为n⊥β,由面面垂直的判定定理可得α⊥β;若n//α,可过n作平面与α相交,则交线在平面α内,且交线与n平行,由n⊥β可得交线与β垂直,由面面垂直的判定定理可得α⊥β,故选项D正确;故选:D.9.(2020·山东·高考真题)已知正方体ABCD−A1B1C1D1(如图所示),则下列结论正确的是()A.BD1//A1A B.BD1//A1D C.BD1⊥A1C D.BD1⊥A1C1【答案】D【分析】根据异面直线的定义,垂直关系的转化,判断选项.【详解】BB与BD1相交,所以BD1与AA1异面,故A错误;A.AA1//BB1,1B.BD1与平面ADD1A1相交,且D1∉A1D,所以BD1与A1D异面,故B错误;C.四边形A BCD是矩形,不是菱形,所以对角线BD1与A1C不垂直,故C错误;11D.连结B1D1,B1D1⊥A1C1,BB1⊥A1C1,B1D1∩BB1=B1,所以A1C1⊥平面BB1D1,所以A1C1⊥BD1,故D正确.故选:D10.(2021·浙江·高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B 的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1【答案】A【分析】由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.【详解】连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系. 11.(2021·全国·高考真题)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足MN⊥OP的是()A.B.C.D.【答案】BC【分析】根据线面垂直的判定定理可得BC的正误,平移直线MN构造所考虑的线线角后可判断AD 的正误.【详解】设正方体的棱长为2,对于A,如图(1)所示,连接AC,则MN//AC,故POC(或其补角)为异面直线OP,MN所成的角,在直角三角形OPC,OC=√2,CP=1,故tan∠POC=√2=√22,故MN⊥OP不成立,故A错误.对于B,如图(2)所示,取NT的中点为Q,连接PQ,OQ,则OQ⊥NT,PQ⊥MN,由正方体SBCM−NADT可得SN⊥平面ANDT,而OQ⊂平面ANDT,故SN⊥OQ,而SN∩MN=N,故OQ⊥平面SNTM,又MN⊂平面SNTM,OQ⊥MN,而OQ∩PQ=Q,所以MN⊥平面OPQ,而PO⊂平面OPQ,故MN⊥OP,故B正确.对于C,如图(3),连接BD,则BD//MN,由B的判断可得OP⊥BD,故OP⊥MN,故C正确.对于D,如图(4),取AD的中点Q,AB的中点K,连接AC,PQ,OQ,PK,OK,则AC//MN,PQ MN,因为DP=PC,故PQ//AC,故//所以∠QPO或其补角为异面直线PO,MN所成的角,AC=√2,OQ=√AO2+AQ2=√1+2=√3,因为正方体的棱长为2,故PQ=12PO=√PK2+OK2=√4+1=√5,QO2<PQ2+OP2,故∠QPO不是直角,故PO,MN不垂直,故D错误.故选:BC.12.(2021·全国·高考真题)如下图,在四棱锥S ABCD-中,底面ABCD是正方形,平面SAD⊥平面ABCD,SA=SD=2,3AB=.(1)求SA 与BC 所成角的余弦值; (2)求证:AB ⊥SD .【答案】(1)34;(2)证明见解析. 【分析】(1)由题意可得∠SAD 即为SA 与 BC 所成的角,根据余弦定理计算即可; (2)结合面面垂直的性质和线面垂直的性质即可证明. 【详解】【考查内容】异面直线所成的角,直线与平面垂直的判定和性质【解】(1)因为AD //BC ,因此∠SAD 即为SA 与BC 所成的角,在△SAD 中,SA =SD =2, 又在正方形ABCD 中3AD AB ==,因此cos ∠SAD =SA 2+AD 2−SD 22SA⋅AD=22+32−222×2×3=34,因此SA 与BC 所成角的余弦值是34.(2)因为平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,在正方形ABCD 中,AB ⊥AD ,因此AB ⊥平面SAD ,又因为SD ⊂平面SAD ,因此AB ⊥SD . 三、球体-能力拓展13.(2020·天津·高考真题)若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B .24π C .36π D .144π【答案】C 【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解. 【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半, 即R =√(2√3)2+(2√3)2+(2√3)22=3,所以,这个球的表面积为S =4πR 2=4π×32=36π. 故选:C. 【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.14.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π【答案】B【分析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D,设圆锥AD和圆锥BD的高之比为3:1,即AD=3BD,设球的半径为R,则4πR33=32π3,可得R=2,所以,AB=AD+BD=4BD=4,所以,BD=1,AD=3,∵CD⊥AB,则∠CAD+∠ACD=∠BCD+∠ACD=90∘,所以,CAD BCD∠=∠,又因为∠ADC=∠BDC,所以,△ACD∽△CBD,所以,AD CDCD BD=,∴CD=√AD⋅BD=√3,因此,这两个圆锥的体积之和为13π×CD2⋅(AD+BD)=13π×3×4=4π.故选:B.15.(2020·全国·高考真题(理))已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1D.√32【答案】C【分析】根据球O的表面积和△ABC的面积可求得球O的半径R和△ABC外接圆半径r,由球的性质可知所求距离d=√R2−r2.【详解】设球O的半径为R,则4πR2=16π,解得:R=2.设△ABC外接圆半径为r,边长为a,∵△ABC是面积为9√34的等边三角形,∴12a2×√32=9√34,解得:a=3,∴r=23×√a2−a24=23×√9−94=√3,∴球心O到平面ABC的距离d=√R2−r2=√4−3=1.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 16.(2021·全国·高考真题(理))已如A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O−ABC的体积为()A.√212B.√312C.√24D.√34【答案】A【分析】由题可得△ABC为等腰直角三角形,得出△ABC外接圆的半径,则可求得O到平面ABC的距离,进而求得体积.【详解】∵AC⊥BC,AC=BC=1,∴△ABC为等腰直角三角形,∴AB=√2,则△ABC外接圆的半径为√22,又球的半径为1,设O到平面ABC的距离为d,则d=所以V O−ABC=13S△ABC⋅d=13×12×1×1×√22=√212.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.17.(2020·全国·高考真题(理))已知,,A B C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π【答案】A【分析】由已知可得等边△ABC的外接圆半径,进而求出其边长,得出OO1的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆O1半径为r,球的半径为R,依题意,得πr2=4π,∴r=2,∵△ABC为等边三角形,由正弦定理可得AB=2r sin60°=2√3,∴OO1=AB=2√3,根据球的截面性质OO1⊥平面ABC,∴OO1⊥O1A,R=OA=√OO12+O1A2=√OO12+r2=4,∴球O的表面积S=4πR2=64π.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 18.(2020·海南·高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD =60°.以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________. 【答案】√22π.【分析】根据已知条件易得D 1E =√3,D 1E ⊥侧面B 1C 1CB ,可得侧面B 1C 1CB 与球面的交线上的点到E 的距离为√2,可得侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG ⏜,再根据弧长公式可求得结果. 【详解】 如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为∠BAD =60°,直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,所以△D 1B 1C 1为等边三角形,所以D 1E =√3,D 1E ⊥B 1C 1,又四棱柱ABCD −A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面A 1B 1C 1D 1,所以111BB B C , 因为BB 1∩B 1C 1=B 1,所以D 1E ⊥侧面B 1C 1CB , 设P 为侧面B 1C 1CB 与球面的交线上的点,则D 1E ⊥EP ,因为球的半径为√5,D 1E =√3,所以|EP|=√|D 1P|2−|D 1E|2=√5−3=√2, 所以侧面B 1C 1CB 与球面的交线上的点到E 的距离为√2,因为|EF|=|EG|=√2,所以侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG ⏜, 因为∠B 1EF =∠C 1EG =π4,所以∠FEG =π2, 所以根据弧长公式可得FG⏜=π2×√2=√22π. 故答案为:√22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.四、立体几何的数学应用19.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km 的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为S=2πr2(1−cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%【答案】C【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S占地球表面积的百分比约为:2πr2(1−cosα)4πr2=1−cosα2=1−64006400+360002≈0.42=42%.故选:C.20.(2021·北京·高考真题)某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm).24h降雨量的等级划分如下:在综合实践活动中,某小组自制了一个底面直径为200 mm,高为300 mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150 mm(如图所示),则这24h 降雨量的等级是A.小雨B.中雨C.大雨D.暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【详解】由题意,一个半径为2002=100(mm)的圆面内的降雨充满一个底面半径为2002×150300=50(mm),高为150(mm)的圆锥,所以积水厚度d=13π×502×150π×1002=12.5(mm),属于中雨.故选:B.21.(2020·海南·高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A处的纬度,计算出晷针与点A处的水平面所成角.【详解】画出截面图如下图所示,其中CD是赤道所在平面的截线;l是点A处的水平面的截线,依题意可知OA⊥l;AB是晷针所在直线.m是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知m//CD、根据线面垂直的定义可得AB⊥m..由于∠AOC=40°,m//CD,所以∠OAG=∠AOC=40°,由于∠OAG+∠GAE=∠BAE+∠GAE=90°,所以∠BAE=∠OAG=40°,也即晷针与点A处的水平面所成角为∠BAE=40°.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.22.(2020·全国·高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .√5−14B C .√5+14D .√5+12【答案】C 【分析】设CD =a,PE =b ,利用PO 2=12CD ⋅PE 得到关于a,b 的方程,解方程即可得到答案. 【详解】如图,设CD =a,PE =b ,则PO =√PE 2−OE 2=√b 2−a 42,由题意PO 2=12ab ,即b 2−a 24=12ab ,化简得4(b a )2−2⋅ba −1=0,解得ba=1+√54(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 23.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【分析】先求正六棱柱体积,再求圆柱体积,相减得结果. 【详解】正六棱柱体积为6×√34×22×2=12√3圆柱体积为π(12)2⋅2=π2所求几何体体积为2π故答案为: 2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.五、立体几何与空间向量的综合应用24.(2021·全国·高考真题(理))在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2 B .π3 C .π4 D .π6【答案】D 【分析】平移直线AD 1至1BC ,将直线PB 与AD 1所成的角转化为PB 与1BC 所成的角,解三角形即可. 【详解】如图,连接BC 1,PC 1,PB ,因为AD 1∥1BC , 所以∠PBC 1或其补角为直线PB 与AD 1所成的角,因为BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥PC 1,又PC 1⊥B 1D 1,1111BB B D B ⋂=, 所以PC 1⊥平面PBB 1,所以PC 1⊥PB ,设正方体棱长为2,则BC 1=2√2,PC 1=12D 1B 1=√2, sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6.故选:D25.(2021·湖南·高考真题)如图,四棱锥P −ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB//平面ACE ;(2)设PA =1,AD =√3,直线PB 与平面ABCD 所成的角为45°,求四棱锥P −ABCD 的体积.【答案】(1)证明见解析;(2)√33.【分析】(1) 连接BD交AC于点O,连接OE,由三角形的中位线定理可知PB//OE,结合线面平行的判定定理可证明PB//平面AEC.(2)由题意可知∠PBA=45∘,再运用锥体体积公式可求得四棱锥的体积.【详解】(1)连接BD交AC于点O,连接OE. 在△PBD中,因为PE=DE,BO=DO,所以PB//OE,因为OE⊂平面ACE,PB⊄平面ACE,则PB//平面AEC.(2)因为PA⊥平面ABCD,所以∠PBA就是直线PB与平面ABCD所成的角,所以∠PBA=45∘,又PA=1,AD=√3,所以PA=1=AB,所以四棱锥P−ABCD的体积V P−ABCD=13×PA×AB×AD=13×1×1×√3=√33,所以四棱锥P−ABCD的体积为√33.26.(2021·全国·高考真题)在四棱锥Q ABCD中,底面ABCD是正方形,若AD=2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.【答案】(1)证明见解析;(2)23.【分析】(1)取AD的中点为O,连接QO,CO,可证QO⊥平面ABCD,从而得到面QAD⊥面ABCD.。
立体几何高考题-模拟题带答案
