初中八年级数学第十三章轴对称单元检测习题(含答案) (40)

合集下载

人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)

人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)
人教版八年级数学上册第13章《轴对称》单元测试
一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A.4个B.3个C.2个D.1个
【答案】B
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P1P2的长,∵OP=5,∴OP2=OP1=OP=5.又∵P1P2=5,,∴OP1=OP2=P1P2,∴△OP1P2是等边三角形, ∴∠P2OP1=60°,即2(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
【详解】 , ,

是 的外角,



【点睛】考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.
19.已知点A(2m+n,2),B (1,n-m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
【答案】 (2)
【解析】
【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得
【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.
【详解】∵△ABC是等边三角形,

在△ACD和△BAE中,

八年级数学上册第十三章轴对称考点专题训练(带答案)

八年级数学上册第十三章轴对称考点专题训练(带答案)

八年级数学上册第十三章轴对称考点专题训练单选题1、如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1= 140°,则∠2的度数是()A.80°B.100°C.120°D.140°答案:B分析:根据等边三角形的性质可得∠A=60°,再由三角形外角的性质可得∠AEF=∠1-∠A=80°,从而得到∠BEF=100°,然后根据平行线的性质,即可求解.解:∵△ABC是等边三角形,∴∠A=60°,∵∠1=140°,∴∠AEF=∠1-∠A=80°,∴∠BEF=180°-∠AEF=100°,∵m∥n,∴∠2=∠BEF=100°.故选:B小提示:本题主要考查了等边三角形的性质,三角形外角的性质,平行线的性质,熟练掌握等边三角形的性质,三角形外角的性质,平行线的性质是解题的关键.2、山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是()A.B.C.D.答案:D分析:根据轴对称图形的概念,对各选项分析判断即可得解;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.小提示:本题考查了轴对称图形,正确掌握相关定义是解题关键.3、下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形答案:B分析:分别求出各个图形的对称轴的条数,再进行比较即可.解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.小提示:此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.4、如图,在△ABC中,分别以点B和点C为圆心,大于1BC长为半径画弧,两弧相交于点M,N.作直线MN,2交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.18答案:C分析:由垂直平分线的性质可得BD=CD,由△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC得到答案.解:由作图的过程可知,DE是BC的垂直平分线,∴BD=CD,∵AB=7,AC=12,∴△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC=19.故选:C小提示:此题考查了线段垂直平分线的作图、线段垂直平分线的性质、三角形的周长等知识,熟练掌握线段垂直平分线的性质是解题的关键.5、下列说法正确的是()A.已知点M(2,﹣5),则点M到x轴的距离是2B.若点A(a﹣1,0)在x轴上,则a=0C.点A(﹣1,2)关于x轴对称的点坐标为(﹣1,﹣2)D.点C(﹣3,2)在第一象限内答案:C分析:分别根据坐标系中点的坐标到坐标轴的距离;在x轴上的点的纵坐标为零;关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;各个象限上的点的坐标符号逐一判断即可.解:A.已知点M(2,-5),则点M到x轴的距离是|-5|=5,故本选项不合题意;B.若点A(a-1,0)在x轴上,则a可以是全体实数,故本选项不合题意;C.点A(-1,2)关于x轴对称的点坐标为(-1,-2),故本选项符合题意;D.C(-3,2)在第二象限内,故本选项不合题意;故选:C.小提示:本题考查了关于x轴对称的点的坐标以及点的坐标,掌握平面直角坐标系中的点的坐标特点是解答本题的关键.6、如图所示,有三条道路围成RtΔABC,其中BC=1000m,一个人从B处出发沿着BC行走了700m,到达D 处,AD恰为∠CAB的平分线,则此时这个人到AB的最短距离为()A.1000m B.700m C.300m D.1700m答案:C分析:据角平分线上一点到角两边的距离相等,知此人此时到AB的最短距离即D到AB的距离,而D到AB的距离等于CD,而CD=BC-BD即得答案.解:如下图,过D作DE⊥AB于E,则此时此人到AB的最短距离即是DE的长.∵AD平分∠CAB,AC⊥BC∴DE=CD=BC-BD=1000-700=300(米).故选:C.小提示:本题考查角平分线性质定理和“垂线段最短”.其关键是运用角平分线上一点到角两边的距离相等得出CD等于D到AB的距离.7、图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A.A点B.B点C.C点D.D点答案:B分析:根据光反射定律可知,反射光线、入射光线分居法线两侧,反射角等于入射角并且关于法线对称,由此推断出结果.连接EF,延长入射光线交EF于一点N,过点N作EF的垂线NM,如图所示:由图可得MN是法线,∠PNM为入射角因为入射角等于反射角,且关于MN对称由此可得反射角为∠MNB所以光线自点P射入,经镜面EF反射后经过的点是B故选:B.小提示:本题考查了轴对称中光线反射的问题,根据反射角等于入射角,在图中找出反射角是解题的关键.8、如图,△ABC中∠A=40°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,点C恰好落在BE上的点G处,此时∠BDC=82°,则原三角形的∠B的度数为()A.57°B.60°C.63°D.70°答案:C分析:根据折叠的性质可知:∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC,根据三角形外角性质可得:∠DBA=∠BDC﹣∠A=82°﹣40°=42°,进一步可求出∠ABE=∠A'BE=21°,∠ABC=3×21°=63°,即原三角形的∠B=63°.解:由折叠性质可得,∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC,∵∠BDC是△BDA的外角,∴∠DBA=∠BDC﹣∠A=82°﹣40°=42°,∴∠ABE=∠A'BE=21°,∴∠ABC=3×21°=63°,即原三角形的∠B=63°,故选:C.小提示:此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC是解答此题的关键.9、下列体现中国传统文化的图片中,是轴对称图形的是()A.B.C.D.答案:B分析:根据轴对称图形的定义分析即可求解,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.解:A.不是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项不合题意.故选:B.小提示:本题考查了轴对称图形的识别,掌握轴对称图形的定义是解题的关键.10、如图,在平面直角坐标系中,线段AC所在直线的解析式为y=−x+4,E是AB的中点,P是AC上一动点,则PB+PE的最小值是( )A.4√2B.2√2C.2√5D.√5答案:C分析:作点B关于AC的对称点B′,连接B′E,与AC的交点,即符和条件的P点,再求出B′,E的坐标,根据勾股定理求出B′E的值,即为P′B+P′E的最小值.作点B关于AC的对称点B′,连接B′E交AC于P′,此时,PB+PE=P′B+P′E的值最小,最小值为B′E的长,∵线段AC所在直线的解析式为y=−x+4,∴A(0,4),C(4,0),∴AB=4,BC=4,∵E是AB的中点,∴E(0,2),∵B′是点B关于AC的对称点,∴BB′⊥AC,OB=OB′=1AC,AO=CO,2∴四边形ABCB′是正方形,∴B′(4,4),∴PB+PE的最小值是B′E=√42+(4−2)2=2√5.故选:C.小提示:本题考查一次函数求点的坐标和性质,轴对称−最短路径问题,勾股定理,掌握轴对称−最短路径的确定方法是解题的关键.填空题11、如图,AB=AC,AD=AE,∠BAD=20°,则∠CDE度数是_______度.答案:10分析:根据三角形外角定理得出∠EDC+∠C=∠AED,进而求出∠C+∠EDC=∠ADE,再利用∠B+∠BAD=∠ADC,进而利用已知求出即可.解:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠EDC+∠C=∠AED,∴∠C+∠EDC=∠ADE,又∵∠B+∠BAD=∠ADC,∴∠B+20°=∠C+∠EDC+∠EDC,∵∠B=∠C.∴2∠EDC=20°,∴∠EDC=10°.所以答案是:10.小提示:本题主要考查了三角形外角定理以及角之间等量代换,利用外角定理得出∠C+∠EDC=∠ADE是解决问题的关键.12、如图,在平面直角坐标系中,长方形OABC的边OA 在x轴上,OC在y轴上,OA=1,OC=2,对角线 AC 的垂直平分线交AB 于点E,交AC于点D.若y轴上有一点P(不与点C重合),能使△AEP是以为 AE 为腰的等腰三角形,则点 P的坐标为____.答案:(0,34),(0,−34)或(0,12)分析:设AE=m ,根据勾股定理求出m 的值,得到点E (1,54),设点P 坐标为(0,y ),根据勾股定理列出方程,即可得到答案.∵对角线 AC 的垂直平分线交AB 于点E ,∴AE=CE ,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m ,则BE=2-m ,CE=m ,∴在Rt∆BCE 中,BE 2+ BC 2=CE 2,即:(2-m )2+12=m 2, 解得:m=54,∴E (1,54), 设点P 坐标为(0,y ),∵△AEP 是以为 AE 为腰的等腰三角形,当AP=AE ,则(1-0)2+(0-y)2= (1-1)2+(0-54)2,解得:y=±34,当EP=AE ,则(1-0)2+(54-y)2= (1-1)2+(0-54)2,解得:y=12, ∴点 P 的坐标为(0,34),(0,−34),(0,12),故答案是:(0,34),(0,−34),(0,12). 小提示:本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.13、把一张长方形纸条ABCD 沿EF 折叠成图①,再沿HF 折叠成图②,若∠DEF =β(0°<β<90°),用β表示∠C ''FE ,则∠C ''FE =_______.答案:180°−3β分析:先利用平行线的性质得到∠EFH =∠DEF =β,∠EFC =180°−β,再根据折叠的性质得到∠EFC′=180°−β,所以∠HFC′=180°−2β,接着再利用折叠的性质得到∠C′′FH =∠C′FH =180°−2β,然后计算∠C ″FH −∠EFH 即可.∵四边形ABCD 为长方形,∴AD//BC ,∴∠EFH =∠DEF =β,∠EFC =180°−β,∵方形纸条ABCD 沿EF 折叠成图①,∴∠EFC′=∠EFC =180°−β,∴∠HFC′=∠EFC′−∠EFH =180°−β−β=180°−2β,∵长方形ABCD 沿HF 折叠成图②,∴∠C′′FH =∠C′FH =180°−2β,∴∠C ″FE =∠C ″FH −∠EFH =180°−2β−β=180°−3β.所以答案是:180°−3β. 小提示:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14、如图,Rt△ABC中,∠C=90°,AC=3,BC=4,EF垂直平分AB,点P为直线EF上一动点,则△APC周长的最小值为_____.答案:7分析:△APC周长=AC+AP+CP,因为AC=3,所以求出AP+CP的最小值即可求出△APC周长的最小值,根据题意知点A关于直线EF的对称点为点B,故当点P与点E重合时,AP+CP的值最小,即可得到结论.∵直线EF垂直平分AB,∴A,B关于直线EF对称,设直线EF交BC于E,∴当P和E重合时,AP+CP的值最小,最小值等于BC的长,∴△APC周长的最小值=AC+AP+CP=3+4=7,所以答案是:7.小提示:本题考查了轴对称-最短路线问题的应用、垂直平分线的性质、三角形周长,解答本题的关键是准确找出P的位置.15、小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.答案:∠A=60°(答案不唯一)分析:利用等边三角形的判定定理即可求解.解:添加∠A=60°,理由如下:∵△ABC为等腰三角形,=60°,∴∠B=∠C=180°−∠A2∴△ABC为等边三角形,所以答案是:∠A=60°(答案不唯一).小提示:本题考查了等边三角形的判断,解题的关键是掌握三角形的判断定理.解答题16、如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E.(1)求证:△FBD≌△ACD;(2)求证:△ABC是等腰三角形;BF.(3)求证:CE=12答案:(1)见解析(2)见解析(3)见解析分析:(1)根据等腰直角三角形的直角边相等可得BD=CD,再利用“边角边”证明△FBD和△ACD全等即可;(2)根据全等三角形对应角相等可得∠DBF=∠DCA,再根据∠DCA+∠A=90°推出∠DBF+∠A=90°,然后求出∠AEB=90°,再利用“角边角”证明△ABE和△CBE全等,根据全等三角形对应边相等可得AB=CB,从而得证;BF.(3)根据全等三角形对应边相等可得BF=AC,AE=CE,然后求出CE=12(1)在等腰Rt △DBC 中,BD =CD ,∵∠BDC =90°,∴∠BDC =∠ADC =90°,∵在△FBD 和△ACD 中,{DA =DF∠BDC =∠ADC BD =CD,∴△FBD ≌△ACD (SAS );(2)∵△FBD ≌△ACD ,∴∠DBF =∠DCA ,∵∠ADC =90°,∴∠DCA +∠A =90°,∴∠DBF +∠A =90°,∴∠AEB =180°-(∠DBF +∠A )=90°,∵BF 平分∠DBC ,∴∠ABF =∠CBF ,∵在△ABE 和△CBE 中,{∠AEB =∠CEB =90°BE =BE∠ABF =∠CBF, ∴△ABE ≌△CBE (ASA ),∴AB =CB ,∴△ABC 是等腰三角形;(3)∵△FBD ≌△ACD ,∴BF =AC ,∵△ABE ≌△CBE ,∴AE =CE =12AC ,∴CE =12BF .小提示:本题考查了等腰直角三角形的性质,全等三角形的判定与性质,等角对等边的性质,等边对等角的性质,综合题但难度不大,熟记各性质是解题的关键.17、已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.答案:(1)见解析(2)见解析分析:(1)结合题干的∠BAC=∠EDF=60°,推导出两个三角形为等边三角形,再由全等三角形的判定和性质即可求解;(2)由第(1)小问的解题思路和∠BAC=∠EDF、ED=DF这两个条件想到:在FA上截取FM=AE,求证△AED≌△MFD,再由全等的性质可得DA=DM=AB=AC,即可证△ABC≌△DAM,最后由全等的性质得AM=BC即可求解.(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF为等边三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,AB=AF∴∠BCE=∠DCA∵BC=AC、CE=CD∴△BCE≌△ACD(SAS),∴AD=BE,∵AB=AE+BE∴AF=AE+AD;(2)在FA上截取FM=AE,连接DM;AF,DE相交于点G∵∠BAC=∠EDF,∠AGE=∠DGF∴∠AED=∠MFD,∵AE=MF,ED=DF∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,∵AC=DM∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.小提示:本题主要考查三角形全等的判定、全等三角形的性质、等边三角形和等腰三角形的性质等知识点,属于中难档的几何综合题.其中解题的关键是结合题干信息正确的作出辅助线.18、如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH∠BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连接MD,过点D作DN⊥DM交线段A延长线于N点,则S△BDM-S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.答案:(1)1;(2)见解析;(3)不改变,94分析:(1)证△OAP≌△OBC(ASA),即可得出OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,证△COM≌△PON(AAS),得出OM=ON.得出HO平分∠CHA,即可得出结论;(3)连接OD,由等腰直角三角形的性质得出OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD,则∠OAD=45°,证出∠DAN=∠MO D.证△ODM≌△ADN(ASA),得S△ODM=S△ADN,进而得出答案.解:(1)∵BO⊥AC,AH⊥BC,∴∠AOP=∠BOC=∠AHC=90°,∴∠OAP+∠C=∠OBC+∠C=90°,∴∠OAP=∠OBC,在△OAP和△OBC中,{∠AOP=∠BOCAO=BO∠OAP=∠OBC,∴△OAP≌△OBC(ASA),∴OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图1所示:在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,{∠COM=∠PON∠OMC=∠ONPOC=OP,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=12∠AHC=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于94.理由如下:连接OD,如图2所示:∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD =45°,∠MOD =90°+45°=135°,∴∠DAN =135°=∠DOM .∵MD ⊥ND ,即∠MDN =90°,∴∠MDO =∠NDA =90°﹣∠MD A .在△ODM 和△ADN 中,{∠MDO =∠NDAOD =AD ∠DOM =∠DAN,∴△ODM ≌△ADN (ASA ),∴S △ODM =S △ADN ,∴S △BDM ﹣S △ADN =S △BDM ﹣S △ODM =S △BOD =12S △AOB=12×12AO •BO =12×12×3×3=94.小提示:本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质以及三角形面积等知识;本题综合性强,证明三角形全等是解题的关键.。

