高中数学三角函数公式大全附带练习题

合集下载

三角函数公式典型例题大全

三角函数公式典型例题大全

高中三角函数公式大全以及典型例题2009年07月12日星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinA?CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差sinasinb = -[cos(a+b)-cos(a-b)] cosacosb =[cos(a+b)+cos(a-b)]sinacosb =[sin(a+b)+sin(a-b)] cosasinb =[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa.sin(-a) = cosa cos(-a) = sinasin(+a) = cosa cos(+a) = -sinasin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式a?sina+b?cosa=×sin(a+c) [其中tanc=]a?sin(a)-b?cos(a) =×cos(a-c) [其中tan(c)=]1+sin(a) =(sin+cos)2 1-sin(a) = (sin-cos)2其他非重点三角函数csc(a) =sec(a) =公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosαtan(2kπ+α)= tanα cot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosαtan(π+α)= tanα cot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosαtan(-α)= -tanα cot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosαtan(π-α)= -tanα cot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosαtan(2π-α)= -tanα cot(2π-α)= -cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanαsin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanαsin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotαcot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinαtan(-α)= cotα cot(-α)= tanα(以上k∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:3.三角形中的一些结论:(不要求记忆)(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ三角函数典型例题1 .设锐角的内角的对边分别为,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.【解析】:(Ⅰ)由,根据正弦定理得,所以,由为锐角三角形得.(Ⅱ).2 .在中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.(Ⅰ)求角B的大小;20070316(Ⅱ)设且的最大值是5,求k的值.【解析】:(I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcos C.即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)∵A+B+C=π,∴2sinAcosB=sinA.∵0<A<π,∴sinA≠0.∴cosB=.∵0<B<π,∴B=.(II)=4ksinA+cos2A.=-2sin2A+4ksinA+1,A∈(0,)设sinA=t,则t∈.则=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.∵k>1,∴t=1时,取最大值.依题意得,-2+4k+1=5,∴k=.3 .在中,角所对的边分别为,.I.试判断△的形状;II.若△的周长为16,求面积的最大值.【解析】:I.,所以此三角形为直角三角形.II.,当且仅当时取等号,此时面积的最大值为.4 .在中,a、b、c分别是角A. B.C的对边,C=2A,,(1)求的值;(2)若,求边AC的长?【解析】:(1)(2)①又②由①②解得a=4,c=6,即AC边的长为5.5 .已知在中,,且与是方程的两个根.(Ⅰ)求的值;(Ⅱ)若AB,求BC的长.【解析】:(Ⅰ)由所给条件,方程的两根.∴(Ⅱ)∵,∴.由(Ⅰ)知,,∵为三角形的内角,∴∵,为三角形的内角,∴,由正弦定理得:∴.6 .在中,已知内角A. B.C所对的边分别为a、b、c,向量,,且?(I)求锐角B的大小;(II)如果,求的面积的最大值?【解析】:(1)2sinB(2cos2-1)=-cos2B2sinBcosB=-cos2B tan2B=-∵0<2B<π,∴2B=,∴锐角B=(2)由tan2B=-B=或①当B=时,已知b=2,由余弦定理,得:4=a2+c2-ac≥2ac-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC的面积S△ABC=acsinB=ac≤∴△ABC的面积最大值为②当B=时,已知b=2,由余弦定理,得:4=a2+c2+ac≥2ac+ac=(2+)ac(当且仅当a=c=-时等号成立)∴ac≤4(2-)∵△ABC的面积S△ABC=acsinB=ac≤ 2-∴△ABC的面积最大值为2-7 .在中,角A. B.C所对的边分别是a,b,c,且(1)求的值;(2)若b=2,求△ABC面积的最大值.【解析】:(1) 由余弦定理:cosB=+cos2B=(2)由∵b=2,+=ac+4≥2ac,得ac≤, S△ABC=acsinB≤(a=c时取等号)故S△ABC的最大值为8 .已知,求的值?【解析】;。

