初中数学几何公式大全
初中阶段数学公式总结大全
初中阶段数学公式总结大全以下是一些常见的初中阶段的数学公式总结:1. 代数公式:- 二元一次方程式:ax + by = c- 二元一次方程组:{ax + by = c, dx + ey = f}- 配方法:(a+b)² = a² + 2ab + b²- 差分平方法:(a-b)² = a² - 2ab + b²- 倒数公式:(a+b)(a-b) = a² - b²- 完全平方式:a² + b² = (a+b)² - 2ab2. 几何公式:- 三角形的面积:A = 1/2 * 底 * 高- 矩形的面积:A = 长 * 宽- 平行四边形的面积:A = 底 * 高- 梯形的面积:A = 1/2 * (上底 + 下底) * 高- 圆的面积:A = π * r²- 圆的周长:C = 2 * π * r3. 分数公式:- 分数加法:a/b + c/d = (ad + bc)/bd- 分数减法:a/b - c/d = (ad - bc)/bd- 分数乘法:a/b * c/d = ac/bd- 分数除法:a/b ÷ c/d = ad/bc4. 百分数公式:- 百分数到小数:百分数/100 = 小数- 小数到百分数:小数 * 100 = 百分数- 百分数与小数的互相转化5. 集合运算公式:- 并集:A ∪ B- 交集:A ∩ B- 差集:A - B6. 统计学公式:- 平均数(算术平均数):(数值的总和) / (数量)- 中位数:将数据按照从小到大的顺序排列,取中间数- 众数:出现频率最高的数- 范围:最大值 - 最小值这只是一部分初中阶段数学公式的总结,希望对您有所帮助。
如需更详细的总结,可以参考相关数学教材或参考资料。
初中数学必背公式大全初中数学重要公式定律汇总
初中数学必背公式大全初中数学重要公式定律汇总
一、几何公式
1、三角形面积公式
△ABC的面积S=1/2ab sin C
其中a、b为△ABC的两边,C为两边夹角
2、四边形面积公式
正方形面积公式:S=a2
长方形面积公式:S=ab
其中a、b分别为正方形或长方形的边长
3、圆的面积公式
S=πr2
其中r为圆的半径
4、梯形面积公式
S=(a+b)h/2
其中a、b分别为梯形的上下底,h为梯形的高
5、椭圆面积公式
S=πab
其中a、b分别为椭圆的长轴短轴
6、圆柱体体积公式
V=πr2h
其中r为圆柱体的底面半径,h为圆柱体的高
7、圆锥体体积公式
V=1/3πr2h
其中r为圆锥体的底面半径,h为圆锥体的高
8、球的表面积公式
S=4πr2
其中r为球的半径
9、球的体积公式
V=4/3πr3
其中r为球的半径
10、圆柱和圆锥的体积比公式
V1:V2=r2:2r
其中V1为圆柱体体积,V2为圆锥体体积,r为两个体积半径相同
二、三角函数
1、正弦定理
a/sinA=b/sinB=c/sinC=(2S)/R
其中a、b、c分别为△ABC的三边,A、B、C分别为两边夹角,S为△ABC的面积,R为三角形的外接圆半径
2、余弦定理
a2=b2+c2-2bc cosA
其中a、b、c分别为△ABC的三边,A为两边夹角3、正切关系
tanA= a/b
cotA= b/a
其中a、b分别为△ABC的两边,A为两边夹角4、正弦定理的应用
1)角的大小。
初中数学几何公式大全
初中数学几何公式大全1.直线的斜率公式:设直线L经过点A(x1,y1)和点B(x2,y2),则直线的斜率k=(y2-y1)/(x2-x1)。
2.两直线的关系公式:a)平行线的条件:设直线L1和L2分别为y=k1x+b1和y=k2x+b2,则L1与L2平行当且仅当k1=k2b)垂直线的条件:设直线L1和L2分别为y=k1x+b1和y=k2x+b2,则L1与L2垂直当且仅当k1·k2=-13.三角形的内角和:设三角形ABC的三个内角分别为∠A、∠B和∠C,则∠A+∠B+∠C=180°。
4.三角形的外角和:设三角形ABC的三个外角分别为∠D、∠E和∠F,则∠D+∠E+∠F=360°。
5.直角三角形的勾股定理:设直角三角形ABC,AB和BC为直角边,AC为斜边,则有AB²+BC²=AC²。
6.高度定理:设ABC为三角形,AD为BC边上的高,则有AB²=AD×DC。
7.正三角形的性质:设正三角形ABC,AD为BC边上的高,则有AD=AB/28.等腰三角形的性质:设等腰三角形ABC,AB=AC,AD为BC边上的高,则有AD是BC的中线和高。
9.等腰三角形内角性质:设等腰三角形ABC,AB=AC,∠A=∠B,则有∠B=∠C。
10.角平分线定理:设角ABC的角平分线AD,AB≠AC,则有BD/CD=AB/AC。
11.相似三角形的边比定理:设两个相似三角形ABC和DEF,AB/DE=BC/EF=AC/DF。
12.相似三角形的角度性质:设两个相似三角形ABC和DEF,则有∠A=∠D,∠B=∠E,∠C=∠F。
13.圆的周长公式:设圆的半径为r,则圆的周长C=2πr。
14.圆的面积公式:设圆的半径为r,则圆的面积S=πr²。
15.弧长和弧度关系:设圆的半径为r,弧长为S,圆心角为θ,则S=rθ。
16.扇形面积公式:设圆的半径为r,圆心角为θ,则扇形的面积A=πr²(θ/360°)。
初中数学几何公式记忆口诀
初中数学几何公式记忆口诀平面图形的周长和面积1. 正方形正方形- 周长 = 4 ×边长- 面积 = 边长 ×边长2. 长方形长方形- 周长 = 2 × (长 + 宽)- 面积 = 长 ×宽3. 三角形三角形- 周长 = 边1 + 边2 + 边3- 面积 = 底 ×高 ÷ 24. 平行四边形平行四边形- 周长 = (边1 + 边2) × 2- 面积 = 底 ×高空间图形的体积和表面积1. 立方体立方体- 体积 = 边长 ×边长 ×边长- 表面积 = 6 ×边长 ×边长2. 长方体长方体- 体积 = 长 ×宽 ×高- 表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)3. 圆柱体圆柱体- 体积= π × 半径 ×半径 ×高- 表面积= 2 × π × 半径 ×高+ 2 × π × 半径 ×半径4. 圆锥体圆锥体- 体积= 1/3 × π × 半径 ×半径 ×高- 表面积= π × 半径 ×斜高+ π × 半径 ×半径这些公式记忆口诀将帮助初中生们在解决各种几何问题时更加得心应手。
通过反复的练和应用,同学们可以逐渐熟练掌握这些公式,提升数学几何的能力。
> 注意:在使用这些公式时,要确保替换变量的值正确,以避免计算错误。
公式的记忆只是学习几何的一部分,同学们还需要理解它们的含义和应用场景,才能在实际问题中将其应用自如。
初中几何定理大全初中数学几何121个定理总结
