(推荐)投影坐标转换

(推荐)投影坐标转换
(推荐)投影坐标转换

第二节 平面坐标基准转换

由于海上和陆地上在测量时,使用不同的坐标系和不同参考椭球,而且采用的投影也不同,使得我们获得的数据不统一,必须进行坐标转换。

§3·2·1 欧拉角

设有两个空间直角坐标系,分别为O-XYZ 和O-X 'Y 'Z ',为了便于讨论其相应坐标轴间的变换,设其原点相同如图所示,选择εx 、y ε、z ε为欧拉角,又称旋转参数,经过三次旋转,使两个坐标系重合,既:(图见下页A )

首先,绕O Z '轴,将O X '轴旋转到OX 0轴,所转的角为z ε;

其次,绕OY 0轴,将O Z '轴旋转到OZ 0轴,所转的角为y ε;

最后,绕OX 轴,将O Z 0轴旋转到OZ 轴,所转的角为εx ; Z Z 0 Z '

X ' O

X 0

X Y 0 Y

Y '

图A

因此有

X X '

Y = R 1(εx )R 2(y ε)R 3(z ε) Y '

Z Z '

式中 R 1(εx )、R 2(y ε)、R 3(z ε)为旋转矩阵,其表达式在ε、y ε、z ε很小时可以最终表示为: X 1

z ε y ε X '

Y = -z ε 1 εx Y ' 公式1

Z y ε - εx 1 Z '

§3·2·2 不同三维空间直角坐标系的变换模型

GPS 测量的WGS —84属地心坐标系,而1980年国家大地坐标系和1954年北京坐标系属参心坐标系,他们所对应得空间直角坐标系是不同的,这里将讨论不同空间直角坐标系的变换模型。

如图B 两个空间直角坐标系分别为O-XYZ 和O '-X 'Y 'Z ',其坐标系原点不同则存在三个平移参数?X 0、?Y 0、?Z 0,他们表示O '- X 'Y 'Z '坐标系原点O '相对于O-XYZ 坐标系原点O 在三个坐标轴上的分量;又当各坐标轴相互不平行时,既存在三个旋转参数εx 、y ε、z ε。 Z

O X Y '

O Y

X 考虑到两个坐标系的平移和旋转以及尺度参数可得公式如下:

X X ' 1 z ε y ε X '

Y =(1+m ) Y ' -z ε 1 εx Y ' Z Z ' y ε - εx 1 Z '

?X 0

+ ?Y 0 公式一

?Z

式中共有七个变换参数?X

0、?Y

、?Z

、ε

x

y

ε、

z

ε、m,简称此公式为布

尔莎七参数变换公式,是坐标变换中一个非常重要的公式。七参数变换公式,除了布尔莎公式外,还有莫洛琴斯基公式和范氏公式。这三种公式,它们之间的七个参数相差很大,但各自构成完整的数学模型,参数间存在着明确的解析关系,可以相互间转换。分别用它们来换算点的坐标时,其结果是完全相同的。因此,这三个公式是等价的。我国的地心坐标变换参数地心二号是七个变换参数,既采用布尔莎公式。

当公式一中ε

x =

y

ε=

z

ε=m=0,既称之为三参数公式。三参数公式表明两个空间直

角坐标系尺度一致,且两个坐标轴相互平行。我国地心坐标变换参数地心一号系三个变换参数。同理在公式一中,略去某些参数,可分别得到四参数、五参数、六参数等坐标变换参数。公式一中的变换参数,一般利用公共点上的两套空间直角坐标

系坐标值(X,Y,Z)

i 和(X',Y', Z')

i

即可采用最小二乘法解得。

应该指出,当进行两种不同空间直角坐标系变换时,坐标变换的精度除取决于坐标变换的数学模型和求解变换参数的公共点坐标精度外,还和公共点的多少、几何形状结构有关。鉴于地面网可能存在一定的系统误差,且在不同区域并非完全一样,所以采用分区变换参数,分区进行坐标转换,可以提高坐标变换精度。无论是从我国的多普勒网还是GPS网,利用布尔莎公式求解和地面大地网间得变换参数,分区变换均较明显地提高了坐标变换的精度。

§3·2·3 不同三维大地坐标系的变换模型

对于不同的三维大地坐标系的变换模型,除了上节的七个变换参数外,还应增加两个变换参数,,这就是两个大地坐标系所对应的地球椭球参数的不同。不同大地坐标的变换公式,又称大地坐标微分公式或变换椭球微分公式。当包括旋转参数和尺度参数时,称为广义大地坐标微分公式或广义变换椭球微分公式。

空间一点的空间直角坐标与大地坐标关系式是:

X (N+H)cosBcosL

Y = (N+H)cosBsinL 公式二

Z [N (1-e2)+H]sinB

式中N为卯酉圈曲率半径。在这个公式中当已知L,B,H时,求X,Y,Z是非常简单的,只要代入公式即可。当已知X,Y,Z时反求L,B,H则可以采用直接解或迭代解法,解算时对公式做些变化即可。

由公式二最终我们可以得到不同三维大地坐标系的变换公式;

dL -B H N L cos )(sin +''ρ B H N L cos )(cos +''ρ 0 ?X 0 dB = -

H M L B +cos sin ''ρ -H N L B +sin sin ''ρ H

M B +cos ''ρ ?Y 0 + dH cosBcosL cosBsinL sinB ?Z 0

L tgB H N H e N cos )1(2++- L tgB H

N H e N sin )1(2++- -1 εx -L H M B Ne H N sin sin )(22+-+ L H

M B Ne H N cos sin )(22+-+ 0 y ε + -"2sin cos sin ρL

B B Ne "2cos cos sin ρL B B Ne 0 z ε

0 0

-"2cos sin ρB B e H

M N + m+ "2cos sin )(ρB B e a H M N + N+H-Ne 2sin B 2 -)sin 1(22B e a

N - 0 da

"22cos sin )

1)(()sin 2(ρB B f H M B e M -+- 公式三 B B e f

M 222sin )sin 1(1-- df 式中dL 、dB 以弧度秒为单位,等式右端L 、B 、H 均以换算前坐标值代入。公式三也就是顾及七个参数和椭球大小变化的广义大地坐标微分公式或广义变换椭球微分公式。略去旋转参数和尺度变化参数的影响,即为一般的大地坐标微分公式或椭

球微分公式。

利用一些公共点上两套大地坐标系坐标值,采用最小二乘法可解得变换参数。

§3·2·4 不同两维大地坐标系的变换模型

在三维不同大地坐标系的变换模型中,当进行WGS —84和我国参心大地坐标系的变换时,由于后者大地高的精度不高(一般在3m 左右的误差),加之又难以确定其方差和协方差,因此,也可以考虑选择二维大地坐标系的变换模型。

所谓二维大地坐标系,即当大地高H 为零时的椭球面上的大地坐标系。其变换模型,只要在公式三中,将H=0代入即可得到。

将此公式用于GPS 网和地面网联合平差时,如果顾及地面网的系统性观测误差对网的定向的影响时,则可在椭球面上引入一个附加旋转参数dA,以使两网更好的配合。由于dA 产生的对dL 、dB 的影响加于公式右端。

为了便于比较GPS 网和地面网的大地坐标,若在将GPS 网的X 、Y 、Z 反算L 、B 、H 时,采用了地面网的椭球参数,即两网相应的椭球参数已化为一致,则公式中不再有 da 、df 项。

§3·2·5 不同二维高斯投影平面坐标系的坐标转换 由高斯投影正算公式可得: dx L x ?? B

x ?? dL dy = L y ?? B

y ?? dB 公式四 式中等号右端偏导数由高斯投影正算公式得:

L

x ??=NsinBcosBl B x ??=M[1+2

1(1-2sin 2 B)l 2] L y ?? =NcosB[1+2

1(1-2sin 2 B) l 2] 公式五 B

y ??=-MsinBl 上式中,l=L-L 0, L 0为中央子午线得大地经度,公式五中dB 、dL 见公式三。对于不同二维高斯投影平面坐标系坐标差的模型,可以由公式三和公式四给出。

§3·2·6 同一参考系统下的高斯直角坐标、

大地坐标、空间直角坐标之间的相互转换

当运用了§3·2·1~§3·2·5后,我们就可以将一个系统的坐标,转化到另一个系统的对应结果。可以完成对应之间的坐标转化,但是,如果高斯直角坐标、 大地坐标、空间直角坐标之间的相互转换就需要用本节的内容。

3·2·6·1 高斯直角坐标同大地坐标之间的转化

完成两者之间的转化,要用高斯正、反算方法。这里并不详细介绍,只给出其数学模型:

正算公式:x=X+21N*t*cos 2B*l 2+24

1N*t(5- t 2+9η2+4η4)cos 4B*l 4 +720

1N*t(61-58 t 2+ t 4+270 η2-330 η2t 2)cos 6* l 6 y=N*cosB*l+61N(1-t 2+η2)cos 3B* l 3+120

