2.1.4 晶体管的共射特性曲线

合集下载

晶体管共射极接法的伏安特性曲线

晶体管共射极接法的伏安特性曲线

i 饱和区 4 C / mA
a. UCE ≤ UBE
3
b. IC<βIB
2
c. UCE 增大Байду номын сангаас IC 增大。
1 (2) 截止区
a. UBE<死区电压
0
b. IB ≈ 0 c. IC ≈ 0
24 截止区
iB= 100 μA
80 60
40 20 0
6 8 uCE / V
模拟电子技术
2. 晶体管及放大电路基础
硅管0.7 V 锗管0.3V
(3) 锗管的 ICBO 比硅管大
模拟电子技术
谢 谢!
模拟电子技术
2. 晶体管及放大电路基础
2.1 晶体管
2.1.1 晶体管的结构 2.1.2 晶体管的放大状态及工作原理 2.1.3 晶体管共射极接法的伏安特性曲线
模拟电子技术
2. 晶体管及放大电路基础
2.1.3 晶体管共射极接法的伏安特性曲线
三极管共射极接法
iB
uBE
iC
iE
uCE
共射极输入特性
iB μA
2. 晶体管及放大电路基础
NPN管与PNP型管的区别
NPN管电路
iB
iC
uBE
iE
uCE
PNP管电路
iB
iC
uBE
iE
uCE
iB、uBE、iC、 iE 、uCE 的极性二者相反
模拟电子技术
2. 晶体管及放大电路基础
硅管与锗管的区别: (1) 死区电压约为
硅管0.5 V 锗管0.1V
(2) 导通压降|uBE|
(3) 放大区
i 饱和区 4 C / mA
iB= 100 μA

晶体管输入曲线详解

晶体管输入曲线详解

晶体管输入曲线详解
晶体管的输入特性曲线是描述在一定的管压降下,基极电流与基极-发射极电压之间的函数关系。

对于共射型晶体管,其输入特性曲线如下:
1. 当基极-发射极电压为0时,基极电流也为0。

2. 当基极-发射极电压逐渐增大时,基极电流也逐渐增大。

这是因为随着电压的增大,电子从基极注入到发射极的能量增大,使得更多的电子能够克服势垒,从基极注入到发射极。

3. 随着基极-发射极电压的增大,基极电流的增长速度逐渐减缓,直到达到饱和状态。

这是因为在高电压下,电子的注入速度已经达到极限,无法再增加。

4. 当基极-发射极电压继续增大时,基极电流保持不变,进入饱和区。

此时,即使电压再增大,也不会增加基极电流。

对于共基型晶体管,其输入特性曲线与共射型晶体管类似,但是增长速度更快,很快就会达到饱和状态。

需要注意的是,输入特性曲线只描述了晶体管的静态特性,而在实际应用中,还需要考虑动态特性的影响。

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。

依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。

利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。

晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。

由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。

晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。

从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

双极型晶体管————工作原理

双极型晶体管————工作原理
E
Wb
C
基 区
C结
Wb
2. 饱和区
条件: e结正偏,c结正偏(uCE<uBE即临界饱和线的左侧)。 特点: iC不受iB控制,表现为不同iB 的曲线在饱和区汇集。 由于c结正偏,不利于集电 区收集电子,同时造成基区复合 电流增大。因此:
4 3 2 1 0
iC/ m A u CE=u BE
临界饱和线
二. 电流分配关系
由以上分析可知,晶体管三个电极上的电流与内部载
流子传输形成的电流之间有如下关系:
I E I EN I BN I CN I B I BN I CBO I BN I C I CN I CBO I CN
可见,在放大状态下,晶体 管三个电极上的电流不是孤立的, R
c I CBO b IB IC
的讨论可以看出,在晶体管 中,窄的基区将发射结和集 电结紧密地联系在一起。从 而把正偏下发射结的正向电 流几呼全部地传输到反偏的 R B 集电结回路中去。这是晶体 管能实现放大功能的关键所 U BB 在。
I CN
N RC
I BN
P
15V
I EP e IE
I
N+
EN
UCC
UCE ≥1
90
60 30 0 0.5 0.7 0.9 UCE > 0
止,iB为反向电流。若反向电 压超过某一值时,e结也会发 生反向击穿。
u BE/V
综上所述,晶体管是一种非线性导电器件,有三个工 作区,对应三种不同的工作状态:
⑴.放大状态(iB>0,uCE≥uBE,即e结正偏,c 结反偏)
特点:①.iC受iB控制,即IC= IB或△IC= β△ IB
大功率达林顿晶体管