初中几何定理大全初中数学几何121个定理总结
一、三角形定理:
1、直角三角形三边定理:在直角三角形中,两个直角对边的平方和等于斜边的平方。
2、勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。
3、余弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和减去两倍乘积的余弦值。
4、正弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和加上两倍乘积的正弦值。
5、比例定理:在任意三角形中,斜边的平方等于两条边的乘积除以其外角的余弦值的平方。
6、外接圆定理:任意三角形的外接圆半径等于其三边长的和除以4
7、外切圆定理:任意三角形的外切圆半径等于其两边长的乘积除以4倍其近角的正弦值。
8、锐角三角形边长定理:在锐角三角形中,一条边大于另外两条边的和,小于他们的差。
9、内切圆定理:任意三角形的内切圆半径等于其两边长的乘积除以4倍其外角的正弦值。
10、锐角三角形的内接圆定理:任意锐角三角形内接圆半径等于其三边长乘积除以4其外角的余弦值。
二、平行线定理:
1、平行线定理:平行线与平行线之间分别成等腰角和相邻角成等式。
2、垂线定理:垂线与平行线之间相邻角成等式。
初中数学公式大全初中必背
初中数学公式大全初中必背《初中数学公式大全初中必背》
一、平面几何图形公式:
1. 圆的面积公式:S=πr2
2.三角形面积公式:S=1/2×a×b
3.正方形面积公式:S=a2
4.长方形面积公式:S=a×b
5.圆的周长公式:L=2πr
6.正方形的周长公式:L=4a
7.三角形周长公式:L=a+b+c
8.长方形周长公式:L=2a+2b
9.平行四边形的面积公式:S=12×h×a
二、数列公式:
1.等差数列求和公式:Sn=n(a+an)/2
2.等比数列求和公式:Sn=a1(1-qn)/(1-q)
3.等差数列的前n项和:Sn=n(a1+an)/2
4.等比数列的前n项和:Sn=a1(1-qn)/(1-q)
5.等差数列的公差:d=a2-a1
三、代数公式:
1.分式加法:(a/b)+(c/d)=(ad+bc)/bd
2.分式减法:(a/b)-(c/d)=(ad-bc)/bd
3.分式乘法:(a/b)×(c/d)=(ac)/(bd)
4.分式除法:(a/b)÷(c/d)=(ad)/(bc)
5.一元二次方程求根公式:x=(-b±√(b2-4ac))/2a。
初中数学几何的全部详细公式
1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc。
初中数学公式总结大全
初中数学公式总结大全一、代数公式1. 消去法则:- $a + b = b + a$- $a \times b = b \times a$2. 结合法则:- $(a + b) + c = a + (b + c)$- $(a \times b) \times c = a \times (b \times c)$3. 分配法则:- $a \times (b + c) = a \times b + a \times c$- $(a + b) \times c = a \times c + b \times c$4. 平方差公式:- $(a + b)(a - b) = a^2 - b^2$二、几何公式1. 三角形:- 面积公式:$S = \frac{1}{2}bh$ (b为底边长度,h为高)- 周长公式:$C = a + b + c$ (a、b、c为三边长度)2. 圆:- 面积公式:$S = \pi r^2$ (r为半径)- 周长公式:$C = 2 \pi r$ (r为半径)3. 矩形:- 面积公式:$S = lw$ (l为长度,w为宽度)- 周长公式:$C = 2(l + w)$ (l为长度,w为宽度)三、统计公式1. 平均数公式:- 算术平均数:$A = \frac{a_1 + a_2 + ... + a_n}{n}$ (a为数据集,n为数据个数)- 加权平均数:$A = \frac{a_1 w_1 + a_2 w_2 + ... + a_nw_n}{w_1 + w_2 + ... + w_n}$ (a为数据集,w为权重)2. 中位数公式:- 当数据个数为奇数时,中位数为中间的数值;- 当数据个数为偶数时,中位数为中间两个数的平均值。
以上是初中数学常用的公式总结大全,希望对你有帮助!。
初中数学几何题必考公式定理汇总(共146条)(直接打印每生一份熟记)
初中数学几何题必考公式定理汇总(共146条)(直接打印每生一份熟记) 以下是初中数学几何题必考的公式和定理汇总:线:1.同角或等角的余角相等。
2.通过一点有且仅有一条与已知直线垂直的直线。
3.通过两点有且仅有一条直线。
4.两点之间的线段最短。
5.同角或等角的补角相等。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理:经过直线外一点,有且仅有一条直线与这条直线平行。
8.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
9.定理:线段垂直平分线上的点和这条线段的两个端点的距离相等。
10.逆定理:如果一条线段的两个端点距离相等,那么在这条线段的垂直平分线上有一个点。
11.线段的垂直平分线可以看作和线段两端点距离相等的所有点的集合。
12.定理1:关于某条直线对称的两个图形是全等形。
13.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
14.定理3:如果两个图形关于某直线对称,那么如果它们的对应线段或延长线相交,那么交点在对称轴上。
15.逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
角:16.同位角相等,两直线平行。
17.内错角相等,两直线平行。
18.同旁内角互补,两直线平行。
19.如果两条直线平行,那么同位角相等。
20.如果两条直线平行,那么内错角相等。
21.如果两条直线平行,那么同旁内角互补。
22.定理1:在角的平分线上的点到这个角的两边的距离相等。
23.定理2:到一个角的两边的距离相同的点在这个角的平分线上。
24.角的平分线是到角的两边距离相等的所有点的集合。
三角形:25.定理:三角形两边的和大于第三边。
26.推论:三角形两边的差小于第三边。
27.定理:三角形三个内角的和等于180°。
28.推论1:直角三角形的两个锐角互余。
29.推论2:三角形的一个外角等于和它不相邻的两个内角的和。