高考及模拟立体几何专项练习一.解答题(共17小题)1.如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.2.在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.3.在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.4.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.5.如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.6.如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求证:OE∥平面PDC;(Ⅲ)求直线CB与平面PDC所成角的正弦值.7.如图,在四棱台ABCD﹣A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:平面D1AC⊥平面B1BDD1.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.9.如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.10.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.11.如图.在直棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1﹣A1B1E的体积.12.如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.13如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.14.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.15.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.16.如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.17.如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.参考答案与试题解析一.解答题(共17小题)1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.2.(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.解答:(Ⅰ)证明:∵四边形ABB1A1和ACC1A1都为矩形,∴AA1⊥AB,AA1⊥AC,∵AB∩AC=A,∴AA1⊥平面ABC,∵BC⊂平面ABC,∴AA1⊥BC,∵AC⊥BC,AA1∩AC=A,∴直线BC⊥平面ACC1A1;(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点,则O为AC1的中点.连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,∴MD∥OE,MD=OE,连接OM,则四边形MDEO为平行四边形,∴DE∥MO,∵DE⊄平面A1MC,MO⊂平面A1MC,∴DE∥平面A1MC,∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.解答:解:(Ⅰ)取PD的中点F,连接EF,AF,∵E为PC中点,∴EF∥CD,且,在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形,∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.(4分)(Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD,∴PD⊥AD.(5分)如图,以D为原点建立空间直角坐标系D﹣xyz.则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分),,∴,BC⊥DB,(8分)又由PD⊥平面ABCD,可得PD⊥BC,∴BC⊥平面PBD.(9分)(Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分)∵,,且λ∈(0,1)∴Q(0,2λ,1﹣λ),(11分)设平面QBD的法向量为=(a,b,c),,,由,,得,∴,(12分)∴,(13分)因λ∈(0,1),解得.(14分)4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.5.如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.解答:解:(1)证明:设G为PC的中点,连接FG,EG,∵F为PD的中点,E为AB的中点,∴FG CD,AE CD∴FG AE,∴AF∥GE∵GE⊂平面PEC,∴AF∥平面PCE;(2)证明:∵PA=AD=2,∴AF⊥PD又∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,∵AD⊥CD,PA∩AD=A,∴CD⊥平面PAD,∵AF⊂平面PAD,∴AF⊥CD.∵PD∩CD=D,∴AF⊥平面PCD,∴GE⊥平面PCD,∵GE⊂平面PEC,∴平面PCE⊥平面PCD;(3)由(2)知,GE⊥平面PCD,所以EG为四面体PEFC的高,又GF∥CD,所以GF⊥PD,EG=AF=,GF=CD=,S△PCF=PD•GF=2.得四面体PEFC的体积V=S△PCF•EG=.6.如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求证:OE∥平面PDC;(Ⅲ)求直线CB与平面PDC所成角的正弦值.解答:解:(Ⅰ)证明:设F为DC的中点,连接BF,则DF=AB.∵AB⊥AD,AB=AD,AB∥DC,∴四边形ABFD为正方形.∵O为BD的中点,∴O为AF,BD的交点,∵PD=PB=2,∴PO⊥BD,…..(2分)∵=,∴=,,在三角形PAO中,PO2+AO2=PA2=4,∴PO⊥AO,…(4分)∵AO∩BD=O,∴PO⊥平面ABCD.…(5分)(Ⅱ)由(Ⅰ)知PO⊥平面ABCD,又AB⊥AD,所以过O分别做AD,AB的平行线,以它们做x,y轴,以OP为z轴建立如图所示的空间直角坐标系,如图所示:由已知得:A(﹣1,﹣1,0),B(﹣1,1,0),D(1,﹣1,0)F(1,1,0),C(1,3,0),,.则,,,.∴,∴OE∥PF,∵OE⊄平面PDC,PF⊂平面PDC,∴OE∥平面PDC.…(9分)(Ⅲ)设平面PDC的法向量为,直线CB与平面PDC所成角θ,则,即,解得,令z1=1,则平面PDC的一个法向量为,又,则,∴直线CB与平面PDC所成角的正弦值为.…(14分)7.如图,在四棱台ABCD﹣A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:平面D1AC⊥平面B1BDD1.解答:证明:(1)设AC∩BD=E,连接D1E,∵平面ABCD∥平面A1B1C1D1.∴B1D1∥BE,∵B1D1=BE=,∴四边形B1D1EB是平行四边形,所以B1B∥D1E.又因为B1B⊄平面D1AC,D1E⊂平面D1AC,所以B1B∥平面D1AC(2)证明:侧棱DD1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DD1.∵下底ABCD是正方形,AC⊥BD.∵DD1与DB是平面B1BDD1内的两条相交直线,∴AC⊥平面B1BDD1∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.解答:解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.9.如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.解答:证明:(I)三棱柱ABC﹣A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,可得DE∥AC,DE=AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,所以A1DEF是平行四边形,所以EF∥DA1,DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD(II)∵D是AB的中点,∴CD⊥AB,又AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,又AA1∩AB=A,∴CD⊥面A1ABB1,又CD⊂面A1CD,∴平面A1CD⊥平面A1ABB1;(III)过B作BG⊥A1D交A1D于G,∵平面A1CD⊥平面A1ABB1,且平面A1CD∩平面A1ABB1=A1D,BG⊥A1D,∴BG⊥面A1CD,则∠BCG为所求的角,设棱长为a,可得A1D=,由△A1AD∽△BGD,得BG=,在直角△BGC中,sin∠BCG==,∴直线BC与平面A1CD所成角的正弦值.10.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.解答:解:(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.∵AB=BC=2,AD=CD=,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.而PA∩AC=A,∴BD⊥面PAC.(Ⅱ)若G是PC的中点,O为AC的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.由题意可得,GO=PA=.△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,∴AC=2,OC=.∵直角三角形COD中,OD==2,∴直角三角形GOD中,tan∠DGO==.(Ⅲ)若G满足PC⊥面BGD,∵OG⊂平面BGD,∴PC⊥OG,且PC==.由△COG∽△CAP,可得,即,解得GC=,∴PG=PC﹣GC=﹣=,∴==.11.如图.在直棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1﹣A1B1E的体积.解答:解:(1)∵直棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,AD⊂平面ABC,∴AD⊥BB1∵△ABC中,AB=AC,D为BC中点,∴AD⊥BC又∵BC、BB1⊂平面BB1C1C,BC∩BB1=B∴AD⊥平面BB1C1C,结合C1E⊂平面BB1C1C,可得AD⊥C1E;(2)∵直棱柱ABC﹣A1B1C1中,AC∥A1C1,∴∠EC1A1(或其补角)即为异面直线AC、C1E 所成的角∵∠BAC=∠B1A1C1=90°,∴A1C1⊥A1B1,又∵AA1⊥平面A1B1C1,可得A1C1⊥AA1,∴结合A1B1∩AA1=A1,可得A1C1⊥平面AA1B1B,∵A1E⊂平面AA1B1B,∴A1C1⊥A1E因此,Rt△A1C1E中,∠EC1A1=60°,可得cos∠EC1A1==,得C1E=2A1C1=2又∵B1C1==2,∴B1E==2由此可得V=S△×A1C1=×=12.如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.解答:证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,又已知CE⊥BD,EC∩CO=C,所以BD⊥平面OCE.所以BD⊥OE,即OE是BD的垂直平分线,所以BE=DE.(II)证法一:取AB中点N,连接MN,DN,∵M是AE的中点,∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC,∵△ABD是等边三角形,∴∠BDN=30°,又CB=CD,∠BCD=120°,∴∠CBD=30°,∴ND∥BC,又DN⊄平面BEC,BC⊂平面BEC,∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,∴DM∥平面BEC证法二:延长AD,BC交于点F,连接EF,∵CB=CD,∠BCD=120°,∴∠CBD=30°,∵△ABD是等边三角形,∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,∴AB=AF,又AB=AD,∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,∴DM∥平面BEC13.如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.14.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.解答:解:(I)证明:连接BD,MO在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB∥MO因为PB⊄平面ACM,MO⊂平面ACM所以PB∥平面ACM(II)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC(III)解:取DO中点N,连接MN,AN因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,,所以,∴,在Rt△ANM中,==即直线AM与平面ABCD所成的正切值为15.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.解答:解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以,设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.16.如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.解答:解:法一:(1)作FG∥DC交SD于点G,则G为SD的中点.连接,又,故为平行四边形.EF∥AG,又AG⊂平面SAD,EF⊄平面SAD.所以EF∥平面SAD.(2)不妨设DC=2,则SD=4,DG=2,△ADG为等腰直角三角形.取AG中点H,连接DH,则DH⊥AG.又AB⊥平面SAD,所以AB⊥DH,而AB∩AG=A,所以DH⊥面AEF.取EF中点M,连接MH,则HM⊥EF.连接DM,则DM⊥EF.故∠DMH为二面角A﹣EF﹣D的平面角.所以二面角A﹣EF﹣D的大小为.法二:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF 中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.17.如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.解答:(1)证明:∵PC⊥平面ABC,AB⊂平面ABC,∴PC⊥AB.∵CD⊥平面PAB,AB⊂平面PAB,∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.(2)解:取AP的中点O,连接CO、DO.∵PC=AC=2,∴C0⊥PA,CO=,∵CD⊥平面PAB,由三垂线定理的逆定理,得DO⊥PA.∴∠COD为二面角C﹣PA﹣B的平面角.由(1)AB⊥平面PCB,∴AB⊥BC,又∵AB=BC,AC=2,求得BC= PB=,CD=∴cos∠COD=.。
历年高考立体几何经典题型以及解析
1.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体ABCD ﹣A 1B 1C 1D 1被平面α截得的截面面积为( )A. 36B. 26C. 5D. 5342.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,90B F ∠=∠=︒,60A ∠=︒,45D ∠=︒,BC DE =.现将两块三角板拼接在一起,取BC 中点O 与AC 中点M ,则下列直线与平面OFM 所成的角不为定值的是( )A. ACB. AFC. BFD. CF3. (多选题)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA AB =,截面BDE 与直线PC 平行,与PA 交于点E ,则下列判断正确的是( )A. E 为PA 的中点B. BD ⊥平面PACC. PB 与CD 所成的角为3πD. 三棱锥C BDE -与四棱锥P ﹣ABCD 的体积之比等于1:4.4.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是棱11A D 的中点,过C 1,B ,M 作正方体的截面,则这个截面的面积为( )35 35 C. 92 D. 985. 已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点M 为棱DD 1的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A.3π B. 23π C. π D. 43π 6.(多选题)在三棱锥P -ABC 中,(0,1,0)A ,(3,1,0)B ,(0,3,0)C ,(0,1,2)P ,则( )A. (3,0,2)PB =-B. (3,0,0)AB =-C. PB AC ⊥D. 13PB =7.在四面体ABCD 中,E 是棱BC 的中点,且AE xAD yDB zDC =++,则( )A. 1x y z ++=B. 12xyz =C. x y z =+D. 222x y z =+8.三棱锥P -ABC 中,P A ⊥平面ABC ,2,3,23,3BAC AP AB π∠===Q 是BC 边上的一个动点,且直线PQ 与面ABC 所成角的最大值为,3π则该三棱锥外接球的表面积为( ) A. 45πB. 63πC. 57πD. 84π 9.已知三棱锥P ﹣ABC 的四个顶点均在同一个球面上,底面△ABC 满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.10. 如图,五边形ABSCD 中,四边形ABCD 为长方形,SBC ∆为边长为2的正三角形,将SBC ∆沿BC 折起,使得点S 在平面ABCD 上的射影恰好在AD 上.(Ⅰ)当2AB =,证明:平面SAB ⊥平面SCD ;(Ⅱ)若1AB =,求平面SCD 与平面SBC 所成二面角的余弦值的绝对值.11.如图PAD △中,90PDA ︒∠=,2DP DA ==,B 、C 分别是PA 、PD 的中点,将PBC 沿BC 折起连结PA 、PD ,得到多面体PABCD .(1)证明:在多面体PABCD 中,BC PD ⊥;(2)在多面体PABCD 中,当6PA =时,求二面角B PA D --的余弦值.12.直四棱柱ABCD ﹣A 1B 1C 1D 1被平面1A ECD 所截得到如图所示的五面体,CD CE ⊥,CD AD ⊥.(1)求证:BC ∥平面1A AD ;(2)若113BC CD BE AD ====,求二面角1B A E C --的余弦值. 13.如图,在四棱锥S ﹣ABCD 中,SD ⊥平面ABCD ,底面ABCD 是边长为2的正方形,DE SC ⊥,E 为垂足,M 为AB 的中点.(1)当点F 在线段BC 上移动时,判断DEF 是否为直角三角形,并说明理由 (2)若4SD =,求二面角D EM C --的正弦值如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 15.在四棱锥P ﹣ABCD 中,底面ABCD 为正方形,PB PD =.(1)证明:BD ⊥平面PAC ;(2)若PA 与底面ABCD 所成的角为30°,PA PC ⊥,求二面角B PC D --的余弦值. 16.如图,在四棱锥M ﹣ABCD 中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.如图,在四棱锥E -ABCD 中,AE ⊥DE ,CD ⊥平面ADE ,AB ⊥平面ADE ,CD =DA =6,AB =2,DE =3.(I )求棱锥C -ADE 的体积;(II )求证:平面ACE ⊥平面CDE ;(III )在线段DE 上是否存在一点F ,使AF ∥平面BCE ?若存在,求出EF ED的值;若不存在,说明理由.18.