三角函数万能公式题目

三角函数万能公式题目

三角函数万能公式题目三角函数万能公式,这可是高中数学里的一个“硬骨头”!想当年我自己上学的时候,也被它折腾得够呛。

咱们先来说说什么是三角函数万能公式。

它包括三个公式:sinα = [2tan(α/2)] / [1 + tan²(α/2)] ;cosα = [1 - tan²(α/2)] / [1 + tan²(α/2)] ;tanα = [2tan(α/2)] / [1 - tan²(α/2)] 。

看着这一堆式子,是不是有点头疼?别慌,咱们慢慢捋。

我记得有一次给学生们讲这部分内容,有个学生叫小李,平时数学成绩还不错,可就是卡在这万能公式上转不过弯来。

我在黑板上写了一道例题:已知tanα = 3,求sinα 和cosα 的值。

我一步一步地引导大家,先把万能公式写在旁边,然后告诉他们,咱们先从tanα 入手,求出tan(α/2)的值。

我问大家:“同学们,tanα = 3,那咱们怎么求tan(α/2) 呢?”下面一片安静,小李皱着眉头,咬着笔杆。

我笑了笑说:“别着急,咱们来想想啊,假设tan(α/2) = x ,那根据正切的二倍角公式,ta nα = 2x / (1 -x²) ,现在tanα = 3 ,是不是就能列出一个方程啦?”大家开始动笔算,小李眼睛突然一亮,大声说:“老师,我算出来啦,x = 1/2 或者 -2 !”我点点头:“很好,小李,那接下来咱们就可以代入万能公式算sinα 和cosα 啦。

”经过一番计算,大家终于算出了结果。

小李脸上露出了开心的笑容,我也松了一口气。

说回万能公式,要熟练运用它们,就得多多练习。

比如,给一个角度,让你用万能公式求三角函数值;或者反过来,给你三角函数值,让你通过万能公式求角度。

这就像是打怪升级,题目做得多了,经验值就涨上去了,遇到啥怪都不怕。

再比如说,在解决三角形的问题时,有时候已知条件给的不是常见的角度或者边长,这时候万能公式就能派上用场。

三角函数公式及其练习

三角函数公式及其练习

三角函数公式复习与练习1、若βα与终边相同,则 。

2、同角三角函数的基本关系式 ①、 ②、 ③、3、诱导公式①、=-)sin(απ =-)cos(απ =-)tan(απ ②、=+)sin(απ =+)cos(απ =+)tan(απ ③、=-)sin(α =-)cos(α =-)tan(α ④、=-)2sin(απ=-)2cos(απ=-)2tan(απ⑤、=+)2sin(απ=+)2cos(απ=+)2tan(απ⑥、=+)2sin(παk =+)2cos(παk =+)2tan(παk 4、两角和与差的三角函数公式=+)sin(βα =-)sin(βα =+)cos(βα =-)cos(βα =+)tan(βα =-)tan(βα5、二倍角的正弦、余弦和正切公式=α2sin=α2cos=α2tan6、三角函数的降幂公式=α2sin =α2cos7、化x b x a cos sin +为一个角的一个三角函数的形式(辅助角公式)=+x b x a cos sin8、正弦定理:9、余弦定理:10、S ⊿=11、特殊角的三角函数值12、三角函数的图像及性质x y sin =x y cos =x y tan =13、图像的变化(先平移再伸缩)x y sin = ⇒ )s i n (ϕ+=x y⇒ )s i n (ϕω+=x y ⇒ )s i n (ϕ+=x A y(先伸缩再平移)x y sin = ⇒ )s i n(x y ω= ⇒ )s i n (ϕω+=x y ⇒ )s i n (ϕ+=x A y 练习:1、已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域. 解:(Ⅰ)由最低点为2(,2)23M A π-=得 由222T T πππωπ====得 由点2(,2)3M π-在图像上得42sin()23πϕ+=-即4sin()13πϕ+=- 41122,326k k k Z πππϕπϕπ∴+=-=-∈即,又(0,)2πϕ∈,6πϕ∴=()2sin(2)6f x x π∴=+(Ⅱ)[0,],2[,]12663x x ππππ∈∴+∈Q ,0()166x f x ππ∴==当2x+即时,取得最小值;,()6312x f x πππ==当2x+即时,2、已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象( )A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度【考点定位】本小题考查诱导公式、函数图象的变换,基础题。