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

八年级数学上册第十三章轴对称考点精题训练(带答案)

八年级数学上册第十三章轴对称考点精题训练(带答案)

八年级数学上册第十三章轴对称考点精题训练单选题1、如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,连接CF,则下列结论:①BF=AC;②∠FCD=∠DAC;③CF⊥AB;④若BF=2EC,则△FDC周长等于AB的长.其中正确的有()A.①②B.①③④C.①③D.②③④答案:B分析:证明△BDF≌△ADC,可判断①;求出∠FCD=45°,∠DAC<45°,延长CF交AB于H,证明∠AHC=∠ABC+∠FCD=90°,可判断③;根据①可以得到E是AC的中点,然后可以推出EF是AC的垂直平分线,最后由线段垂直平分线的性质可判断④.解:∵△ABC中,AD,BE分别为B C、AC边上的高,∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC(ASA),∴BF=AC,FD=CD,故①正确,∵∠FDC=90°,∴∠DFC=∠FCD=45°,∵∠DAC=∠DBF<∠ABC=45°,∴∠FCD≠∠DAC,故②错误;延长CF交AB于H,∵∠ABC=45°,∠FCD=45°,∴∠AHC=∠ABC+∠FCD=90°,∴CH⊥AB,即CF⊥AB,故③正确;∵BF=2EC,BF=AC,∴AC=2EC,∴AE=EC=1AC,2∵BE⊥AC,∴BE垂直平分AC,∴AF=CF,BA=BC,∴△FDC的周长=FD+FC+DC=FD+AF+DC=AD+DC=BD+DC=BC=AB,即△FDC的周长等于AB,故④正确,综上:①③④正确,故选B.小提示:本题考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.<2、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30∘,则CE的长是()A.1cmB.2cmC.3cmD.4cm答案:B分析:根据等边三角形的性质得AC=AB=4,由等边三角形三线合一得到CD,由∠ACB=60°,∠E=30°,求出∠CDE,得出CD=CE,即可求解.∵△ABC是等边三角形,∴AC= AB=BC=4cm,∠ACB = 60°,∵BD平分∠ABC,∴AD=CD(三线合一)∴DC=12AC=12×4=2cm,∵∠E = 30°∴∠CDE=∠ACB-∠E=60°-30°=30°∴∠CDE=∠E所以CD=CE=2cm故选:B.小提示:本题考查的是等边三角形的性质、等腰三角形的判定,直角三角形的性质,直角三角形中30°角所对的直角边等于斜边的一半.3、如图,在△ABC中,AB=AC,AD是△ABC的角平分线,过点D分别作DE⊥AB,DF⊥AC,垂足分别是点E,F,则下列结论错误..的是()A.∠ADC=90∘B.DE=DF C.AD=BC D.BD=CD答案:C分析:根据等腰三角形底边上的高线、顶角的角平分线、底边上的中线这三线合一及角平分线的性质即可判断求解.解:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,BD=CD,∴∠ADC=90∘,故选项A、D结论正确,不符合题意;又AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,故选项B结论正确,不符合题意;由已知条件推不出AD=BC,故选项C结论错误,符合题意;故选:C.小提示:本题考察了等腰三角形的性质及角平分线的性质,属于基础题,熟练掌握其性质即可.4、已知等腰三角形的其中二边长分别为3,6,则这个等腰三角形的周长为()A.12或15B.12C.13D.15答案:D分析:因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选:D.小提示:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5、在平面直角坐标系中,点A的坐标为(-2,-3),点B的坐标为(3,-3),下列说法不正确的是()A.点A在第三象限B.点B在第二、四象限的角平分线上C.线段AB平行于x轴D.点A与点B关于y轴对称答案:D分析:根据点坐标特征、特殊直线的解析式可以作出判断.解:A、根据点坐标的符号特征,点A在第三象限,正确;B、第二、四象限的角平分线为y=-x,并且点B坐标符合y=-x,正确;C、线段AB为y=-3,平行于x轴,正确;D、与点A关于y轴对称的点为(2,-3),错误;故选D.小提示:本题考查点坐标的应用,熟练掌握点坐标特征及特殊直线的解析式是解题关键.6、某市计划在公路l旁修建一个飞机场M,现有如下四种方案,则机场M到A,B两个城市之间的距离之和最短的是()A.B.C.D.答案:B分析:用对称的性质,通过等线段代换,将所求路线长转化为两点之间的距离.作点A关于直线的对称点A′,连接BA′交直线l于M,根据两点之间线段最短,可知选项B机场M到A,B两个城市之间的距离之和最短.故选B小提示:本题考查了最短路径的数学问题,这类问题的解答依据是“两点之间,线段最短”,由于所给条件的不同,解决方法和策略上有所差别.7、如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为(﹣5,12),它关于y轴的对称点为B,则△ABO的周长为()A.24B.34C.35D.36答案:D分析:平面直角坐标系中点关于y轴的对称点B的坐标为(5,12),到坐标轴的距离分别为5和12,利用勾股定理算出OA和OB的长度,最后加上AB,即可得到△ABO的周长.解:∵点A与点B关于y轴对称,A(﹣5,12),∴B(5,12),∴AB=10,∵A(﹣5,12),∴OA=13,∴OB=13,∴△AOB的周长=OA+OB+AB=26+10=36,故选D.小提示:本题考查了关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,本题还考查了勾股定理的运用.明确点到坐标轴的距离是本题的关键.8、如图,在△ABC中,AB=AC,∠A=40°,CD//AB,则∠BCD=()A.40°B.50°C.60°D.70°答案:D分析:先根据等腰三角形的性质得到∠B的度数,再根据平行线的性质得到∠BCD.解:∵AB=AC,∠A=40°,∴∠B=∠ACB=70°,∵CD∥AB,∴∠BCD=∠B=70°,故选D.小提示:本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.9、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.10、如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若AB=5,AC=8,BC=10,则△AEF的周长为()A.5B.8C.10D.13答案:C分析:根据线段垂直平分线的性质得到EA=EB,FA=FC,根据三角形的周长公式计算,得到答案.解:∵EG是线段AB的垂直平分线,∴EA=EB,同理,FA=FC,∴△AEF的周长=EA+EF+FA=EB+EF+FC=BC=10,故选:C.小提示:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.填空题11、如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的一动点,则PA+PB 的最小值是 ___.答案:4分析:根据题意知点B关于直线EF的对称点为点C,故当点P为EF和AC的交点时,AP+BP值最小为AC的长为4.解:如图:连结BP,CP,∵EF垂直平分BC,∴B、C关于EF对称,∴BP=CP,∴AP+BP=AP+CP,根据两点之间相等最短AP+PC≥AC,∴当点P在AC与EF交点时,AP+BP最小=AC,最小值等于AC的长为4.故答案为4.小提示:本题考查轴对称——最短路线问题的应用,解决此题的关键是能根据想到垂直平分线的性质和两点之间线段最短找出P点的位置.12、如图,把一张长方形纸片ABCD沿EF折叠,点D与点C分别落在点D′和点C′的位置上,ED′与BC的交点为G,若∠EFG=55°,则∠1为______度.答案:70分析:由折叠的性质可以得∠EFC=∠EFC′,从而求出∠C′FG=∠EFC′−∠EFG=70∘,再由平行线的性质得到∠1=∠EGF=∠GFC′=70∘.解:由折叠的性质可知,∠EFC=∠EFC′,∵∠EFG=55°,∴∠EFC=∠EFC′=180∘−∠EFG=125∘,∴∠C′FG=∠EFC′−∠EFG=70∘,∵四边形ABCD是长方形∴AD∥BC,DE∥FC′,∴∠1=∠EGF=∠GFC′=70∘,所以答案是:70.小提示:本题主要考查了折叠的性质,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13、如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA 方向各剪一刀,则剪下的△DEF的周长是_____ .答案:6分析:先说明△DEF是等边三角形,再根据E,F是边BC上的三等分求出BC的长,最后求周长即可.解:∵等边三角形纸片ABC∴∠B=∠C=60°∵DE∥AB,DF∥AC∴∠DEF=∠DFE=60°∴△DEF是等边三角形∴DE=EF=DF∵E,F是边BC上的三等分点,BC=6∴EF=2∴DE=EF=DF=2∴△DEF= DE+EF+DF=6故答案为6.小提示:本题考查了等边三角形的判定和性质、三等分点的意义,灵活应用等边三角形的性质是正确解答本题的关键.14、如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,则∠ACB=__________.答案:100°分析:延长AD到M,使得DM=AD,连接BM,证△BDM≌△CDA(SAS),得BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再证△BFM是等腰三角形,求出∠MBF的度数,即可解决问题.解:如图,延长AD到M,使得DM=AD,连接BM,如图所示:在△BDM和△CDA中,{DM=DA∠BDM=∠CDABD=CD,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°-∠M-∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF-∠EBC=100°,∴∠C=∠DBM=100°,所以答案是:100°.小提示:本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15、如图,△ABC为等边三角形,若∠DBC=∠DAC=α(0°<α<60°),则∠BCD=__________(用含α的式子表示).答案:120°−α##−α+120°分析:在BD上截取BE=AD,连结CE,可证得△BEC≅△ADC,从而得到CE=CD,∠DCE=∠ACB=60°,从而得到△DCE是等边三角形,进而得到∠BDC=60°,则有∠BCE=60°−α,即可求解.解:如图,在BD上截取BE=AD,连结CE,∵△ABC为等边三角形,∴BC=AC,∠BAC=∠ABC=∠ACB=60°,∵∠DBC=∠DAC=α,BE=AD,∴△BEC≅△ADC,∴CE=CD,∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠DCE=∠ACB=60°,∵CE=CD,∴△DCE是等边三角形,∴∠BDC=60°,∴∠BCD=180°−60°−α=120°−α.所以答案是:120°−α小提示:本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,解题的关键是做出辅助线构造全等三角形是解题的关键.解答题16、如图,在△ABC中,BD平分∠ABC,E是BD上一点,EA⊥AB,且EB=EC,∠EBC=∠ECB.(1)如果∠ABC=40°,求∠DEC的度数;(2)求证:BC=2AB.答案:(1)40°(2)见解析分析:(1)根据角平分线的定义求出∠EBC,根据等腰三角形的性质得到∠ECB=∠EBC=20°,根据三角形的外角性质计算,得到答案;(2)作EF⊥BC于F,根据等腰三角形的性质得到BC=2BF,证明Rt△ABE≌Rt△FBE,根据全等三角形的性质证明结论.(1)解:∵∠ABC=40°,BD平分∠ABC,∴∠EBC=1∠ABC=20°,2∵EB=EC,∴∠ECB=∠EBC=20°,∵∠DEC是△EBC的一个外角,∴∠DEC=∠ECB+∠EBC=40°;(2)证明:过点E作EF⊥BC于点F,∵BD平分∠ABC,EA⊥AB,∴EA=EF,在Rt△AEB和Rt△FEB中,∵{EA=EF,EB=EB∴Rt△AEB≌Rt△FEB(HL),∴AB=FB(全等三角形的对应边相等),∵EB=EC,EF⊥BC,∴BC=2FB,∴BC=2AB.小提示:本题考查的是全等三角形的判定和性质,等腰三角形的性质,角平分线的性质等知识,掌握三角形全等的判定定理和性质定理是解题的关键.17、如图1,将长方形ABEF的一角向长方形内部折叠,使角的顶点A落在点A′处,OC为折痕,则OC平分∠AOA′.(1)若∠AOC=25°,求∠A′OB的度数;(2)若点D在线段BE上,角OBD沿着折痕OD折叠落在点B′处,且点B′在长方形内.①如果点B′刚好在线段A′O上,如图2所示,求∠COD的度数;②如果点B′不在线段A′O上,且∠A′OB′=40°,求∠AOC+∠BOD的度数.答案:(1)130°(2)①90°;②70°或110°分析:(1)根据折叠的性质,可得∠AOA′=2∠AOC=50°,即可求解;(2)①根据折叠的性质,可得∠A′OC=∠AOC=12∠AOA′,∠B′OD=∠BOD=12∠BOB′,从而得到∠COD=∠A′OC+∠B′OD=12(∠AOA′+∠BOB′),即可求解;②分两种情况:当OB′在OA′右侧时,当OB′在OA′左侧时,即可求解.(1)解:∵OC平分∠AOA′.∠AOC=25°,∴∠AOA′=2∠AOC=50°,∴∠A′OB=180°−∠AOA′=130°;(2)解:①根据题意得:∠A′OC=∠AOC=12∠AOA′,∠B′OD=∠BOD=12∠BOB′,∴∠COD=∠A′OC+∠B′OD=12(∠AOA′+∠BOB′)=12×180°=90°;②如图,当OB′在OA′右侧时,根据题意得:∠A′OC=∠AOC=12∠AOA′,∠B′OD=∠BOD=12∠BOB′,∵∠A′OB′=40°,∴∠AOA′+∠BOB′=180°−∠A′OB′=140°,∴∠AOC+∠BOD=12(∠AOA′+∠BOB′)=12×140°=70°;如图,当OB′在OA′左侧时,根据题意得:∠A′OC=∠AOC=12∠AOA′,∠B′OD=∠BOD=12∠BOB′,∵∠A′OB′=40°,∴∠AOA′+∠BOB′=180°+∠A′OB′=220°,∴∠AOC+∠BOD=12(∠AOA′+∠BOB′)=12×220°=110°;综上所述,∠AOC+∠BOD的度数70°或110°.小提示:本题主要考查了折叠的性质,有关角平分线的计算,熟练掌握图形折叠前后对应角相等,对应线段相等是解题的关键.18、如图,在△ABC中,AB=AC,D为BC边上一点,∠B=32°,∠BAD=42°,求∠DAC的度数.答案:∠DAC=74°分析:根据等边对等角可得∠C=∠B=32°,然后根据三角形的内角和定理,即可求出∠BAC,从而求出∠DAC 的度数.解:∵AB=AC,∠B=32°,∴∠C=∠B=32°,∴∠BAC=180°﹣32°﹣32°=116°,∵∠DAB=42°,∴∠DAC=∠BAC﹣∠DAB=116°﹣42°=74°.小提示:此题考查的是等腰三角形的性质和三角形的内角和定理,掌握等边对等角和三角形的内角和等于180°是解决此题的关键.。