模拟电子技术基础目录

模拟电子技术基础目录

模拟电子技术基础目录模拟电子技术基础目录模拟电子技术基础目录前言教学建议第1章半导体二极管及其应用1.1 半导体物理基础知识1.1.1 本征半导体1.1.2 杂质半导体1.2 pn结1.2.1 pn结的形成1.2.2 pn结的单向导电性1.2.3 pn结的反向击穿特性1.2.4 pn结的电容特性1.3 半导体二极管及其基本电路1.3.1 半导体二极管的伏安特性曲线1.3.2 半导体二极管的主要参数1.3.3 半导体二极管的电路模型1.3.4 二极管基本应用电路1.4 特殊二极管1.4.1 稳压二极管.1.4.2 变容二极管1.4.3 光电二极管1.4.4 发光二极管思考题习题第2章双极型晶体管及其放大电路2.1 双极型晶体管的工作原理2.1.1 双极型晶体管的结构2.1.2 双极型晶体管的工作原理2.2 晶体管的特性曲线2.2.1 共射极输出特性曲线2.2.2 共射极输入特性曲线2.2.3 温度对晶体管特性的影响2.2.4 晶体管的主要参数2.3 晶体管放大电路的放大原理2.3.1 放大电路的组成2.3.2 静态工作点的作用2.3.3 晶体管放大电路的放大原理2.3.4 基本放大电路的组成原则2.3.5 直流通路和交流通路2.4 放大电路的静态分析和设计2.4.1 晶体管的直流模型及静态工作点的估算2.4.2 静态工作点的图解分析法2.4.3 晶体管工作状态的判断方法2.4.4 放大状态下的直流偏置电路2.5 共射放大电路的动态分析和设计2.5.1 交流图解分析法2.5.2 放大电路的动态范围和非线性失真2.5.3 晶体管的交流小信号模型2.5.4 等效电路法分析共射放大电路2.5.5 共射放大电路的设计实例2.6 共集放大电路(射极输出器)2.7 共基放大电路2.8 多级放大电路2.8.1 级间耦合方式2.8.2 多级放大电路的性能指标计算2.8.3 常见的组合放大电路思考题习题第3章场效应晶体管及其放大电路3.1 场效应晶体管3.1.1 结型场效应管3.1.2 绝缘栅场效应管3.1.3 场效应管的参数3.2 场效应管工作状态分析及其偏置电路3.2.1 场效应管工作状态分析3.2.2 场效应管的偏置电路3.3 场效应管放大电路3.3.1 场效应管的低频小信号模型3.3.2 共源放大电路3.3.3 共漏放大电路思考题习题第4章放大电路的频率响应和噪声4.1 放大电路的频率响应和频率失真4.1.1 放大电路的幅频响应和幅频失真4.1.2 放大电路的相频响应和相频失真4.1.3 波特图4.2 晶体管的高频小信号模型和高频参数4.2.1 晶体管的高频小信号模型4.2.2 晶体管的高频参数4.3 晶体管放大电路的频率响应4.3.1 共射放大电路的频率响应4.3.2 共基、共集放大器的频率响应4.4 场效应管放大电路的频率响应4.4.1 场效应管的高频小信号等效电路4.4.2 共源放大电路的频率响应4.5 多级放大器的频率响应4.5.1 多级放大电路的上限频率4.5.2 多级放大电路的下限频率4.6 放大电路的噪声4.6.1 电子元件的噪声4.6.2 噪声的度量思考题习题第5章集成运算放大电路5.1 集成运算放大电路的特点5.2 电流源电路5.3 以电流源为有源负载的放大电路5.4 差动放大电路5.4.1 零点漂移现象5.4.2 差动放大电路的工作原理及性能分析5.4.3 具有电流源的差动放大电路5.4.4 差动放大电路的大信号分析5.4.5 差动放大电路的失调和温漂5.5 复合管及其放大电路5.6 集成运算放大电路的输出级电路5.7 集成运算放大电路举例5.7.1 双极型集成运算放大电路f0075.7.2 