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题三角函数诱导公式sin〔-α〕=-sinα,cos〔-α〕=cosα,tan〔-α〕=-tanαcot〔-α〕=-cotαsin〔π/2-α〕=cosα,cos〔π/2-α〕=sinα,tan〔π/2-α〕=cotα,cot〔π/2-α〕=tanα,sin〔π/2+α〕=cosα,cos〔π/2+α〕=-sinα,tan〔π/2+α〕=-cotα,cot〔π/2+α〕=-tanα,sin〔π-α〕=sinαcos〔π-α〕=-cosα,tan〔π-α〕=-tanα,cot〔π-α〕=-cotαsin〔π+α〕=-sinα,cos〔π+α〕=-cosα,tan〔π+α〕=tanαcot〔π+α〕=cotα,sin〔3π/2-α〕=-cosα,cos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotα,cot〔3π/2-α〕=tanα,sin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinα,tan〔3π/2+α〕=-cotα,cot〔3π/2+α〕=-tanαsin〔2π-α〕=-sinα,cos〔2π-α〕=cosα,tan〔2π-α〕=-tanαcot〔2π-α〕=-cotα,sin〔2kπ+α〕=sinα,cos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanα,cot〔2kπ+α〕=cotα(其中k∈Z)习题精选一、选择题1.假设,那么的值为〔〕.A.B.C.D.2.的值等于〔〕.A.B.C.D.3.在△ 中,以下各表达式为常数的是〔〕.A. B.C.D.4.如果,且,那么可以是〔〕.A. B. C. D.5.是方程的根,那么的值等于〔〕.A.B.C.D.二、填空题6.计算.7.,,那么,.8.假设,那么.9.设,那么.10..三、解答题11.求值:12.角终边上一点的坐标为,〔1〕化简以下式子并求其值:;〔2〕求角的集合.13.,求证:.14.假设,求的值.15.、、为△ 的内角,求证:〔1〕;〔2〕.16.为锐角,并且,,求的值.参考答案:一、选择题1.B 2.D 3.C 4.D 5.A二、填空题6.2 7.,8.9.10.三、解答题11..12.〔1〕;〔2〕.13.提示:.14.18.提示:先化简,再将代入化简式即可.15.提示:注意及其变式.16..提示:化简条件,再消去得.。

