单相桥式全控整流电路Matlab仿真
单相桥式全控整流电路Matlab仿真(完美)资料-共18页
目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
单相桥式全控整流电路MATLAB仿真实验报告(下)
一、单相桥式全控整流电路(电阻性反电势)1.电路结构与工作原理(1)电路结构TidE(2)工作原理1)若是感性负载,当u2在正半周时,在ωt=α处给晶闸管VT1加触发脉冲,VT1导通后,电流从u2正端→VT1→L→R→VD4→u2负端向负载供电。
u2过零变负时,因电感L的作用使电流连续,VT1继续导通。
但a点电位低于b点,使电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是经VT1和VD2续流,则ud=0。
2)在u2负半周ωt=π+α时刻触发VT3使其导通,则向VT1加反压使之关断,u2经VT3→L→R→VD2→u2端向负载供电。
u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
此后重复以上过程。
2.建模3.仿真结果分析α=30°单相全控桥式反电势负载(电阻性)α=60°单相全控桥式反电势负载(电阻性)α=90°单相全控桥式反电势负载(电阻性)4.小结若α <δ时,触发脉冲到来时,晶闸管承受负电压,不可能导通。
为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当晶闸管开始承受正电压时,触发脉冲仍然存在。
这样,相当于触发角被推迟,即α=δ。
二、单相桥式全控整流电路(阻感性反电势)1.建模2.仿真结果分α=30°单相全控桥式反电势负载(阻感性)α=60°单相全控桥式反电势负载(阻感性)α=90°单相全控桥式反电势负载(阻感性)3.小结当电枢电感不足够大时,输出电流波形断续,为此通常在负载回路串接平波电抗器以减小电流脉动,延迟晶闸管导通时间;如果电流足够大,电流就连续。
单相桥式全控整流电路Matlab仿真(完美)
目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理1.1电路结构R单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,u T2.3=u T1.4=1/2 u2。
单相桥式全控整流电路Matlab仿真
目录单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
单相桥式全控整流电路MATLAB仿真设计报告
单相桥式全控整流电路MATLAB仿真设计报告课程名称:MATLAB仿真课程设计院系:班级:姓名:学号:日期:目录一、MATLAB软件介绍 (3)二、实验目的 (3)三、实验器材 (3)四、实验内容 (3)4、1电路结构与工作原理 (3)4.2建模 (6)4.3仿真分析(波形) (7)4.4仿真程序 (8)一、MATLAB软件介绍MATLAB(矩阵实验室)是由美国MathWorks公司开发的第四代高层次的编程语言和交互式环境数值计算,可视化和编程; MATLAB允许矩阵操作、绘制函数和数据、算法实现、创建用户界面; MATLAB能和在其他语言,包括C、C++、J ava和Fortran语言编写的程序接口; MATLAB可以分析数据、开发算法、建立模型和应用程序; MATLAB拥有众多的内置命令和数学函数,可以帮助您在数学计算,绘图和执行数值计算方法。
二、实验目的1.认识并了解MATLAB软件2.学习单项桥式全控整流电路与工作原理,并用MATLAB软件进行简单的仿真设计。
三、实验器材1.一台装有MATLAB仿真软件的电脑。
2.电力电子技术的相关书籍。
3.记录实验数据所需的纸和笔。
四、实验内容4、1电路结构与工作原理(1)、电路结构(阻性负载)如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。
(2)、工作原理1)在u2正半波的(0到a)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此,在0到a区间,4个晶闸管都不导通。
假如4个晶闸管的漏电阻相等,则Ut1.4=Ut2.3=1/2u22)在u2正半波的(a~π)区间,在ωt=a时刻,触发晶闸管VT1、VT4使其导通。
3)在u2负半波的(π到π+a)区间,在π到π+a区间,晶闸管VT2、VT3 承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
单相桥式全控整流电路Matl新编仿真
单相桥式全控整流电路M a t l新编仿真Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT目录(((3468单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理电路结构单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则==1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,==1/2 u2。
(4)在u2负半波的ωt=π+α时刻:触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。
此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。
晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。
单相桥式全控整流电路Matlab仿真汇总