人教版八年级上册数学第十三章练习卷含答案(轴对称)

人教版八年级上册数学第十三章练习卷含答案(轴对称)

人教版八年级上册数学第十三章练习卷含答案第十三章 轴对称一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.下列四个图案中,不是轴对称图案的是( ) A. B. C. D.3.如图,AC =AD ,BC =BD ,则有( )A .AB 垂直平分CDB .CD 垂直平分ABC .AB 与CD 互相垂直平分 D .CD 平分∠ACB4.如图,在ABC ∆中,分别以点A 和B 为圆心,大于12AB 和长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若ABC ∆的周长为17,7AB =,则ADC ∆的周长是( )A.7B.10C.15D.175.如图,在ΔABC中,AB的垂直平分线交AC于点D,已知AC=10cm,BC=7cm,则△BCD的周长为()A.17cm B.18cm C.19cm D.20cm6.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5)B.(5,3)C.(-3,5)D.(3,5)7.直角坐标系中的点A(2,-3)关于x轴对称的点B的坐标()A.(2,3 )B.(2,-3)C.(-2,3)D.(-2,-3)8.已知ab≠0,则坐标平面内四个点A(a,b),B(a,-b),C(-a,b),D(-a,-b)中关于y轴对称的是() A.A与B,C与D B.A与D,B与CC.A与C,B与DD.A与B,B与C9.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为()A.7 B.6 C.5 D.410.如图,在ABC ∆中,点D 、E 、F 分别是BC 、AB 、AC 上的点,若AB AC =,BE CD =,BD CF =,则EDF ∠的度数为( )A.2A ∠B.902A -∠C.1902A -∠D.90A -∠11.下列条件不能得到等边三角形的是( )A.有两个内角是60的三角形B.有一个角是60的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A .6B .8C .10D .12二、填空题 13.在等腰三角形△ABC 中,AB =AC =5cm ,BC =6cm ,则△ABC 的面积为____.14.如图,△ABC 中,DE 是BC 边上的垂直平分线,分别交AB 、BC 于点D 、E ,若AB=8cm ,AC=5cm ,则△ACD 的周长是_______cm.15.已知,如图,在等腰直角△ABC中,∠C=90°,AC=BC=4,点D是BC上一点,CD=1,点P是AB边上一动点,则PC+PD的最小值是________.16.若等腰三角形的周长是20cm ,一边长是5cm, 则其他两边的长为___________.三、解答题17.如图,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD 与ΔABC全等,求点D的坐标.18.如图,已知扇形OAB与扇形O′A′B′成轴对称,请你画出对称轴.19.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC=10,求△ADE 的周长;(2) 设直线DM 、EN 交于点O①试判断点O 是否在BC 的垂直平分线上,并说明理由;②若∠BAC=100°,求∠BOC 的度数20.如图所示,在ABC ∆中,AD 是BAC ∠平分线,AD 的垂直平分线分别交,AB BC 延长线于点,F E .求证://DF AC .证明:∵AD 平分BAC ∠∴∠ =∠ (角平分线的定义)∵EF 垂直平分AD∴ = (线段垂直平分线上的点到线段两个端点距离相等)∴BAD ADF ∠=∠( )∴DAC ADF ∠=∠(等量代换)∴//DF AC ( )21.已知a 、b 、c 为ABC △的三边长,a 、b 满足2(2)|3|0a b -+-=,且c 为方程|6|3x -=的解,求ABC △的周长并判断ABC △的形状.22.如图,在正方形网格上的一个△ABC .(其中点,,A B C 均在网格上)(1)作△ABC 关于直线MN 的轴对称图形△'''A B C .(2)以P 点为一个顶点作一个与△ABC 全等的△EPF (规定点p 与点B 对应,另两顶点都在图中网格交点处).(3)在MN 上画出点Q ,使得QA QC +最小.答案1.A 2.B 3.A 4.B 5.A 6.A 7.A 8.C 9.C 10.C 11.D 12.C13.12cm2 14.13 15.5 16.7.5cm,7.5cm17.解:∵△ABD与△ABC有一条公共边AB,∴当点D在AB的下边时,点D有两种情况:①点D1和点C关于直线AB对称时,此时点D1坐标是(4,−1);②点D2和点D1关于直线x=1.5对称时,此时点D2坐标为(−1,−1);当点D在AB的上边时,点D3和点C关于直线x=1.5对称,此时点D3坐标为(−1,3),综上,满足条件的点D的坐标有3个:(4,−1),(−1,−1),(−1,3).18.如图所示,直线MN即为所求作的对称轴.19.(1)∵在△ABC中,AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=CE,又∵BC=10,∴△ADE周长为:AD+DE+AE=BD+DE+EC=BC=10;(2)①如图,连接OB,OA,OC,∵MO是AB的垂直平分线,NO是AC的垂直平分线,∴BO=AO,CO=AO,∴BO=CO,∴O在BC的垂直平分线上;②∵OM⊥AB,ON⊥AC,∴∠AMO=∠ANO=90°,∵∠BAC=100°,∴∠MOM=360°-∠AMO-∠BAC-∠ANO=80°;∵MO是AB的垂直平分线,NO是AC的垂直平分线,∴∠BOM=∠AOM,∠CON=∠AON,∴∠BOC=2∠MON=160°.20.证明:AD平分∠BAC∴∠BAD=∠DAC(角平分线的定义)EF垂直平分AD∴FD=FA(线段垂直平分线上的点到线段两个端点距离相等) ∴∠BAD=∠ADF(等边对等角)∴∠DAC=∠ADF(等量代换)∴DF ∥AC(内错角相等两直线平行)故答案为:BAD ,DAC ,FD ,FA ,等边对等角,内错角相等两直线平行 21.解:∵2(2)|3|0a b -+-=,∴20a -=,30b -=,∴2a =,3b =,解方程|6|3x -=,解得3x =或9x =,∴c 可能为3或9,但是9c =时,不满足三角形三边关系定理,故舍去.∴2a =,3b =,3c =,∵2338a b c ++=++=,b c =,∴ABC △的周长为8,ABC △为等腰三角形.22.解:(1)如图所示,△A ′B ′C ′即为所求;(2)如图所示,△EPF 即为所求;(3)如图所示,线段AC ′于MN 的交点Q 即为所求.。