cmos集成运算放大电路mc145735.8 集成运算放大电路的外部特性及其理想化5.8.1 集成运放的模型5.8.2 集成运放的主要性能指标5.8.3 理想集成运算放大电路思考题习题第6章反馈6.1 反馈的基本概念及类型6.1.1 反馈的概念6.1.2 反馈放大电路的基本框图6.1.3 负反馈放大电路的基本方程6.1.4 负反馈放大电路的组态和四种基本类型6.2 负反馈对放大电路性能的影响6.2.1 稳定放大倍数6.2.2 展宽通频带6.2.3 减小非线性失真6.2.4 减少反馈环内的干扰和噪声6.2.5 改变输入电阻和输出电阻6.3 深度负反馈放大电路的近似计算6.3.1 深负反馈放大电路近似计算的一般方法6.3.2 深负反馈放大电路的近似计算6.4 负反馈放大电路的稳定性6.4.1 负反馈放大电路的自激振荡6.4.2 负反馈放大电路稳定性的判断6.4.3 负反馈放大电路自激振荡的消除方法思考题习题第7章集成运算放大器的应用7.1 基本运算电路7.1.1 比例运算电路7.1.2 求和运算电路7.1.3 积分和微分运算电路7.1.4 对数和反对数运算电路7.2 电压比较器7.2.1 电压比较器概述7.2.2 单门限比较器7.2.3 迟滞比较器7.2.4 窗口比较器7.3 弛张振荡器7.4 精密二极管电路7.4.1 精密整流电路7.4.2 峰值检波电路7.5 有源滤波器7.5.1 滤波电路的作用与分类7.5.2 一阶有源滤波器7.5.3 二阶有源滤波器7.5.4 开关电容滤波器思考题习题第8章功率放大电路8.1 功率放大电路的特点与分类8.2 甲类功率放大电路8.3 互补推挽乙类功率放大电路8.3.1 双电源互补推挽乙类功率放大电路8.3.2 单电源互补推挽乙类功率放大电路8.3.3 采用复合管的准互补推挽功率放大电路8.4 集成功率放大器8.5 功率器件8.5.1 双极型大功率晶体管8.5.2 功率mos器件8.5.3 绝缘栅双极型功率管及功率模块8.5.4 功率管的保护思考题习题第9章直流稳压电源9.1 直流电源的组成9.2 整流电路9.2.1 单相半波整流电路9.2.2 单相全波整流电路9.2.3 单相桥式整流电路9.2.4 倍压整流电路9.3 滤波电路9.3.1 电容滤波电路9.3.2 电感滤波电路9.3.3 复合型滤波电路9.4 稳压电路9.4.1 稳压电路的主要指标9.4.2 线性串联型直流稳压电路9.4.3 开关型直流稳压电路思考题习题第10章可编程模拟器件与电子电路仿真软件10.1 在系统可编程模拟电路原理与应用10.1.1 isppac10的结构和原理10.1.2 其他isppac器件的结构和原理10.1.3 isppac的典型应用10.2 multisim软件及其应用10.2.1 multisim 8的基本界面10.2.2 元件库10.2.3 仿真仪器10.2.4 仿真分析方法10.2.5 在模拟电路设计中的应用思考题习题第11章集成逻辑门电路11.1 双极型晶体管的开关特性11.2 mos管的开关特性11.3 ttl门电路11.3.1 ttl标准系列与非门11.3.2 其他类型的ttl标准系列门电路11.3.3 ttl其他系列门电路11.4 ecl门电路简介11.5 cmos门11.5.1 cmos反相器11.5.2 其他类型的cmos电路11.5.3 使用cmos集成电路的注意事项11.5.4 cmos其他系列门电路11.6 cmos电路与ttl电路的连接思考题习题参考文献延伸阅读:模拟电子技术基础50问1、空穴是一种载流子吗?空穴导电时电子运动吗?答:不是,但是在它的运动中可以将其等效为载流子。