目录单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
matlab仿真——单相桥式全控整流电路
matlab仿真——单相桥式全控整流电路设计课题: 单相桥式全控整流电路姓名:学院: 信息工程学院专业: 电子信息科学与技术班级: 09级学号:日期 2010-2011第三学期指导教师: 李光明张军蕊单相桥式全控整流电路一、问题描述及工作原理1、单相桥式全控整流电路(电阻性负载)单相桥式全控整流电路(电阻性负载)如图1所示,电路由交流电源、整流变压器、晶闸管、负载以及触发电路组成。
我所要分析的问题是α为不同值时,输出电压及电流的波形变化。
idR图1其工作原理如下:(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。
(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
(3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
2、单相桥式全控整流电路(阻-感性负载)单相桥式全控整流电路(阻-感性负载)如图2所示:图2其工作原理如下:(1)在电压u2正半波的(0~α)区间。
晶闸管VT1、VT4承受正向电压,但无触发脉冲,VT1、VT4处于关断状态。
假设电路已经工作在稳定状态,则在0~α区间由于电感的作用,晶闸管VT2、VT3维持导通。
(2)在u2正半波的(α~π)区间。
在ωt=α时刻,触发晶闸管VT1、VT4使其导通,负载电流沿a→VT1→L→R→VT4→b→T的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。
单相桥式全控整流电路反电动势负载MATLAB仿真
电力电子仿真实验报告一、课程设计名称单相桥式全控整流电路反电动势负载MATLAB仿真二、设计任务及条件1.设计条件:1)电源电压:交流100V/50Hz2)输出功率:1KW3)移相范围:30∘−150∘4)反电势:E=70V2.要求完成的主要任务;(1)主电路设计(包括整流元件定额的选择和计算等),讨论晶闸管电路对电网及系统功率因数的影响。
2)触发电路设计:触发电路选型(可使用集成触发器),同步信号的产生。
(3)晶闸管的过电压保护与过电流保护电路设计,计算保护元件参数并选择保护元件型号。
4)利用仿真软件分析电路的工作过程。
三、设计原理1.主电路原理图.∵工作原理:当整流电压的瞬时值ud小于反电势E时,晶闸管承受反压而关断,这使得晶闸管导通角减小。
晶闸管导通时,ud=u2,id=ud−ER,晶闸管关断时,ud=E。
与电阻负载相比晶闸管提前了电角度δ停止导电,δ称作停止导电角。
δ=arcsinE2U2若α<8时,触发脉冲到来时,晶闸管承受负电压,不可能导通。
为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当晶闸管开始承受正电压时,触发脉冲仍然存在。
这样,相当于触发角被推迟,即α=8。
四、保护电路的设计在电力电子电路中,除了电力电子器件参数选择合适、驱动电路设计良好外,采用合适的过电压、过电流、du/dt保护和di/dt保护也是必要的。
4.1过电压保护以过电压保护的部位来分,有交流侧过压保护、直流侧过电压保护和器件两端的过电压保护三种。
图4-1过电压抑制措施及配置位置F%避雷器D%变压器静电屏蔽层C%静电感应过电压抑制电容RC;%阀侧浪涌过电压抑制用RC电路RC-%阀侧浪涌过电压抑制用反向阻断式RC电路RV%压敏电阻过电压抑制器RC3%阀器件换相过电压抑制用RC电路RCD判阀器件关断过电压抑制用RCD电路(1)交流侧过电压保护可采用阻容保护或压敏电阻保护。
a.阻容保护(即在变压器二次侧并联电阻R和电容C进行保护)单相阻容保护的计算公式如下:C≥6∗i0%∗SU22(μF)R≥2.3∗U22S∗uK96i0(Ω)S:变压器每相平均计算容量(VA);U2:变压器副边相电压有效值(V);i0%;变压器激磁电流百分值;U%:变压器的短路电压百分值。
单相桥式全控整流电路Matlab仿真(完美)
目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理1.1电路结构R单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,u T2.3=u T1.4=1/2 u2。
单相桥式全控整流电路Matlab仿真(完美)
单相桥式全控整流电路Matlab仿真(完美)目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
单相桥式全控整流电路Matlab仿真
目录单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
单相桥式全控整流电路Matlab仿真
目录单相桥式全控整流电路仿真建模分析 (1)(一) ................................... 单相桥式全控整流电路(纯电阻负载)21. ................................................................................................................................ 电路的结构与工作原理 (2)2•建模 (3)3仿真结果与分析 (4)4小结 (6)(二) .................................. 单相桥式全控整流电路(阻-感性负载)71.电路的结构与工作原理 (7)2•建模 (8)3仿真结果与分析 (10)4.小结 (12)(三) ................................. 单相桥式全控整流电路(反电动势负载)131.电路的结构与工作原理 (13)2•建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容/■ VT3 UdIdVT2-^VT4(一)单相桥式全控整流电路 (纯电阻负载)1. 电路的结构与工作原理1.1电路结构单相桥式全控整流电路(纯电阻负载)的电路原理图 (截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶 闸管是一个桥臂。