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【答案】C
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,

人教版八年级数学上《第13章轴对称》单元测试题(含答案解析)

人教版八年级数学上《第13章轴对称》单元测试题(含答案解析)

2018年秋人教版八年级上册数学《第13章轴对称》单元测试题一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.204.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是.14.等腰三角形ABC中,∠A=110°,则∠B=°.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).2018年秋人教版八年级上册数学《第13章轴对称》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【分析】首先根据对称的两个图形全等求得∠C的度数,然后在△ABC中利用三角形内角和求解.【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.【点评】本题考查了轴对称的性质,理解轴对称的两个图形全等是关键.3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.20【分析】由AB的垂直平分线DE交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,继而可得△ACD的周长为:AC+BC,则可求得答案.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=6,BC=10,∴△ACD的周长为:AC+CD+AD=AC+CD+BD=AC+BC=6+10=16.故选:B.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.4.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P1的坐标,再根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【解答】解:∵将点P(2,1)向右平移3个单位得到点P1,∴点P1的坐标是(5,1),∴点P1关于x轴的对称点P2的坐标是(5,﹣1).故选:B.【点评】本题考查了坐标与图形变化﹣平移,以及关于x轴、y轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm【分析】题目给出等腰三角形有两条边长为6cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①6cm为腰,2cm为底,此时周长为14cm;②6cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是14cm.故选:A.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条【分析】根据等腰三角形的性质分别利用AB为底以及AB为腰得出符合题意的图形即可.【解答】解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.【点评】此题主要考查了等腰三角形的判定等知识,正确利用图形分类讨论得出等腰三角形是解题关键.7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°【分析】分两种情况:∠BAC为锐角,∠BAC为钝角,根据线段垂直平分线的性质可求出AE=BE,然后根据三角形内角和定理即可解答.【解答】解:如图1,∵DE垂直平分AB,∴AE=BE,∴∠BAC=∠ABE,∵∠AEB=80°,∴∠BAC=∠ABE=50°,∵AB=AC,∴∠ABC==65°,∴∠EBC=∠ABC﹣∠ABE=15°如图2,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠ABE,∵∠AEB=80°,∴∠BAE=∠EBA=50°,∴∠BAC=130°∵AB=AC,∴∠ABC==25°∴∠EBC=∠EBA+∠ABC=75°故选:C.【点评】此题主要考查线段的垂直平分线及等腰三角形的判定和性质.线段的垂直平分线上的点到线段的两个端点的距离相等.8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形【分析】分别利用等边三角形的判定方法分析得出即可.【解答】解:A、根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.故选:D.【点评】此题主要考查了等边三角形的判定,注意熟练掌握:由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×6×AD=18,解得AD=6,∴S△ABC∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=6+×6=6+3=9.故选:C.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=5【分析】根据垂直平分线的性质可得AD=CD,进而求出BD的长度.【解答】解:∵DE是△ABC边AC的垂直平分线,∴AD=CD,∵BC=9,AD=4,∴BD=BC﹣CD=BC﹣AD=9﹣4=5,故答案为:5.【点评】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为14.【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴DA=DB,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=14,故答案为:14.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是(1,2).【分析】直接利用关于y轴对称点的性质得出点P坐标.【解答】解:∵P关于y轴的对称点P1的坐标是(﹣1,2),∴点P坐标是(1,2).故答案是:(1,2).【点评】此题主要.考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.等腰三角形ABC中,∠A=110°,则∠B=35°.【分析】根据钝角只能是顶角和等腰三角形的性质求得两个底角即可确定答案.【解答】解:∵等腰三角形中,∠A=110°>90°,∴∠B==35°,故答案为:35.【点评】本题考查了等腰三角形的性质,解题的关键是了解钝角只能是等腰三角形的顶角.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为40°.【分析】设顶角的度数为x,表示出底角的度数.根据三角形内角和定理列方程求解.【解答】解:设顶角的度数为x°,则底角的度数为(x+30)°.根据题意,得x+2(x+30)=180,解得x=40.故答案为:40°.【点评】此题考查等腰三角形性质和三角形内角和定理,属基础题.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于45°.【分析】根据等腰三角形的性质以及三角形的外角的性质即可解决问题;【解答】解:∵AB=BC,∴∠BAC=∠BCA=15°,∴∠CBD=∠A+∠BCA=30°,∵CB=CD,∴∠CBD=∠CDB=30°,∴∠ECD=∠A+∠CDB=15°+30°=45°,故答案为45.【点评】本题考查等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=45°.【分析】先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由AB=AC,AF⊥BC,可知BF=CF,BF =EF;根据三角形外角的性质即可得出结论.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF;∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45°.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是9.6.【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ 的长,如图所示.=BC•AD=AC•BQ,∵S△ABC∴BQ===9.6.故答案为:9.6.【点评】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC+PQ的最小值为BQ是解题的关键.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.【分析】连接PB,根据线段垂直平分线的性质即可得出结论.【解答】解:PA=PC.理由:∵直线MN和直线DE分别是线段AB,BC的垂直平分线,∴PA=PB,PC=PB,∴PA=PC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解答此题的关键.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.【分析】利用线段垂直平分线的性质计算.【解答】解:已知DE垂直且平分AB⇒AE=BE⇒∠EAB=∠B又因为∠CAE=∠B+30°故∠CAE=∠B+30°=90°﹣2∠B⇒∠B=20°∴∠AEB=180°﹣20°×2=140°.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,注意角与角之间的转换.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.【分析】(1)、(2)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积减去三个三角形的面积计算△ABC的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)点C1的坐标为(4,3);(3)△ABC的面积=3×5﹣×3×1﹣×3×2﹣×5×2=.【点评】本题考查了作图﹣对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.【分析】分两种情况:①设AB=AC=5,②设BC=5,根据等腰三角形的性质和三角形的三边关系即可得到结论.【解答】解:∵△ABC是等腰三角形,∴不妨设AB=AC,又∵一边长为5,①设AB=AC=5,∵△ABC的周长为22,∴BC=22﹣5﹣5=12;∵5+5<12,∴不成立(舍);②设BC=5,∵△ABC的周长为22,∴AB=AC=(22﹣5)÷2=8.5,∵8.5+5>8.5,符合题意,∴△ABC另两边长分别为8.5,8.5.【点评】本题考查了等腰三角形的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.【分析】根据角平分线的定义和余角的性质即可得到结论.【解答】解:∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点评】此题考查了等腰三角形的判定、直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.【分析】先利用角平分线的定义和平行线的性质得到∠1=∠2,所以DB=DO,同理可得EO=CE,利用等线段代换得到△ADE的周长=AB+AC,然后利用△ABC的周长为15得到AB+AC=9,从而得到△ADE的周长.【解答】解:∵点O是∠BCA与∠ABC的平分线的交点,∴∠1=∠3,∵DE∥BC,∴∠2=∠3,∴∠1=∠2,∴DB=DO,同理可得EO=CE,∴△ADE的周长=AD+AE+DE=AD+DO+AE+OE=AD+BD+AE+CE=AB+AC,∵△ABC的周长为15,∴AB+AC+BC=15,而BC的长为6,∴AB+AC=9,∴△ADE的周长为9.【点评】本题考查了等腰三角形的判定与性质:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.也考查了平行线的性质.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).【分析】①如图1,连接PA,根据三角形的面积公式列方程即可得到结论;②连接PA ,根据三角形的面积公式即可得到结论;(3)如图2,连接PA ,根据三角形的面积列方程即可得到结论;如图3,过点C 作CG ⊥PE 于G ,根据矩形的性质和全等三角形的性质即可得到结论.【解答】解:(1)CD =PE +PF ,理由:如图1,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(2)①中关系还成立,理由:连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(3)结论:PE ﹣PF =CD 或PF ﹣PE =CD ,如图2,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAC ﹣S △PAB∴AB ×CD =AC ×PF +AB ×PE ,∵AB =AC ,∴CD =PF ﹣PE ;如图3,过点C 作CG ⊥PE 于G ,∵PE ⊥AB ,CD ⊥AB ,∴∠CDE=∠DEG=∠EGC=90°.∴四边形CGED为矩形.∴CD=GE,GC∥AB.∴∠GCP=∠B.∵AB=AC,∴∠B=∠ACB.∴∠FCP=∠ACB=∠B=∠GCP.在△PFC和△PGC中,,∴△PFC≌△PGC(AAS),∴PF=PG.∴PE﹣PF=PE﹣PG=GE=CD;【点评】本题考查了等腰三角形的性质;在解决一题多变的时候,基本思路是相同的;注意通过不同的方法计算同一个图形的面积,来进行证明结论的方法,是非常独特的,也是一种很好的方法,注意掌握应用.。

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。

人教版八年级数学上册《第十三章轴对称》单元练习题(含答案)

人教版八年级数学上册《第十三章轴对称》单元练习题(含答案)

第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC 是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°。

(必考题)初中八年级数学上册第十三章《轴对称》经典测试题(含答案解析)

(必考题)初中八年级数学上册第十三章《轴对称》经典测试题(含答案解析)

一、选择题1.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .202.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个 3.如图,AD 是ABC 的角平分线,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠,2AE BF =.下列四个结论中:①DE DF =;②DB DC =;③AD BC ⊥;④3AB BF =.其中正确的结论共有( )A .4个B .3个C .2个D .1个 4.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 5.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .20222 6.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒7.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 8.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .129.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2019=( )A .22017B .22018C .22019D .2202010.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10311.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个12.下列图案中,是轴对称图形的是( )A .B .C .D .13.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm 14.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒15.已知等边△ABC 的边长为6,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .1B .2C .3D .4二、填空题16.如图,点C 在线段AB 上(不与点A ,B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC=EC ,∠ACD =∠BCE =α,连接AE ,BD 交于点P .下列结论:①AE=DB ;②当α=60°时,AD =BE ;③∠APB =2∠ADC ;④连接PC ,则PC 平分∠APB .其中正确的是__________.(把你认为正确结论的序号都填上)17.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.18.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.19.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.20.如图:已知在ABC 中,90ACB ︒∠=,36BAC ︒∠=,在直线AC 上找点P ,使ABP △是等腰三角形,则APB ∠的度数为________.21.如图,等腰ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则BDM 的周长最小值为_____cm .22.等腰三角形的周长为24,其中一边为6,则另两边的长分别为__________. 23.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.24.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.25.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.26.如图,在四边形ABCD 中,130DAB ∠=︒,90D B ∠=∠=︒,点M ,N 分别是CD ,BC 上两个动点,当AMN 的周长最小时,AMN ANM ∠+∠的度数为_________.三、解答题27.在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP AQ =,20BAP ∠=︒,求AQB ∠的度数; (2)点P ,Q 是BC 边上的两个动点(不与B ,C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全;②求证:PA PM =.28.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.29.如图,在ABC 中,AB AC =,D 为AC 的中点,DE AB ⊥于点E ,DF BC⊥于点F ,且DE DF =,连接BD ,点G 在BC 的延长线上,且CD CG =. (1)求证:ABC 是等边三角形;(2)若2CG =,求BC 的长.30.如图,在8×8的网格中,每个小正方形的边长为1,每个小正方形的顶点称为格点,Rt △ABC 的每个顶点都在格点上,利用网格点,只用无刻度的直尺,在给定的网格中按要求画图.(1)画△ABC 的角平分线CD 交AB 于点D ;(2)画AB 边的垂直平分线l 交直线CD 于点P .。

人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)

人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)

