有理数找规律专题练习题精品资料
(完整版)初一有理数找规律习题
活动一:找规律 1、观察右面的图案,每条边上有n(n≥2)个方 点,每个图案中方点的总数是S. (1)请写出n=5时, S= 16 ; (2)请写出n=18时,S= 68 ;
(3)按上述规律,写出S与n的关系式S=4n-4或4 (n-1)
2、一张长方形的桌子可坐6人,按下图将桌子拼起来。 按这样规律做下去第n张桌子可以坐 2n+4人。
________2026___________________
已知当x=-2时,代数式 ax3 bx 1的值为6,那么
当x=2时,求代数式 ax3 bx 1的值。
值为-4
练习
已知x=3时,代数式 ax3 bx 1 的值是-2009,求
x=-3时代数式的值。
值为2011
练习
已知-m+2n=5,那么 5(m 2n)2 6n 3m 60 的值
1
1 的值。 2
Байду номын сангаас
值为25又1/2
的结果是______________
3(x 1)2 2(x 1)3 5(1 x)2 4(1 x)3
把(m-n)当作一个整体,合并
(m n)2 2(m n) 1 (n m)2 3m 3n 3
=___2/3(m-n)²-(m-n)__________
若 a2 a 0,则 2a2 2a 2007 的值为
M 2x2 5xy y2, N 4x2 2xy y2
13M 2N 值为(6x²-8x²)+(-15xy+4xy)+(3y²+2y²) 23M 2N 值为14x²-19xy+y²
a 3, b 2,且 a - b b - a,求代数式
9a
完整版)有理数专题训练
完整版)有理数专题训练专题一有理数的概念及其应用例1:已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求(a+b+c*d)*m-cd的值。
解:根据题意可得a=-b,c=1/d,|x|=2,代入原式得:a+b+c*d)*m-cd=(0+c*d)*m-cd=cd*(m-1)练:已知a,b互为相反数,c,d互为倒数,|x|=3,求代数式a+b-cdx+x/3的值。
解:根据题意可得a=-b,c=1/d,|x|=3,代入原式得:a+b-cdx+x/3=-2b-cd*x+x/3=-2b-cd*3+x/3=-2b-3c+x/3巩固:已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x^2-cd*x+(a+b)*2010-cd*2009的值。
解:根据题意可得a=-b,c=1/d,x^2=4,代入原式得:x^2-cd*x+(a+b)*2010-cd*2009=4-cd*x-2b+2010c-2009cd=2010c-2b-3cd专题二非负数的性质例2:若x+1+(y-2)^2=0,求xy的值。
解:由非负数的性质可知,(y-2)^2>=0,所以x+1<=0,即x<=-1.又因为x+1+(y-2)^2=0,所以(y-2)^2=-(x+1)<=0,所以y=2.因此,xy=-2.练:已知有理数满足a-1+b+3+3c-1=0,求(a*b*c)^(1/7)*2011的值。
解:整理得a+b+3c=1,代入原式得:a*b*c)^(1/7)*2011=(a*b*c)^(1/7)*(a+b+3c)^2011=(a*b*c)^(1/7)巩固:若x-1与(y+2)^2互为相反数,求x^2015+y^3的值。
解:由非负数的性质可知,(y+2)^2>=0,所以x-1<=0,即x<=1.又因为x-1=-(y+2)^2,所以(y+2)^2=1-x<=2,所以y<=sqrt(2)-2.因此,x^2015+y^3<=1+(sqrt(2)-2)^3,具体值需要进一步计算。
初一数学上册有理数找规律题型专题练习
初一数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为.5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为.二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为.3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律 确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律 确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的 第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个 位数字是 ;3. 若1113a =-,2111a a =-,3211a a =-,… ;则2014a 的值为 . 六、算式型规律1. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,…这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52…………,(1)请用含n的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值七、数列阵型1.观察下列三行数:(课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2.观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第n 个“广”字中的棋子个数是________6.同样大小的黑色棋子按如图所示的规律摆放:(1) 第5个图形有多少颗黑色棋子? 图案1 图案2 图案3 ……… … 第1幅 第2幅 第3幅 第n 幅 第1个 第2个 第3个 第4个(2)第几个图形有2013颗棋子?说明理由。