晶体管的共射特性曲线电子技术

晶体管的共射特性曲线电子技术

晶体管的共射特性曲线 - 电子技术晶体管的特性曲线是描述晶体管各个电极之间电压与电流关系的曲线,它们是晶体管内部截流子运动规律在管子外部的表现,用于对晶体管的性能、参数和晶体管电路的分析估算。

1、输入特性曲线输入特性曲线描述了在管压降UCE保持不变的前提下,基极电流IB和放射结压降UBE之间的函数关系,即(1) 由图1可见,NPN型晶体管的输入特性曲线的特点如下:图1 晶体管输入特性曲线(1)输入特性曲线有一个开启电压,只有当UBE的值大于开启电压后,IB的值与二极管一样随UBE的增加按指数规律增大,电流IB 有较大的变化,UBE的变化却很小,可以近似认为导通后放射结的电压基本保持不变。

硅管的开启电压为0.5V,放射结的导通电压UON 为0.6~0.7V;锗管的开启电压为0.2V,放射结的导通电压UON为0.2~0.3V;(2)当UCE=0时,集电极与放射极短路,即集电结与放射结并联,相当于两个二极管并联,输入特性曲线与二极管特性曲线相像。

当UCE=1V时,集电结处于反向偏置,内电场加强,放射区注入基区的电子绝大多数被拉到集电区,只有少数电子与基区的空穴复合形成基极电流IB。

在相同UBE下,基极电流比UCE=0V时削减,从而使曲线右移。

UCE1V以后,输入特性曲线基本上与UCE=1V时的特性曲线重合,这是因这UCE1V后,集电极将放射区放射过来的电子几乎全部收集走,对基区电子与空穴的复合影响不大,IB的转变也不明显。

所以通常UCE1时只画一条曲线。

2、输出特性曲线(2) 特性曲线如图2所示,当IB转变时,IC和UCE的关系是一组平行的曲线簇,并有截止、放大和饱和3个工作区。

图2 晶体管输出特性曲线(1)截止区IB=0特性曲线以下的区域称为截止区。

此时晶体管的集电结处于反偏,放射结电压ubeUON,也处于反偏。

集电极电流IC=0。

在电路中犹如一个断开的开关。

三极管工作在截止区时,三个电极之间的关系为:对于NPN型,VBVE;对于PNP型,VBVE;实际上处于截止状态下的晶体管集电极有很小的电流ICEO,该电流称为晶体管的穿透电流,它是在基极开路时测得的集电极-放射极间的电流,它不受IB的把握,但受温度的影响。

用晶体管特性图示仪测试晶体管主要参数

用晶体管特性图示仪测试晶体管主要参数

用晶体管特性图示仪测试晶体管主要参数一.实验目的掌握晶体管特性图示仪测试晶体管的特性和参数的方法。

二.实验设备(1)XJ4810晶体管特性图示仪(2)QT 2晶体管图示仪(3)3DG6A 3DJ7B 3DG4三.实验原理1.双极型晶体(以3DG4NPN 管为例)输入特性和输出特性的测试原理(1)输入特性曲线和输入电阻i R ,在共射晶体管电路中,输出交流短路时,输入电压和输入电流之比为i R ,即=常数CE V B BEi I V R ∂∂= (1.1)它是共射晶体管输入特性曲线斜率的倒数。

例如需测3DG 4在V CE =10时某一作点Q 的R 值,晶体管接法如图1.1所示。

各旋扭位置为峰值电压%80% 峰值电压范围0~10V 功耗电阻50Ω X 轴作用基极电压1V/度 Y 轴作用 阶梯选择μ20A/极 级/簇10 串联电阻10K 集电极极性 正(+)把X 轴集电极电压置于1V/度,调峰值电压为10V ,然后X 轴作用扳回基极电压0.1V/度,即得CE V =10V 时的输入特性曲线。

这样可测得图1.2:V CE V B BEi I V R 10=∆∆= (1.2)根据测得的值计算出i R 的值图1.1晶体管接法 图1.2输入特性曲线 (2)输出特性曲线、转移特性曲线和β、FE h在共射电路中,输出交流短路时,输出电流和输入电流增量之比为共射晶体管交流电流放大系数β。

在共射电路中,输出端短路时,输出电流和输入电流之比为共射晶体管直流电流放大系数FE h 。

晶体管接法如图1.1所示。

旋扭位置如下:峰值电压范围10V 峰值电压%80% 功耗电阻250Ω X 轴集电极电压1V/度 Y 轴集电极电流2mA/度 阶梯选择μ20A/度 集电极极性 正(+)得到图1.3所示共射晶体管输出特性曲线,由输出特性曲线上读出V V CE 5=时第2、4、6三根曲线对应的C I ,B I 计算出交流放大系数BC I I ∆∆=β (1.3) FE h >β主要是因为基区表面复合等原因导致小电流β较小造成的,β、FE h 也可用共射晶体管的转移特性(图1.4)进行测量只要将上述的X 轴作用开关拨到“基极电流或基极源电压”即得到共射晶体管的转移特性。