30.推论3:三角形的一个外角大于任何一个和它不相邻的内角。
初中数学常用公式大全
初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1 关于某条直线对称的两个图形是全等形13、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1 在角的平分线上的点到这个角的两边的距离相等23、定理2 到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1 直角三角形的两个锐角互余29、推论2 三角形的一个外角等于和它不相邻的两个内角的和30、推论3 三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3 等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1 三个角都相等的三角形是等边三角形39、推论 2 有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3 三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2 相似三角形周长的比等于相似比50、性质定理3 相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理 n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1 平行四边形的对角相等62、平行四边形性质定理2 平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3 平行四边形的对角线互相平分65、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3 对角线互相平分的四边形是平行四边形68、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1 矩形的四个角都是直角70、矩形性质定理2 矩形的对角线相等71、矩形判定定理1 有三个角是直角的四边形是矩形72、矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1 菱形的四条边都相等74、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1 四边都相等的四边形是菱形77、菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1 正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1 关于中心对称的两个图形是全等的81、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h92 、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交 d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离 d﹥r 122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离 d﹥R+r ②两圆外切d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。
初中数学几何公式大全
初中数学几何公式大全——初中几何公式包括:线、角、圆、正方形、矩形等数学学几何的公式,以供同学们学习和理解!初中几何公式:线1 同角或等角的余角相等2 过一点有且只有一条直线和已知直线垂直3 过两点有且只有一条直线4 两点之间线段最短5 同角或等角的补角相等6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式:矩形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰继续阅读。
初中数学几何公式大全
初中数学几何公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学几何题必考公式定理汇总(共146条)(直接打印每生一份熟记)
初中数学几何题必考公式定理汇总线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1 关于某条直线对称的两个图形是全等形13、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1 在角的平分线上的点到这个角的两边的距离相等23、定理2 到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1 直角三角形的两个锐角互余29、推论2 三角形的一个外角等于和它不相邻的两个内角的和30、推论3 三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3 等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1 三个角都相等的三角形是等边三角形39、推论 2 有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3 三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2 相似三角形周长的比等于相似比50、性质定理3 相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理 n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1 平行四边形的对角相等62、平行四边形性质定理2 平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3 平行四边形的对角线互相平分65、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3 对角线互相平分的四边形是平行四边形68、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形矩形69、矩形性质定理1 矩形的四个角都是直角70、矩形性质定理2 矩形的对角线相等71、矩形判定定理1 有三个角是直角的四边形是矩形72、矩形判定定理2 