七年级数学上册有理数找规律题型专题练习
七年级数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为 .3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:,,,,…… ,它们是按一定规律排列的. 那么这一组21436587数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;3. 若,,,… ;则的值为 .1113a =-2111a a =-3211a a =-2014a 六、算式型规律1. 已知22223322333388+=⨯+=⨯,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,...这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1)请用含n 的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算的值11111(1)(1)(1)132********+++++⨯⨯⨯⨯⨯ 七、数列阵型1.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?第1个图形第2个图形第3个图形第4个图形(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2. 观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第个n 图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.图案1图案2图案3…………第1幅第2幅第3幅第n 幅5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第个“广”字中的棋子个数是________n 6.同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2013颗棋子?说明理由。
初中七年级的数学上册的第一章有理数有理数找规律专题练习试题新版本新人教版本.docx
有理数找规律专题1. 察下面的每列数,按某种 律在横 上适当的数。
(1)-23 , -18 , -13,______ , ____ ____ ; ;(2)2 ,3 ,4 ,5 , _______ , _________ ;8 16 32642.有一 数:1,2,5,10,17,26,..... , 察 数的构成 律,用你 的 律确定第 8 个数__________.3. 察下列算式: 2 1=2,2 2 =4,2 3 =8,2 4= 16,2 5 =32,2 6=64,2 7= 128 ,通 察,用你所 的律确定 2 2011 的个位数字是()A. 2B. 4C. 6D. 84.一根 lm 的 子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的 子的 度 ()A. (1)3m B.(1)5m C. ( 1)6m D. ( 1)12 m22225. 下面一 按 律排列的数:1,2,4,8,16.......,第 2011 个数 是()A. 22011B. 22011-1 C.2 2010D .以上答案不6 . 察, 找 律( 1) 0.12= ________ , 1 2= _________ , 102 = __________ , 100 2 = ___________ ;(2)0.13=_________ , 13= _________ , 103= __________ , 100 3= ___________ ; 察 果,你 什么了?7. 察下列三行数: 第一行: -1,2 , -3,4 , -5 ⋯⋯ 第二行: 1,4,9 , 16,25 ,⋯⋯ 第三行:0,3,8,15,24,⋯⋯(1) 第一行数按什么 律排列?(2) 第二行、第三行分 与第一行数有什么关系?(3) 取每行的第 10 个数, 算 三个数的和. 式:8.有 律排列的一列数:2,4,6,8,10,12, ⋯⋯它的每一 可用式子2n(n 是正整数 ) 表示.有 律排列的一列数:1, -2,3 , -4,5 , -6,7 , -8......(1) 它的每一 你 可用怎 的式子来表示?(2) 它的第 100 个数是多少? (3)2012是不是 列数中的数?