第二章-晶体管

第二章-晶体管

(1)共基直流放大系数 IC
IE
(2)共基交流放大系数
IC
I E
由于ICBO、ICEO 很小,因此 在以后的计算中,不必区分。
二、极间反向电流
1 ICBO
发射极开路时,集电极—基极间的反向电流,称为集 电极反向饱和电流。
2 ICEO
基极开路时,集电极—发射极间的反向电流,称为集 电极穿透电流。
T
( 0.5 ~ 1) / C
2.3.2 晶体管的主要参数 一、电流放大系数
1.共射电流放大系数
(1) 共射直流放大系数 反映静态时集电极电流与基极电流之比。
(2) 共射交流放大系数 反映动态时的电流放大特性。
由于ICBO、ICEO 很小,因此 在以后的计算中,不必区分。
2. 共基电流放大系数
a. 受控特性:iC 受iB的控制
uCE=uBE 4

IB=40μ A
iC iB
饱 和3
30μ A

大 20μ A
iC iB
2

10μ A
1
b. 恒流特性:当 iB 恒定时,
0
uCE 变化对 iC 的影响很小
0μ A iB=-ICBO
5
10
15
uCE/V
截止区
即iC主要由iB决定,与输出环路的外电路无关。
iC主要由uCE决定 uCE ↑→ iC ↑
iC /mA
=80μA =60μA =40μA
=20μA
25℃
uCE /V
(3)当uCE增加到使集电结反偏电压较大时,运动 到集电结的电子基本上都可以被集电区收集,
此后uCE再增加,电流也没有明显得增加,特 性曲线几乎平行于与uCE轴

三极管的特性曲线

三极管的特性曲线

三极管的特性曲线
 三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。

它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。

 对于三极管的不同连接方式,有着不同的特性曲线。

应用最广泛的是共发射极电路,其基本测试电路如图Z0118所示,共发射极特性曲线可以用描点法绘出,也可以由晶体管特性图示仪直接显示出来。

 一、输入特性曲线
 在三极管共射极连接的情况下,当集电极与发射极之间的电压UBE 维持不同的定值时,
 UBE和IB之间的一簇关系曲线,称为共射极输入特性曲线,如图Z0119所示。

输入特性曲线的数学表达式为:
 IB=f(UBE)| UBE = 常数 GS0120
 由图Z0119 可以看出这簇曲线,有下面几个特点:。

《模拟电子技术基础》第3章 双极型晶体管及其基本放大电路

《模拟电子技术基础》第3章 双极型晶体管及其基本放大电路

3.2 双极型晶体管
3.2.4 晶体管的共射特性曲线
2.输出特性曲线—— iC=f(uCE) IB=const
以IB为参变量的一族特性曲线
(1)当UCE=0V时,因集电极无收集
作用,IC=0;
(2)随着uCE 的增大,集电区收集电
子的能力逐渐增强,iC 随着uCE 增加而
增加;
(3)当uCE 增加到使集电结反偏电压
电压,集电结应加反向偏置电压。
3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
1. 晶体管内部载流子的传输
如何保证注入的载流
子尽可能地到达集电区?
P
N
IE=IEN + IEP
IEN >> IEP
IC= ICN +ICBO
ICN= IEN – IBN
IEN>> IBN
ICN>>IBN
N
IEP
IE
3. 晶体管的电流放大系数
(1) 共基极直流电流放大系数
通常把被集电区收集的电子所形成的电流ICN 与发射极电流
IE之比称为共基电极直流电流放大系数。

I CN

IE
由于IE=IEP+IEN=IEP+ICN+IBN,且ICN>> IBN,ICN>>IEP。通常ത
的值小于1,但≈1,一般

为0.9-0.99。

3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
3. 晶体管的电流放大系数
(2) 共射极直流电流放大系数
I C I CN I CBO I E I CBO ( I C I B ) I CBO

