基本初等函数I知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *
.
◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n
n
=,当n 是偶数时,⎩⎨⎧<≥-==)
0()
0(||a a a a a a n n
2.分数指数幂
正数的分数指数幂的意义,规定:
)
1,,,0(*>∈>=n N n m a a a
n m n
m
,
)1,,,0(1
1*
>∈>=
=
-
n N n m a a
a
a
n
m
n
m n
m
◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质
(1)r a ·s
r r a a += ),,0(R s r a ∈>;
(2)rs
s r a a =)( ),,0(R s r a ∈>;
(3)
s
r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质
1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x
且叫做指数函数,其中x 是自变量,函数的定义域为R .
注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2
注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,
)1a
0a (a )x (f
x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;
(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x
≠>=且,总有a )1(f =;
二、对数函数 (一)对数
1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log —对数式)
说明:○1 注意底数的限制0>a ,且1≠a ;
○
2 x N N a a x =⇔=log ;
○
3 注意对数的书写格式. 两个重要对数:
○
1 常用对数:以10为底的对数N lg ; ○
2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . ◆ 指数式与对数式的互化
幂值 真数
= b
指数 对数
(二)对数的运算性质
如果0>a ,且1≠a ,0>M ,0>N ,那么:
○1 M a (log ·=)N M a log +N a log ; ○
2 =N
M
a log M a log -N a log ; ○
3 n a M log n =M a log )(R n ∈. 注意:换底公式
a
b
b c c a log log log =
(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).
利用换底公式推导下面的结论 (1)b m
n
b a n a m log log =
;
(2)a b b a log 1log =. (二)对数函数
1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 对数函数对底数的限制:0(>a ,且)1≠a .
2、对数函数的性质:
a>1