1N(5-18 t 2 + t 4+14η

2-58 η2t 2)cos 5B*l 5 反算公式:B=B f -f

f f

N M t 2-y 2+24324f f f N M t (5+3t 2f +2f η-9t 2f 2f η)y 4 -5

720f f f N M t (61+90t 2f +45t 4f )y 6 l=y B N f f cos 1-f

f B N cos 613(1+2t 2f +2f η)y 3 +f

f B N cos 12015(5+28t 2f +24t 4f +62f η+8t 2f 2f η) y 5 通过高斯正、反算,可以将高斯直角坐标化算为大地坐标,或将大地坐标化算为高斯直角坐标。

3·2·6·2 大地坐标同空间直角坐标的化算 空间一点的空间直角坐标与大地坐标关系式是:

X (N+H)cosBcosL

Y = (N+H)cosBsinL

Z [N (1-e 2)+H]sinB

式中N 为卯酉圈曲率半径。在这个公式中当已知L ,B ,H 时,求X ,Y ,Z 是非常简单的,只要待入公式即可。当已知X ,Y ,Z 时反求L ,B ,H 则可以采用直接解或迭代解法,解算时对公式做些变化即可。

3·2·6·3高斯直角坐标与空间直角坐标的相互转换

关于这两者的转换关系并没有直接给出,但是,我们可以利用两者同大地坐标的转换关系,先把其中的一种化算成大地坐标,然后再由大地坐标转换成另一种坐标。

§3·2·7 不同投影之间的转换

陆地地形图采用高斯投影系统,而海图采用的是墨卡托投影系统,这使得两种地形图不能拼接。在此以由高斯投影系统转化到墨卡托投影系统,给出转化的思路和过程:

首先利用布尔莎七参数变换公式(公式一)将一参考系内的高斯坐标转换为另一参考系内的高斯坐标;再利用高斯反算公式,将转换后的高斯直角坐标换算为大地坐标;然后在同一参考系内进行墨卡托投影将大地坐标化算为该平面内的平面坐标。这里考虑的是高斯坐标同墨卡托平面坐标不在同一参考椭球上,如果在同一参考椭球内,则第一步化算可以省略。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

投影定义与坐标转换

GIS/RS在地理学中的应用 一、作业题目:基础03 坐标定义与投影变换 时间:2018 年9 月20 日 一、作业内容及要求概述 基础03 坐标定义与投影变换 1.数据文件 ① idll.shp,(Idaho 州的轮廓图) ② stationsll.shp,(Idaho 州的滑雪道) ③ snow.txt,(Idaho 州 40 个滑雪场的经纬度值) 2.GIS操作 ①按要求更改文件投影的 ②给文件定义投影 ③用经纬度信息文本生成指定投影地点分布图 3. 作业报告总结以下内容 ①将 idll.shp 的投影变换为Idaho 州横轴麦卡托坐标系( Idaho Transverse Mercator, IDTM)IDTM参数设置如下: Projection Transverse Mercator Datum NAD83 Units meters Parameters scale factor: 0.9996 central meridian: -114.0 reference latitude: 42.0

false easting: 2,500,000 false northing: 1,200,000 ②将IDTM坐标系统应用到stationsll.shp 上 用snow.txt 生成一个UTM投影(Nad 1983UTM Zone11N)的滑雪场分布图 二、工作方法及技术流程 (思路、方法、主要操作步骤、技术流程等) ①将 idll.shp 的投影变换为Idaho 州横轴麦卡托坐标系 1:右键单击属性,查看idll属性其坐标系统信息。元数据页中坐标系统已经为GCS_North_American_1927 2:接下来将idll.shp投影到IDTM坐标系统。在ArcToolbox中Data Manager Tools =>Projections and Transformations=>Features=>Project

高斯投影坐标正反算VB程序

高斯投影坐标正反算 V B程序 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没有 变形,仍然相等。 操作工具: 计算机中的 代码: Dim a As Double, b As Double, x As Double, y As Double, y_#

Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#, m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val min1 = Val sec1 = Val deg2 = Val min2 = Val sec2 = Val l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val k1 = ((l_ * 180 / + 3) / 6) k2 = (l_ * 180 / / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else

(推荐)投影坐标转换

第二节 平面坐标基准转换 由于海上和陆地上在测量时,使用不同的坐标系和不同参考椭球,而且采用的投影也不同,使得我们获得的数据不统一,必须进行坐标转换。 §3·2·1 欧拉角 设有两个空间直角坐标系,分别为O-XYZ 和O-X 'Y 'Z ',为了便于讨论其相应坐标轴间的变换,设其原点相同如图所示,选择εx 、y ε、z ε为欧拉角,又称旋转参数,经过三次旋转,使两个坐标系重合,既:(图见下页A ) 首先,绕O Z '轴,将O X '轴旋转到OX 0轴,所转的角为z ε; 其次,绕OY 0轴,将O Z '轴旋转到OZ 0轴,所转的角为y ε; 最后,绕OX 轴,将O Z 0轴旋转到OZ 轴,所转的角为εx ; Z Z 0 Z ' X ' O X 0 X Y 0 Y Y ' 图A 因此有 X X ' Y = R 1(εx )R 2(y ε)R 3(z ε) Y '