(1) 在U2正半波的(0~a )区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个 晶闸管的漏电阻相等,贝U uT1.4= uT2.3=1/2 u2。
(2) 在u2正半波的3 t=a 时刻:触发晶闸管 VT1、VT4使其导通。
单相桥式全控整流电路Matlab仿真(完美)资料
目录单相桥式全控整流电路仿真建模分析 (1)(一) ................................... 单相桥式全控整流电路(纯电阻负载)21. ................................................................................................................................ 电路的结构与工作原理 (2)2•建模 (3)3仿真结果与分析 (4)4小结 (6)(二) .................................. 单相桥式全控整流电路(阻-感性负载)71.电路的结构与工作原理 (7)2•建模 (8)3仿真结果与分析 (10)4.小结 (12)(三) ................................. 单相桥式全控整流电路(反电动势负载)131.电路的结构与工作原理 (13)2•建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路 (纯电阻负载)1. 电路的结构与工作原理1.1电路结构单相桥式全控整流电路(纯电阻负载)的电路原理图 (截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶 闸管是一个桥臂。
(1) 在U2正半波的(0~a )区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个 晶闸管的漏电阻相等,贝U uT1.4= uT2.3=1/2 u2。
(2) 在u2正半波的3 t=a 时刻:触发晶闸管 VT1、VT4使其导通。
电流沿 a -VT1 -R -VT4-b -Tr 的二次 绕组一a 流通,负载上有电压(ud=u2)和电流输出,两者波形相位相同且uT1.4=0。
单相桥式全控整流电路MATLAB仿真实验
单相桥式全控整流电路MATLAB仿真实验一、实验目的:1、学习基于matlab的单相桥式全控整流电路的设计与仿真2、了解三种不同负载电路(电阻性负载、阻-感性负载、反电动势)的工作原理及波形二、电阻性负载电路1、电路及其工作原理图2.1单相桥式全控整流电路(电阻性负载)如图2.1所示,为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。
其工作原理:(1)在u2正半周(在0~α区间),晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VTs承受反向电压。
因此,四个晶闸管都不导通,负载电流id 和负载电压ud均为零,VT1和VT4串联承受电压u2,假设4个晶闸管的漏电阻相等,VT1和VT4各承担u2的一半,即U(t1.4)=U(t2.3)=1/2U2;(2)(在α~π区间)在触发角α处给VT1和VT4施加触发脉冲,则VT1和VT4导通,电流沿a-VT1-R-VT4-b方向流通,当u2过零时(在π~π+α区间),闸管VT2、VT3 承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4 承受反向电压也不导通。
流过晶闸管的电流降为零,晶闸管VT1和VT4关断;(3)在u2负半周(在π+α~2π区间),在触发角α处给VT2和VT3施加触发脉冲,那么VT2和VT3导通,电流沿b-VT3-R-VT2-a方向流通;当u2过零的时候,流过晶闸管的电流降为零,晶闸管VT2和VT3关断;(4)在u2的周期内下次又是晶闸管VT1和VT4导通,如此循环工作。
2、MATLAB下的模型建立图2.2其中脉冲发生器参数设置公式: (1/50) * ( α/360 )以及(1/50) * ( α/360 )+0.01。
两个脉冲信号参数:电源参数:电阻参数:3、仿真结果及波形分析(1)α=30°时(2)α=60°时(3)α=90°时(4)α=120°时分析:在单项全控桥式整流电路电阻性负载电路中,要注意四个晶闸管1在单项全控桥式整流电路电阻性负载电路中,要注意四个晶闸管1,4和晶闸管2,3的导通时间相差半个周期。
(完整word版)单相桥式全控整流电路Matlab仿真(完美)资料
目录完美篇单相桥式全控整流电路仿真建模分析 (2)(一)单相桥式全控整流电路(纯电阻负载) (2)1。
电路的结构与工作原理 (2)2。