如图,在四边形ABCD 中,//AB CD ,且::3:2:2AB BC CD =,60ABC ∠=︒,点E 是线段AB 上靠近点A 的一个三等分点,以DE 为折痕将ADE 折起,使点A 到达点A 1的位置,且12A C BC ==.(1)证明:平面1A DE ⊥平面BCD ;(2)求平面1A BE 与平面1A CD 所成锐二面角的余弦值.19.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,平面11A ADD ⊥平面ABCD ,底面ABCD 是菱形,60ABC ∠=︒,11A A A D AC ==,E 为DD 1的中点.(1)证明:1//BD 平面ACE ;(2)求直线1A D 与平面ACE 所成角的正弦值.20.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,122AB AD BC ===,4PA =,E 为棱BC 上的点,且14BE BC =.(1)求证:DE ⊥平面PAC ;(2)求二面角A PC D --的余弦值;(3)设Q 为棱CP 上的点(不与C ,P 重合),且直线QE 与平面PAC 所成角的正弦值5CQ CP 的值. 21.如图,在四棱锥P -ABCD 中,AP ⊥平面PCD ,//AD BC ,AB BC ⊥,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(1)证明:PO ⊥平面ABCD .(2)求直线BC 与平面PBD 所成角的正弦值.22.如图,在四棱锥P —ABCD 中, 90ABC BCD ︒∠=∠=,60,BAD ADP ︒∠=是等腰等直角三形,且2,22,7AP DP AB CD BP =====.(1)求证: AD ⊥BP ;(2)求直线BC 与平面ADP 所成角的正弦值.试卷答案1.B【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ EC ,同理1//AE QC ,所以四边形1AEC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B CE =,即1EC EB == 所以115,23AE EC AC ===由余弦定理得:22211111cos 25AE EC AC AEC AE EC +-∠==⨯ 所以126sin AEC ∠= 所以S 四边形1AEQC 1112sin 262AE EC AEC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.2.B【分析】通过证明BC ⊥平面OMF ,可以找到,,BF CF AC 与平面OFM 所成的角,计算可知都为定值,由此可得答案.【详解】因为,O M 为中点,所以//OM AB ,所以OM BC ⊥,又OF BC ⊥,且OM OF O ⋂=,所以BC ⊥平面OMF ,所以,BF CF 与平面OFM 所成的角分别为BFO ∠和CFO ∠,它们相等,等于45°, 根据直线与平面所成角的定义知,AC 与平面OFM 所成的角为60CMO A ∠=∠= 故只有AF 与平面OFM 所成的角不为定值.故选:B【点睛】本题考查了直线与平面垂直的判定定理,考查了直线与平面所成角,属于基础题. 3.ABD【分析】采用排除法,根据线面平行的性质定理以及线面垂直的判定定理,结合线线角的求法,锥体体积公式的计算,可得结果.【详解】对于A ,连接AC 交BD 于点M ,连接EM ,如图所示,PC //面BDE ,PC ⊂面APC ,且面APC 面=BDE EM ,PC ∴//EM , 又四边形ABCD 是正方形,∴M 为AC 的中点,∴E 为PA 的中点,故A 正确.对于B ,PA ⊥面ABCD ,BD ⊂面ABCD ,∴PA BD ⊥,又AC BD ⊥,AC PA A ⋂=,,AC PA ⊂面PAC∴BD ⊥面PAC ,故B 正确.对于C ,//AB CD ,∴PBA ∠为PB 与CD 所成的角,PA ⊥面ABCD ,AB 面ABCD ,∴PA AB ⊥,在Rt PAB 中,PA AB =,4PBA=π∴∠,故C 错误.对于D ,由等体积法可得1.3C BDE E BCD BCD V V S EA --==⋅,13-=⋅⋅P ABCD ABCD V S PA 又1,22BCDABCD S S PA EA ==,∴14--=P ABC C BD DE V V ,故D 正确. 故选:ABD.【点睛】本题考查立体几何的综合应用,熟练线线、线面、面面之间的位置关系,审清题意,考验分析能力,属中档题. 4.C 【详解】 【分析】设1AA 的中点为N ,则1MNBC ,连接11,,MN NB BC MC , ,则梯形1MNBC 就是过1C ,B ,M 正方体的截面,其面积为()13292+22=222⨯⨯,故选C.5.A 【分析】根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面ACM 的距离,由此求解出截面圆的半径,从而截面面积可求. 【详解】如图所示:设内切球球心为O ,O 到平面ACM 的距离为d ,截面圆的半径为r , 因为内切球的半径等于正方体棱长的一半,所以球的半径为1, 又因为O AMC M AOC V V --=,所以1233AMCAOCd S S ⨯⨯=⨯,又因为()()221122526,221222AMCAOCSS=⨯⨯-==⨯⨯=, 所以12633d ⨯=,所以63d =, 所以截面圆的半径22313r d =-=,所以截面圆的面积为233S ππ=⋅=⎝⎭. 故选:A.【点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算. 6. ACD 【分析】根据空间向量的坐标运算可判断A 、B ,计算PB AC ⋅的值可判断C ,利用向量的模长公式可判断选项D ,即可得正确答案.【详解】对于选项A :()()3,1,00,1,2(3,0,2)PB =-=-,故选项A 正确; 对于选项B :()()3,1,00,1,0(3,0,0)AB =-=,故选项B 不正确;对于选项C :()()0,3,00,1,0(0,2,0)AC =-=,则3002200PB AC ⋅=⨯+⨯-⨯=,所以PB AC ⊥,故选项C 正确; 对于选项D :因为()223213PB =+-=D 正确,故选:ACD7.C 【分析】根据向量的加法法则和数乘的定义判断. 【详解】因为1()2AE AD DE AD DB DC =+=++, 所以1x =,12y z ==,则x y z =+. 故选:C . 8.C 【分析】根据题意画出图形,结合图形找出△ABC 的外接圆圆心与三棱锥P ﹣ABC 外接球的球心, 求出外接球的半径,再计算它的表面积.【详解】三棱锥P ﹣ABC 中,PA ⊥平面ABC ,直线PQ 与平面ABC 所成角为θ,如图所示;则sinθ=PA PQ =3PQ ,且sinθ的最大值是2,∴(PQ )min AQ A 到BC∴AQ ⊥BC ,∵Rt △ABQ 中可得6ABC π∠=,即可得BC=6;取△ABC 的外接圆圆心为O′,作OO′∥PA ,∴6120sin =2r ,解得∴取H 为PA 的中点,∴,PH=32,由勾股定理得, ∴三棱锥P ﹣ABC 的外接球的表面积是S=4πR 2=4×2π⨯=57π. 故答案为C9.323π 【分析】画出示意图,利用体积最大时P 所处的位置,计算出球的半径从而算出球的体积. 【详解】如图所示:设球心为O ,ABC 所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==2ABC π∠=,所以ABC 是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABCV PO S -=⋅⋅;因为16632ABCS==,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=-=+-,所以(213333R R ⋅-⋅=,解得:2R =,所以球的体积为:343233R ππ=. 【点睛】本题考查三棱锥的外接球的相关计算,难度较难.处理球的有关问题时要充分考虑到球本身的性质,例如:球心与小圆面圆心的连线垂直于小圆面. 10.(Ⅰ)证明见解析;(Ⅱ)13.【详解】 【分析】 试题分析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,则,SO AB AB AD ⊥⊥,AB ⊥平面SAD ,AB SD ⊥,结合勾股定理可得SA SD ⊥,则SD ⊥平面SAB ,平面SAB ⊥平面SCD .(Ⅱ)由几何关系,以,,OA OE OS 为,,x y z 轴建立空间直角坐标系,由题意可得平面SCD 的法向量()2,0,1m =-,平面SBC 的法向量()0,2,1n =.计算可得平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 试题解析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,,SO AB SO CD ∴⊥⊥, 又AB AD ⊥,AB ∴⊥平面SAD ,,AB SA AB SD ⊥⊥利用勾股定理得22422SA SB AB =-=-2SD =在SAD ∆中,2,2,AD SA SD SA SD ===∴⊥SD ∴⊥平面SAB ,又SD ⊂平面SCD ,所以平面SAB ⊥平面SCD (Ⅱ)连结,BO CO ,SB SC =,Rt SOB Rt SOC ∴∆≅∆,BO CO =,又四边形ABCD 为长方形,,Rt AOB Rt DOC OA OD ∴∆≅∆∴=.取BC 中点为E ,得OE ∥AB ,连结,3SE SE ∴= 其中1OE =,1OA OD ==,2312OS -由以上证明可知,,OS OE AD 互相垂直,不妨以,,OA OE OS 为,,x y z 轴建立空间直角坐标系.1,2OE OS =∴=,()()()0,1,0,1,1,2,2,0,0DC SC BC ∴==--=-,设()111,,m x y z =是平面SCD 的法向量,则有00m DC m SC ⎧⋅=⎨⋅=⎩即1111020y x y z =⎧⎪⎨-+-=⎪⎩,令11z =得()2,0,1m =-设()222,,n x y z =是平面SBC 的法向量,则有00n BC n SC ⎧⋅=⎨⋅=⎩即22222020x x y z -=⎧⎪⎨-+-=⎪⎩ 令11z =得()0,2,1n =. 则11,333m n cosm n m n⋅===⋅ 所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 11.(1)见解析;(2)0.【分析】(1)根据线面垂直的判定定理,先得到BC ⊥平面PCD ,进而可得 BC PD ⊥; (2)根据题意,先得到,,CB CD CP 两两垂直,以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴建立空间直角坐标系,求出两平面,PAB PAD 的法向量,根据向量夹角计算公式,即可求出结果.【详解】(1)证明:PAD △中,因为,B C 分别是,PA PD 的中点,90,PDA ∠=所以//BC AD ,90BCP BCD ∠=∠=,所以多面体PABCD 中, BC PC ⊥,BC CD ⊥, 又PCCD C =,BC ∴⊥平面PCD ;因为PD ⊂平面PCD ,.BC PD ∴⊥(2)依题意可得, 1PC CD ==,直角ADC 中,得5AC =,又6,PA =所以222PA PC AC =+,PC CA ∴⊥, 由(1)知, BC PC ⊥,PC ∴⊥平面.ABCD以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴,建立如图的坐标系.则(1,0,0),(2,1,0),(0,1,0),(0,0,1)B A D P , 得(2,1,1),(1,0,1),(0,1,1).PA PB PD =-=-=-设平面,PAB PAD 的一个法向量分别是(,,),(,,)m x y z n p q r ==,则20,0.m PA x y z m PB x z ⎧⋅=+-=⎨⋅=-=⎩可取(1,1,1)m =-.20,0.n PA p q r n PD q r ⎧⋅=+-=⎨⋅=-=⎩可取(0,1,1)n =. 01cos ,03m n m n m n⋅-<>===⋅⋅. 所以二面角B PA D --的余弦值为0.【点睛】本题主要考查证明线线垂直,以及求二面角的余弦值问题,熟记线面垂直的判定定理及性质,灵活运用向量的方法求解二面角即可,属于常考题型. 12.(1)见解析(2 【分析】(1)利用面面平行的性质定理,可证得线面平行;(2)以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,求出平面1A EC 的一个法向量(1,0,1)u =-,平面1A EB 的一个法向量(1,2,0)v =,求出向量夹角的余弦值,即可得到答案;【详解】(1)在直四棱柱1111ABCD A B C D -中,BE ⊥平面ABCD , ∵CD ⊂平面ABCD ,∴BE CD ⊥∵CD CE ⊥,BE CE E ⋂=,∴CD ⊥平面BCE 同理可证CD ⊥平面1A AD , ∴平面//BCE 平面1A AD ,∵BC ⊂平面BCE ,∴//BC 平面1A AD(2)∵平面//BCE 平面1A AD ,平面1A ECD ⋂平面BCE CE =,平面1A ECD ⋂平面11A AD A D =,∴1A D ∥EC ,∴1A D 和CE 与平面ABCD 所成角相等,即1A B DA EC ∠=∠; ∵BC BE =,∴45ECB ︒∠=,∴13AA AD ==,以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,(0,1,0)C ,(1,1,0)B ,(1,1,1)E ,1(3,0,3)A ,∴(1,0,1)CE =,1(2,1,2)EA =-,(0,0,1)BE =, 设()111,,u x y z =为平面1A EC 的一个法向量,则10u CE u EA ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x z x y z +=⎧⎨-+=⎩, 令11x =,则(1,0,1)u =-设()222,,v x y z =为平面1A EB 的一个法向量,则10v BE v EA ⎧⋅=⎪⎨⋅=⎪⎩,即22220220z x y z =⎧⎨-+=⎩, 令21x =,则(1,2,0)v =, 则110cos ,||||1025u v u v u v ⋅<>===⨯, 由图知,二面角1B A E C --为锐角,则二面角1B A E C --10. 【点睛】本题考查利用面面平行证明线面平行、向量法求二面角的余弦值,考查转化与化归思想,考查空间想象能力、运算求解能力. 13.(1)证明见解析;(2)57042. 【分析】(1)先证明BC ⊥平面SCD ,可得BC DE ⊥,结合DE SC ⊥,即可证得DE ⊥平面SBC ,进而可得DE EF ⊥,即可得出DEF 是直角三角形;(2)以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,根据//SE SC ,设()0,2,4SE tSC t t ==-,利用0DE SC ⋅=求出t 的值,再计算平面DEM 的法向量,平面EMC 的法向量,利用向量夹角公式求夹角余弦值,再计算正弦值即可. 【详解】(1)因为SD ⊥平面ABCD ,BC ⊂平面ABCD ,所以SD BC ⊥, 因为四边形ABCD 是边长为2的正方形,所以CD BC ⊥, 因为SDCD D =,所以BC ⊥平面SCD ,因为DE ⊂平面SCD ,所以BC DE ⊥, 又因为DE SC ⊥,BCSC C =,所以DE ⊥平面SBC ,因为EF ⊂平面SBC ,所以DE EF ⊥,可得90DEF ∠=, 所以DEF 是直角三角形.(2)如图以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,0,4S ,()0,2,0C ,()2,1,0M ,()0,2,4SC =-,因为//SE SC ,设()0,2,4SE tSC t t ==-,所以()()()0,0,40,2,40,2,44DE DS SE t t t t =+=+-=- 因为DE SC ⊥,所以()224440DE SC t t ⋅=⨯--=,解得:45t =, 所以840,,55DE ⎛⎫= ⎪⎝⎭,()84342,1,00,,2,,5555EM DM DE ⎛⎫⎛⎫=-=-=-- ⎪⎪⎝⎭⎝⎭, ()2,1,0MC =-,设平面DEM 的一个法向量为()1111,,x n y z =,由1111118405520n DE y z n DM x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩ 令12y =可得14z =-,11x =-, 所以()11,2,4n =--,设平面EMC 的一个法向量为()2222,,n x y z =, 由222212234205520n EM x y z n MC x y ⎧⋅=--=⎪⎨⎪⋅=-+=⎩令21x =,可得22y =,21z =, 所以()21,2,1n =设二面角D EM C --的平面角为θ,则1212cos 1n n n n θ⋅===+, 因为0θπ≤≤,所以sin θ===, 故二面角D EM C --【点睛】方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 14.(Ⅰ)见证明;(Ⅱ)49(Ⅲ)87【分析】首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF 的方向向量和平面ADE 的法向量的关系即可证明线面平行; (Ⅱ)分别求得直线CE 的方向向量和平面BDE 的法向量,然后求解线面角的正弦值即可; (Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF 长度的方程,解方程可得CF 的长度.【详解】依题意,可以建立以A 为原点,分别以,,AB AD AE 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得()()()()()0,0,0,1,0,0,1,2,0,0,1,0,0,0,2A B C D E .设()0CF h h =>,则()1,2,F h .(Ⅰ)依题意,()1,0,0AB =是平面ADE 的法向量,又()0,2,BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--,设(),,n x y z =为平面BDE 的法向量,则00n BD n BE ⎧⋅=⎨⋅=⎩,即020x y x z -+=⎧⎨-+=⎩,不妨令z =1,可得()2,2,1n =, 因此有4cos ,9||||CE n CE n CE n ⋅〈〉==-. 