Z Z ' 式中 R 1(εx )、R 2(y ε)、R 3(z ε)为旋转矩阵,其表达式在ε、y ε、z ε很小时可以最终表示为: X 1 z ε y ε X '

Y = -z ε 1 εx Y ' 公式1 Z y ε - εx 1 Z ' §3·2·2 不同三维空间直角坐标系的变换模型 GPS 测量的WGS —84属地心坐标系,而1980年国家大地坐标系和1954年北京坐标系属参心坐标系,他们所对应得空间直角坐标系是不同的,这里将讨论不同空间直角坐标系的变换模型。 如图B 两个空间直角坐标系分别为O-XYZ 和O '-X 'Y 'Z ',其坐标系原点不同则存在三个平移参数?X 0、?Y 0、?Z 0,他们表示O '- X 'Y 'Z '坐标系原点O '相对于O-XYZ 坐标系原点O 在三个坐标轴上的分量;又当各坐标轴相互不平行时,既存在三个旋转参数εx 、y ε、z ε。 Z O X Y ' O Y X 考虑到两个坐标系的平移和旋转以及尺度参数可得公式如下: X X ' 1 z ε y ε X ' Y =(1+m ) Y ' -z ε 1 εx Y ' Z Z ' y ε - εx 1 Z ' ?X 0 + ?Y 0 公式一

3度6度带高斯投影详解.

3度6度带高斯投影 选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”): 椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间大地坐标系 空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间大地坐标系可用图2-4来表示:

图2-4空间大地坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我国采用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

高斯投影坐标正反算编程报告

高斯投影坐标正反算编程报告 1. 编程思想 进行高斯投影坐标正反算的编程需要牵涉到大量的公式,为了使程序条理更清楚,各块的数据复用性更强,这里采取了结构化的编程思想。 程序由四大块组成。 GeodesyHomework 、cpp 文件用于存放main()函数,就是整个程序的入口。通过结构化的编程尽力使main()函数变得简单。 MyFunction 、h 与MyFunction 、cpp 用于存放计算过程中进行角度弧度换算时所要用到的一些自定的转换函数。 Zhengsuan 、h 与Zhengsuan 、cpp 用于存放Zhengsuan 类,在Zhengsuan 类中声明了高斯投影坐标正算所要用到的所有变量,在类的构造函数中进行成员变量的初始化及正算计算。通过get 函数获得相应的正算结果。 Fansuan 、h 与Fansuan 、cpp 用于存放Fansuan 类,类似于Zhengsuan 类,Fansuan 类中声明了高斯投影坐标反算所要用到的所有变量,在类的构造函数中进行成员变量的初始化及反算计算。通过get 函数获得相应的反算结果。 2. 计算模型 高斯投影正算公式 6 4256 4 42234 22)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+ ''++-''+''?''+=ρηηρρ 5 2224255 3 2233 )5814185(cos 120)1(cos 6cos l t t t B N l t B N l B N y ''-++-''+ ''+-''+''?''=ηηρηρρ 高斯投影反算公式 () () ()( ) 2 22425 52 23 36 4254 222232 8624285cos 12021cos 6cos 459061720935242f f f f f f f f f f f f f f f f f f f f f f f f f f f f f t t t B N y t B N y B N y l y t t y N M t y t t N M t y N M t B B ηηηηη+++++++-=++- -+++ -= 3. 程序框图

坐标转换及方里网的相关问题(椭球体、投影、坐标系统、转换、北京54、西安80等)

坐标转换及方里网的相关问题(椭球体、投影、坐标系统、转换、北京54、西安80等) 最近需要将一些数据进行转换,用到了一点坐标转换的知识,发现还来这么复杂^_^,觉得自己真是愧对了武汉大学以及中科院这么多年培养我,让我上了好多课却从来没有好好听,今天才知道其实很有用!不多废话,给您分享下我的坐标转换之路。 Part one: Background 地理坐标系与投影坐标系的区别 (cite from:https://www.360docs.net/doc/0b9345838.html,/f?kz=354009166) 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954 表示,大地基准面是D_Beijing_1954。 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954 Spheroid(参考椭球体): Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000 2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。 Projection: Gauss_Kruger Parameters:

高斯投影坐标正反算VB程序

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没 有变形,仍然相等。 操作工具: 计算机中的VB6.0 代码: Dim a As Double, b As Double, x As Double, y As Double, y_# Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#,

m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val(Text1.Text) min1 = Val(Text2.Text) sec1 = Val(Text3.Text) deg2 = Val(Text4.Text) min2 = Val(Text5.Text) sec2 = Val(Text6.Text) l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val(Text9.Text) k1 = ((l_ * 180 / 3.14159 + 3) / 6) k2 = (l_ * 180 / 3.14159 / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else If dh = 3 Then

高斯平面直角坐标与大地坐标转换

高斯平面直角坐标系与大地坐标系 1 高斯投影坐标正算公式 (1)高斯投影正算:已知椭球面上某点的大地坐标()B L ,,求该点在高斯投影平面上的直角坐标()y x ,,即()),(,y x B L ?的坐标变换。 (2)投影变换必须满足的条件 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点1P 和2P ,它们的大地坐标分别为(B L ,)及(B l ,),式中l 为椭球面上P 点的经度与中央子午线)(0L 的经度差:0L L l -=, P 点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为),(1y x P '和),(2y x P -'。 (4)计算公式 ??? ? ???''+-''+''+-''+''''=''+-''+''''+ =54255 32234 22342 2)185(cos 120)1(6cos )95(cos sin 2sin 2l t t B N l t B N l B N y l t B B N l B N X x ρηρρηρρ 当要求转换精度精确至时,用下式计算: ?????? ???????''-++-' '+''+-' '+''''=''+-''+''++-''+''''+ =52224255 32233 64256 44223422)5814185(cos 720)1(cos 6cos )5861(cos sin 720)495(cos sin 24sin 2l t t t B N l t B N l B N y l t t B B N l t B B N l B N X x ηηρηρρρηηρρ 2 高斯投影坐标反算公式 (1)高斯投影反算:已知某点的高斯投影平面上直角坐标()y x ,,求该点在椭球面上的大

高斯投影正反算公式 新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为:基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴b=; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线经度为均为3度,即:6度带1带位置0-6度,3度带1带位置度),即所谓的高斯-克吕格投影。

图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。 图表 1 椭圆 椭圆长半轴a,椭圆短半轴b, 椭圆方程:

(1) 图表2椭球面 椭球面方程: y2 a2+ x2 b2 + z2 a2 =1 /*************************************** 与网上充斥的将函数关系先展开为泰勒级数,再依据投影规则确定各参数不同,本文直接依据空间立体三角函数关系得出结果。 *****/ (一)正算 由图表1,

平面直角坐标变换

平面直角坐标变换 【摘要】对利用EXCEL电子表格进行高斯投影换算的方法进行了较详细的介绍,对如何进行GPS坐标系转换进行了分析,提出了一种简单实用的坐标改正转换方法,介绍了用EXCEL完成转换的思路。 [关键字] 电子表格;GPS;坐标转换 作为尖端技术GPS,能方便快捷性地测定出点位坐标,无论是操作上还是精度上,比全站仪等其他常规测量设备有明显的优越性。随着我国各地GPS差分台站的不断建立以及美国SA政策的取消,使得单机定位的精度大大提高,有的已经达到了亚米级精度,能够满足国土资源调查、土地利用更新、遥感监测、海域使用权清查等工作的应用。在一般情况下,我们使用的是1954年北京坐标系或1980年西安坐标系(以下分别简称54系和80系),而GPS测定的坐标是WGS-84坐标系坐标,需要进行坐标系转换。对于非测量专业的工作人员来说,虽然GPS定位操作非常容易,但坐标转换则难以掌握,EXCEL是比较普及的电子表格软件,能够处理较复杂的数学运算,用它来进行GPS坐标转换、面积计算会非常轻松自如。要进行坐标系转换,离不开高斯投影换算,下面分别介绍用EXCEL进行换算的方法和GPS 坐标转换方法。 一、用EXCEL进行高斯投影换算 从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从XY换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。笔者发现,用EXCEL可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EX CEL的相应单元格中输入相应的公式即可。下面以54系为例,介绍具体的计算方法。 完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。在EXCEL中,输入公式的起始单元格不同,则反映出来的公式不同,以公式从第2行第1列(A2格)为起始单元格为例,各单元格的公式如下: 单元格 单元格内容 说明A2 输入中央子午线,以度.分秒形式输入,如115度30分则输入1 15.30 起算数据L0 B2 =INT(A2)+(INT(A2*100)-INT(A2)*100)/60+(A2*10000-INT(A2* 100)*100)/3600 把L0化成度 C2 以度小数形式输入纬度值,如38°14′20″则输入38.1420 起算数据B D2 以度小数形式输入经度值 起算数据L E2 =INT(C2)+(INT(C2*100)-INT(C2)*100)/60+(C2*10000-INT(C2* 100)*100)/3600 把B化成度 F2 =INT(D2)+(INT(D2*100)-INT(D2)*100)/60+(D2*10000-INT(D2* 100)*100)/3600 把L化成度 G2 =F2-B2 L-L0 H2 =G2/57.2957795130823 化作弧度 I2 =TAN(RADIANS(E2)) Tan(B) J2 =COS(RADIANS(E2)) COS(B)