对角线相等的平行四边形是矩形菱形73、菱形性质定理1 菱形的四条边都相等74、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1 四边都相等的四边形是菱形77、菱形判定定理2 对角线互相垂直的平行四边形是菱形正方形78、正方形性质定理1 正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1 关于中心对称的两个图形是全等的81、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h92 、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交 d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离 d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离 d﹥R+r ②两圆外切d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。
初中数学几何公式定理梳理大全老师都收藏了
初中数学几何公式定理梳理大全老师都收藏了1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于条直线对称的两个图形是全等形43.定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112.推论2:圆的两条平行弦所夹的弧相等113.圆是以圆心为对称中心的中心对称图形114.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116.定理一条弧所对的圆周角等于它所对的圆心角的一半117.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121.①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123.切线的性质定理圆的切线垂直于经过切点的半径124.推论1:经过圆心且垂直于切线的直线必经过切点125.推论2:经过切点且垂直于切线的直线必经过圆心126.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127.圆的外切四边形的两组对边的和相等128.弦切角定理弦切角等于它所夹的弧对的圆周角129.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131.推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133.推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134.如果两个圆相切,那么切点一定在连心线上。
初中几何常见的48个公式
初中几何常见的48个公式以下是初中几何常见的48个公式:一、周长和面积公式1.矩形的周长:C=2(a+b),其中a和b分别为矩形的长和宽。
2.矩形的面积:S=ab,其中a和b分别为矩形的长和宽。
3.正方形的周长:C=4a,其中a为正方形的边长。
4.正方形的面积:S=a,其中a为正方形的边长。
5.圆的周长:C=2πr,其中r为圆的半径,π≈3.14。
6.圆的面积:S=πr,其中r为圆的半径,π≈3.14。
7.三角形的周长:C=a+b+c,其中a、b、c分别为三角形的三条边长。
8.三角形的面积:S=1/2bh,其中b为三角形的底,h为三角形底边上的高。
二、直线和角度公式9.同旁内角等于180度:∠1+∠2=180°。
10.对顶角相等:∠A=∠D,∠B=∠C。
11.平行线的内错角相等:∠a=∠d,∠b=∠c。
12.平行线的同旁外角相等:∠e=∠h,∠f=∠g。
13.同位角相等:∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H。
14.补角定理:两个角的和为90度,则它们互为补角。
15.余角定理:两个角的和为180度,则它们互为余角。
三、三角函数公式16.正弦函数:sinα=对边÷斜边。
17.余弦函数:cosα=邻边÷斜边。
18.正切函数:tanα=对边÷邻边。
19.余切函数:cotα=邻边÷对边。
20.正割函数:secα=斜边÷邻边。
21.余割函数:cscα=斜边÷对边。
四、三角形相关公式22.等腰三角形底角相等:∠A=∠C。
23.等腰三角形顶角相等:∠B=∠C。
24.直角三角形勾股定理:a+b=c,其中a、b分别为直角边,c 为斜边。
25.等边三角形三个角均为60度。
26.直角三角形中,正弦函数:sinθ=对边÷斜边,余弦函数:cosθ=邻边÷斜边,正切函数:tanθ=对边÷邻边。
27.等腰三角形中,如果有一条中线,则它是底边的一半,同时也是高的中线。
初中数学几何公式大全
数学几何公式、定理汇编1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何公式1过两点有且只有一条直线2两点之间线段绘短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和己知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两II线平行,同位角相等n两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和人于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180・18推论2直角三角形的两个锐角互余19推论2三角形的-个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)令两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASAMj两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)右斜边和一条直角边对应用等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边匕的中线和底边上的高互相旋合33推论3等边三角形的各角都柑等,并且每一个角都等于60。
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60。