所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)设(),,m x y z =为平面BDF 的法向量,则00m BD m BF ⎧⋅=⎨⋅=⎩,即020x y y hz -+=⎧⎨+=⎩. 不妨令y =1,可得21,1,m h ⎛⎫=- ⎪⎝⎭.由题意,有2241cos ,3432m nhm n m n h -⋅===⨯+,解得87h =. 经检验,符合题意。所以,线段CF 的长为87. 【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力. 15.(1)见解析,(2)17-【分析】(1)连接BD 交AC 于O ,连接PO ,则有AC BD ⊥,O 为BD 的中点,再由PB PD =可得BD PO ⊥,由线面垂直的判定定理可证得结论;(2)由(1)可知,平面PAC ⊥平面ABCD ,两平面的交线为AC ,所以过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,从而可知平面30PAC ∠=︒,若设PC =2,由可把其它边求出来,然后以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用空间向量求解二面角B PC D --的余弦值.【详解】(1)证明:连接BD 交AC 于O ,连接PO ,因为四边形ABCD 为正方形,所以AC BD ⊥,O 为BD 的中点,因为PB PD =,所以BD PO ⊥,因为AC PO O =,所以BD ⊥平面PAC ;(2)解:因为BD ⊥平面PAC ,BD 在平面ABCD 内,所以平面PAC ⊥平面ABCD ,过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,所以PAC ∠为PA 与底面ABCD 所成的角,即30PAC ∠=︒,设PC =2,因为PA PC ⊥,所以23,3,3,4,22PA PE AE AC AD =====, 如图,以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系, 则3232(0,0,0),(22,0,0),(22,22,0),(0,22,0),(,,3)22A B C D P , 22(0,22,0),(,,3)(22,0,0)22BC CP DC ==--=,, 设平面PBC 法向量为(,,)n x y z =,则220223022n BC y n CP x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1z =,则(6,0,1)n =, 设平面PDC 的法向量为(,,)m a b c =,则220223022n DC a n CP a b c ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1c =,则(0,6,1)m =, 所以11cos ,777m nm n m n ⋅===⨯, 由图可知二面角B PC D --的平面角为钝角,所以二面角B PC D --的余弦值为17-【点睛】此题考查线面垂直的证明,考查二面欠余弦值的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,属于中档题.16.(1)证明见解析(2159【分析】(1)利用线段长度得到AM 与,AB AD 间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵2AB AM AD ===,22MB MD ==,∴222AM AD MD +=,222AM AB MB +=∴AM AD ⊥,AM AB ⊥ ∵AB AD A ⋂=,AD ⊂平面ABCD ,∴AM ⊥平面ABCD (2)由(1)知AB AD ⊥,AM AD ⊥,AM AB ⊥又A 为坐标原点,分别以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,0,0A ,()0,2,0M ,()2,0,0D ,()0,0,2B ,()2,0,1C ,()2,0,2BD =-,()2,2,0DM =-,∵2BE EB =,∴420,,33E ⎛⎫ ⎪⎝⎭,412,,33CE ⎛⎫=-- ⎪⎝⎭ 设(),,n x y z =是平面BDM 的一个法向量则00n BD n DM ⎧⋅=⎨⋅=⎩,即220220x z x y -=⎡⎢-+=⎣,取1x =得()1,1,1n = ∴41215933cos ,53||||5333CE CE CE n n n -+-⋅〈〉===⋅⨯∴直线EC 与平面BDM 所成的正弦值为15953 【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值. 17. (Ⅰ)93;(Ⅱ)证明见解析;(Ⅲ)存在,13.【分析】(I )在Rt ADE △中,22AE AD DE =-,可得12ADE S AE DE =⋅,由于CD ⊥平面ADE ,可得13C ADE ADE V CD S -=⋅;(II )由CD ⊥平面ADE ,可得CD AE ⊥,进而得到AE ⊥平面CDE ,即可证明平面ACE ⊥平面CDE ;(III )在线段DE 上存在一点F ,使AF 平面BCE ,13EF ED =.设F 为线段DE 上的一点,且13EF ED =,过F 作FM CD 交CE 于点M ,由线面垂直的性质可得:CDAB .可得四边形ABMF 是平行四边形,于是AF BM ,即可证明AF 平面BCE【详解】(I )在Rt △ADE 中,2233AE AD DE =-=,因为CD ⊥平面ADE , 所以棱锥C-ADE 的体积为1193332C ADE ADE AE DE V S CD CD -∆⋅=⋅=⋅⋅=. (II )因为CD ⊥平面ADE ,AE ⊂平面ADE ,所以CD AE ⊥.又因为AE DE ⊥,CD DE D ⋂=,所以AE ⊥平面CDE ,又因为AE ⊂平面ACE ,所以平面ACE ⊥平面CDE.(III )在线段DE 上存在一点F ,且13EF ED =,使AF 平面BCE .解:设F 为线段DE 上一点,且13EF ED =,过点F 作//FM CD 交CE 于M ,则13FM CD =. 因为CD ⊥平面ADE ,AB ⊥平面ADE ,所以//CD AB ,又因为3CD AB = 所以MF AB =,//FM AB ,所以四边形ABMF 是平行四边形,则//AF BM . 又因为AF ⊄平面BCE ,BM ⊂平面BCE ,所以//AF 平面BCE .18.(1)证明见解析;(2)65.【分析】(1)连接1OA ,OC ,结合勾股定理和等边三角形的性质,证得1OA OC ⊥和OC DE ⊥,利用线面垂直的判定定理,得到OC ⊥平面1A DE ,再由面面垂直的判定定理,即可证得平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,分别求得平面1A BE 和平面1A CD 的一个法向量,结合向量的夹角公式,即可求解.【详解】(1)由题意,四边形BCDE 为菱形,连接CE ,取DE 的中点O ,连接1OA ,OC ,如图所示,在ADE 中,60AED ABC ∠=∠=︒,且2DE =,1AE =,可得,AD =则222DE AE AD =+,则90EAD ∠=︒,即AD AE ⊥,即11A D A E ⊥.因为O 是DE 的中点,所以1112OA DE ==, 因为60CDE ABC ∠=∠=︒,所以CDE ∆为等边三角形,所以OC DE ⊥,且OC =所以22211A C OA OC =+,所以190A OC ∠=︒,即1OA OC ⊥.又因为OC DE ⊥,且1OA DE O ⋂=,所以OC ⊥平面1A DE ,又因为OC ⊂平面BCD ,所以平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,则(0,1,0)D ,(0,1,0)E -,(3,0,0)C ,(3,2,0)B -,1130,,22A ⎛⎫- ⎪ ⎪⎝⎭, 设平面1A BE 的法向量为(,,)m x y z =,则13013022m BE x y m EA y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1z =,可得(1,3,1)m =--, 设平面1A CD 的法向量为(),,n x y z '''=,则13033022n CD x y n DA y z ⎧⋅=-+=⎪⎨⋅'''=-+=⎪⎩',令1x '=,得(1,3,3)n =. 因为13365cos ,65||||513m n m n m n ⋅--+〈〉===-⨯. 所以平面1A BE 与平面1A CD 所成锐二面角的余弦值为6565.19.(1)证明见解析;(2387.【分析】(1)连接BD 交AC 于O ,连接OE ,可证1//OE BD ,从而得线面平行;(2)取AD 中点M ,连接1MA ,MC ,由已知证明1A M ⊥平面ABCD ,MC AD ⊥,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =,得出各点坐标,求出平面AEC 的法向量n ,由法向量n 与1A D 的夹角的余弦值的绝对值等于直线1A D 与平面AEC 所成有的正弦可得.【详解】(1)连接BD 交AC 于O ,连接OE ,∵ABCD 是菱形,∴O 是BD 中点,又E 是1DD 中点,∴1//OE BD ,1BD ⊄平面AEC ,OE ⊂平面AEC ,∴1//BD 平面ACE ;(2)取AD 中点M ,连接1MA ,MC ,∵11AA A D =,∴1A M AD ⊥,又平面11A ADD ⊥平面ABCD ,平面11A ADD 平面ABCD AD =,∴1A M ⊥平面ABCD ,又菱形ABCD 中,60ABC ∠=︒,所以ABC 和ACD △都是等边三角形,所以MC AD ⊥,如图,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =, 则3MC =,222211213A M A A AM =-=-=∴(0,1,0)A -,(0,1,0)D ,3,0,0)C ,13)A ,13)D ,33(0,,22E , ∴1(0,1,3)A D =-,(3,1,0)AC =,53(0,,22AE =, 设(,,)n x y z =是平面ACE 的一个法向量,则 305302n AC x y n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则3y =5z =,(1,3,5)n =-, 设直线1A D 与平面ACE 所成角为θ, 则111353387sin cos ,29292n A Dn A D n A D θ⋅--=<>===⨯.【点睛】本题考查证明线面平行,考查用空间向量法求线面角.求空间角的常用方法是空间向量法,在题中有垂直的情况下,常常取过同一点且两两垂直的三条直线为坐标轴建立空间直角坐标系,用空间向量法求空间角,考查了学生的运算求解能力.20.(1)证明见解析;(225;(3)23CQ CP =.【分析】(1)建立适当的空间直角坐标系,确定各点坐标,得到0DE AC ⋅=,0DE AP ⋅=,根据线面垂直的判定定理,即可证明.(2)由(1)可知,平面PAC 的法向量(2,1,0)m =-,确定平面PCD 的法向量(2,2,1)n =-,根据cos ,||||m n m n m n ⋅〈〉=⋅,求解即可. (3)设(01)CQ CPλλ=<<,确定(22,44,4)Q λλλ=--,(2,43,4)QE λλλ=--,根据直线QE 与平面PAC 5,求解λ,即可. 【详解】(1)因为PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD所以PA AB ⊥,PA AD ⊥因为AB AD ⊥ 则以A 为坐标原点,建立如图所示的空间直角坐标系.由已知可得(0,0,0)A ,()2,0,0B ,(2,4,0)C ,(0,2,0)D ,(0,0,4)P ,(2,1,0)E . 所以(2,1,0)DE =-,(2,4,0)AC =,(0,0,4)AP =.因为221400DE AC ⋅=⨯-⨯+=,0DE AP ⋅=.所以DE AC ⊥,DE AP ⊥又AP AC A ⋂=,AP ⊂平面PAC ,AC ⊂平面PAC .所以DE ⊥平面PAC .(2)设平面PAC 的法向量m ,由(1)可知,(2,1,0)m DE ==-设平面PCD 的法向量(,,)n x y z =因为(0,2,4)PD =-,(2,4,4)PC =-.所以00n PD n PC ⎧⋅=⎨⋅=⎩,即2402440y z x y z -=⎧⎨+-=⎩ 不妨设1z =,得(2,2,1)n =-. 2222225cos ,||||2(1)(2)21m n m n m n ⋅⨯〈〉===⋅+-⨯-++ 所以二面角A PC D --25. (3)设(01)CQ CPλλ=<<,即(2,4,4)CQ CP λλλλ==--. 所以(22,44,4)Q λλλ=--,即(2,43,4)QE λλλ=--.因为直线QE 与平面PAC 5所以2||cos ,5||||2QE m QE m QE m ⋅〈〉===⋅+∣3=解得23λ=即23CQ CP =. 【点睛】本题考查空间向量在立体几何中的应用,考查综合分析求解与论证能力,属于较难题. 21.(1)证明见解析(2)11【分析】(1)通过证明BE ⊥平面APC ,得到BE PO ⊥,再证PO AC ⊥即可证得PO ⊥平面ABCD . (2)建立空间直角坐标系,求出平面的法向量、直线的方向向量,利用空间向量法求出线面角的正弦值.【详解】(1)证明:AP ⊥平面PCD ,CD ⊂平面PCD ,AP CD ∴⊥, //,AD BC 12BC AD =,E 为AD 的中点,则//BC DE 且BC DE =. ∴四边形BCDE 为平行四边形,//BE CD ∴,AP BE ∴⊥.又,AB BC ⊥12AB BC AD ==,且E 为AD 的中点,∴四边形ABCE 为正方形,BE AC ∴⊥,又,AP AC A =BE ∴⊥平面APC ,PO ⊂平面APC ,则BE PO ⊥.AP ⊥平面,PCD PC ⊂平面PCD ,AP PC ∴⊥,又AC ==,PAC ∴∆为等腰直角三角形,O 为斜边AC 上的中点,PO AC ∴⊥且,ACBE O =PO ∴⊥平面ABCD . (2)解:以O 为坐标原点,建立空间直角坐标系O -xyz ,如图所示不妨设1OB =,则(1,0,0),B (0,1,0),C (0,0,1),P (2,1,0)D -,则(1,1,0),BC =-(1,0,1),PB =-(2,1,1)PD =--.设平面PBD 的法向量为(,,)n x y z =,则00n PB n PD ⎧⋅=⎨⋅=⎩,,即0,20,x z x y z -=⎧⎨-+-=⎩即,3,x z y z =⎧⎨=⎩ 令1z =,得(1,3,1)n =.设BC 与平面PBD 所成角为θ, 则()2222211310122sin cos ,13111BC n θ-⨯+⨯+⨯=<>==++-+【点睛】本题考查线面垂直,线面角的计算,属于中档题. 22.(1)证明见解析;(2)14.【分析】(1)取AD 中点E ,连接PE 、BE 、BD ,由平面几何的知识可得AD PE ⊥、AD BE ⊥,由线面垂直的判定可得AD ⊥平面PBE ,再由线面垂直的性质即可得证; (2)由题意建立空间直角坐标系,求出所需点的坐标后,再求出33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭、平面ADP 的一个法向量为n ,由sin cos ,n BC α=即可得解.【详解】(1)证明:取AD 中点E ,连接PE 、BE 、BD ,如图:ADP △是等腰直角三角形,且2AP DP ==,∴AD PE ⊥且2AD =,2AB =且60BAD ∠=,∴ABD △是等边三角形,∴AD BE ⊥,又BE PE E ⋂=,∴AD ⊥平面PBE , BP ⊂平面PBE ,∴AD BP ⊥;(2)AE ⊥平面PBE ,以E 为坐标原点,分别以AE ,BE 为x 轴、y 轴,过点E 与平面ABCD 垂直的方向为z 轴建立空间直角坐标系E-xyz 如图所示:则()()()()0,0,0,1,0,0,3,0,1,0,0E A B D -,()213,0AB DC =-=,∴33(,22C -, 1PE =,3EB =7BP =∴2223cos 22PE EB BP PEB PE EB +-∠==-⋅,∴150PEB ∠=,∴310,,22P ⎛⎫- ⎪ ⎪⎝⎭, 则33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭,()2,0,0AD =-,311,22AP ⎛⎫=-- ⎪⎝⎭, 设平面ADP 的一个法向量为(,,)n x y z =,则20102n AD x n AP x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩,取y =(0,3,3)n =, 设直线BC 与平面ADP 所成角为α, 则1sin cos ,43n BCn BC n BC α⋅====⋅. 【点睛】本题考查了线面垂直的判定与性质、利用空间向量求线面角的应用,考查了空间思维能力与运算求解能力,属于中档题.。
全国各地市历年高考立体几何题汇编(含参考答案)