高斯投影及其中央子午线的判断

一、高斯-克吕格投影 1、高斯-克吕格简介 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x 轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。 2、高斯-克吕格特性 (1)等角投影——投影前后的角度相等,但长度和面积有变形; (2)等距投影——投影前后的长度相等,但角度和面积有变形; (3)等积投影——投影前后的面积相等,但角度和长度有变形。 3、投影的基本概念 它是一种横轴等角切圆柱投影。它把地球视为球体,假想一个平面卷成一个横圆柱面并把它套在球体外面,使横轴圆柱的轴心通过球的中心,球面上一根子午线与横轴圆柱面相切。这样,该子午线在圆柱面上的投影为一直线,赤道面与圆柱面的交线是一条与该子午线投影垂直的直线。将横圆柱面展开成平面,由这两条正交直线就构成高斯-克吕格平面直角坐标系。为减少投影变形,高斯-克吕格投影分为3o带和6o带投影。

地理坐标到投影坐标转化方法理论

地理坐标系统和投影变换基础知识 一、理论知识和背景介绍 GIS处理的是空间信息,而所有对空间信息的量算都是基于某个坐标系统的,因此GIS中坐标系统的定义是GIS系统的基础,正确理解GIS中的坐标系统就变得尤为重要。坐标系统又可分为两大类:地理坐标系统、投影坐标系统。本文就对坐标系和投影及其在ArcGIS桌面产品中的应用做一些简单的论述。 GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。 1、地球椭球体(Ellipsoid) 众所周知我们的地球表面是一个凸凹不平的表面,而对于地球测量而言,地表是一个无法用数学公式表达的曲面,这样的曲面不能作为测量和制图的基准面。假想一个扁率极小的椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球椭球体。地球椭球体表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。因此就有了地球椭球体的概念。 地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。f =(a-b)/a为椭球体的扁率,表示椭球体的扁平程度。由此可见,地球椭球体的形状和大小取决于a、b、f 。因此,a、b、f被称为地球椭球体的三要素。 ArcGIS(ArcInfo)桌面软件中提供了30种地球椭球体模型;常见的地球椭球体数据见下表:

对地球椭球体而言,其围绕旋转的轴叫地轴。地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(A geo graphic coordinate system (GCS) uses a three dimensional spherical surface to define locations on the earth. A GCS includes an angular unit of measure, a prime meridian, and a datum (based on a spheroid).)。可以看出地理坐标系统是球面坐标系统,以经度/维度(通常以十进制度或度分秒(DMS)的形式)来表示地面点位的位置。 地理坐标系统以本初子午线为基准(向东,向西各分了1800)之东为东经其值为正,之西为西经其值为负;以赤道为基准(向南、向北各分了900)之北为北纬其值为正,之南为南纬其值为负。 地表任意位置的坐标值可由图1表达: 图1 地理坐标系统

高斯投影坐标正算公式

高斯投影坐标正算公式 高斯投影坐标正反算公式 2.2.2. 1高斯投影坐标正算公式: B, x,y 高斯投影必须满足以下三个条件: ⑴中央子午线投影后为直线;⑵中央子午线投影后长度不变;⑶投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即 式中,x为的偶函数,y为的奇函数;,即, 如展开为的级数,收敛。 (2-10) 式中是待定系数,它们都是纬度B的函数。 由第三个条件知: 分别对和q求偏导数并代入上式 (2-11) 上两式两边相等,其必要充分条件是同次幂前的系数应相等,即

(2-12) (2-12)是一种递推公式,只要确定了就可依次确定其余各系数。 由第二条件知:位于中央子午线上的点,投影后的纵坐标x应等于投影前从赤道量至该点的子午线弧长X,即(2-10)式第一式中,当时有: (2-13) 顾及(对于中央子午线) 得: (2-14,15) (2-16) 依次求得并代入(2-10)式,得到高斯投影正算公式