建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (14)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (14)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理1.1电路结构R单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂.(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通.假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通.电流沿a →VT1→R →VT4→b →Tr 的二次绕组→a 流通,负载上有电压(u d=u 2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u 2。
晶闸管VT1、VT4—直导通到ωt =π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u 2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,u T2。
3=u T1.4= 1/2 u 2。
单相桥式全控整流电路MATLAB仿真实验报告(上)~4EDA1
单相桥式全控整流电路MATLAB仿真一、单相桥式全控整流电路(电阻性负载)1.电路结构与工作原理(1)电路结构如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。
idR图1-1(2)工作原理1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
假如4个晶闸管的漏电阻相等,则U t1.4= U t2.3=1/2u2。
2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。
表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况2.建模图1-3 单相桥式全控整流电路(电阻性负载)3.仿真结果分析1) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/600,phase delay(secs)2=1/600 +0.01;图1-4α=30°单相双半波可控整流仿真结果(电阻性负载)2) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/300,phase delay(secs)2=1/300 +0.01;图1-5α=60°单相双半波可控整流仿真结果(电阻性负载)3) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/200,phase delay(secs)2=1/200 +0.01;图1-6α=90°单相双半波可控整流仿真结果(电阻性负载)4.小结尽管整流电路的输入电压U2是交变的,但负载上正负两个半波内均有相同的电流流过,输出电压一个周期内脉动两次,由于桥式整流电路在正、负半周均能工作,变压器二次绕组正在正、负半周内均有大小相等、方向相反的电流流过,消除了变压器的电流磁化,提高了变压器的有效利用率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相桥式全控整流电路M a t l a b仿真Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】目录(((3468单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理电路结构单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则==1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,==1/2 u2。
(4)在u2负半波的ωt=π+α时刻:触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。
此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。
晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。
晶闸管VT1、VT4和VT2、VT3在对应时刻不断周期性交替导通、关断。
基本数量关系a.直流输出电压平均值b.输出电流平均值2.建模在MATLAB新建一个Model,命名为dianlu4,同时模型建立如下图所示:图2单相桥式全控整流电路(纯电阻负载)的MATLAB仿真模型模型参数设置a.交流电源参数b.同步脉冲信号发生器参Pulse Generator 的参数Pulse Generator 1 的参数c.示波器参数示波器五个通道信号依次是:①通过晶闸管电流Ial;②晶闸管电压Ual;③电源电流i2④通过负载电流Id;⑤负载两端的电压Ud。
d.电阻R=1欧姆3仿真结果与分析a.触发角α=0°,MATLAB仿真波形如下:图3 α=0°单相桥式全控整流电路仿真结果(纯电阻负载)(截图) b. 触发角α=30°,MATLAB仿真波形如下:α=30°单相桥式全控整流电流仿真结果(纯电阻负载)(截图)c. 触发角α=60°,MATLAB仿真波形如下:α=60°单相桥式全控整流电路仿真结果(纯电阻负载)(截图)d. 触发角α=90°,MATLAB仿真波形如下:α=90°单相桥式全控整流电路仿真结果(纯电阻负载)(截图)在电源电压正半波(0~π)区间,晶闸管承受正向电压,脉冲UG在ωt=α处触发晶闸管VT1和VT4,晶闸管VT1,VT4开始导通,形成负载电流id,负载上有输出电压和电流。