如果是,是第几个数?9.如果 于任意非零有理数 a,b 定 运算如下:a △ b=ab + 1,那么(-5) △( +4) △( -3 )的 是多少?10 .如果 定符号※的意 是a ※ b=ab,求:2 ※(-3)※ 4的 .a b11 .先完成下列 算: 1 × 9+ 2 = 11 ; 12× 9 + 3 = ________; 123 × 9 + 4=__________ ;⋯⋯你能 出得数的 律 ?你根据 的算式的 律求出1234567× 9 + 8的 .12 .如果 1+2-3-4+5+6-7-8 +9两个取写下去的一串数,前+⋯⋯,是从 1 开始的整数中依次两个取正,2012 个数的和是多少?依照以上各式成立的律,使a b=2成立, a+b 的 ____________4 b 4a14 .察下列各式:12+1=1 × 222 +2=2 × 3 3 2 +3=3 × 4把你猜想到的律用自然数n表示出来 ___________________15.老在黑板上写出三个等式:52 -3 2=8 × 2,9 2-7 2= 8× 4, 15 2-3 2=8 × 27王接着又写了两个具有同律的算式:112222-5=8 × 12,15 -7=8 × 22(1)你写出两个(不同于上面算式)具有上述律的算式;(2)用文字写出反映上述算式的律.16.察下列各式:2× 4=3 2 -1,3 × 5 =4 2-1,4 × 6 =5 2-1 ,⋯⋯把你的律用含一个字母的等式表示_________17.察下列各式找律:12+( 1 × 2) 2+ 22=( 1 × 2 + 1 )222+ (2 × 3) 2+ 3 2 = ( 2 × 3 + 1)2 32+( 3 × 4) 2 +4 2= (3 × 4+ 1 )2(1)写出第 6 个式子的;(2)写出第 n个式子.18.研究下列算式,你会什么律?1× 3+ 1=4=2 22× 4+ 1 =9 = 323× 5+ 1=16=4 24× 6+ 1 =25=5 2你找出律用公式表示出来:___________________1.( 2011 浙江省)如,下面是按照一定律画出的“数形”,察可以:A2比A1多出 2个“ 枝” ,A3比 A2多出 4 个“ 枝”,A4比 A3多出 8 个“ 枝”,⋯⋯,照此律,A6比 A2多出“ 枝” ()A.28B.56C.60D. 1242.( 2011 广肇)如 5 所示,把同大小的黑色棋子放在正多形的上,按照的律下去,第 n ( n 是大于0的整数)个形需要黑色棋子的个数是.3. ( 2011 内蒙古察布)将一些半径相同的小按如所示的律放,仔察,第n个形有个小 .(用含n的代数式表示)第 1 个形第2个形第3个形第4个形4.(2011 湖南常德)先找律,再填数:111 1 , 111 1 , 111 1 , 111 1 ,122342125633078456............则1+1_______1.20112011201220125.( 2011 湖南益阳)察下列算式:①1 × 3 - 2③3 × 5 - 422= 3 - 4 = -1② 2 × 4 - 3 2 = 8 - 9 = -1= 15 - 16 =-1④⋯⋯( 1)你按以上律写出第 4 个算式;(2)把个律用含字母的式子表示出来;(3)你( 2)中所写出的式子一定成立?并明理由.6.研究下列算式,你会什么律?1× 3+1=22; 2× 4+1=32; 3 × 5+1=42; 4 × 6+1=52⋯⋯⋯⋯,(1)用含 n 的式子表示你的律:____________ _______.(2)你用的律解决下面算 (11)(11)(131)(1 1 )(11) 的1324546911。
(完整版)有理数专题训练
有理数专题训练专题一 有理数的概念及其应用例1. 已知a,b 互为相反数,c,d 互为倒数,x 的绝对值是2,求cd m cd b a -++)(的值。
练习: 已知a 、b 互为相反数,c 、d 互为倒数,│x │=3,求代数式a+b -cdx+3x .的值。
巩固:已知a 、b 互为相反数,c 、d 互为倒数,x 的平方等于4,试求()()()200920102d c b a x d c x ⨯-+++⨯⨯- 的值。
专题二 非负数的性质例2. 若0)2(12=-++y x ,求y x 的值练习:已知有理数满足01331=-+++-c b a ,求()2011c b a ⨯⨯的值.巩固:若1-x 与2)2(+y 互为相反数,求32015y x +的值专题三 绝对值的化简例3. 有理数a 、b 、c 在数轴上的位置如图,试化简:||||||23a b b c c a -+---。
练习1. 数,a b 在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--巩固。
实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-专题四 有理数的实际应用例4. 一辆汽车沿着一条南北方向的公路来回行驶。
某一天早晨从A 地出发,晚上到达B 地。