的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30。
那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理利一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线M看作和线段两端点距离柑等的所有点的集合42定理2关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂II平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边C的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、C有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360。
49四边形的外角和等于360。
50多边形内角和定理n边形的内角的和等于(n-2) ×180o52推论任意多边的外角和等于360。
52平行四边形性质定理1平行四边形的对角相等53平行卩q边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行卩q边形判定定理2两组对边分别相等的IHl边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4 -组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互柑垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘枳的一半,即S= (a×b) ÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并Il互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底卜.的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同-•底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形/8平行线等分线段定理如果一组平行线在一条宜线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形•边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并Il等丁•两底和的一半L= (a+b) ÷2 S=L×h83(1)比例的基本性质如果a:b=c:d,那么ad=bc如杲ad=bc z那么a:b=c:d84 (2)合比性质如果 a / b=c / d,那么(a±b) / b=(c±d) / d85 (3)等比性质如果 a / b=c / d=...=m / n(b+d+...+n≠0)z那么(a+c÷...+m) / (b+d+...+n)=a / b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的-边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边対应成比例且夹角相等,两三角形柑似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另•个直角三角形的斜边和一条宜角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分红的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合202圆的内部町以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集介104同圆或等圆的半径相等105到定点的原离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和己知线段两个端点的距离相等的点的轨迹,是着*线段的垂II平分线107到己知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离柑等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的II径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等□3圆是以圆心为对称中心的中心对称图形214定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圖或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90。
的圆周角所对的弦是直径□9推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角122①直线L和Oo相交d<r②直线L和00相切d=r③直线L和00相离d>r122切线的判定定理经过半径的外端并H垂直于这条半径的直线是圆的切线223切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理眩切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 ⅛交弦定理圆内的两条相交弦,被交点分成的两条线段长的枳相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项232切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的枳相等234如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交K-r<d<K+r(K>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理柑交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆239正n边形的每个内角都等于(n-2) ×180o / n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=Pnrn / 2 p表示正n边形的周长142正三角形面枳V3a ∕4a表示边长143如果在一个顶点周囤有k个正n边形的角,由于这些角的和应为360。