晶体管的主要电参数及温度特性

晶体管的主要电参数及温度特性

IBQ 40μA
iB 60 40
模拟电子技术
2. 晶体管及放大电路基础
(3) 极限参数
B (b) C(c) B (b) C(c)
T
T
E(e)
E(e)
(1) 集电极开路时发射极—基极间反向击穿电压 U(BR)EBO
(2) 发射极开路时集电极—基极间反向击穿电压 U(BR)CBO
(3) 基极开路时集电极—发射极间反向击穿电压 U(BR)CEO (4) 集电极最大允许电流 ICM
(2)共射极交流电流放大系数β
β
iC
iE
i C 常数
iB
β值与iC的关
系曲线
iC
0
模拟电子技术
2. 晶体管及放大电路基础
iC(mA)
4
2.3 3 IC 1.5 2
100 25 C
80
60
Q 40
IB
iB=20(A)
10 2 4 6 8
uCE(V)
ICQ 1.5mA 37.5 i C 2.3 1.5 40
iB =100μA
80 60
40 20 0
6 8 uCE / V
模拟电子技术
谢 谢!
模拟电子技术
(1) 直流参数
(1)共基极直流电流放大系数
IC
ICBO 0 IE
(2)共射极直流电流放大系数
IC
IB
ICBO 0
(3)发射极开路,集电极—基极间反向饱和电流 ICBO
(4)基极开路,集电极—发射极间反向饱和电流 ICEO
模拟电子技术
2. 晶体管及放大电路基础
(2) 交流参数
(1)共基极交流电流放大系数α
2. 晶体管及放大电路基础

模拟电路习题解答

模拟电路习题解答

第一章晶体二极管及其大体电路1—1 半导体二极管伏安特性曲线如图N—l所示,求图中A、B点的直流电阻和交流电阻。

解:从图中量得A、B点坐标别离为A(0.6V,5mA), B(0.58V,2mA),故得1—2 二极管整流电路如图P1—2所示,已知ui=200sinωt(V),试画出uo的波形。

解:因变压器的匝数比为10:1,因此次级端电压为20 V,即u2=10 slnωt (V)。

当u2为正半周且大于等于0.7V时,Vl导通,V2截止,u。

=u2一0.7。

而u2为负半周且小于等于一0.7V时,那么V2导通,Vl截止,uo=|u2|一0.7。

当|u2|<0.7V时,V一、V2均截止,现在uo=0.由此画出的uo波形如图P1-2’所示,1—3 二极管电路如图P1—3所示,设二极管均为理想二极管(1)画出负载RL两头电压uo的波形(2)假设V3开路,试重画uo的波形。

(3)假设V3被短路,会显现什么现象?解:(1)u2为正半周时,V一、V2导通,V3、V4截止,uo=u2; u2为负半周时,V一、V2截止,V3、V4导通,uo=-u2即uo=-u2。

uo波形如图P1—3’(a)所示。

(2)假设V3开路,那么u2的为负半周时,uo=0,即uo变成半波整流波形,如图Pl—3’(b)所示。

(3)假设V3短路,那么u2为正半周时,将V1短路烧坏。

1—4 在图P1—4所示各电路中,设二极管均为理想二极管。

试判定各二极管是不是导通,并求Uo的值。

解:(1)在图(a)中,V2导通,V1截止,Uo=5V。

(2)在图(b)中,V1导通,V2截止,Uo=0V。

(3)在图(c)中,v一、v2均导通,现在有1—5 二极管限幅电路如图Pl—5(a)、(b)所示。

假设ui=5sinωt(V),试画出uo的波形。

解:(1)在图(a)中:当ui>一2.7V时,V管截止,uo=一2V;当ui≤一2.7V时,V管导通,u。

=ui。

当ui=5sinωt(V)时,对应的uo波形如图P1—5’(a)所示。

第4讲晶体三极管及场效应管

第4讲晶体三极管及场效应管

2. 绝缘栅型场效应管
增强型管
大到一定 值才开启
高掺杂 耗尽层 空穴
衬底 SiO2绝缘层
反型层
uGS增大,反型层(导电沟道)将变厚变长。当 反型层将两个N区相接时,形成导电沟道。
动画演示
增强型MOS管uDS对iD的影响
刚出现夹断
iD随uDS的增 大而增大,可
uGD=UGS(th), 预夹断
变电阻区
夹断 电压
在恒流区iD时 ID, O(UuGGSS(th)1)2 式中 IDO为uGS2UGS(t时 h) 的 iD
3. 场效应管的分类 工作在恒流区时g-s、d-s间的电压极性
结型PN沟 沟道 道((uuGGS> S<00, ,uuDDS< S>00)) 场效应管 绝缘栅型 耗 增尽 强型 型 PPN N沟 沟 沟 沟道 道 道 道((((uuuuG GG GSS< 极 SS> 极00, 性 , 性uu任 D任 DS< S> 意 意 00)u)u, , DDS< S>00))