约定向北为正,向南为负,当天记录如下:(单位:千米)-18.3, -9.5, +7.1, -14, -6.2, +13, -6.8, -8.5(1)问B 地在A 地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?练习:某检修工人检修电话线路,乘车时设定前进为正,后退为负,某天自A 的出发到收工时,所行路程为(单位:千米):4+,3-,22+,8-,2-,17+,3-,2-,12+,5-,7+,问收工时距A 地多远?若每千米耗油4升,问从A 地出发到收工共耗油多少升?巩固:李老师在学校西面的南北路上从某点A 出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.(1)求李老师最后是否回到出发点A ?(2)李老师离开出发点A 最远时有多少千米? (3)李老师共走了多少千米?专题五 有理数的混合运算例5.计算(1)()⎪⎭⎫ ⎝⎛-⨯--⨯-253112232 (2)()()⎭⎬⎫⎩⎨⎧-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯+----22114.031132练习:(1) 32322)4(3213-⨯--⎪⎭⎫ ⎝⎛-⨯- (2) []24)3(2611--⨯--巩固:(1)20152322)1()31()3.0(2.13-÷-+-÷⨯- (2)⎥⎦⎤⎢⎣⎡----⨯-31)32()2()43(3专题六 分类讨论思想例6. 已知3,4a b ==且b<a ,求a 、b 的值.练习:已知7,5==n m 且n m n m +=+,求m-n 的值.巩固:已知9,42==n m 且m n n m -=-,求m+n 的值.专题七 有理数的运算(裂项相消)例7.计算: 201520141 (4)31321211⨯++⨯+⨯+⨯练习:201520132.........752532312⨯++⨯+⨯+⨯巩固:201520131.........751531311⨯++⨯+⨯+⨯专题八 乘方的应用(错位相减)例8.2015322...........2221+++++=S练习:2015323...........3331+++++=S巩固:2015325...........5551+++++=S定时练习1. 已知a 、b 互为相反数,c 、d 互为倒数,x 2=9,求代数式a+b -cdx+3x .的值2. 若0)3(252=++-y x ,求2015)2(y x +的值3、如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值.4、 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 ?3、 ?5、 +4、 ?8、 +6、 ?3、?6、 ?4、 +10。
有理数(三)找规律分类题
三、找规律(一)规律计算1、找数段运算① 1-2+3-4+5-6+7……-100+101② -1+3-5+7-9+11……-97+99③1+2-3-4+5+6-7-8+9+10-11-12……+2017+2018-2019-2020④在数1、2、3、4……2009、2010的每个数字前添上“+”或者“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:2、自然数、奇数列、偶数列(等差)①5+6+7+8+9……+2020 (自然数数列不从头起确定n的多少)②1+3+7+9+11+13+15+17 (奇数列,从头有限数列)③1+3+5+7……+2007(奇数列,从头省略数列)④5+7+9+11+13+15+17……+31 (奇数列,不从头省略数列)⑤-1+3-5+7-9+11-…-1997+1999 (正负号,数段法)⑥2+4+6+8+……+2020 (偶数列从头省略数列)⑦12+14+16+18+……+1000 (偶数列从头省略数列)3、复杂等差⑧)6059...601...(54535251434241323121+++++++++++)()()(4、乘方类型①(-1)2+(-1)3+(-1)4+……(-1)2012②()()()()20012000433221-⋯⋯-⨯-⨯-5、裂项(裂减、加)(差1裂项、差2裂项) 差1裂项数列 2 6 12 20 30 ① 1-a 2-ab 和互为相反数,求:))(())(())((2007b 2007a 12b 2a 11b 1a 1ab 1++⋯⋯+++++++② 观察式子)(31121311-=⨯,)(513121531-=⨯,)(715121751-=⨯,……请你计算: 201120091751531311⨯+⋯⋯⨯+⨯+⨯ ③421-301-201-121-61-2172175615421330112091276521+-+-+-+-④100321132112111+⋯⋯++⋯⋯+++++⑤4834823993983233222552541951941431429998636235341514+++++++++6、换元法(简便运算)③a1,a2,a3,……a2004都是正数,如果M=(a1+a2+a3……+a2003)×(a2+a3+……a2004),N=(a1+a2+a3……+a2004)×(a2+a3+……a2003),那么M ,N 的大小关系是( )A 、M >NB 、M=NC 、M <ND 、无法确定(二)通过观察、计算找规律 1、观察规律直接写数① 观察下面一列数,按规律在横线上填写适当的数。