(2-17) 2.2.2. 2高斯投影坐标反算公式 x,y B, 投影方程: (2-18) 高斯投影坐标反算公式推导要复杂些。 ⑴由x求底点纬度(垂足纬度),对应的有底点处的等量纬度,求x,y与 的关系式,仿照式有, 由于y和椭球半径相比较小(1/16.37),可将展开为y的幂级数;又由于是对称投影,q必是y的偶函数,必是y的奇函数。 (2-19) 是待定系数,它们都是x的函数. 由第三条件知: ,

, (2-20) (2-19)式分别对x和y求偏导数并代入上式 上式相等必要充分条件,是同次幂y前的系数相等, 第二条件,当y=0时,点在中央子午线上,即x=X,对应的点称为底点,其纬度为底点纬度,也就是x=X时的子午线弧长所对应的纬度,设所对应的等量纬度为。也就是在底点展开为y的幂级数。 由(2-19)1式 依次求得其它各系数 (2-21) (2-21)1 ………… 将代入(2-19)1式得

WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换 张兢1 王文瑞2 陈溪1 (1.广西第一测绘院广西南宁530023; 2.南宁市勘测院广西南宁530022) 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS 坐标转换投影变换 1 坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原来相同,通过三次旋转,就可以两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS84基准参数

坐标系投影方式的选择及坐标转换

坐标系投影方式的选择及坐标转换 [摘要]通过对几种常用投影方式的分析对比,详细剖述了海外项目投影方式的选择及应用,并配以实例阐述了坐标系之间的相互转换及注意事项。 [关键字]海外项目投影方式坐标转换 响应国家”走出去”的资源战略方针,国内很多公司都有项目在国外;每一个项目在进场前,要充分收集项目的相关资料,对测量技术人员来说,尤其要清楚项目区域已有测量资料的坐标系,高程系及投影方式,任何一种坐标系在建立前都要确定其投影方式。所以我们应该对常用的一些投影方式有基本的认识。 1坐标系投影方式的选择 1.1高斯-克吕格投影 高斯-克吕格(Gauss-Kruger)投影,简称高斯投影,是一种”等角横切圆柱投影”,具体的投影特征在这里不作说明,但是应该对下面几点应该有清醒的认识。 1)在国内大部份地区使用高斯投影。 2)高斯投影有两种分带方式,3度分带和6度分带。3度分带大多用于大比例尺测图,主要指比例尺大于1:10000以上的地形测图。 3)3度带是把全球分为120个带,起始带的经度是1.5~4.5度,中央经线为3度,带号为1,4.5~7.0度为第2带,中央经线为6度,以此类推。 4)6度带是把全球分为60个带,起始带的经度是0~6度,中央经线为3度,带号为1,6~12度为第2带,中央经线为9度,以此类推。 5)高斯投影为保证东向坐标值(测量指的是Y值)不小于0,所以将纵坐标轴西移了500公里。 1.2UTM投影 UTM投影全称Universal Transverse Mercator,译成中文是:通用横轴墨卡托投影。使用UTM投影时需要注意以下几点: 1)UTM投影是世界上最常用的一种投影方式,特别是不发达国家。 2)UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经线为-177°,包含的范围是-180°~-174°。第2带的中央经线为-171度,所含的范

高斯投影正算

高斯投影正、反算代码 //高斯投影正、反算 //////6度带宽 54年北京坐标系 //高斯投影由经纬度(Unit:DD)反算大地坐标(含带号,Unit:Metres) void GaussProjCal(double longitude, double latitude, double *X, double *Y) { int ProjNo=0; int ZoneWide; ////带宽 double longitude1,latitude1, longitude0,latitude0, X0,Y0, xval,yval; double a,f, e2,ee, NN, T,C,A, M, iPI; iPI = 0.0174532925199433; ////3.1415926535898/180.0; ZoneWide = 6; ////6度带宽 a=6378245.0; f=1.0/298.3; //54年北京坐标系参数 ////a=6378140.0; f=1/298.257; //80年西安坐标系参数 ProjNo = (int)(longitude / ZoneWide) ; longitude0 = ProjNo * ZoneWide + ZoneWide / 2; longitude0 = longitude0 * iPI ; latitude0=0; longitude1 = longitude * iPI ; //经度转换为弧度 latitude1 = latitude * iPI ; //纬度转换为弧度 e2=2*f-f*f; ee=e2*(1.0-e2); NN=a/sqrt(1.0-e2*sin(latitude1)*sin(latitude1)); T=tan(latitude1)*tan(latitude1); C=ee*cos(latitude1)*cos(latitude1); A=(longitude1-longitude0)*cos(latitude1); M=a*((1-e2/4-3*e2*e2/64-5*e2*e2*e2/256)*latitude1-(3*e2/8+3*e2*e2 /32+45*e2*e2 *e2/1024)*sin(2*latitude1)