低频跨导:
夹断区(截止区)
iD几乎仅决 定于uGS
击 穿 区
夹断电压
gm
iD uGS
UDS常量
不同型号的管子UGS(off)、IDSS 将不同。
动画演示Байду номын сангаас
(1)可变电阻区
i
是uDS较小,管子尚未预夹断时
的工作区域。虚线为不同uGS是预夹
断点的轨迹,故虚线上各点
uGD=UGS(off),则虚线上各点对应的 uDS=uGS-UGS(off)。
uDS的增大几乎全部用 来克服夹断区的电阻
iD几乎仅仅 受控于uGS,恒 流区
用场效应管组成放大电路时应使之工作在恒流区。N 沟道增强型MOS管工作在恒流区的条件是什么?

晶体管特性曲线的测量

晶体管特性曲线的测量

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________实验名称:晶体管特性曲线的测量类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.复习三极管的输入特性曲线2.掌握三极管输入输出特性曲线的实验设计方法3.通过分析特性曲线,求取三极管主要参数二、实验内容和原理1.三极管的输入特性曲线三极管在共射连接情况下,保持U CE不变,通过不断增加U BE,测得U BE与i B之间的伏安特性曲线,即为三极管的输入特性曲线。

在输入特性曲线中,U CE=0的曲线与PN结的伏安特性曲线相类似。

当U CE增大至1V的过程中,曲线逐渐右移。

当U CE从1V起继续增大,曲线近似与U CE=1V保持不变,可用任何一条曲线代替所有曲线。

2.三极管的输出特性曲线三极管在共射连接情况下,保持i B不变,通过不断增加U CE,测得U CE与i C之间的伏安特性曲线,即为三极管的输出特性曲线。

在输出特性曲线中分为三个区:截止区、放大区、饱和区。

截止区:发射结反偏,集电结反偏,i C≤I CEO,I C近似认为为0。

放大区:发射结正偏,集电结反偏。

对于硅管,UCE>0.7,对于锗管,UCE>0.3。

iC仅决定于iC,与UCE无关。

理想情况下,放大区的曲线是一族横轴的等距离平行线,iC=βiB,△iC=β△iB。

饱和区:发射结正偏,集电结正偏。

当深度饱和的时候,对于硅管,UCE=0.3,对于锗管,UCE=0.1。

三、主要实验仪器DP832A 可编程线性直流电源;MY61数字万用表;综合实验箱四、操作方法和实验步骤1.测量输入特性曲线①将三极管插入万用表的测量三极管增益系数的插口中,大致测量β的近似值。

演示实验:用晶体管特性图示仪测得的共射输入和输出特性曲线

演示实验:用晶体管特性图示仪测得的共射输入和输出特性曲线

演示实验:用晶体管特性图示仪测得的共射输入和输出特性曲线1.共射输入特性曲线当U CE 为某一定值时,基极电流i B 和发射结电压 u BE 之间的关系曲线入下图所示。

当U CE =0时,输入特性曲线与二极管的正向伏安特性相似,存在死区电压U on (也称开启电压),硅管U on ≈0.5V ,锗管约0.1V 。

只有当U BE 大于U on 时,基极电流i B 才会上升,三极管正常导通。

硅管导通电压约0.7V ,锗管约0.3V 。

随着U CE 的增大输入特性曲线右移,但当U CE 超过一定数值(U CE >1)后,曲线不再明显右移而基本重合。

2.共射输出特性曲线在基极电流I B 为一常量的情况下,集电极电流i C 和管压降u CE 之间的关系曲线入下图所示。

1)截止区 I B =0曲线以下的区域称为截止区。

2)饱和区 u CE 较小的区域称为饱和区。

三极管饱和时的u CE 值称为饱和电压降U CES ,BE 040 输入特性曲线小功率硅管约为0.3V ,锗管约为0.1V 。

3)放大区 一族与横轴平行的曲线,且各条曲线距离近似相等的区域称为放大区。

此时,表现出三极管放大时的两个特性:①电流受控,即Δi C =βΔi B ;②恒流特性,只要I B 一定,i C 基本不随u CE 变化而变化。

例:如图说示是某三极管的输出特性曲线,从曲线上可以大致确定该三极管在U CE =6.5V ,I B =60µA (b 点)附近的β和β值。

解:在图示的输出特性曲线上作U CE =6.5V 的垂线,与I B =60µA 的输出特性曲线交于 b点,由此可得该点对应的4160105.23B C =⨯==I I β 402010)7.15.2(3B C =⨯-=∆∆=i i βΔi BΔi CA A /V1 2 34。