原题目:有理数的运算规律练习题
原题目:有理数的运算规律练习题一、判断题1. 有理数的加法运算满足结合律。
2. 有理数的减法运算满足交换律。
3. 有理数的乘法运算满足分配律。
4. 有理数的绝对值是一个非负数。
5. 有理数的乘法运算满足结合律。
二、填空题1. 定理:两个有理数的和的符号与它们的__________相同,绝对值是__________它们绝对值的和。
2. 定理:两个有理数的__________的绝对值是它们绝对值的_____________。
①如果a > 0, b > 0,那么|a * b|__________。
②如果a < 0, b < 0,那么|a * b|__________。
③如果a > 0, b < 0或a < 0, b > 0,那么|a * b|__________。
三、计算题1. 计算:(-11) + 5 - 8 = ?2. 计算:(-4) * (7) - 12 = ?3. 计算:5 ÷ (-2) = ?4. 计算:|-5| + |2 - 7| = ?四、解决问题小明的妈妈给他一些零花钱,小明先花了12元,然后又借了小红10元。
小明的妈妈知道小明欠了借钱,给他交了20元的学校餐费。
幸好,小明的爸爸来接他回家,并还上了欠小红的10元。
小明接下来要偿还他爸爸借给它的12元。
请问小明最后还剩下多少钱?答案:小明最后还剩下 12 元。
五、拓展思考请列举一个实际生活中可以应用有理数运算规律的例子。
答案:假设你在购物时花了100元买了一件衣服,然后又花了80元买了一条裤子。
但是你发现衣服不合适,于是你退回了衣服并得到了退款。
这个例子中,购买衣服的金额是正数,退款的金额是负数,整个情况中涉及到了有理数的加法和减法运算。
六、心得体会通过这些练习题,我们能更好地掌握有理数的运算规律。
对于判断题,需要牢记有理数运算的性质;对于填空题,要理解有理数运算的定理和特点;对于计算题,要熟练运用有理数的四则运算方法;对于解决问题题,要能够将实际问题转化为有理数运算问题;对于拓展思考题,要能够将有理数的运算规律应用到实际生活中。
有理数找规律
一、数字找规律 1.观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .2.观察下面一列数,探求其规律: .,61,51,41,31,21,1 ---(1)写出这列数的第九个数;(2)第2008个数是什么数?如果这一列数无限排列下去,与哪个数越来越近?3.下列是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是__________.4、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .6、已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;7、观察下列等式: 第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为____ ________ 8.已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102; …… ……由此规律知,第⑤个等式是 . 9.观察下列各式:1×3=12+2×1,2×4=22+2×2, 3×5=32+2×3, … …请你将猜想到的规律用自然数n (n ≥1)表示出来: .10.观察下列顺序排列的等式: 猜想:第n 个等式(n 为正整数)应为__ _________________。
它们的和的情况如下表:加数的个数(n )和s11、从2开始,连续偶数相加,212⨯= 1 2 32642⨯==+ 3 4312642⨯==++ 4 54208642⨯==+++ 5 6530108642⨯==++++ ......................................................当n 个连续偶数相加时,它们的和s 与n 之间有什么样的关系?请用公式表示出来,并由此计算2+4+6+...+202的值。
有理数中的数字规律经典题汇编
(4)1,-1,1,-1,…,第n个数是;-1,1,-1,1,…,第n个数是.
(5)2,5,10,17,…,第n个数是;0,3,8,15,…,第n个数是.
2.观察下面一列数,按规律在横线上填写适当的数 ,______,________.
3.观察下面的一列数,按某种规律在横线上填上适当的数:1,-2,4,-8,________,_______。
4.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32018+1的个位数字是4
.
5.观察下列等式:21=2,22=4,23=8,24=16,25=32,…,解答下面的问题:21+22+23+24+25+26+…+22 019的末位数字是.