高中数学三角函数恒等变形公式及应用

高中数学三角函数恒等变形公式及应用

高中数学三角函数恒等变形公式及应用
恒等变形一直三角函数中的一个难点,但在高考中也并非重点,因为在高考中,三角恒等变换由于题型的原因变得相当简单。

但是三角恒等变换题型能够培养学生计算、分解、添加项等各方面的能力,所以在学习必修四中学生们应该大量练习,从练习中也能理解三角函数的真正意义。

下面给出了三角函数常见变形形式和几道典型例题。

】4.设函数f(x)=(a为实常数)在区间上的最小值为-4,
那么a的值等于_______
三角形中恒等式锦囊:
11.求证:。

分析:这是一道三角恒等的证明问题,解决这类问题的一般策略是“切割化弦”、由繁到简。

其基本思路是根据题目的特点,结合有关三角公式,作适当的恒等变形。

证法1:左边
右边证法2:右边
证法3:右
边左边证法4:右边
左边证法5:右边
左边证法6:因为
,又
所以
从而,故原式成立。

反思:对三角公式做到不仅会用,而且能变形应用,这样才达到了灵活运用公式的目的,才能从中体会到公式变形的妙处及知识间的内在联系。

原题还可作如下变形,
同学们不妨试着证一下。

变形:;;
;;;;
;。

高中三角函数经典例题50道

高中三角函数经典例题50道

高中三角函数经典例题50道1.求解三角形中角度的相关问题是高中数学学习中的重要内容。

例如,考虑正三角形ABC,已知∠A=60°,求∠B和∠C的大小。

2.在三角形ABC中,已知∠A=30°,∠C=60°,求∠B的大小。

3.若在直角三角形ABC中,∠A=30°,求∠C的大小。

4.在锐角三角形ABC中,已知边b=5,c=10,∠A=30°,求边a的长度。

5.在钝角三角形ABC中,边a=6,b=10,∠A=120°,求边c的长度。

6.若在任意三角形ABC中,边a=8,b=6,∠A=45°,求∠B的大小。

7.在直角三角形ABC中,边a=1,b=√3,求∠A和∠B 的大小。

8.若在锐角三角形ABC中,已知边a=5,b=7,求∠A 和∠B的大小。

9.在任意三角形ABC中,边a=10,b=15,∠A=30°,求∠B的大小。

10.若在直角三角形ABC中,边b=4,c=5,求∠A和∠C的大小。

11.在锐角三角形ABC中,已知边b=8,c=10,∠A=60°,求∠C的大小。

12.若在任意三角形ABC中,边a=7,c=9,∠A=45°,求边b的长度。

的长度。

14.在锐角三角形ABC中,已知∠A=45°,∠B=60°,求∠C的大小。

15.若在任意三角形ABC中,边a=12,b=16,求∠A和∠B的大小。

16.在直角三角形ABC中,已知边b=8,c=10,求∠A和∠C的大小。

17.在锐角三角形ABC中,边a=5,b=8,∠C=60°,求边c的长度。

18.若在任意三角形ABC中,边a=7,b=10,∠B=30°,求边c的长度。

19.在直角三角形ABC中,边a=2,c=√5,求∠A和∠B的大小。

20.在锐角三角形ABC中,已知边b=3,c=4,∠A=45°,求∠C的大小。

21.若在任意三角形ABC中,边a=9,c=12,∠C=45°,求边b的长度。

(新)高中数学三角函数知识点及试题总结

(新)高中数学三角函数知识点及试题总结

高考三角函数1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=3.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。

r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy (2)各象限的符号:sin α cos α tan αxy+O— —+x yO — ++— +y O— ++ —5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。

(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质降幂公式: 1+cos α=2cos 22α cos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-= 9.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