全国各地市历年高考立体几何题汇编(含参考答案)(一)2018年高考立体几何题1.(北京理16)如图,在三棱柱ABC -111A B C 中,1CC 平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角B-CD -C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.2.(浙江-19)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.3.(课标III 理-19)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面; (2)当三棱锥体积最大时, 求面与面所成二面角的正弦值.4.(课标II 理-20)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.ABCD CD M CD C D AM D ⊥BMC M ABC -MABMCD5.(课标I理-18)如图,四边形ABCD为正方形,,E F分别为,AD BC的中点,以DF为折痕把DFC△折起,使点C到达点P的位置,且PF BF⊥.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(二)2017年高考立体几何题1.(课标III理-19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.2.(课标II 理-19)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.3.(课标I 理-18)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.(三)2016年高考立体几何题 1.(课标III 理-19)如图,四棱锥中,地面,,,,为线段上一点,,为的中点.(I )证明平面;(II )求直线与平面所成角的正弦值.2.(课标II 理-19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF'的位置OD '=(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. P ABC -PA ⊥ABCD AD BC 3AB AD AC ===4PA BC ==M AD 2AM MD =N PC MN PAB ANPMN3.(课标I 理-19)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E -BC -A 的余弦值.(四)2015年高考立体几何题 1.(课标II 理-19)如图,长方体1111ABCD A BC D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.DD 1 C 1A 1EF ABCB 1参考答案(一)2018年高考立体几何题1.(北京理16)如图,在三棱柱ABC -111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BCAC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角B-CD -C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交. 1.解析:(Ⅰ)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF . ∵AB =BC ,∴AC ⊥BE ,∴AC ⊥平面BEF . (Ⅱ)由(I )知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐称系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴=(201)=(120)CD CB u u u r u u r,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uur n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB u u r ,,,∴cos =||||EB EB EB ⋅<⋅>=uu ruu r uu r n n n . 由图可得二面角B -CD -C 为钝角,所以二面角B -CD -C的余弦值为.(Ⅲ)平面BCD 的法向量为(214)=--,,n ,∵G (0,2,1),F (0,0,2),∴=(021)GF -u u u r ,,,∴2GF ⋅=-uu u r n ,∴n 与GF uuu r不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交.2.(浙江-19)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值. 2.解析:方法一:(Ⅰ)由得,所以.故.由,得, 由得由,得,故. 因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面, 由得平面, 所以是与平面所成的角. 由, 所以,故. 因此,直线与平面. 方法二:(Ⅰ)如图,以AC的中点O 为原点,分别以射线OB ,11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥111AB AB ==2221111A B AB AA +=111AB A B ⊥2BC =112,1,BB CC ==11,BB BC CC BC ⊥⊥11B C =2,120AB BC ABC ==∠=︒AC =1CC AC ⊥1AC 2221111AB BC AC +=111ABB C ⊥1AB ⊥111A B C 1C 111C D A B ⊥11A B D AD 1AB ⊥111A B C 111A B C ⊥1ABB 111C D A B ⊥1C D ⊥1ABB 1C AD ∠1AC 1ABB 111111BC AB AC ==111111cos C A B C A B ∠=∠=1C D 111sin C D C AD AC ∠==1AC 1ABBOC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz . 由题意知各点坐标如下:因此 由得.由得. 所以平面. (Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知 设平面的法向量.由即可取.所以. 因此,直线与平面. 3.(课标III 理-19)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时, 求面与面所成二面角的正弦值.3.解析:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .又 BC CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .111(0,(1,0,0),(0,(1,0,2),),A B A B C 111112),3),AB A B AC ==-=-uuu r uuu u r uuu u r 1110AB A B ⋅=uuu r uuu u r 111AB A B ⊥1110AB AC ⋅=uuu r uuu u r111AB AC ⊥1AB ⊥111A B C 1AC 1ABB θ11(0,0,2),AC AB BB ===uuu r uu u r uuu r1ABB (,,)x y z =n 10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n 0,20,x z ⎧=⎪⎨=⎪⎩(,0)=n 111|sin |cos ,||||AC AC AC θ⋅===⋅uuu r uuu r uuu r n |n n |1AC 1ABB ABCD CD M CD C D AM D ⊥BMC M ABC -MAB MCD ⊂CD ⊂DA当三棱锥M −ABC 体积最大时,M 为的中点.由题设得,设是平面MAB 的法向量,则即可取.是平面MCD 的法向量,因此,,所以面MAB 与面MCD 所成二面角的正弦值是. 4.(课标II 理-20)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.4.解:(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥. 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),23),(0,2,O B A C P AP -=u u u r取平面PAC 的法向量(2,0,0)OB =u u u r.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-u u u r. CD (0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M (2,1,1),(0,2,0),(2,0,0)AM AB DA =-==(,,)x y z =n 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 20,20.x y z y -++=⎧⎨=⎩(1,0,2)=n DA 5cos ,5||||DA DA DA ⋅==n nn 2sin ,DA =n5由0,0AP AM ⋅=⋅=u u u r u u u r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn由已知得|cos ,|OB =uu u r n .解得4a =-(舍去),43a =.所以4()3=-n .又(0,2,PC =-u u u r,所以cos ,PC =uu u r n 所以PC 与平面PAM5.(课标I 理-18)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.5.解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H −xyz . 由(1)可得,DE ⊥PE .又DP =2,DE =1, 所以PE=.又PF =1,EF =2,故PE ⊥PF . 可得32PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --=HP =为平面ABFD 的法向量. 设DP 与平面ABFD 所成角为θ,则34sin ||||||3HP DP HP DP θ⋅===⋅所以DP 与平面ABFD所成角的正弦值为(二)2017年高考立体几何题 1.(课标III 理-19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.1.【解析】(1)由题设可得,ABD CBD △≌△,从而AD DC =. 又ACD △是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC △是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB △中,222BO AO AB +=.又AB BD =,所以2222BO DO BO AO AB BD 22+=+==,故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O x y z -.则()()()()1,0,0,,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12, 从而E 到平面ABC 的距离为D 到平面ABC 的距离的12, 即E 为DB的中点,得12E ⎛⎫ ⎪ ⎪⎝⎭. 故()()11,0,1,2,0,0,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭.设()=x,y,z n 是平面DAE 的法向量,则00AD AE ⎧⋅=⎪⎨⋅=⎪⎩,,n n即0,10.2x z x y z -+=⎧⎪⎨-+=⎪⎩ 可取⎛⎫= ⎪ ⎪⎝⎭n .设m 是平面AEC 的法向量,则00AC AE ⎧⋅=⎪⎨⋅=⎪⎩,,m m同理可取(0,=-m .则cos ,⋅==n m n m n m .所以二面角D -AE -C. 2.(课标II 理-19)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.2.解析:(1)取PA 中点F ,连结EF ,BF . 因为E 为PD 的中点,所以EF AD , 12EF AD =,由90BAD ABC ∠=∠=︒得//BC AD , 又12BC AD =所以//EF BC .四边形BCEF 为平行四边形, //CE BF . 又BF PAB ⊂平面, CE PAB ⊄平面,故//CE PAB 平面(2)由已知得BA AD ⊥,以A 为坐标原点, AB 的方向为x 轴正方向, AB 为单位长,建立如图所示的空间直角坐标系A-xyz ,则则()000A ,,, ()100B ,,, ()110C ,,,(01P ,(10PC =,,()100AB =,,,则 ()(1,1BM x y z PM x y z =-=-,,,,因为BM 与底面ABCD 所成的角为45°,而()001n =,,是底面ABCD 的法向量,所以0cos , sin45BM n =,=即(x-1)²+y ²-z ²=0又M 在棱PC 上,学|科网设,PM PC λ=则x ,1,y z λ==由①,②得()y=1 y=1 z z ⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪==⎪⎪⎩⎩舍去,所以M ⎛ ⎝⎭,从而AM ⎛= ⎝⎭设()000x ,y ,z m =是平面ABM的法向量,则(0000x 2y 0·AM 0 ·AB 0x 0m m ⎧+=⎧=⎪⎨⎨==⎩⎪⎩即所以可取m =(0,2).于是·10,5m n cosm n m n == 因此二面角M-AB-D的余弦值为3.(课标I 理-18)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.3.【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得(2A,(0,0,2P,(2B,(2C -.所以(PC =-,(2,0,0)CB =,2(PA =,(0,1,0)AB =.设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0,y z ⎧+=⎪⎨=可取(0,1,=-n . 设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0,220.x z y -=⎪⎨⎪=⎩可取(1,0,1)=m . 则cos ,||||⋅==<>n m n m n m ,所以二面角A PBC --的余弦值为(三)2016年高考立体几何题1.(课标III 理-19)如图,四棱锥中,地面,,,,为线段上一点,,为的中点.(I )证明//MN 平面;(II )求直线与平面所成角的正弦值. 1.解析:(Ⅰ)由已知得223AM AD ==. 取BP 的中点T ,连接,AT TN ,由N 为PC 中点知//TN BC ,122TN BC ==. 又//AD BC ,故,//TN AM TN AM =,四边形AMNT 为平行四边形,于是//MN AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面.(Ⅱ)取BC 的中点E ,连结AE .由AB BC =得AE BC ⊥,从而AE AD ⊥,且.以A 为坐标原点, AE 的方向为轴正方向,建立如图所示的空间直角坐标系A xyz -.由题意知,P ABC -PA ⊥ABCD AD BC 3AB AD AC ===4PA BC ==M AD 2AMMD =N PC PAB AN PMN PAB,,,5(,1,2)N,()0,2,4PM =-, 52PN ⎛⎫=- ⎪⎪⎝⎭, 52AN ⎛⎫= ⎪⎪⎝⎭.设(),,n x y z =为平面PMN 的一个法向量,则0, 0,n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩即240, 20,y z x y z -=⎧+-=可取()0,2,1n =. 于是85cos ,25n AN n AN n AN⋅〈〉==. 2.(课标II 理-19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF'的位置OD '=(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. 2.【解析】⑴证明:∵54AE CF ==,∴A E C FA D C D=,∴E F A C ∥.∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥,∴EF D H ⊥,∴EF DH'⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥, ∴4OB =,∴1AEOH OD AO=⋅=, ∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD .⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,.同理可得面'AD C 的法向量()2301n =u u r ,,,∴1212cos n n n n θ⋅=u r u u ru r u u r∴sin θ= 3.(课标I 理-19)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E -BC -A 的余弦值.3.【解析】试题分析:(Ⅰ)证明AF ⊥平面FDC E ,结合AF ⊂平面ABEF ,可得平面ABEF ⊥平面EFDC .(Ⅱ)建立空间坐标系,利用向量求解. 试题解析:(Ⅰ)由已知可得AF DF ⊥, AF FE ⊥,所以AF ⊥平面EFDC . 又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(Ⅱ)过D 作DG EF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ABEF .以G 为坐标原点, GF 的方向为x 轴正方向, GF 为单位长,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=,则2DF =, 3DG =,可得()1,4,0A , ()3,4,0B -, ()3,0,0E -,(D . 由已知, //AB EF ,所以//AB 平面EFDC .又平面ABCD ⋂平面EFDC DC =,故//AB CD , //CD EF .由//BE AF ,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,60CEF ∠=.从而可得(C -.所以(EC =, ()0,4,0EB =,(3,AC =--, ()4,0,0AB =-. 设(),,n x y z =是平面BCE 的法向量,则n EC n EB ⎧⋅=⎪⎨⋅=⎪⎩,即0 40x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,n =.设m 是平面ABCD 的法向量,则0m C m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,n m n m n m ⋅〈〉==-. 故二面角E BC A --的余弦值为. (四)2015年高考立体几何题1.(课标II 理-19)如图,长方体1111ABCD A BC D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值. 1.【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14A M A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH =,所以10AH =.以D 为坐标原点,DA 的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-.设(,,)n x y z =是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =.又(10,4,8)AF =-,故45cos ,15n AF n AF n AF⋅<>==⋅.所以直线AF 与平面α所成角的正弦值为15. 考点:1、直线和平面平行的性质;2、直线和平面所成的角.DD 1C 1A 1EFABCB 1。