【题型7】有理数中的数字规律
请先阅读下列一组内容,然后解答问题:
因为:
所以:
问题:计算:(根据以下规律填空.
(1)1,2,3,4,…,第n个数是,这n个数的和是.
(2)1,3,5,7,…,第n个数是,这n个数的和是.
(3)2,4,6,8,…,第n个数是,这n个数的和是.
6.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…
可猜想第2019个式子为.
7.定义运算a⊕b=a(1-b),下面给出了这种运算的四个结论:①2⊕(-2)=6;②若a+b=0,则(a⊕a)+(b⊕b)=2ab;③a⊕b=b⊕a;④若a⊕b=0,则a=0或b=1.其中结论正确的有4025x2
有理数找规律专题
因此2S﹣S=22013﹣1.仿照以上 推理,计算出1+5+52+53+…+52013
的值为:
6.同样大小的黑色棋子按如图所 示的规律摆放:
第5个图形有多少颗黑色棋子?
第几个图形有2013颗棋子?说明 理由。
知识回顾 Knowledge Review
___________
6.观察下列一组 数:,,,,,…… ,它们是 按一定规律排列的,那么这一组
数的
第k个数是
五、循环型数列.
• 1. 已知,,=8,=16,2=32,……观察上 面规律,试猜想
• 的末位数是
.
• 2.已知…推测到的个
• 位数字是
;
• 3. 若,,,… ;则的值
为
.
六、算式型规律
有理数找规律专题
一、等差型数列规律
• 1. 有一组数:1,2,3,4,5,……,请观
察这组数的构成规律,用你发现的规律确
定第8个数为
, 第n个数
为
.
• 2. 有一组数:2,5,8,11,14,…请观察 这组数的构成规律,用你发现的规律确定
• 第8个数为
, 17,22,27,…请观 察这组数的构成规律,用你发现的规律确
• 1. 已知……,若(a、b为正整数)
则
.
前面第一位同学开始,每位同学 依次报自己顺序的倒数加1,第1 位同学报,第2位同学报,…这
样得到的20个数的积为
_________________.
3. 求1+2+22+23+…+22013的值,可 令S=1+2+22+23+…+22013,则 2S=2+22+23+24+…+22013,
有理数找规律专题
有理数找规律专题一、等差型数列 律1. 有一 数: 1,2,3,4,5,⋯⋯, 察 数的组成 律,用你 的 律确立第8 个数 , 第 n 个数 .2. 有一 数: 2,5,8,11,14,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 .3.有一 数: 7, 12,17,22,27,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 4.有一 数: 4, 7, 10,13,⋯ 察 数的组成 律,用你 的 律确立第 n 个数 .5.有一 数: 11,20,29, 38,⋯ 察 数的组成 律,用你 的 律确立第 n 个数 . 二、等比型数列 律1.有一 数: 1, 2, 4, 8, 16,⋯⋯, 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 2. 有一 数: 1,4,16,64, ⋯⋯, 察 数的组成 律,用你 的 律确立 第 n 个数 .3. 有一 数: 1,-1,1, -1,⋯⋯, 察 数的组成 律,用你 的 律确立 第 8 个数 , 第 n 个数 .4. 有一 数: 27,9,3,1,⋯⋯, 察 数的组成 律,用你 的 律确立第8个数 , 第 n 个数 . 三、含 n 2 型数列 律1.有一 数: 1, 4, 9, 16,25,⋯⋯, 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 2.有一 数: 2, 6, 12,20,30,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 3.有一 数: 1, 3, 6, 10,15,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 4.有一 数: 0, 2, 6, 12,20,⋯ 察 数的组成 律,用你 的 律确立第 8 个数 , 第 n 个数 . 四、其余数列 律列1.