高中三角函数公式大全与经典习题解答

高中三角函数公式大全与经典习题解答

用心辅导中心 高二数学三角函数知识点梳理:⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π⒉正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cosc 2=a 2+b2-2ab C cos bca cb A 2cos 222-+=⒋S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr =))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形切圆半径)⒌同角关系:⑴商的关系:①θtg =xy =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且ab tg =ϕ)⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T =ωπ2, 频率f =T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图 ⒏诱导公试 三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限⒐和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg ⒑二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin ⒕和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 例题:1.已知x ∈(-π2 ,0),cos x =45,则tan2x 等于 ( )A. 724B.-724C. 247D.-2472. 3 cosπ12-sinπ12的值是( )A.0B.- 2C.2D.23.已知α,β均为锐角,且sin α=55,cos β=31010,则α+β的值为 ( ) A. π4 或3π4B.3π4 C. π4D.2kπ+π4(k ∈Z )4.sin15°cos30°sin75°的值等于( )A. 34B.38 C. 18D. 145.若f (cos x )=cos2x ,则f (sinπ12)等于( )A. 12B.-12C.-32D.326.sin(x +60°)+2sin(x -60°)- 3 cos(120°-x )的值为( )A. 12B. 32C.1D.07.已知sin α+cos α=13,α∈(0,π),那么sin2α,cos2α的值分别为 ( )A. 89 ,179B.-89 ,179C.-89 ,-179D.-89 ,±1798.在△ABC 中,若tan A tan B >1,则△ABC 的形状是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.化简cos (π4 +α)-sin (π4+α)cos (π4 -α)+sin (π4-α)的结果为( )A.tan αB.-tan αC.cot αD.-cot α10.已知sin α+sin β+sinγ=0,cos α+cos β+co sγ=0,则cos(α-β)的值为 ( )A.-12B. 12C.-1D.1二、填空题(本大题共6小题,每小题5分,共30分) 11.sin70+cos150sin80cos70-sin150sin80 的值等于_____________.12.若1-tan A 1+tan A =4+ 5 ,则cot( π4+A )=_____________.13.已知tan x =43 (π<x <2π),则cos(2x -π3 )cos(π3 -x )-sin(2x -π3 )sin(π3-x )=_____.14.sin(π4 -3x )cos(π3 -3x )-cos(π6 +3x )sin(π4 +3x )=_____________.15.已知tan(α+β)=25 ,tan(β-π4 )=14 ,则sin(α+π4 )·sin(π4 -α)的值为____________.16.已知5cos(α-β2 )+7cos β2 =0,则tan α-β2 tan α2=_____________.1.下列函数中,最小正周期为π的偶函数是 ( )A.y =sin2xB.y =cos x2C.y =sin2x +cos2xD.y =1-tan 2x 1+tan 2x2.设函数y =cos(sin x ),则 ( )A.它的定义域是[-1,1]B.它是偶函数C.它的值域是[-cos1,cos1]D.它不是周期函数3.把函数y =cos x 的图象上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移π4 个单位.则所得图象表示的函数的解析式为( )A.y =2sin2xB.y =-2sin2xC.y =2cos(2x +π4)D.y =2cos(x 2 +π4)4.函数y =2sin(3x -π4)图象的两条相邻对称轴之间的距离是 ( )A. π3 B.2π3C.πD.4π35.若sin α+cos α=m ,且- 2 ≤m <-1,则α角所在象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限17.已知cos(α-π6 )=1213 ,π6 <α<π2,求cos α.18.已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2),求sin α、tan α.19.在△ABC 中,已知A 、B 、C 成等差数列,求tan A 2 +tan C 2 + 3 tan A 2 tan C2的值.20.已知cos α=-1213 ,cos(α+β)=17226,且α∈(π,32 π),α+β∈(32 π,2π),求β.。

(完整版)高中数学-三角函数诱导公式练习题与答案

(完整版)高中数学-三角函数诱导公式练习题与答案

三角函数定义及诱导公式练习题代数式sin 120o cos21C °的值为(A.6 .已知 tan( ) 4 A 、4B5A. B. C. D.2. tan120 A.、.3.■■ 3贝U sin a+ cos a 等于()7 5a 的终边经过点 B.753. A.154. 已知扇形的面积为2cm,扇形圆心角B 的弧度数是4,则扇形的周长为( 已知角 (3a ,— 4a)(a <0), C . -15D .(A)2cm(B)4cm (C)6cm (D)8cm5 .已知f ()cos(— 2 cos(3 )si n()2,则 f( )tan()25§ )的值为(3“),则sin( ?)10. (14分)已知tan a =—,求证: /八 sin a cosa ⑴ 二_ _ ;sin a cosa(2)sin 2 a+ sin a COS a = - .11 .已知 tan 2.(1)求 3sin 一2CO 二的值; sin coscos( )cos( )sin()⑵求品盘窗勺的值;(3)若 是第三象限角,求cos 的值. 312.已知 sin ( a — 3n ) = 2cos( a — 4n ),求 si (2si n— — si n(—二)+ 5cos (2 —3-的值. )f(25 )=cos 325 325 =cos- 3 = cos 8 1 —=cos —= 3 3 2参考答案1. B【解析】 试题分析:180°,故1200 -.3考点:弧度制与角度的相互转化•2. A.【解析】试题分析:由诱导公式以可得,sin 120 ° cos210° =sin60 ° x (-cos30 ° )=- ^ x2十3,选A.考点:诱导公式的应用. 3. C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由tan120 tan(18060 ) tan 603,选 C.考点:诱导公式• 4. A【解析】 试题分析:r 55 , sin —-, cos -, sin cos r 55考点:三角函数的定义 5. C【解析】设扇形的半径为R,则错误!未找到引用源。