任务1共射极基本放大电路的制作与调试

任务1共射极基本放大电路的制作与调试

t
uCE怎么变化
UCE
(1-43)
IC
ic t
uce t
uCE的变化沿一 条直线
UCE uce相位如何
uce与ui反相!
(1-44)
各点波形
iC
+EC
t
RB
RC
C1 iB
iC C2
ui
ui
iB
uC uC
t
uo
uo
t
t
t
(1-45)
实现放大的条件
1. 晶体管必须偏置在放大区。发射结正偏,集电结 反偏。
( Uo Uo
1)RL
(1-28)
四、通频带
Au
Aum 0.7Aum
放大倍数 随频率变 化曲线
fL 下限截 止频率
上限截 fH 止频率
通频带: fbw=fH–fL
f
(1-29)
2.1.7 符号规定
UA 大写字母、大写下标,表示直流量。 uA 小写字母、大写下标,表示全量。 ua 小写字母、小写下标,表示交流分量。
(1-17)
输出特性三个区域的特点:
(1) 放大区:发射结正偏,集电结反偏。
(2)
即: IC=IB , 且 IC = IB
(2) 饱和区:发射结正偏,集电结正偏。
即:UCEUBE , IB>IC,UCE0.3V
(3) 截止区: UBE< 死区电压, IB=0 , IC=ICEO 0
(1-18)
C1
RC
C2
T
可以省去
RB
EB
(1-38)
RB C1
+EC
RC
C2
T
单电源供电电路

晶体管共射输出特性曲线

晶体管共射输出特性曲线

作者: 尹顺云
作者机构: 云南玉溪师专物理系 玉溪653100
出版物刊名: 玉溪师范学院学报
页码: 10-11页
主题词: 输出特性曲线;晶体管;发射电子;函数关系;晶体三极管;共射;线性增长;恒流特性;集电极电流;共发射极
摘要: 晶体三极管共发射极输出特性曲线是指基极电流i_B一定时,集电极电流i_C和集电极——发射极间压v_CE的函数关系曲线。

函数关系为ic=f(v_CE) IB=常数 v_CE∠1伏以下——ic 受控于v_CE线性增长陡,漂移过C结的电子随v_CE相应场力增大而增大。

i_C失控于i_B如图OA 段。

v_CE∠1伏以上——i_C授控于i_B线性增长,v_CF的电场力够强,e区发射电子在B区复合形成I_B少,场力吸过C结形成I_C的多,其比例固定为p,v_BE稍增,复合的I_B增大,I_C也正比地增大。

i_C失控于v_CE如图AB段,v_CE在1伏以上增大,i_C几乎不变,曲线近平行于v_CE轴——恒流特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)
(2)
(3)
解: (1)
(2)
(3)
Je:UBE = -0.3V 反偏 Je:UEB = 0.3V 正偏 Je:UBE = 0.7V 正偏
Jc:UBC = -3V 反偏 Jc:UCB = -2.7V 反偏 Jc:UBC = 0.2V 正偏
处于截止状态
处于放大状态
处于饱和状态
2020/5/31
4
晶体管的共射特性曲线
例2.1.2 试判断它们的类型、电极和材料。 T1:U1 = 7V,U2 = 1.8V,U3 = 2.5V; T2:U1 = 6V,U2 = 6.2V,U3 = 1.8V
解: T1:U1 = 7V,U2 = 1.8V,U3 = 2.5V
集电极c 发射极e
基极b
相差0.7V 为硅管 为NPN管
T2:U1 = 6V,U2 = 6.2V,U3 = 1.8V
基极b 发射极e 集电极c 相差0.2V 为锗管 为PNP管
2020/5/31
5
模拟电子技术基础
2.1.3 晶体管的共射特性曲线
2020/5/31
1
晶体管的共射特性曲线
1. 输入特性曲线 函数关系表示为iB = f /31
2
晶体管的共射特性曲线
2. 输出特性曲线 函数关系表示为iC = f (uCE)|iB=常数
2020/5/31
3
晶体管的共射特性曲线 例2.1.1 试问各管处于何种工作状态?
相关文档
最新文档