人教版八年级上册数学第13章《轴对称》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1、下列图形中一定是轴对称图形的是()A.B.C.D.2、点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣13、如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°4、等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5、等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为()A.3 B.4 C.5 D.66、如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数为()A.58°B.56°C.62°D.60°7、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°8、如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.9、在△ABC中,AB=AC,OB=OC,点A到BC的距离是6,O到BC的距离是4,则AO为()A.2 B.10 C.2或10 D.无法测量10、如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)11、在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是(1,4).12、一个等腰三角形一腰上的中线把这个三角形的周长分为12和30两部分,则这个等腰三角形的腰长为20.13、如图,等腰△ABC中,AB=AC,∠A=54°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是9°.14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为.15、如图,在平面直角坐标系xOy中,已知点A(6,2),B(0,1).在x轴上找一点P,使得PA+PB最小,则点P的坐标是(2,0),此时△PAB的面积是4.16、在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有8个.。

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)

2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)

2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)一.选择题(共8小题,满分32分)1.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AC、∠ABC=72°,CD∥AB,BD交AC于E,且CE=DE,则∠D的度数是()A..36°B.30°C..22.5°D.40°3.如图,在△ABC中,∠C=90°,AP是角平分线,AP=5,CP=2,则P到AB的距离是()A.5B.2C.3D.44.等腰三角形两边长分别为3和6,则该三角形的周长为()A.12B.15C.12或15D.条件不够无法计算5.如图,∠ABC是一个锐角,以点A为圆心,适当长度为半径画弧,交射线BC于点D,E.若∠ABC=40°,∠BAD=25°,则∠DAE的度数是()A.40°B.50°C.60°D.70°6.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连结BP,CP,若∠A=50°,则∠BPC=()A.50°B.100°C.130°D.150°7.如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=118°,则∠EMF的度数为()A.56°B.58°C.60°D.62°8.如图,在△ABC中,∠A=90°,BE是△ABC的角平分线,ED⊥BC于点D,CD=4,△CDE周长为12,则AC的长是()A.14B.8C.16D.6二.填空题(共8小题,满分40分)9.已知三角形的三边长分别为5、a、10,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.10.等腰三角形的一个底角为50°,则该等腰三角形的顶角度数为度.11.如图,将一张长方形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C′的位置上,若∠BFE=68°,则∠ABE的度数为.12.如图,在△ABC中,AB=AC,且AE=AD,∠EDC=α,则∠BAD=.13.如图,点P为∠AOB内一点,分别作出P点关于OA,OB的对称点P1,P2,连结P1P2交OA于M,交OB于N,若线段P1P2的长为12cm,则△PMN的周长为cm.14.如图,在直角三角形ABC中,∠C=90°,点D在AB上,点G在BC上,将△BDG 沿直线DG翻折后,点B落在点F处,联结DF,如果DF∥AC,那么∠B与∠BDG的数量关系是.15.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,则∠1+∠2=度.16.如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=°.三.解答题(共7小题,满分48分)17.如图,∠AOB=40°,点D在OA边上,点C,E在OB边上,连接CD,DE.若OC =OD=DE,求∠CDE的度数.18.如图,已知M、N分别是∠AOB的边OA上任意两点.(1)尺规作图:作∠AOB的平分线OC;(2)在∠AOB的平分线OC上求作一点P,使PM+PN的值最小.(保留作图痕迹,不写画法)19.如图,在△ABC中,∠ABC=20°,∠ACB=65°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)求∠DAF的度数.(2)若BC的长为50,求△DAF的周长.20.在8×6的网格中,A,B,C是格点,D是AB与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示:(1)在线段AC上取点E,使DE=CD;(2)画格点F,使EF∥AB;(3)画点E关于AB的对称点G;(4)在射线AG上画点P,使∠PDE与∠GAE互补.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ACB沿CD折叠,使点A 恰好落在BC边上的点E处.(1)求△BDE的周长;(2)若∠B=37°,求∠CDE的度数.22.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,求∠BAC的大小.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由.23.如图,点D在等边△ABC的外部,E为BC边上的一点,AD=CD,DE交AC于点F,AB∥DE.(1)判断△CEF的形状,并说明理由;(2)若BC=10,CF=4,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:A.风,不是轴对称图形,故此选项不合题意;B.和,不是轴对称图形,故此选项不合题意;C.日,是轴对称图形,故此选项符合题意;D.丽,不是轴对称图形,故此选项不合题意;故选:C.2.解:∵AB=AC,∠ABC=72°,∴∠ACB=∠ABC=72°,∵CD∥AB,∴∠BCD=180°﹣∠ABC=108°,∴∠ACD=∠BCD﹣∠ACB=36°,∵CE=DE,∴∠D=∠ACD=36°,故选:A.3.解:过P作PD⊥AB于D,∵∠C=90°,∴PC⊥AC,∴AP平分∠CAB,∴PD=PC,∵PC=2,∴PD=2,∴点P到边AB的距离是2,故选:B.4.解:当等腰三角形的腰为3时,三边为3,3,6,3+3=6,三边关系不成立,当等腰三角形的腰为6时,三边为3,6,6,三边关系成立,周长为3+6+6=15.故选:B.5.解:根据题意,得AD=AE,∴∠ADE=∠AED,∵∠ABC=40°,∠BAD=25°,∴∠ADE=40°+25°=65°,∴∠AED=65°,∴∠DAE=180°﹣65°﹣65°=50°,故选:B.6.解:连接AP,延长BP交AC于D,∴∠BPC=∠PDA+∠ACP=∠BAC+∠ABP+∠ACP,∵点P是AB,AC的垂直平分线的交点,∴P A=PB=PC,∴∠ABP=∠BAP,∠ACP=∠CAP,∴∠BPC=∠BAC+∠BAP+∠CAP=∠BAC+∠BAC=2∠BAC=2×50°=100°,故选B.7.解:∵AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=118°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×118°=236°,∴∠FEM+∠EFM=360°﹣236°=124°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣124°=56°,故选:A.8.解:∵BE是△ABC的角平分线,ED⊥BC,∠A=90°,∴AE=DE,∵△CDE的周长为12,CD=4,∴DE+EC=8,∴AC=AE+EC=8,故选:B.二.填空题(共8小题,满分40分)9.解:根据三角形的三边关系可得:10﹣5<a<10+5,即5<a<15,∵这个三角形中有两条边相等,∴a=10或a=5(不符合三角形的三边关系,不合题意,舍去)∴周长为5+10+10=25,故答案为:5<a<15;25.10.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故答案为:80.11.解:∵AD∥BC,∴∠DEF=∠BFE=68°,根据折叠的性质得,∠BEF=∠DEF=68°,∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣68°﹣68°=44°,∵∠A=90°,∴∠ABE=90°﹣44°=46°,故答案为:46°.12.解:∵∠AED=∠C+∠EDC=∠C+α,AE=AD,∴∠ADE=∠AED=∠C+α,∴∠ADC=∠C+2α,∵AB=AC,∴∠B=∠C,∴∠BAD=∠ADC﹣∠B=∠ADC﹣∠C=∠ADC﹣(∠C+2α)=2α.故答案为:2α.13.解:∵P点关于OA、OB的对称点P1,P2,∴NP=NP2,MP=MP1,∴△PMN的周长=PN+MN+MP=P2N+NM+MP1=P1P2=12cm,故答案为:12.14.解:∠B与∠BDG的数量关系是:∠B+2∠BDG=90°,∵AC∥DF,∴∠DEB=∠C=90°,∴∠B+∠FDB=90°,由翻折可得:∠BDG=∠FDG,∴∠B+2∠BDG=90°,故答案为:∠B+2∠BDG=90°.15.解:延长AF、BE交于点D,∵∠A=65°,∠B=75°,∴∠D=180°﹣∠A﹣∠B=40°,∴∠DFE+∠DEF=180°﹣∠D=140°,∵将纸片的一角折叠,使点C落在△ABC内,∴∠CFE=∠DFE,∠CEF=∠DEF,∴∠DFC+∠DEC=2(∠DFE+∠DEF)=280°,∴∠1+∠2=(180°﹣∠DFC)+(180°﹣∠DEC)=360°﹣(∠DFC+∠DEC)=360°﹣280°=80°,故答案为:80.16.解:如图,作点A关于BC、CD的对称点A1、A2,连接A1、A2分别交BC、DC于点M、N,连接AM、AN,则此时△AMN的周长最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵点A关于BC、CD的对称点为A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案为:80°.三.解答题(共7小题,满分48分)17.解:∵OC=OD,∴∠OCD=∠ODC,∵∠AOB=40°,∴∠ODC=(180°﹣∠AOB)÷2=(180°﹣40°)÷2=70°,∵OD=DE,∴∠OED=∠AOB=40°,∴∠ODE=180°﹣40°×2=100°,∴∠CDE=∠ODE﹣∠ODC=100°﹣70°=30°.18.解:(1)如图1所示,OC即为所求作的∠AOB的平分线.(2)如图2,作点M关于OC的对称点M′,连接M′N交OC于点P,则点P即为所求.19.解:(1)∵∠ABC=20°,∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=95°,∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,F A=FC,∴∠DAB=∠ABC=20°,∠F AC=∠ACB=65°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=10°;(2)由(1)可知,DA=DB,F A=FC,∴△DAF的周长=DA+DF+F A=DB+DF+FC=BC=50.20.解:(1)如图,点E即为所求;(2)如图,线段EF即为所求;(3)如图,点G即为所求;(4)如图,点P即为所求.21.解:(1)由折叠可得,AC=CE,DE=AD,∵AC=6,BC=8,∴CE=6,AB=10,∵BC=8,∴BE=2,∴△BDE的周长=DE+EB+BD=AD+BD+EB=AB+EB,∵AB=10,∴△BDE的周长=10+2=12;(2)∵∠B=37°,∴∠CED=37°+∠BDE,∵∠A=∠CED,∴∠CED=37°+∠BDE,∵∠ACB=90°,∴37°+∠BDE+37°=90°,∴∠BDE=16°,∴∠ADE=180°﹣16°=164°,∴∠CDE=∠ADE=82°.22.解:(1)∵AB=AC,∠B=70°,∴∠BAC=180°﹣70°×2=40°;(2)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(3)当点P与点M重合时,PB+CP的值最小,为AC长,最小值是8cm.23.解:(1)△CEF是等边三角形,理由:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC,∵AB∥DE,∴∠CEF=∠ABC,∠CFE=∠CAB,∴∠CEF=∠CFE=∠ECF∴△CEF是等边三角形;(2)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵AD=CD,∴BD是线段AC的垂直平分线,∴BD平分∠ABC,∴∠ABD=∠CBD,∵AB∥DE∴∠ABD=∠BDE,∴∠BDE=∠CBD,∴BE=DE,∴BC=BE+EC=DE+CF∴DE=BC﹣CF=10﹣4=6.。

八年级上册数学第十三章 轴对称 测试卷(含答案)

八年级上册数学第十三章 轴对称 测试卷(含答案)