高中数学三角函数公式练习(答案)

高中数学三角函数公式练习(答案)

高中数学三角函数公式练习(答案)1.sin(29π/6)的值为()A。

-1133B。

-C。

D。

2222答案】C解析】考点:任意角的三角函数2.已知sin(α-π/4)=7/√5301,cos2α=71/2525,sinα=5/13,求cosα的值。

A。

-/6662B。

-1025/4433C。

-727/5555D。

5555/2553答案】D解析】考点:两角和与差的三角函数,二倍角公式3.cos690°的值为()A。

-1133B。

C。

-2222D。

-答案】C解析】考点:三角函数的诱导公式4.tan(π/3)的值为()A。

-33B。

C。

3D。

-333答案】C解析】考点:三角函数的求值,诱导公式5.若-π<β<α<π,且cos(β+π/4)=5/√5301,则cos(α+β)的值为()A。

-B。

-3399C。

D。

-答案】C解析】考点:诱导公式,三角函数的化简求值。

6.若角 $\alpha$ 的终边在第二象限且经过点 $P(-1,3)$,则$\sin\alpha$ 等于 $\dfrac{3}{2}$。

7.$\sin7^\circ\cos37^\circ-\sin83^\circ\cos53^\circ$ 的值为$-\dfrac{1}{3}$。

8.已知 $\cos(-x)=\dfrac{\sqrt{3}}{2}$,那么 $\sin2x=-\dfrac{1}{2}$。

9.已知 $\sin\dfrac{5\pi}{2}+\alpha=\dfrac{1}{23}$,则$\cos2\alpha=-\dfrac{5}{9}$。

10.已知 $\sin(\dfrac{\pi}{2}+a)=\dfrac{1}{27}$,则$\cos2a=-\dfrac{1}{9}$。

11.已知点 $P(\tan\alpha,\cos\alpha)$ 在第三象限,则角$\alpha$ 在第二象限。

12.已知 $\alpha$ 是第四象限角,$\tan\alpha=-\dfrac{5}{22}$,则 $\sin\alpha=-\dfrac{12}{13}$。