有一 数: 1, 2, 3, 5, 8,⋯ 察 数的组成 律,用你 的 律确立第 7 个数 ,2.有一 数: -2,3,1,4,5,⋯ 察 数的组成 律,用你 的 律确立第 7 个数 , 3. 察以下边一列数: 1, -2, 3, -4,5, -6, ⋯依据你 的 律,第 2013 个数是 ___________ 4. 察以下一 数: 1 , 3 , 5, 7,⋯⋯ ,它 是按必定 律摆列的 . 那么 一 数2 46 8的第 k 个数是.5. 察以下一 数: 1, 1 , 1,1,1, 1,. 它 是按必定 律摆列的 .2 34 5 6那么 一 数的第2014 个数是6. 察以下一 数:2,4,6 , 8 , 10,⋯⋯ ,它 是按必定 律摆列的,那么 一 数的357911第 k 个数是五、循 型数列 .1. 已知 21 2 , 224 , 23 =8, 24=16,2 5 =32 ,⋯⋯ 察上边 律, 猜想22008的末位数是.2.已知 31 3,329,33 27,3 481,35 243,36729,372187 ⋯推 到320的个位数字是;3. 若 a 1 1 1 , a 21 1 , a 31 1 ,⋯ ; a 2014 的.3a 1a 2六、算式型 律1. 已知 22 2 22 ,323,4 424 ,8a 2 a3383415⋯⋯,若8( a 、 b 正整数)a b3815bb.2. 某数学活 小 的 20 位同学站成一列做 数游 , 是:以前方第一位同学开始,每位同学挨次 自己 序的倒数加1,第 1 位同学1 1 ,第2 位同学1 1,⋯ 获得的20 个数12的 _________________.232013的 ,可令2 3201323 420133. 求 1+2+2 +2 +⋯ +2S=1+2+2 +2+⋯ +2, 2S=2+2 +2 +2+⋯+2 ,20131.模仿以上推理, 算出232013的 :所以 2S S=21+5+5 +5 +⋯ +54. 研究以下算式,你会 什么 律1× 3+1=22; 2× 4+1=32;3× 5+1=42; 4× 6+1=52⋯⋯⋯⋯,( 1) 用含 n 的式子表示你 的 律: ____________ _______.( 2) 你用 的 律解决下边算 (11 )(111 1 1 1 3)(13)(14 6)K (1) 的2 459 11七、数列 型1. 察以下三行数: ( 本 P43 例 4 式 )第一行: -1,2 , -3,4 , -5 ⋯⋯ 第二行: 1,4,9 , 16,25 ,⋯⋯ 第三行:0,3,8,15,24 ,⋯⋯(1) 第一行数按什么 律摆列(2) 第二行、第三行分 与第一行数有什么关系(3) 取每行的第 10个数, 算 三个数的和.2.察下边一列数: 1, 2,3, 4, 5, 6,7,...将列数排成以下形式:依据上述律排下去,那么第10 行从左第 4 个数是:八、几何形型1.察以下形:它是按必定律摆列的,依据此律,第16 个形共有2.如所示,把同大小的黑色棋子放在正多形的上,按形需要黑色棋子的个数是.个★.照的律下去,第n 个第 1个形第 2个形第 3个形第 4个形3.如,用同大小的黑色棋子按所示的方式案,依据的律下去,第棋子枚.100 个案需⋯⋯案 1案 2案34.如,每一幅中有若干个大小不一样的菱形,第 1 幅中有 1 个,第 2 幅中有 3 个,第 3 幅中有 5 个,第 4 幅中有个,第n 幅中共有个.⋯⋯第 1 幅第 2 幅第 3 幅第 n 幅5.如 7-①, 7-②, 7-③, 7-④,⋯,是用棋棋子依据某种律成的一行“广”字,按照种律,第 5 个“广”字中的棋子个数是______,第n个“广”字中的棋子个数是________ 6.同大小的黑色棋子按如所示的律放:第1个第2个第3个第4个(1)第 5 个形有多少黑色棋子(2)第几个形有 2013 棋子明原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数找规律专题
1.观察下面的每列数,按某种规律在横线上适当的数。
(1)-23,-18,-13,______,________; ; (2)2345,,,8163264
--,_______,_________; 2.有一组数:1,2,5,10,17,26,.....,请观察这组数的构成规律,用你发现的规律确定第8个数为__________.