八年级上册数学第十三章轴对称测试卷一、选择题。

(每小题3分,共24分)1.以下四个图形中,对称轴条数最多的是()A B C D2.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击中(球可以经过多次反弹),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋第2题图第3题图3.如图所示,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B.36°C.45°D.70°4.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A B C D5.下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等6.小朋友文文把一张长方形的纸对折了两次(如图所示),使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为()A. 60 °B.75°C.90°D.120°第6题图第8题图7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是()A. 60°B. 120°C. 60°或150°D.60°或120°8.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 3B. 2.5C. 2D. 1二、填空题(每小题3分,共24分)1.仔细观察如图所示的图案,并按规律在横线上画出合适的图形.______2,则该汽车的车牌号是______.3.已知么MON= 45°,其内部有一点P,它关于OM的对称点是A,关于ON的对称点是B,且OP =2cm,则S△AOB=______4.如图所示,DE是AB的垂直平分线,D是垂足,DE交BC于E,若BC=32cm,AC=18cm,则△AEC的周长为______cm.第4题图第6题图第7题图5.在直角坐标系中,点A,B,C,D的坐标分别为(-1,3),(-2,-4),(1,3),(2,-4),则线段AB与CD的位置关系是______.6.如图,在△ABC中,∠ACB = 90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点B',连接B'A,则B’A长度的最小值是______.7.如图所示,△ABD、△ACE是正三角形,BE和CD交于O点,则∠BOC =______.8.如图所示,有一块形状为等边△ABC的空地,DE,EF为空地中的两条路,且D为AB的中点,DE⊥AC于E,EF∥AB,现已知AE=5m,则地块△EFC的周长为______.三、解答题(共72分)1.如图所示,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.2.用围棋棋子可以在棋盘中摆出许多有趣的图案,如图甲,在棋盘上建立平面直角坐标系,以直线y=x为对称轴,我们可以摆出一个轴对称图形(其中A与A’是对称点),你看它像不像一条美丽的鱼?(1)请你在图乙中,也用10枚以上的棋子摆出一个以直线y=x为对称轴的轴对称图案,并在所摆的图形中找出两组对称点,分别标为B—B',C—C'(注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B,B',C,C'的坐标分别是:B( ),B'( ),C( ),C'( ).根据以上对称点的坐标规律,写出点P(a,b)关于对称轴y=x对称点p’的坐标是( ).甲乙3.如图所示,△ABC和△A’B’C’关于直线MN对称,△A’B’C'和△A’’B’’C’’关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB’’与直线MN, EF所夹锐角α的数量关系.4.如图所示,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB +BD与DE的长度有什么关系?并加以证明.5.如图所示,在等边三角形ABC中,∠B,∠C的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.6.元旦联欢会上,同学们在礼堂四周摆了一圈条桌,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间放一把椅子B.游戏规则是这样的:甲、乙二人从A 处同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.小张和小李比赛,比赛一开始,只见小张直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见小李已经手捧苹果和香蕉稳稳地坐在B处的椅子上了,如果小李不比小张跑得快,那他是不是有捷径呢?如果有,请把捷径画出来,并说明理由.参考答案一、1.B 2.B 3.B 4.D 5.D 6.C 7.D 8.C 二、1. 2.M645379 3.2cm ² 4. 50 5.关于y 轴对称 6.2 7. 120° 8. 45m三、1.连接AF. ∵AB=AC,∴∠B= ∠C=︒=︒-︒=∠-︒3021201802A 180.又∵EF 垂直平分AC ,∴AF = CF ∴∠CAF =∠C= 30°. ∴∠BAF= ∠BAC- ∠CAF=120°-30°=90°.在Rt △BAF 中,∵∠B=30°,∴BF =2AF.叉∵AF= CF,∴BF=2CF .2.(1)按要求摆出图形并标出两组对称点B-B ’,C-C';(2)答案不唯一,只要满足点B 的横坐标等于点B ’的纵坐标,点B 的纵坐标等于点B ’的横坐标,点C 的横坐标等于点C ’的纵坐标,点C 的纵坐标等于点C ’的横坐标即可;根据以上对称点坐标的规律,可以发现P(a ,b)关于对称轴y=x 的对称点P ’的坐标为(b ,a).3.(1)如图所示,连接B'B ’’,作线段B'B ’’的垂直平分线EF,则直线EF 是△A ’B ’C ’和△A ’’B ’’C ’’的对称轴.(2)连接BO .因为△ABC 和△A'B'C'关于MN 对称,所以∠BOM=∠B 'OM.又因为△A ’B ’C ’和△A ’’B ’’C ’’关于EF 对称,所以∠B 'OE= ∠B ''OE.所以∠BOB''=∠BOM+ ∠B 'OM+∠B'OE+ ∠B ‘’OE =2(∠B'OM+∠B 'OE) =2a .即∠BOB ’’= 2a.4. AB+BD= DE ,证明略.5.同意,连接OE ,OF.由题意可知:BE= OE,CF= OF,∠OBC=∠OCB= 30°, ∴∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∴∠BOC=120°,∴∠EOF=60°, ∠OEF=60°, ∠OFE=60°.∴△OEF 是等边三角形,∴OE = OF= EF= BE=CF.∴E ,F 是BC 的三等分点.6.分别以北条桌和东条桌为对称轴,作A ,B 的对称点A ’,B ’,连接A'B ’,交两长条桌于C ,D 两点,则折线ACDB 就是捷径.连接A'M 和B'M 因为A ,A ’于CM 对称,B ,B ’关于DM 对称,所以AC=A'C ,AM=A'M ,BD=B'D,BM=B'M.所以折线ACDB 的长=AC+CD+DB=A'C+CD+DB'=A'CDB'=A'B ’,而AM+BM=A'M+B'M> A'B',所以拆线ACDB 是捷径.。

初中八年级数学第十三章轴对称单元检测练习题(含答案) (99)

初中八年级数学第十三章轴对称单元检测练习题(含答案) (99)

初中八年级数学第十三章轴对称单元检测试卷练习题(含答案)如图,在△ABC 中,AB=AC ,点D 、E 分别在边BC 、AC 上(均不与点A 、B 、C 重合),且△1=△C=40°,若BD=CE ,则△BAD=_______度.【答案】30【解析】∵∠ADC=∠1+∠EDC=∠B+∠BAD ,∠1=∠C=∠B=40°,∴∴EDC=∴BAD ,∴BAC=180°-40°-40°=100°,又∴∴C=∴B ,EC=BD ,∴∴EDC ∴∴DAB ,∴ED=AD ,∴∴DAE=∴DEA=18040702-=, ∴∴BAD=∴BAC-∴DAE=100°-70°=30°.故答案为:30°.62.如图,在平面直角坐标系中,AB BC =,90ABC ∠=︒,()0,3A ,(),0B -1,以AB 为对称轴在AB 的右侧作等腰直角ABE ∆,则点E 的坐标是______.【答案】()2,1-【解析】【分析】首先作CD ⊥x 轴于点D ,证得△CDB ≌△BOA ,得出点C 的坐标,进一步利用对称点的坐标求法得出E 点的坐标即可.【详解】如图,∵△ABC 是等腰直角三角形,∴BC=BA,∠ABC=90∘,∵∠CBD+∠ABO=∠CBD+∠DCB=90∘,∴∠ABO=∠DCB ,在△CDB 和△BOA 中,90CDB AOB DCB ABOBC BA ∠=∠=︒∠=∠=⎧⎪⎨⎪⎩, ∴△CDB ≌△BOA ,∴CD=OB=1,BD=OA=3,∴点C 的坐标为(−3,1),∵点E 是点C 关于点B 的对称点,∴点E 的坐标为(2,−1).故答案为:(2,−1).【点睛】本题考查等腰直角三角形的性质和点坐标的轴对称性质,解题的关键是熟练掌握等腰直角三角形的性质和点坐标的轴对称性质。

63.如图,在4×4正方形网格中,黑色部分的图形是轴对称图形,现在任意选取一个白色的小正方形并涂黑,则黑色部分的图形仍然是轴对称图形的概率是______.【答案】13【解析】【分析】由题意知,任取一个白色的小正方形并涂黑有12种等可能的结果,使黑色部分的图形仍然是轴对称图形有4种结果,直接利用概率公式求解即可求得答案.【详解】根据图形知,白色小正方形有12个,任取一个涂黑有12种结果,使得黑色部分的图形仍然是轴对称图形,选取四个顶角的小正方形,所以41P==,123.故答案为:13【点睛】本题考查了轴对称图形的特征,概率公式的计算,掌握轴对称图形的特征是解题的关键.64.在△ABC中,若∠B=∠C=2∠A,则∠C的度数为_____.【答案】72°【解析】【分析】利用三角形内角和定理列方程即可得出答案.【详解】解:∴∴B=∴C=2∴A,∴可以假设∴A=x,则∴B=∴C=2x,∴∴A+∴B+∴C=180°,∴5x=180°,∴x=36°,∴∴C=72°,故答案为72°.【点睛】本题考查三角形内角和定理,解题的关键是学会利用参数构建方程解决问题.65.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,△BAE的大小可以是__.【答案】15度或165度【解析】①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正∴AEF的顶点A重合,∴AB=AD,BE=DF,AE=AF,∴∴ABE∴∴ADF,∴∴BAE=∴FAD,∴∴EAF=60°,∴∴BAE+∴FAD=30°,∴∴BAE=∴FAD=15°,②当正三角形AEF在正方形ABCD的外部时,∵正方形ABCD与正∴AEF的顶点A重合,∴AB=AD,BE=DF,AE=AF,∴∴ABE∴∴ADF,∴∴BAE=∴FAD,∴∴EAF=60°,∴∴BAE=(360°-90°-60°)×12+60°=165°,∴∴BAE=∴FAD=165°,故答案为15°或165°.66.如图所示,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC=150°,则∠1的度数是____________。