高中数学立体几何小题100题(含答案与解析)
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。
专题05 立体几何专项高考真题总汇(带答案与解析)
专题05立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是()A .32B .3C.2D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为12=,故1111131222ABCD A B C D V -=⨯+⨯⨯=,故选:A.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为()A .332+B .4C .33D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【解析】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213333112242+⨯⨯⨯+⨯=,故选:A.3.【2021·浙江高考真题】如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.【2021·全国高考真题(理)】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .212B .312C .24D .34【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.【2021·全国高考真题(理)】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B.C .4D.【答案】B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l =.故选:B.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【解析】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.8.【2021·全国高考真题】在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-由题意得212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去).故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.12.【2020年高考全国II 卷理数】已知△ABC 是面积为934O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A 3B .32C .1D .32【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=⨯-,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A .2B .4+42C .3D .4+23【答案】C 【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考天津】若棱长为为A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12+D .12+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.17.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A 【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.18.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 【答案】D【解析】解法一:,PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==364466,π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,221221222x x x ∴+=∴==,,,PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,62R ∴=,34466338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.22.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.24.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PB αβ===<=,即αβ>;在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r =,其体积:34233V r =π=π.故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯⨯,圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,为半径的球面与侧面BCC 1B 1的交线长为________.【答案】22π.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B = ,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,所以||EP ===,所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得 22FGπ==.故答案为:22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.32.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.33.【2019年高考天津卷理数】2的正方形,5若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,的正方形,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.34.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是▲.【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴=1.。
高考模拟题分类复习 立体几何 (附答案).
12008年东莞市高三理科数学专题练习——立体几何东莞实验中学龚建兵1、已知一几何体的三视图如图1,主视图与左视图为全等的等腰直角三角形,直角边长为6,俯视图为正方形,(1)求点A 到面SBC 的距离;(2)有一个小正四棱柱内接于这个几何体,棱柱底面在面ABCD 内,其余顶点在几何体的棱上,当棱柱的底面边长与高取何值时,棱柱的体积最大,并求出这个最大值。
2、(08东北师大附中)如图,在直角梯形P 1DCB 中,P 1D ∥CB ,CD ⊥P 1D ,P 1D =6,BC =3,DC=6,A 是P 1D 的中点,E 是线段AB 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置,使二面角P -CD -B 成45°角.(Ⅰ)求证:PA ⊥平面ABCD ;(Ⅱ)求平面PEC 和平面PAD 所成的锐二面角的大小.CBAB D主视左视俯视图1A CP EAD23、(08滨州市)已知四棱锥P A B C D -的三视图及直观图如下图,其中俯视图为正方形,点E 为棱AD 的中点,(1)在棱PC 上是否存在一点F ,使得⊥EF 平面PBC ?若存在,求线段EF 的长度;若不存在,说明理由;(2)求二面角D PC E --的大小。
4、(08华师)如图,四棱锥P —ABCD 中,PB ⊥底面ABCD ,CD ⊥PD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB=AD=PB=3,点E 在棱PA上,且PE=2EA。
(1)求异面直线PA 与CD 所成的角;(2)求证:PC//平面EBD ;(3)求二面角A —BE —D 的余弦值。
5、(泰州市)如图为正方体ABCD-A 1B 1C 1D 1切去一个三棱锥B 1—A 1BC 1后得到的几何体.(1)画出该几何体的正视图;(2)若点O 为底面ABCD 的中心,求证:直线D 1O ∥平面A 1BC 1;(3).求证:平面A 1BC 1⊥平面BD 1D .D 正视图侧视图俯视图36、如图6所示,等腰A B C △的底边AB =3C D =,点E 是线段B D 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿E F 将B E F △折起到P E F △的位置,使PE AE ⊥,记B E x =,( V x 表示四棱锥P A C FE -的体积.(1)求( V x 的表达式;(2)当x 为何值时,( V x 取得最大值?(3)当( V x 取得最大值时,求异面直线A C 与P F 所成角的余弦值.7、如图,在三棱锥V A B C -中,VC ABC ⊥底面,AC BC ⊥,D 是A B 的中点,且A CBC a ==,π02VD C θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面V A B ⊥平面V C D ;(II )试确定角θ的值,使得直线B C 与平面V A B 所成的角为π6.8、如图,在棱长为1的正方体1111ABC D A B C D -中, P 是侧棱1C C 上的一点,C P m =。
专题06 立体几何专项高考真题总汇(带答案与解析)
专题06立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)6【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥ME 则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.【答案】(1)证明见解析;(2)156.【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠= ,由余弦定理可得DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DMD ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD,因为AM =,所以PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(2,0),(0,0,A P D,(0,0,0),1,0)M C -又N 为PC中点,所以31335,,,2222N AN ⎛⎛-=- ⎝⎝ .由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM所成角的正弦值为5||2sin 6||AN n AN n θ⋅===‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案.【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥,又1BB BF B ⋂=,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-= ,所以BF DE ⊥.(2)设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅===⋅ .当12a =时,2224a a -+取最小值为272,此时cos θ63=.所以()min3sin 3θ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(12;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+= ,解得22a =,故2BC a ==;(2)设平面PAM 的法向量为()111,,m x y z = ,则2,1,02AM ⎛⎫=- ⎪ ⎪⎝⎭,()AP = ,由111102m AM x y mAP z ⎧⋅=-+=⎪⎨⎪⋅=+=⎩,取1x =,可得)2m = ,设平面PBM 的法向量为()222,,n x y z = ,2,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =- ,由2222202n BM x nBP y z ⎧⋅=-=⎪⎨⎪⋅=-+=⎩ ,取21y =,可得()0,1,1n =r,314cos ,14m n m n m n⋅<>==⋅,所以,70sin ,14m n <>==,因此,二面角A PM B --的正弦值为14.【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --的余弦值为53,求111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =.【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C ,由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD ,从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF ,据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合,即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤,则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-,设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩,令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:5,m n m n ⋅===则:,5cos 3m n m n m n ⋅===⨯ ,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===.因此222PA PB AB +=,从而PA PB ⊥.又222PA PC AC +=,故PA PC ⊥.所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,,0),(0,0,222E A C P --.所以312(,,0),(0,1,222EC EP =--=- .设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(3=-m .由(1)知2(0,1,2AP = 是平面PCB 的一个法向量,记AP = n ,则25cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为255.【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3连接NP ,则四边形AONP 为平行四边形,故23231(,0)333PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a ,则22123234()(4())33NQ a B a a =----,故21123223210(,,4()|3333B E a a B E =-----=.又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅ n n |n |所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c = ,11(0,,)3C F b c = ,得1EA C F = .因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内.(2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =-- ,1(0,1,2)A E =- ,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n .设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C ,所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C = 所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥.(Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ====BD OH ==所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC 所成角的正弦值为33.