坐标转换的相关问题(椭球体、投影、坐标系统、转换、BEIJING54、XIAN80等)

坐标转换的相关问题(椭球体、投影、坐标系统、转换、BEIJING54、XIAN80 等) 最近需要将一些数据进行转换,用到了一点坐标转换的知识,发现还来这么复杂^_^,觉得自己真是愧对了武汉大学以及中科院这么多年培养我,让我上了好多课却从来没有好好听,今天才知道其实很有用!不多废话,给您分享下我的坐标转换之路。 Part one: Background 地理坐标系与投影坐标系的区别 (cite from:https://www.360docs.net/doc/0b9345838.html,/f?kz=354009166) 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954 表示,大地基准面是D_Beijing_1954。 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954 Spheroid(参考椭球体): Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000 2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。 Projection: Gauss_Kruger

投影变换的知识

投影变换的知识 1 地图投影,是GIS知识体系中重要的组成部分,每个GIS软件都会涉及到这一部分知识,并不是只有MAPGIS软件中才有,MAPGIS软件中的投影变换相比国外的软件更具有针对性,更符合我们国家的国情,比如标准框等我这里只是给大家说说我对投影变换的一个理解,讲很多的知识点串起来,不正确的地方,还请大家给予批评指正 投影变换,我个人理解,就是对投影进行变换只要把握住了这个核心的思想,其他的就不在那么难理解了那么下面就要搞清楚两个问题,就是什么是投影?为什么要进行投影?然后再来理解如何变换 那么什么是投影呢? 我们知道,地球是一个近似于梨型的不规则椭球体,而GIS软件所处理的都是二维平面上的地物要素的信息所以首先要考的一个问题,就是如果如何将地球表面上的地物展到平面上去 最简单的一个方法,或者说是最容易想到的一个方法就是将地球表面沿着某个经线剪开,然后展成平面,即采用这种物理的方法来实现可采用物理的方法将地球表面展开成地图平面必然产生裂隙或褶皱,大家可以想象一下,如果把一个足球展成平面的,会是什么结果所以这种方法存在着很大的误差和变形,是不行的 那么我们就可以采用地图投影的方法,就是建立地球表面上的点与地图平面上点之间的一一对应关系,利用数学法则把地球表面上的经纬线网表示到平面上,这样就可以很好的控制变形和误差凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题 所以一句话,投影:就是建立地球表面上点(Q,)和平面上的点(x,y)之间的函数关系式的过程 这时候就有一个问题要问了,就是随着地图制图理论及科学技术的不断发展,就会有不同的国家,不同的人,提出了不同的数学法则这就表示存在着很多的投影方式有时候我们需要将不同的投影方式变换成同一种投影方式,或者将不同的投影参数,变换成相同的投影参数,这都需要进行投影变换 所以一句话,投影变换:就是将不同的地图投影函数关系式变换的过程 在MAPGIS中的投影变换的定义如下:将当前地图投影坐标转换为另一种投影坐标,它包括坐标系的转换不同投影系之间的变换以及同一投影系下不同坐标的变换等多种变换 下面我们就来看看投影和变换过程中所涉及到的知识点 地球椭球体 地图投影是指建立地球表面上点(Q,)和平面上的点(x,y)之间的函数关系式的过程那我们先来看看,如何在地球表面上表示地物要素的空间信息只有先将地球表面上的地物要素的空间信息描述好了以后,在将它们通过函数关系式,投影到地图平面上去,这样才可以进行空间分析或者其它的运算 我们知道:如果要描述地物要素的空间信息,或者不同地物要素之间的相对空间关系,首先要在地球上建立一个参考系,只有建立了参考系,才能去准确的描述每个地物的坐标等信息这涉及到很多地球的形状及椭球体方面的知识 1地球的形状 地球自然表面是一个起伏不平十分不规则的表面,有高山丘陵和平原,又有江河湖海地球表面约有71%的面积为海洋所占用,29%的面积是大陆与岛屿陆地上最高点与海洋中最深处相差近20 公里这个高低不平的表面无法用数学公式表达,也无法进行运算所以在量测与制图时,必须找一个规则的曲面来代替地球的自然表面当海洋静止时,它的自由水面必定与该面上各点的重力方向(铅垂线方向)成正交,我们把这个面叫做水准面但水准面有无数多个,其中有一个与静止的平均海水面相重合可以设想这个静止的平均海水面穿过大陆和岛屿形成一个闭合的曲面,这就是大地水准面

相关文档
最新文档