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)一、选择题(每小题3分,共30分)1.(2022独家原创)下图是天气预报中的图形,其中是轴对称图形的为( )A BC D2.(2022独家原创)如图,在△ABC中,∠BAC=75°,∠ACB=35°,AC=8,∠ABC的平分线BD交边AC于点D,则AD+BD的长为( )A.10B.8C.6D.43.(2020湖南益阳中考)如图,在△ABC中,AC的垂直平分线交AB于点D,交AC于点E,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°4.(2021河北石家庄二十八中期中)如图,△ABC中,点D在AC上,连接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中共有等腰三角形( )A.0个B.1个C.2个D.3个5.如图,在棋盘中建立直角坐标系xOy,现将A,O,B三颗棋子分别放置在(-2,2),(0,0),(1,0)处.如果在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,则满足条件的棋子P的位置的坐标不正确的是( )A.(-2,3)B.(-3,2)C.(-2,-2)D.(0,-1)6.(2020湖北宜昌中考)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是( )A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线7.(2020山东济南期末)如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD的长为( )A.1.5B.2C.3D.48.如图,在△ABC中,AB=AC,∠C=70°,△AFG与△ABC关于直线DE成轴对称,∠CAE=10°,连接BF,则∠ABF的度数是( )A.30°B.35°C.40°D.45°第8题图第9题图9.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB的长为半径画弧,再以点C为圆心,AC 的长为半径画弧,两弧交于点D,连接AD,与CB的延长线交于点E.下列结论错误的是( )A.CE垂直平分ADB.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形10.(2021河南郑州模拟)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列选项中结论错误的是( )A.EF=BE+CFB.∠BOC=90°+12∠AC.点O到△ABC各边的距离相等D.设OD=m,AE+AF=n,则S△AEF=mn二、填空题(每小题3分,共24分)11.(2021山东淄博中考)在直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位得到点A2,则点A2的坐标为.12.(2022独家原创)如图,在3×3的方格图中,将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形共有个.13.(2022黑龙江齐齐哈尔三中期中)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.14.(2019湖南永州中考)已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF= .15.(2021江苏苏州中考)如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B= °.16.(2022安徽芜湖一中期末)如图,已知点D、E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是线段AD上的动点,则BF+EF的最小值为.17.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按如图所示的方式折叠,则图中阴影部分是三角形.18.(2021四川绵阳模拟)如图,∠BOC=60°,点A是OB的反向延长线上的一点,OA=10 cm,动点P从点A出发沿AB以2 cm/s的速度移动,动点Q从点O出发沿OC以1 cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t= 时,△POQ是等腰三角形.三、解答题(共46分)19.(2019广西中考)(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.20.(6分)如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.21.(2022浙江温州期末)(8分)如图,在△ABC中,AB=AC,点E,F在边BC上,BE<BF.已知BE=CF.(1)求证:△ABE≌△ACF;(2)若点D在AF的延长线上,AD=AC,∠BAE=30°,∠BAD=75°,求证:AB∥DC.22.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF, BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=44°时,求∠DEF的度数.23.(2018浙江绍兴中考)(8分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.24.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形CBD,连接DA并延长,交y轴于点E.(1)求证:OC=AD;(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果改变,请说明理由;(3)当点C运动到什么位置时,以A、E、C为顶点的三角形是等腰三角形?参考答案1.C根据轴对称图形的定义可知,选项A中的图形不是轴对称图形,选项B中的图形不是轴对称图形,选项C中的图形是轴对称图形,选项D中的图形不是轴对称图形.故选C.2.B在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°-∠BAC-∠ACB=70°,∵BD平分∠ABC,∴∠DBC=1∠ABC=35°,2∴∠DBC=∠ACB,∴BD=CD,∴AD+BD=AD+CD=AC=8.故选B.3.B∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°-∠A-∠ACB=180°-50°-100°=30°,故选B.4.D图中共有等腰三角形3个.∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,故选D.5.B满足条件的点P的位置如图所示,点P的坐标为(-2,3)或(3,2)或(-2,-2)或(0, -1),故选B.6.A设直线l与FG交于点O(图略),∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=GH+OG,即EO=OH,∴l为线段EH的垂直平分线,故选项A正确;∵EO≠OQ,∴l不是线段EQ的垂直平分线,故选项B错误;∵FO≠OH,∴l不是线段FH的垂直平分线,故选项C错误;∵l为直线,直线没有垂直平分线,∴EH不能平分直线l,故选项D错误.故选A.7.B ∵∠DBC=60°,∠C=90°,∴∠BDC=90°-60°=30°,∴BD=2BC=2×1=2, ∵∠C=90°,∠A=15°,∴∠ABC=90°-15°=75°, ∴∠ABD=∠ABC-∠DBC=75°-60°=15°, ∴∠ABD=∠A,∴AD=BD=2.故选B.8.C ∵△AFG 与△ABC 关于直线DE 成轴对称,∴△AFG ≌△ABC,∠GAE=∠CAE=10°,∴∠GAF=∠CAB,AB=AF,∵AB=AC,∠C=70°,∴∠ABC=∠ACB=70°,∴∠GAF=∠BAC=40°,∴∠BAF=40°+10°+10°+40°=100°,∵AB=AF,∴∠ABF=∠AFB=40°.故选C.9.D 由题意可得CA=CD,BA=BD,∴直线CB 是AD 的垂直平分线,即CE 垂直平分AD,故A 选项结论正确;∵AC=DC,CE ⊥AD,∴∠ACE=∠DCE,即CE 平分∠ACD,故B 选项结论正确;∵DB=AB,∴△ABD 是等腰三角形,故C 选项结论正确;∵AD 与AC 不一定相等,∴△ACD 不一定是等边三角形,故D 选项结论错误.故选D.10.D ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O, ∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF ∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC, ∴∠EOB=∠OBE,∠FOC=∠OCF, ∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF, 故A 选项结论正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故B 选项结论正确;过点O 作OM ⊥AB 于M,ON ⊥BC 于N,连接OA,如图,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴ON=OD=OM,∴点O 到△ABC 各边的距离相等,故C 选项结论正确;∵OD=m,∴ON=OD=OM=m,∴S △AEF =S △AOE +S △AOF =12AE ·OM+12AF ·OD=12OD ·(AE+AF)=12mn,故D 选项结论错误.故选D.11.(0,-2)解析∵点A(3,2)关于x轴的对称点为A1,∴A1(3,-2),∵将点A1向左平移3个单位得到点A2,∴点A2的坐标为(0,-2).12.3解析将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形有3个,如图.13.12解析∵D为BC的中点,且BC=6,∴BD=12BC=3,由折叠的性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=9+3=12.14.4解析过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,DE⊥OA,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.15.54解析∵AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=12×72°=36°,在Rt△ABC中,∠C=90°,∴∠B=90°-36°=54°.16.6解析如图,连接CE交AD于点F,连接BF,∵△ABC是等边三角形,∴BF=CF,∴BF+EF=CF+EF=CE,此时BF+EF的值最小,最小值为CE的长,∵D、E分别是△ABC中BC、AB边的中点,∴AD=CE,∵AD=6,∴CE=6,∴BF+EF的最小值为6.17.等边解析∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,根据题意知点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI,∴阴影部分是等边三角形,故答案为等边.或1018.103解析分情况讨论:①当点P在OA上时,如图所示,△POQ是等腰三角形,PO=QO;∵PO=AO-AP=(10-2t)cm,OQ=t cm,.∴10-2t=t,解得t=103②当点P在射线OB上时,如图所示,△POQ是等腰三角形.∵∠BOC=60°,∴等腰△POQ是等边三角形,∴PO=QO.∵PO=AP-AO=(2t-10)cm,OQ=t cm,∴2t-10=t,解得t=10.故当t=103或t=10时,△POQ是等腰三角形.19.解析(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)A1(2,3),A2(-2,-1).20.解析如图,延长AD交BC的延长线于点E.∵∠A=30°,∠B=90°,∴∠E=60°,AE=2BE,∵∠ADC=120°,∴∠EDC=60°,∴△EDC是等边三角形.设CD=CE=DE=x,∵AD=4,BC=1,∴AE=x+4,BE=x+1,∴2(x+1)=x+4,解得x=2,∴CD=2.21.证明(1)∵AB=AC,∴∠ABE=∠ACF,在△ABE 和△ACF 中,{AB =AC,∠ABE =∠ACF,BE =CF,∴△ABE ≌△ACF(SAS).(2)∵△ABE ≌△ACF,∴∠CAF=∠BAE=30°,∵AD=AC,∴∠ADC=∠ACD=75°,∴∠BAD=∠ADC,∴AB ∥CD.22.解析 (1)证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE 和△ECF 中,{BE =CF,∠DBE =∠ECF,BD =CE,∴△DBE ≌△ECF(SAS),∴DE=EF,∴△DEF 是等腰三角形.(2)∵△DBE ≌△ECF,∴∠BDE=∠CEF,∠BED=∠CFE,∵∠A+∠B+∠C=180°,∠A=44°,∴∠B=12×(180°-44°)=68°,∴∠BDE+∠BED=112°,∴∠BED+∠CEF=112°,∴∠DEF=180°-112°=68°.23.解析 (1)当∠A 为顶角时,∠B=12×(180°-80°)=50°, 当∠A 为底角时,若∠B 为顶角,则∠B=180°-80°-80°=20°, 若∠B 为底角,则∠B=∠A=80°,∴∠B 的度数为50°或20°或80°.(2)分两种情况:①当90≤x<180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x<90时,若∠A 为顶角,则∠B=(180−x 2)°,若∠A 为底角,则∠B=x °或∠B=(180-2x)°,∴当180−x 2≠180-2x 且180−x 2≠x 且180-2x ≠x,即x ≠60时,∠B 有三个不同的度数.综上,当0<x<90且x ≠60时,∠B 有三个不同的度数.24.解析 (1)证明:∵△AOB,△CBD 都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC 和△ABD 中,{OB =AB,∠OBC =∠ABD,CB =DB,∴△OBC ≌△ABD(SAS),∴OC=AD.(2)点C 在运动过程中,∠CAD 的度数不会发生变化.理由如下: ∵△AOB 是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC ≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°-∠OAB-∠BAD=60°.(3)∵∠OAB=∠BAD=60°,∴∠OAE=180°-60°-60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰, ∵A(1,0),∴OA=1,∵∠OEA=30°,∴AE=2OA=2,∴AC=AE=2,∴OC=OA+AC=1+2=3,∴当点C 的坐标为(3,0)时,以A,E,C 为顶点的三角形是等腰三角形.。

人教版八年级上册数学第十三章 轴对称含答案(完美版)

人教版八年级上册数学第十三章 轴对称含答案(完美版)

人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过O作AC的垂线EF,分别交AD、BC于E、F点,连接EC,则△CDE的周长为()A.5cmB.8cmC.9cmD.10cm2、如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8B.4C.12D.163、已知:如图,直线与轴、轴分别交于,两点,两动点,分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为()A. 、B. 、C. 、D.、4、甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)5、如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D 是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A.14B.13C.12D.116、在△ABC中,∠B和∠C的平分线交于点I,边AB和AC的垂直平分线交于点O,若∠BIC=90°+ θ,则∠BOC=()A.90°﹣θB.2θC.180°﹣θD.以上答案都不对7、如图,在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=120°,则∠A的度数为()A.110°B.60°C.80°D.100°8、下列图形中,是轴对称图形的个数是().A.1个B.2个C.3个D.4个9、把16个边长为a的正方形拼在一起,如图,连接BC,CD,则△BCD是()A.直角三角形B.等腰三角形C.等边三角形D.任意三角形10、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11、如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°12、如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,以B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A 可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=8;③∠AOB=150°;④其中正确的有()A.①②B.①②③C.①②④D.①②③④13、下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③顶角和底边对应相等的两个等腰三角形全等;④有一个角是60°的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.2B.3C.4D.514、如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=的图象经过点A,反比例函数y=的图象经过点B,则下列关于m,n2的关系正确的是()A.m=nB.m=﹣nC.m=﹣nD.m=﹣3n15、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.17、如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=12cm,则BC的长为________ cm.18、如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是________.19、如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为________.20、如图,已知在中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是________ .(只需填上一个正确的条件)21、如图,中,边AB的垂直平分线分别交AB、BC于点D、E,连接若,,则的周长为________.22、点A(2,-3)关于x轴对称的点的坐标是________.23、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是________24、如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为________.25、如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、以给出的图形“○,○,△,△, ”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.28、已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G 不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.29、作图题:如图,在平面直角坐标系xOy中,A(2,3),B(3,1),C(﹣2,﹣1).①在图中作出△ABC关于x轴的对称图形△A1B1C1并写出A1, B1, C1的坐标;②在y轴上画出点P,使PA+PB最小.(不写作法,保留作图痕迹)③求△ABC的面积.30、若等腰三角形一腰上的中线把三角形分为两个周长为 15cm和 18cm的三角形,且该中线长6cm,请画出示意图,并结合图形,求这个等腰三角形的底边长.参考答案一、单选题(共15题,共计45分)2、A3、A4、C5、C6、B7、D8、D9、B10、C11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。

八年级数学上册《第十三章 轴对称》单元测试卷含答案(人教版)

八年级数学上册《第十三章 轴对称》单元测试卷含答案(人教版)