三角函数公式汇总及练习题

三角函数公式汇总及练习题

三角函数公式汇总及练习题一、倍角公式1、Sin2A=2SinA*CosA2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-13、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))向左转|向右转二、降幂公式1、sin^2(α)=(1-cos(2α))/2=versin(2α)/22、2cos^2(α)=(1+cos(2α))/2=covers(2α)/23、tan^2(α)=(1-cos(2α))/(1+cos(2α))三、推导公式1、1tanα+cotα=2/sin2α2、tanα-cotα=-2cot2α3、1+cos2α=2cos^2α4、、4-cos2α=2sin^2α5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina四、两角和差1、1cos(α+β)=cosα·cosβ-sinα·sinβ2、cos(α-β)=cosα·cosβ+sinα·sinβ3、sin(α±β)=sinα·cosβ±cosα·sinβ4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、和差化积1、sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]2、sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]3、cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]4、cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)六、积化和差1、sinαsinβ=[cos(α-β)-cos(α+β)]/22、sinαcosβ=[sin(α+β)+sin(α-β)]/23、cosαsinβ=[sin(α+β)-sin(α-β)]/2七、诱导公式1、(-α)=-sinα、cos(-α)=cosα2、tan(—a)=-tanα、sin(π/2-α)=cosα、cos(π/2-α)=sinα、sin(π/2+α)=cosα3、3cos(π/2+α)=-sinα4、(π-α)=sinα、cos(π-α)=-cosα5、5tanA=sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα6、tan(π-α)=-tanα、tan(π+α)=tanα八、锐角三角函数公式1、sinα=∠α的对边/斜边2、α=∠α的邻边/斜边3、tanα=∠α的对边/∠α的邻边4、cotα=∠α的邻边/∠α的对边例1下列说法中,正确的是[]A.第一象限的角是锐角B.锐角是第一象限的角C.小于90°的角是锐角D.0°到90°的角是第一象限的角【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键.【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B).例2(90°-α)分别是第几象限角?【分析】由sinα·cosα<0,所以α在二、四象限;由sin α·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的【解】(1)由题设可知α是第二象限的角,即90°+k·360°<α<180°+k·360°(k∈Z),的角.(2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角.(3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z),所以-180°-k·360°<-α<-90°-k·360°(k∈Z).故-90°-k·360°<90°-α<-k·360°(k∈Z).因此90°-α是第四象限的角.。

高中数学三角函数专题专项练习(非常好)

高中数学三角函数专题专项练习(非常好)

高中数学三角函数专题专项练习(非常好)三角函数疑难点解析】一、忽略隐含条件例3:若sinx+cosx-1>0,求x的取值范围。

正解:2sin(x+π/4)>1,由sin(x+π/4)>1/√2得2kπ+π/4<x+π/4<2kπ+3π/4(k∈Z)∴2kπ+π/4<x<2kπ+5π/4(k∈Z),即x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)。

改写后:对于不等式sinx+cosx-1>0,可以化简为2sin(x+π/4)>1.由于sin(x+π/4)>1/√2,所以可以得到2kπ+π/4<x+π/4<2kπ+3π/4(k∈Z)。

进一步化简得到x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)。

二、忽视角的范围,盲目地套用正弦、余弦的有界性例4:设α、β为锐角,且α+β=120°,讨论函数y=cos2α+cos2β的最值。

正解:y=1+(cos2α+cos2β)=1+cos(α+β)cos(α-β)=1-cos(α-β),可见,当cos(α-β)=1时,ymin=0;当cos(α-β)=-1时,ymax=2.分析:由已知得30°<α,β<90°,∴-60°<α-β<60°,则-1<cos(α-β)≤1,∴当cos(α-β)=1,即α=β=60°时,ymin=0,最大值不存在。

改写后:已知α、β为锐角,且α+β=120°,求函数y=cos2α+cos2β的最值。

根据cos2θ=1-2sin2θ和cos(α+β)=cosαcosβ-sinαsinβ,可以得到y=1+(cos2α+cos2β)=1+cos(α+β)cos(α-β)=1-co s(α-β)。

当cos(α-β)=1时,即α=β=60°时,ymin=0,最大值不存在。

高中数学 三角函数诱导公式(带答案)

高中数学 三角函数诱导公式(带答案)

习题精炼一、选择题1、下列各式不正确的是 ( )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23 D . 23-4、如果).cos(|cos |π+-=x x 则x 的取值范围是( C )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-66、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .437.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 ( )A .211aa ++ B .-211aa ++ C .211aa +-D .211aa +-8.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)=1213,则sin (α+55°)=.3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、已知,1)sin(=+βα则=+++)32sin()2sin(βαβα .三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.3、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.4.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.《诱导公式》参考答案一、选择题ABAC BABC二、填空题1、1.2、1312.3、0.4、0三、解答题1、7.2、25.3、22)41(=g , 5312()1,()s i n ()1,6233g f π=+=-+ 1)4sin()43(+-=πf , 故原式=3.4、解析:(1)由已知等式(sin )3(sin )4sin cos f x f x x x -+=⋅ ①得x x x f x f cos sin 4)sin (3)(sin -=-+ ② 由3⨯①-②,得8x x x f cos sin 16)(sin ⋅=,故212)(x x x f -=.(2)对01x ≤≤,将函数212)(x x x f -=的解析式变形,得2242()2(1)2f x x x x x =-=-+=22112()24x --+,当22x =时,max 1.f =。