在ωt=π时刻,U2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。
在电源电压负半波(π~2π)区间,晶闸管VT1和VT4承受反向电压而处于关断状态,晶闸管VT2和VT3承受正向电压,脉冲UG在ωt=α处触发,晶闸管VT2,VT3开始导通,形成负载电流id,负载上有输出电压和电流。
4小结在单项全控桥式整流电路电阻性负载电路中(图4-1),要注意四个晶闸管1,4和晶闸管2,3的导通时间相差半个周期。
脉冲发生器参数设置公式:(1/50)*(α/360)。
在这次的电路建模、仿真与分析中,我对电路的建模仿真软件熟练了很多,对电路的了解与分析也加深了很多,比如晶闸管压降的变化,负载电流的变化。
(二)单相桥式全控整流电路(阻-感性负载)1.电路的结构与工作原理电路结构单相桥式全控整流电路(阻-感性负载)的电路原理图(截图)工作原理(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。
假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。
(2)在u2正半波的ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(u d=u2)和电流。
电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。
(3)在u2负半波的(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。
在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
(4)在u2负半波的ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(u d=-u2)和电流。
此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。
晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。
从波形可以看出α>90o输出电压波形正负面积相同,平均值为零,所以移相范围是0~90o。
控制角α在0~90o之间变化时,晶闸管导通角θ≡π,导通角θ与控制角α无关。
基本数量关系a.直流输出电压平均值b.输出电流平均值2.建模在MATLAB新建一个Model,命名为dianlu5,同时模型建立如下图所示单相桥式全控整流电路(阻-感性负载)的MATLAB仿真模型模型参数设置a.交流电源参数b.同步脉冲信号发生器参数Pulse Generator 的参数Pulse Generator1 的参数c.电阻电感参数d.示波器参数示波器五个通道信号依次是:①通过晶闸管电流Ial;②晶闸管电压Ual;③电源电流i2④通过负载电流Id;⑤负载两端的电压Ud。
3仿真结果与分析a.触发角α=0°,MATLAB仿真波形如下:α=0°单相桥式全控整流电路仿真结果(阻-感性负载)(截图)b. 触发角α=30°,MATLAB仿真波形如下:α=30°单相桥式全控整流电路仿真结果(阻-感性负载)(截图)c.触发角α=60°,MATLAB仿真波形如下:α=60°单相桥式全控整流电路仿真结果(阻-感性负载)(截图)d.触发角α=90°,MATLAB仿真波形如下:α=90°单相桥式全控整流电路仿真结果(阻-感性负载)(截图)4.小结由于电感的作用,输出电压出现负波形;当电感无限大时,控制角α在0~90°之间变化时,晶闸管导通角θ=π,导通角θ与控制角α无关。
输出电流近似平直,流过晶闸管和变压器副边的电流为矩形波。
α=120°时的仿真波形,此时的电感为有限值,晶闸管均不通期间,承受二分之一的电源电压。
(三)单相桥式全控整流电路(反电动势负载)1.电路的结构与工作原理电路结构单相桥式全控整流电路(反电动势负载)的电路原理图(截图)工作原理当整流电压的瞬时值u d小于反电势E 时,晶闸管承受反压而关断,这使得晶闸管导通角减小。
晶闸管导通时,u d=u2,晶闸管关断时,u d=E。
与电阻负载相比晶闸管提前了电角度δ停止导电,δ称作停止导电角。
若α <δ时,触发脉冲到来时,晶闸管承受负电压,不可能导通。
为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当晶闸管开始承受正电压时,触发脉冲仍然存在。
这样,相当于触发角被推迟,即α=δ。
2.建模在MATLAB新建一个Model,命名为dianlu6,同时模型建立如下图所示:图17 单相桥式全控整流电路(反电动势)的MATLAB仿真模型模型参数设置a.交流电源参数b.同步脉冲信号发生器参数Pulse Generator 的参数Pulse Generator1 的参数c.电阻、反电动势参数电阻参数反电动势参数d.示波器参数示波器五个通道信号依次是:①通过晶闸管电流Ial;②晶闸管电压Ual;③电源电流i2④通过负载电流Id;⑤负载两端的电压Ud;○6通过晶闸管电流电压。
3仿真结果与分析a.触发角α=0°,MATLAB仿真波形如下α=0°单相桥式全控整流电路仿真结果(反电动势负载)(截图)b.触发角α=30°,MATLAB仿真波形如下:α=30°单相桥式全控整流电路仿真结果(反电动势负载)(截图)c. 触发角α=60°,MATLAB仿真波形如下:α=60°单相桥式全控整流电路仿真结果(反电动势负载)(截图)d. 触发角α=90°,MATLAB仿真波形如下:α=90°单相桥式全控整流电路仿真结果(反电动势负载)(截图)4小结单相全控桥式整流电路主要适用于4KW左右的整流电路,与单相半波可控整流电路相比,整流电压脉动减小,美周期脉动俩次。
变压器二次侧流过正反俩个方向的电流,不存在直流磁化,利用率高。