方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M = ,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA = 是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =- .设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||6cos ,6|A CA C CA ⋅〈〉==n n n ,于是30sin ,6CA 〈〉= n .所以,二面角1B B E D --的正弦值为306.(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33.12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A−MA 1−N 的正弦值.【答案】(1)见解析;(2)105.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1= DC ,可得B 1C = A 1D ,故ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =- ,1(3,2)A M =--,1(1,0,2)A N =-- ,(0,3,0)MN =-.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取(3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧-=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉==⨯‖m n m n m n ,所以二面角1A MA N --的正弦值为105.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2)32.【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB = ,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩所以可取m =(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2.【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B−CG−A 的大小.【答案】(1)见解析;(2)30 .【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH以H 为坐标原点,HC的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz,则A (–1,1,0),C (1,0,0),G (2,0),CG =(1,0AC=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩所以可取n =(3,6,).又平面BCGE 的法向量可取为m =(0,1,0),所以3cos ,||||2⋅〈〉==n m n m n m .因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13 PFPC=.(1)求证:CD⊥平面PAD;(2)求二面角F–AE–P的余弦值;(3)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.【答案】(1)见解析;(2)33;(3)见解析.【解析】(1)因为PA⊥平面ABCD,所以PA⊥CD.又因为AD⊥CD,所以CD⊥平面PAD.(2)过A作AD的垂线交BC于点M.因为PA⊥平面ABCD,所以PA⊥AM,PA⊥AD.如图建立空间直角坐标系A−xyz,则A(0,0,0),B(2,-1,0),C(2,2,0),D(0,2,0),P(0,0,2).因为E为PD的中点,所以E(0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP==-=.所以1222224,,,,,3333333PF PC AF AP PF⎛⎫⎛⎫==-=+=⎪ ⎪⎝⎭⎝⎭.设平面AEF的法向量为n=(x,y,z),则0,0,AEAF⎧⋅=⎪⎨⋅=⎪⎩nn即0,2240.333y zx y z+=⎧⎪⎨++=⎪⎩令z=1,则1,1y x=-=-.于是=(1,1,1)--n.又因为平面PAD的法向量为p=(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p .由题知,二面角F −AE −P为锐角,所以其余弦值为3.(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭.由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++= n .所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87.【解析】依题意,可以建立以A 为原点,分别以AB AD AE,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB = 是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有224||1cos ,||||3432h h -⋅〈〉==+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为8 7.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E 3EG 3由于O 为A 1G 的中点,故11522A G EO OG ===,所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,),B,1,0),1B,33,,22F ,C (0,2,0).因此,33(,,22EF =,(BC = .由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(10)=(02BC A C -,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n,得0y y ⎧+=⎪⎨=⎪⎩,取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35.【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。
【2022高考必备】2012-2021十年全国高考数学真题分类汇编 立体几何小题(精解精析)
一、选择题
1.(2021年高考全国乙卷理科)在正方体 中,P为 中点,则直线 与 所成的角为( )
A. B. C. D.
【答案】D
解析:
如图,连接 ,因为 ∥ ,
所以 或其补角为直线 与 所成的角,
因为 平面 ,所以 ,又 , ,
【点睛】
本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.
5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A. B. C. D.
【答案】C
【命题意图】本题考查立体几何中的异面直线角度的求解,意在考查考生的空间想象能力
【解析】解法一:常规解法
在边 ﹑ ﹑ ﹑ 上分别取中点 ﹑
﹑ ﹑ ,并相互连接.
由三角形中位线定理和平行线平移功能,异面
直线 和 所成的夹角为 或其补角,
通过几何关系求得 , ,
,利用余弦定理可求得异面直线
异面直线 和 所成的夹角余弦值为 .
【知识拓展】立体几何位置关系中角度问题一直是理科的热点问题,也是高频考点,证明的方
法大体有两个方向:1.几何法;2.建系;几何法步骤简洁,但不易想到;建系容易想到,但计算
量偏大,平时复习应注意各方法优势和不足,做到胸有成竹,方能事半功倍.
20.(2017年高考数学课标Ⅱ卷理科)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
立体几何十年高考题(带详细解析)
D.若 a⊥M,a∥N,则 M⊥N
3.(2002 北京春,2)已知三条直线 m、n、l,三个平面α、β、γ.下面四个命题中,
正确的是( )
α ⊥γ ⎫
A.
β
⊥γ
⎬ ⎭
⇒ α∥β
m // β ⎫
B.
l
⊥
m
⎬ ⎭
⇒
l⊥β
m //γ ⎫
m ⊥γ⎫
C.
n // γ
⎬ ⇒ m∥n ⎭
D.
n ⊥γ
⎬ ⇒ m∥n ⎭
A.1∶3
B.2∶3
C.1∶2
D.2∶9
20.(2000 全国,3)一个长方体共一顶点的三个面的面积分别是 2 , 3, 6 ,这个长
方体对角线的长是( )
A.2 3
B.3 2
C.6
D. 6
图 9—5
21.(2000 全国文,12)如图 9—5,OA 是圆锥底面中心 O 到母线的垂线,OA 绕轴旋 转一周所得曲面将圆锥分成相等的两部分,则母线与轴的夹角的余弦值为( )
2
A.
2π
B. 8 π
4
C.
5π
D. 10 π
81
81
81
81
图 9—7
37.(1995 全国文,10)如图 9—7,ABCD—A1B1C1D1 是正方体,B1E1=D1F1= A1 B1 , 4
则 BE1 与 DF1 所成角的余弦值是( )15A.17183
B.
C.
D.
2
17
2
38.(1995 全国,4)正方体的全面积是 a2,它的顶点都在球面上,这个球的表面积是 ()
A.2×5 B.2×5.5 C.2×6.1 D.3×5 8.(2002 全国文 8,理 7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半 球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )
立体几何(小题)专题历年高考真题模拟题汇总(解析版)
立体几何一、考试大纲1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.4.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.二、新课标全国卷命题分析立体几何小题常考的题型包括:(1)球体;(2)多面体的三视图、体积、表面积或角度,包括线线角、线面角以及面面角,要重视常见几何体的三视图、三视图还原几何体的常用方法、面积和体积的计算式以及点线面的位置关系等,也要注意提高空间想象能力与数学计算能力.立体几何解答题第1问主要集中考查空间中直线、平面的位置关系的判断,注重对公理、定理的考查,而第2问多考查空间向量在空间立体几何中的应用,在证明与计算中一般要用到初中平面几何的重要定理,空间思维要求较高,运算量较大,对学生的空间想象能力、转化能力、计算能力要求较高.在考查考生运算求解能力的同时侧重考查考生的空间想象能力和推理论证能力,给考生提供了从不同角度去分析问题和解决问题的可能,体现了立体几何教学中课程标准对考生的知识要求和能力要求,提升了对考生的数学能力和数学素养的考查.本试题能准确把握相关几何元素之间的关系,把推理论证能力、空间想象能力等能力和向量运算、二面角作图、建立空间直角坐标系等知识较好地融入试题中,使考生的空间想象能力、推理论证能力和运算求解能力得到了有效考查.1. (2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.) 【答案】②③④ 解析:略.2. (2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为( )A .15B C D【答案】C 解析:法一:由几何关系可知:112EF B D ==,AE ,1AF =,由余弦定理可知:cos θ解法二:坐标法:由几何关系可知:(1B D =,点A 的坐标为(,点1D 的坐标为()1,1,0(10,1,AD = ,cos θ==立体几何(小题)(解析版)3.(2018·新课标全国Ⅰ卷理7) 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .2【答案】B 解析:当路径为线段MN4.(2018·新课标Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C D 【答案】A 解析:(直接法)平面11A C B 符合题意,如图(1)所示,例题中的平面α可得面11A C B 平移平移后的图象如图(1)所示,六边形EFGHMN 为该截面设1A N x =,则有,)EN MN x ==-根据对称性可知),EF x FG =-=,延长,EN HM 相交于点P延长,EF HG 相交于点Q ,易证60HEF EHG ∠=∠=所以EHQ ∆为等边三角形,同理EHP ∠为等边三角形, 所以maxEHG EPG PMN FGQEFGHMNS S S S S ∆∆∆∆=+--六边形2222)))4444x =+---2(221)2x x =-+当12x =时,max EFGHMN S =六边形.【解法2】(特殊位置法)由题可知,截面α应与正方体体对角线垂直,当平面平移至截面为六边形时,此时六边形的周长恒定不变,所以当截面为正六边形时,面积最大max26EFGHMN S ==六边形.5.(2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15B C D .2【答案】C 解析:法一:由几何关系可知:112EF B D ==,AE ,1AF =,由余弦定理可知:cos θ解法二:坐标法:由几何关系可知:(1B D =,点A 的坐标为(,点1D 的坐标为()1,1,0(10,1,AD = ,cos θ==解法三:补型法(以右补为例):由几何关系可知:BD ,2DG =,1B G =cos θ=.6.(2017·新课标Ⅱ,10)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 【答案】 B 解析:解法一:在边1BB ﹑11B C ﹑11A B ﹑AB 上分别取中点E ﹑F ﹑G ﹑H ,并相互连接. 由三角形中位线定理和平行线平移功能,异面直线1AB 和1BC 所成的夹角为FEG ∠或其补角,通过几何关系求得EF =FG =FH =,利用余弦定理可求得异面直线1AB 和1BC .解法二:补形通过补形之后可知:1BC D ∠或其补角为异面直线1AB 和1BC 所成的角,通过几何关系可知:1BC =1C D =,BD 1AB 和1BC .解法三:建系建立如左图的空间直角坐标系,()0,2,1A ,()10,0,0B ,()0,0,1B ,11,02C ⎫-⎪⎪⎝⎭,∴ 131,12BC ⎛⎫=-- ⎪⎪⎝⎭,()10,2,1B A =,∴1111cos 5B A BC B A BC θ⋅===⋅ 7.(2016·新课标Ⅰ,11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为( )(A )23 (B )22 (C )33 (D )31【答案】 A 解析:如图所示:111∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠=. 故选A .8.(2015·新课标Ⅰ,6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】 B 解析:284R π=,圆锥底面半径16R π=,米堆体积21320123V R h ππ==,堆放的米约有221.62V ≈,选(B ).9.(2014·新课标Ⅱ,11)直三棱柱ABC-A1B1C1中,∠BCA=90º,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.110B.25CD【答案】C 解析:取BC的中点P,连结NP、AP,∵M,N分别是A1B1,A1C1的中点,∴四边形NMBP为平行四边形,∴BM//PN,∴所求角的余弦值等于∠ANP的余弦值,不妨令BC=CA=CC1=2,则AN=APNP=,∴222222||||||cos2||||AN NP APANPAN NP+-∠=⨯⋅=.【另解】如图建立坐标系,令AC=BC=C1C=2,则A(0, 2, 2),B(2, 0, 2),M(1, 1, 0),N(0, 1, 0),(1,1,2)(0,1,2),BM AN∴=--=--,cos10||||BM ANθBM AN⋅===⋅10.(2013·新课标Ⅱ,4)已知,m n为异面直线,m⊥平面α,n⊥平面β.直线l满足l m⊥,l n⊥,lα⊄,lβ⊄,则()A.α // β且l // αB.αβ⊥且lβ⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D 解析:因为m⊥α,l⊥m,l⊄α,所以l∥α. 同理可得l∥β. 又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.11.(2018·新课标Ⅱ,理16)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45︒.若SAB△的面积为,则该圆锥的侧面积为_________.【答案】解析:由面积的关系可知:SA SB==由几何关系可知:SO AO==侧面积S SA l=⋅,2l OAπ==,侧面积S SA l=⋅=12.(2017·新课标Ⅲ,)16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在AC B1A1C1BNMP直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角; ②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所称角的最小值为45; ④直线AB 与a 所称角的最小值为60;其中正确的是________.(填写所有正确结论的编号)【答案】② ③ 解析:由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1,故1AC =,AB =边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB 为y 轴正方向,CA 为z 轴正方向建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,1=a .B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)=b ,1=b .设B 点在运动过程中的坐标()cos ,sin ,0B θθ', 其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--,2AB '=设AB '与a 所成夹角为π0,2α⎡⎤∈⎢⎥⎣⎦,则(cos ,sin ,1)(0,1,0)cos AB θθαθ⎡--⋅==∈⎢'⎣⎦a . 故ππ,42α⎡⎤∈⎢⎥⎣⎦,所以③正确,④错误.设AB '与b 所成夹角为π[0,]2β∈,(cos ,sin ,1)(1,0,0)cos AB AB AB θθβθ'⋅-⋅===''b b b . 当AB '与a 夹角为60︒时,即π3α=,sin 3πθα==.因为22cos sin 1θθ+=,所以cos θ1cos 2βθ=. 因为π0,2β⎡⎤∈⎢⎥⎣⎦.所以π=3β,此时AB '与b 夹角为60︒.所以②正确,①错误.故填② ③.13.(2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.) 【答案】②③④ 解析:略.。