3.观察下列算式:21=2,22 =4,23 =8,24=16,25 =32,26=64,27=128,通过观察,用你所发现的规
律确定22011的个位数字是( )
A. 2
B. 4
C. 6
D. 8
4.一根lm 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )
A.31()2m
B. 51()2m
C. 61()2m
D. 12
1()2m
5.下面一组按规律排列的数:1,2,4,8,1
6.......,第2011个数应是( )
A. 22011
B. 22011-1
C.22010 D .以上答案不对
6.观察,寻找规律
(1) 0.12=________,12=_________,102=__________,1002=___________;
(2)0.13=_________,13=_________,103=__________,1003=___________;
观察结果,你发现什么了?
7.观察下列三行数:
第一行:-1,2,-3,4,-5……
第二行:1,4,9,16,25,……
第三行:0,3,8,15,24,……
(1)第一行数按什么规律排列?
(2)第二行、第三行分别与第一行数有什么关系?
(3)取每行的第10个数,计算这三个数的和.
变式:
8.有规律排列的一列数:2,4,6,8,10,12,……它的每一项可用式子2n(n 是正整数)表示.
有规律排列的一列数:1,-2,3,-4,5,-6,7,-8......
(1)它的每一项你认为可用怎样的式子来表示?
(2)它的第100个数是多少?
(3)2012是不是这列数中的数?如果是,是第几个数?
9.如果对于任意非零有理数a,b 定义运算如下:a △b=ab +1,那么(-5)△(+4)△(-3)的值是多少?
10.如果规定符号※的意义是a ※b=ab a b
+,求:2※(-3)※4的值.
11.先完成下列计算:
1×9+2=11;12×9+3=________;123×9 + 4=__________;……你能说出得数的规律吗?请你根据发现的算式的规律求出1234567×9 + 8的值.
12.如果1+2-3-4+5+6-7-8 +9+……,是从1开始的连续整数中依次两个取正,
两个取负写下去的一串数,则前2012个数的和是多少?
依照以上各式成立的规律,使
44a b a b +--=2成立,则a+b 的值为____________ 14.观察下列各式:12+1=1×2 22+2=2×3 32+3=3×4
请把你猜想到的规律用自然数n 表示出来___________________
15.老师在黑板上写出三个等式:
52-32=8×2,92-72=8×4,152-32=8×27
王华接着又写了两个具有同样规律的算式:
112-52 =8×12,152-72 =8×22
(1)请你写出两个(不同于上面算式)具有上述规律的算式;
(2)用文字写出反映上述算式的规律.
16.观察下列各式:
2×4=32-1,3×5 =42-1,4×6 =52-1,……
把你发现的规律用含一个字母的等式表示_________
17.观察下列各式找规律:
12+(1×2)2+22=(1×2+1)2 22+(2×3)2+32 =(2×3+1)2
32+(3×4)2 +42=(3×4+1)2
(1)写出第6个式子的值; (2)写出第n个式子.
18.研究下列算式,你会发现什么规律?
1×3+1=4=22 2×4+1 =9=32
3×5+1=16=42 4×6+1 =25=52
请你找出规律用公式表示出来:___________________
1. (2011浙江省)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2
个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”()
A.28
B.56
C.60
D. 124
2. (2011广东肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大于0的整数)个图形需要黑色棋子的个数是.
3. (2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)
4. (2011湖南常德)先找规律,再填数: 1111111111111111,,,,122342125633078456
............
111+_______.2011201220112012
+-=+-=+-=+-=-=⨯则 5.(2011湖南益阳)观察下列算式:
① 1 × 3 - 22 = 3 - 4 = -1
② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1
④ …… (1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
6.研究下列算式,你会发现什么规律?
1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,
(1) 请用含n 的式子表示你发现的规律:___________________.
(2) 请你用发现的规律解决下面问题
计算11111(1)(1)(1)(1)(1)132********+
++++⨯⨯⨯⨯⨯的值
第1个图形第 2 个图形
第3个图形 第 4 个图形。