高一三角函数公式及诱导公式习题(附答案)

高一三角函数公式及诱导公式习题(附答案)

三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。

高一数学 知识点 三角函数及恒等公式 经典题 常考题 50道 含答案及解析

高一数学 知识点 三角函数及恒等公式 经典题 常考题 50道 含答案及解析

高一数学三角函数及恒等公式经典题常考题50道一、单选题1.函数y=cosx|tanx|(0≤x<且x≠ )的图象是下图中的()A. B.C. D.【答案】C【考点】同角三角函数基本关系的运用,正弦函数的图象【解析】【解答】解:当0 时,y=cosxtanx≥0,排除B,D.当时,y=﹣cosxtanx<0,排除A.故选:C.【分析】根据x的范围判断函数的值域,使用排除法得出答案.==========================================================================2.若α,β都是锐角,且,则cosβ=()A. B. C.或 D.或【答案】A【考点】两角和与差的余弦函数【解析】【解答】解:∵α,β都是锐角,且,∴cosα= = ,cos(α﹣β)= = ,则cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)= += ,故选:A.【分析】由条件利用同角三角函数的基本关系,两角差的三角公式,求得cosβ=cos[α﹣(α﹣β)]的值.==========================================================================3.设为锐角,若cos = ,则sin 的值为()A. B. C. D.【答案】B【考点】二倍角的正弦【解析】【解答】∵为锐角,cos = ,∴∈,∴= = .则sin =2 . 故答案为:B【分析】根据题意利用同角三角函数的关系式求出正弦的值,再由二倍角的正弦公式代入数值求出结果即可。

==========================================================================°sin105°的值是()A. B. C. D.【答案】A【考点】运用诱导公式化简求值【解析】【解答】sin15°sin105°=sin15°cos15°= sin30°= ,故答案为:A.【分析】利用诱导公式转化已知的三角函数关系式求出结果即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4三角函数公式大全附带练习题
三角函数诱导公式
sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanαcot(-α)=-cotα
sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,
cot(π/2-α)=tanα,sin(π/2+α)=cosα,cos(π/2+α)=-sinα,
tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π-α)=sinα
cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα
sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα
cot(π+α)=cotα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα,cot(3π/2-α)=tanα,sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα
sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanα
cot(2π-α)=-cotα,sin(2kπ+α)=sinα,cos(2kπ+α)=cosα
tan(2kπ+α)=tanα,cot(2kπ+α)=cotα(其中k∈Z)
习题精选
一、选择题
1.若,
则的值为().
A.B.C.D.
2.的值等于().
A.B.C.D.
3.在△ 中,下列各表达式为常数的是().
A. B.
C.D.
4.如果,且,则可以是().
A. B. C. D.
5.已知是方程的根,那么的值等于().
A.B.C.D.
二、填空题
6.计算.
7.已知,,则,.
8.若,则.
9.设,则.
10..
三、解答题
11.求值:
12.已知角终边上一点的坐标为,
(1)化简下列式子并求其值:;
(2)求角的集合.
13.已知,求证:.
14.若,
求的值.
15.已知、、为△ 的内角,求证:
(1);(2).
16.已知为锐角,并且,,求
的值.
参考答案:
一、选择题1.B 2.D 3.C 4.D 5.A
二、填空题6.2 7.,8.9.10.
三、解答题
11..
12.(1);(2).
13.提示:.
14.18.提示:先化简,再将代入化简式即可.15.提示:注意及其变式.
16..提示:化简已知条件,再消去得.。

相关文档
最新文档