2024届全国高考数学真题分类专项(立体几何)汇编(附答案)
2024届全国高考数学真题分类专项(立体几何)汇编1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧)A .B .C .D .2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A .12 B .1 C .2 D .33.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.参考答案1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高,则圆锥的体积为( )A .B .C .D .【详细详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A .12B .1C .2D .3【详细详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D =可知11111662222ABC A B C S S =⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h = 如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA DN AD AM MN x =--=-,可得1DD ==结合等腰梯形11BCC B 可得22211622BB DD -⎛⎫=+ ⎪⎝⎭,即()221616433x x +=++,解得x = 所以1A A 与平面ABC 所成角的正切值为11tan 1A MA ADAM?=; 解法二:将正三棱台111ABC A B C -补成正三棱锥-P ABC ,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ==,则111127P A B C P ABC V V --=, 可知1112652273ABC A B C P ABC V --==,则18P ABC V -=, 设正三棱锥-P ABC 的高为d,则116618322P ABC V d -=⨯⨯⨯=,解得d =,取底面ABC 的中心为O ,则PO ⊥底面ABC,且AO = 所以PA 与平面ABC 所成角的正切值tan 1POPAO AO∠==. 故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙. 【详细详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((212113143S S h r r V h V h S S h +-====+甲甲甲乙乙乙.4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ; (2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD . 【详细详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥, 又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB , 而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC , 又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF , 因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =, 所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF , 根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠= 因为AD DC ⊥,设AD x =,则CD =2DE =,又242xCE -=,而EFC 为等腰直角三角形,所以2EF=,故22tan DFE∠==x =AD =5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.【详细详解】(1)由218,,52AB AD AE AD AF AB ====, 得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF =,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥, 所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE , 所以EF ⊥平面PDE ,又PD ⊂平面PDE , 故EF ⊥PD ;(2)连接CE ,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC 中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD , 所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -, 由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x ==11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==- ,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin θ== 即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.【详细详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --的正弦值为13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何一、年考试大纲二、新课标全国卷命题分析三、典型高考试题讲评2011—年新课标全国(1卷、2卷、3卷)理科数学分类汇编——11.立体几何一、考试大纲1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.4.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.二、新课标全国卷命题分析立体几何小题常考的题型包括:(1)球体;(2)多面体的三视图、体积、表面积或角度,包括线线角、线面角以及面面角,要重视常见几何体的三视图、三视图还原几何体的常用方法、面积和体积的计算式以及点线面的位置关系等,也要注意提高空间想象能力与数学计算能力.立体几何解答题第1问主要集中考查空间中直线、平面的位置关系的判断,注重对公理、定理的考查,而第2问多考查空间向量在空间立体几何中的应用,在证明与计算中一般要用到初中平面几何的重要定理,空间思维要求较高,运算量较大,对学生的空间想象能力、转化能力、计算能力要求较高.在考查考生运算求解能力的同时侧重考查考生的空间想象能力和推理论证能力,给考生提供了从不同角度去分析问题和解决问题的可能,体现了立体几何教学中课程标准对考生的知识要求和能力要求,提升了对考生的数学能力和数学素养的考查.本试题能准确把握相关几何元素之间的关系,把推理论证能力、空间想象能力等能力和向量运算、二面角作图、建立空间直角坐标系等知识较好地融入试题中,使考生的空间想象能力、推理论证能力和运算求解能力得到了有效考查.1. (2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.) 【答案】②③④ 解析:略.2. (2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .5 C .5 D .22【答案】C 解析:法一:由几何关系可知:1152EF B D ==,13AE =,1AF =,由余弦定理可知:5cos θ=解法二:坐标法:由几何关系可知:(13B D =u u u u r,点A 的坐标为(3,点1D 的坐标为()1,1,0(10,1,3AD =-u u u u r,25cos 25θ-==立体几何(小题)(解析版)3.(2018·新课标全国Ⅰ卷理7) 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .2【答案】B 解析:当路径为线段MN 时,长度最短,故最短路径的长度为222425+=.4.(2018·新课标Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .334B .233C .324D .32【答案】A 解析:(直接法)平面11A C B 符合题意,如图(1)所示,例题中的平面α可得面11A C B 平移平移后的图象如图(1)所示,六边形EFGHMN 为该截面设1A N x =,则有2,2(1)EN x MN x ==-根据对称性可知2(1),2EF x FG x =-=,延长,EN HM 相交于点P延长,EF HG 相交于点Q ,易证60HEF EHG ∠=∠=o所以EHQ ∆为等边三角形,同理EHP ∠为等边三角形, 所以maxEHG EPG PMN FGQEFGHMNS S S S S ∆∆∆∆=+--六边形22223333(2)(2)(2(1))(2)4444x x =⨯+⨯---233(221)2x x =--+ 当12x =时,max 334EFGHMN S =六边形.【解法2】(特殊位置法)由题可知,截面α应与正方体体对角线垂直,当平面平移至截面为六边形时,此时六边形的周长恒定不变,所以当截面为正六边形时,面积最大max232336()424EFGHMN S =⨯⨯=六边形.5.(2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .5 C .5 D .2 【答案】C 解析:法一:由几何关系可知:1152EF B D ==,13AE =,1AF =,由余弦定理可知:5cos θ=解法二:坐标法:由几何关系可知:(13B D =u u u u r,点A 的坐标为(3,点1D 的坐标为()1,1,0(10,1,3AD =-u u u u r,25cos 25θ-==解法三:补型法(以右补为例):由几何关系可知:5BD =,2DG =,15B G =,由余弦定理可得:45cos 545θ==.6.(2017·新课标Ⅱ,10)已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A .32 B .155 C .105D .33 【答案】 B 解析:解法一:在边1BB ﹑11B C ﹑11A B ﹑AB 上分别取中点E ﹑F ﹑G ﹑H ,并相互连接. 由三角形中位线定理和平行线平移功能,异面直线1AB 和1BC 所成的夹角为FEG ∠或其补角, 通过几何关系求得2EF =,5FG =,11FH =,利用余弦定理可求得异面直线1AB 和1BC 所成的夹角余弦值为10.解法二:补形通过补形之后可知:1BC D ∠或其补角为异面直线1AB 和1BC 所成的角,通过几何关系可知: 12BC =15C D =,3BD 1AB 和1BC 10. 解法三:建系建立如左图的空间直角坐标系,()0,2,1A ,()10,0,0B ,()0,0,1B ,131,02C ⎫-⎪⎪⎝⎭,∴ 131,,12BC ⎛⎫=-- ⎪⎪⎝⎭u u u u r ,()10,2,1B A =u u u r ,∴ 111110cos 52B A BC B A BC θ⋅===⨯⋅u u u r u u u u r u u u r u u u u r 7.(2016·新课标Ⅰ,11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =,I α平面n A ABB =11,则n m ,所成角的正弦值为( )(A )23 (B )22 (C )33 (D )31【答案】 A 解析:如图所示:αAA 1B1DCC 1D 1∵11CB D α∥平面,∴若设平面11CB D I 平面1ABCD m =,则1m m ∥ 又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C I 平面111111A B C D B D = ∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即113sin CD B ∠=. 故选A .8.(2015·新课标Ⅰ,6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】 B 解析:284R π=,圆锥底面半径16R π=,米堆体积21320123V R h ππ==,堆放的米约有221.62V ≈,选(B ).9.(2014·新课标Ⅱ,11)直三棱柱ABC-A1B1C1中,∠BCA=90º,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.110B.25C.30D.22【答案】C 解析:取BC的中点P,连结NP、AP,∵M,N分别是A1B1,A1C1的中点,∴四边形NMBP为平行四边形,∴BM//PN,∴所求角的余弦值等于∠ANP的余弦值,不妨令BC=CA=CC1=2,则AN=AP=5,NP=MB=6,∴222222||||||(5)(6)(5)cos2||||256AN NP APANPAN NP+-+-∠==⨯⋅⨯⨯30=.【另解】如图建立坐标系,令AC=BC=C1C=2,则A(0, 2, 2),B(2, 0, 2),M(1, 1, 0),N(0, 1, 0),(1,1,2)(0,1,2),BM AN∴=--=--u u u u r u u u r,30cos.10||||65BM ANθBM AN⋅===⋅u u u u r u u u ru u u u r u u u r10.(2013·新课标Ⅱ,4)已知,m n为异面直线,m⊥平面α,n⊥平面β.直线l满足l m⊥,l n⊥,lα⊄,lβ⊄,则()A.α // β且l // αB.αβ⊥且lβ⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D 解析:因为m⊥α,l⊥m,l⊄α,所以l∥α. 同理可得l∥β. 又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.11.(2018·新课标Ⅱ,理16)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45︒.若SAB△的面积为515,则该圆锥的侧面积为_________.【答案】402π解析:由面积的关系可知:45SA SB==,由几何关系可知:210SO AO==侧面积S SA l=⋅,2410l OAππ==,侧面积402S SA lπ=⋅=12.(2017·新课标Ⅲ,)16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在AC B1A1C1BNMP直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60o角时,AB 与b 成30o角; ②当直线AB 与a 成60o角时,AB 与b 成60o角; ③直线AB 与a 所称角的最小值为45o; ④直线AB 与a 所称角的最小值为60o ;其中正确的是________.(填写所有正确结论的编号)【答案】② ③ 解析:由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1,故1AC =,2AB =边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD u u u r 为x 轴正方向,CB u u u r为y 轴正方向, CA u u u r为z 轴正方向建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A , 直线a 的方向单位向量(0,1,0)=a ,1=a .B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)=b ,1=b .设B 点在运动过程中的坐标()cos ,sin ,0B θθ', 其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--u u u r,2AB 'u u u u r 设AB 'u u u r 与a 所成夹角为π0,2α⎡⎤∈⎢⎥⎣⎦,则(cos ,sin ,1)(0,1,0)22cos 2AB θθαθ⎡--⋅==∈⎢'⎣⎦u u u u r a . 故ππ,42α⎡⎤∈⎢⎥⎣⎦,所以③正确,④错误.设AB 'u u u r 与b r 所成夹角为π[0,]2β∈,(cos ,sin ,1)(1,0,0)2cos cos 2AB AB AB θθβθ'⋅-⋅===''u u u u ru u u u r u u u u rb b b . 当AB 'u u u r 与a 夹角为60︒时,即π3α=,sin 3πθα==.因为22cos sin 1θθ+=,所以cos 2θ=.所以1cos 2βθ=. 因为π0,2β⎡⎤∈⎢⎥⎣⎦.所以π=3β,此时AB 'u u u r 与b 夹角为60︒.所以②正确,①错误.故填② ③.13.(2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.) 【答案】②③④ 解析:略.。