八年级数学上册《第十三章 轴对称》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列交通指示标识中,不是轴对称图形的是( )A .B .C .D .2.点 ()2,3P 关于 x 轴的对称点是( )A .()2,3-B .()2,3-C .()2,3--D .()3,2--3.等腰三角形的一边长为6cm ,另一边长为12cm ,则其周长为( )A .24cmB .30cmC .24cm 或30cmD .18cm4.有一等腰三角形纸片ABC ,AB=AC ,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )A .甲B .乙C .丙D .丁5.如图,已知O 是四边形ABCD 内一点,OA=OB=OC ,∠ABC=∠ADC=70︒,则∠DAO+∠DCO 的大小是( )A .70︒B .110︒C .140︒D .150︒6.如图,△ABC 为等边三角形,点D ,E 分别在AC ,BC 上,且AD =CE ,AE 与BD 相交于点P ,BF ⊥AE 于点F.若PF =3,则BP =( )A .6B .5C .4D .37.如图,在ABC ∆中,AB=AC ,BC=4,ABC ∆的面积是24,AC 的垂直平分线EF 分别交AC 、AB 边于点E ,F ,若点D 为BC 边的中点,点M 为线段EF 上一动点,连接CM ,DM ,则CM DM +的最小值为( )A .6B .10C .12D .138.如图,过边长为2的等边 ABC ∆ 的边 AB 上一点 P ,作 PE AC ⊥ 于点 E ,点 Q 为 BC 延长线上一点,当 PA CQ = 时,连接 PQ 交 AC 边于点 D ,则 DE 的长为( )A .1B .2C .12D .329.如图,在四边形ABCD 中,AB=AC ,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=( )A .18°B .20°C .25°D .15°二、填空题10.等腰三角形的一个角是72º,则它的底角是 .11.在4×4的方格中有五个同样大小的正方形如图摆放,添加一个正方形与其余五个正方形组成的新图形是一个轴对称图形,这样的方法共有 种.12.如图,∠A=100°,∠E=25°,△ABC 与△DEF 关于直线l 对称,则△ABC 中的∠C= °.13.如图所示,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD 的周长是14.如图,在Rt ABC 中90C ∠=︒,点D 在直角边BC 上,AD 平分BAC ∠,DE 是AB 的垂直平分线8CD cm =,则BD = cm .15.如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为 .16.如图,在 ABC 中 8AB AC ==和120BAC ︒∠= ,AD 是 ABC 的中线,AE 是 BAD ∠ 的角平分线, DF AB 交AE 的延长线于点F ,则DF 的长为 .三、解答题17.如图,在△ABC 中,AC 的垂直平分线交BC 于D ,垂足为E ,△ABD 的周长为13cm ,AC=5cm ,求△ABC 的周长.18.如图,在 ABC ∆ 中 AB AC = , AD BC ⊥ 于点 D DE AC ⊥, 于点 E . 求证: BAD CDE ∠=∠ .19.如图,在等边 ABC 中,点D 在BC 边上,点E 在△ABC 外,AD =AE.若∠BAD =20°,∠DAE =70°,求∠CAE 和∠CDE 的度数.20.如图,BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,垂足分别是E ,F ,连接EF ,EF 与BD 相交于点P.求证:EP =FP.21.如图,点 O 是等边 ABC 内一点 110AOB ∠=︒ , BOC α∠= 以 OC 为一边作等边三角形 OCD ,连接 AC 、 AD .(1)求证: OBC DAC ∠=∠ ;(2)求 OAD ∠ 的度数;(3)当 α 为多少度时, AOD 是等腰三角形?参考答案:1.C 2.A 3.B 4.D 5.D 6.A 7.C 8.A 9.A10.7254︒︒,11.412.5513.1514.1615.100°16.417.解:∵DE 是边AC 的垂直平分线∴AD=CD∵△ABD 的周长为13cm ,AC6=5m△ABD 的周长=AB+AD+BD=AB+CD+BD=AB+BC=13cm所以,△ABC 的周长=AB+BC+AC=13+5=18cm18.证明:∵AB AC = ∴B C ∠=∠∵AD BC ⊥∴90ADB ∠=︒∵90BAD B ∠+∠=︒∴DE AC ⊥∴90DEC ∠=︒∴90CDE C ∠+∠=︒∴BAD CDE ∠=∠19.解:∵△ABC 是等边三角形∴∠ABC=∠BAC=60°又∵∠BAD=20°,∠DAE=70°∴∠DAC=∠BAC-∠BAD=60°-20°=40°∴∠CAE=∠DAE-∠DAC=70°-40°=30°∵AD=AE ∴()21180552ADE AED DAE ∠=∠=⨯-∠= 又∵∠ADC=∠ABC+∠BAD =60°+20°=80°∴∠CDE=∠ADC-∠ADE =80°-55°=25°.20.证明:∵BD 平分∠ABC∴∠ABD=∠CBD∵DE ⊥AB ,DF ⊥BC∴∠DEB=∠DFB=90°,且BD=BD ,∠ABD=∠CBD∴△BDE ≌△BDF (AAS )∴DE=DF ,BE=BF∴BD 是EF 的垂直平分线∴EP=FP.21.(1)证明:如图1, ABC ∆ 和 ODC ∆ 都是等边三角形CB CA ∴= , CO CD = 和60BCA OCD ∠=∠=︒BCO ACD ∴∠=∠在 BOC ∆ 和 ADC ∆ 中BC AC BCO ACD OC CD =⎧⎪∠=∠⎨⎪=⎩()BOC ADC SAS ∴∆≅∆OBC DAC ∴∠=∠ ;(2)解: BOC ADC ∆≅∆ADC BOC α∴∠=∠=COD ∆ 是等边三角形60CDO COD ∴∠=∠=︒60ADO α∴∠=-︒110AOB ∠=︒36011060190AOD αα∴∠=︒-︒--︒=︒-AOD ∆ 中 180180(60)(190)50OAD ADO AOD αα∠=︒-∠-∠=︒--︒-︒-=︒ ;(3)解:由(2)知: 60ADO α∠=-︒ 190AOD α∠=︒- 和 50OAD ∠=︒ ①当 AO AD = 时, AOD ∆ 是等腰三角形ADO AOD ∴∠=∠即 60190αα-=-解得: 125α=︒ ;②当 AO OD = 时, AOD ∆ 是等腰三角形ADO DAO ∴∠=∠即 6050α-=解得: 110α=︒ ;③当 OD AD = 时, AOD ∆ 是等腰三角形DAO AOD ∴∠=∠即 19050α-=解得: 140α=︒ ;综上,当α为125︒或110︒或140︒时,AOD ∆是等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中八年级数学第十三章轴对称单元检测复习试题(含答案)如图,在8×8的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B 与B1,C与C1相对应)是三角形;(2)ABC(3)若有一格点P到点A、B的距离相等(PA=PB),则网格中满足条件的点P共有个;(4)在直线l上找一点Q,使QB+QC的值最小。

【答案】(1)答案见解析;(2)等腰直角;(3)4;(4)答案见解析.【解析】【分析】(1)分别作出点A、B、C关于直线l的对称点,再顺次连接可得;(2)根据网格,求出AB,AC,BC的长度,然后再判断即可;(3)作线段AB的垂直平分线,即可得到答案;(4)连接1QC,BC,与l相交于一点,这点为点Q,由垂直平分线性质,QC=1则得到QB+QC的最小值.【详解】解:(1)如图所示:△A 1B 1C 1为所求.(2)根据题意,可知,AB ==221310BC ,AC == ∴10BCAC , ∵22220BC AC AB ,∴ABC ∆是等腰直角三角形;故答案为:等腰直角.(3)如图,作线段AB 的垂直平分线,与网格的顶点相交即为点P ;由图可知,使PA=PB 的点P 一共有4个,故答案为:4.(4)如图,连接1BC 与l 相交于点Q ,则QB+QC 取到最小值;∵l 垂直平分1CC ,∴1QC QC ,∴QB+QC=QB+11QC BC , ∴最小值为:2211526BC ;【点睛】 本题考查了作轴对称图形,等腰直角三角形的判定,垂直平分线,以及最短距离问题,解题的关键是掌握所学定理,根据定理去解决问题.72.如图,在直角坐标系中ABC 三个顶点的坐标()4,2A -、()3,2B --、()0,0C .(1)请你画出ABC 并画出ABC 关于y 轴对称的111A B C △;(2)写出1A ,1B ,1C 三点的坐标.【答案】(1)见解析;(2)()14,2A 、()13,2B -、()10,0C .【解析】【分析】(1)分别作出A ,B ,C 关于y 轴对称的对应点A 1,B 1,C 1即可.(2)根据A 1,B 1,C 1的位置写出坐标即可.【详解】解:(1)△A 1B 1C 1如图所示.(2)A 1(4,2),B 1(3,-2),C 1(0,0).【点睛】本题考查作图-轴对称变换,比较简单,主要涉及在平面直角坐标系中确定点的位置的方法,要熟练掌握并灵活运用.解题的关键是熟练掌握基本知识,属于中考常考题型.73.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(2,1)A -,(4,5)B -,(5,2)C -.(1)画出ABC ∆关于y 轴对称的111A B C ∆;(2)点1A 的坐标是 ,点1C 的坐标是 .【答案】(1)见解析;(2)(2,1),(5,2).【解析】【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)由所作图形可得答案.【详解】解:(1)如图所示,111A B C即为所求.(2)由图可知,点1A的坐标是(2,1),点1C的坐标是(5,2),故答案为:(2,1),(5,2).【点睛】本题主要考查作图——轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此作图变换后的对应点.74.如图,已知AD⊥EF,CE⊥EF,∠2+∠3=180°.(1)请说明∠1=∠BDC;(2)若∠1=70°,DA平分∠BDC,试求∠FAB的度数.【答案】(1)见解析;(2)55°.【解析】【分析】(1)先根据垂直的定义得出∠GAD=∠GEC=90°,故可得出AD∥CE,再由平行线的性质∠ADC+∠3=180°,据此可得出AB∥CD,进而可得出结论;(2)先根据平行线的性质得出∠BDC=∠1=70°,再由DA平分∠BDC得出∠ADC的度数,进而得出∠2的度数,由∠FAB=∠FAD-∠2即可得出结论.【详解】(1)∵AD⊥EF,CE⊥EF,∴∠GAD=∠GEC=90°,∴AD∥CE,∴∠ADC+∠3=180°,又∵∠2+∠3=180°,∴∠2=∠ADC,∴AB ∥CD ,∴∠1=∠BDC ;(2) ∵AD ⊥EF ,∴∠FAD=90°,∵AB ∥CD ,∴∠BDC=∠1=70°,∵DA 平分∠BDC ,∴∠ADC=12∠BDC=12×70°=35°, ∵AB ∥CD ,∴∠2=∠ADC=35°,∴∠FAB=∠FAD-∠2=90°-35°=55°.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.75.已知3x y =,求222223x xy y x xy y +--+的值. 【答案】127【解析】试题分析: 由3x y =可得:3x y =代入式子222223x xy y x xy y +--+中化简即可. 试题解析:∵ 3x y=,∴x=3y.∴()()()222222222232322312127733y y y yx xy y yx xy y yy y y y+⨯⨯-+-=== -+-⨯+.76.如图所示△ABC在边长为1个单位的网格中,请根据下列提示填空:(1)为了把△ABC平移得到△A′B′C′,可以先将△ABC向平移_______格,再向平移_______格.(2)求出△A’B’C’的面积.【答案】(1)右,5,上,3;(2)3.5.【解析】试题分析:(1)直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减;(2)利用正方形的面积减去各顶点上三角形的面积即可.试题解析:(1)从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故答案为:右,5,上,3;(2)S△ABC=3×3-12×3×1-12×1×2-12×3×2=9-1.5-1-3 =3.5.点睛:在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.77.如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么?【答案】见解析.【解析】【分析】根据三角形外角大于不相邻的任一个角可得:设球员接球时位于点C,他尽力向球门冲近到D,此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.【详解】解:如图,设球员接球时位于点C,他尽力向球门冲近到D,此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE,所以∠ADE+∠BDE>∠ACE+∠BCE ,即∠ADB>∠ACB .【点睛】本题考核知识点:三角形外角性质的应用. 解题关键点:理解三角形外角性质.78.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.【答案】(1)画图见解析,A 1(﹣1,4),B 1(1,4);(2)1334π+. 【解析】【分析】(1)根据旋转中心方向及角度找出点A 、B 的对应点A 1、B 1的位置,然后顺次连接即可,根据A 、B 的坐标建立坐标系,据此写出点A 1、B 1的坐标;(2)利用勾股定理求出AC 的长,根据∴ABC 扫过的面积等于扇形CAA 1的面积与∴ABC 的面积和,然后列式进行计算即可.【详解】解:(1)所求作∴A 1B 1C 如图所示:由A (4,3)、B (4,1)可建立如图所示坐标系,则点A 1的坐标为(﹣1,4),点B 1的坐标为(1,4);(2)∴=∴ACA 1=90°∴在旋转过程中,∴ABC 所扫过的面积为:S 扇形CAA1+S △ABC12×3×2 =134π+3. 【点睛】本题考查作图-旋转变换;扇形面积的计算.79.如图,在正方形网格中,△ABC 的三个顶点都在格点上,点A ,B ,C 的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),将△ABC 绕原点O 旋转180度得到△A 1B 1C 1.平移△ABC 得到△A 2B 2C 2,使点A 移动到点A 2(0,2),结合所给的平面直角坐标系解答下列问题:(1)请画出△A 1B 1C 1;(2)请直接写出B 2的坐标 C 2的坐标 .【答案】(1)见解析;(2)(0,﹣2),(﹣2,﹣1).【解析】【分析】(1)将点A,B,C分别绕原点O旋转180度得到对应点,再首尾顺次连接即可得;(2)由点A及其对应点A2的坐标得出平移方向和距离是:先向右平移2个单位,再向下平移2个单位,据此得出平移后的对应三角形,从而得出点B2,C2的坐标.【详解】(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为平移后对应的三角形,由图知B2的坐标为(0,﹣2),C 2的坐标为(﹣2,﹣1).故答案为:(0,﹣2),(﹣2,﹣1).【点睛】本题考查了作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.80.在三角形中,AD 是边BC 上的中线,6AB cm =,5AC cm =,求ABD ∆与ADC ∆的周长之差.【答案】1cm【解析】【分析】根据中线的性质即可求解.【详解】解:D 是BC 中点BD CD ∴= AD 是公共边∴ABD ∆与ADC ∆周长差=AB-AC=1cm.【点睛】此题主要考查中线的性质,解题的关键是熟知三角形的中线的定义与性质.。

相关文档
最新文档