张伟概率论与数理统计经典讲义答案

合集下载

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

习 题 一1. 写出下列随机试验得样本空间及下列事件中得样本点: (1)掷一颗骰子, 记录出现得点数、 ‘出现奇数点’; (2)将一颗骰子掷两次, 记录出现点数、 ‘两次点数之与为10’, ‘第一次得点数, 比第二次得点数大2’;鼉礬釹碍衛環叶。

(3)一个口袋中有5只外形完全相同得球, 编号分别为1,2,3,4,5;从中同时取出3只球, 观察其结果, ‘球得最小号码为1’;澀課詰訓壢贷绫。

(4)将 两个球, 随机地放入到甲、乙、丙三个盒子中去, 观察放球情况, ‘甲盒中至少有一球’;(5)记录在一段时间内, 通过某桥得汽车流量, ‘通过汽车不足5台’, ‘通过得汽车不少于3台’。

解 (1) 其中 ‘出现 点’ , 135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------, 其中‘ ’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

概率论与数理统计(经管类)第四章课后习题答案word档

概率论与数理统计(经管类)第四章课后习题答案word档

习题4.11.设随机变量X 的概率密度为(1) (2)f(x)={2x, 0≤x ≤1,0, 其他; f(x)=12e -|x |, -∞<x <+∞求E(X)解: (1)E (X )=∫+∞-∞xf (x )dx = ∫10x ∙2xdx =2∙x 32|10=23(2)E (X )=∫+∞-∞xf (x )dx =∫+∞-∞x ∙12e -|x |=02.设连续型随机变量X 的分布函数为F (x )={0, x <-1,a +b ∙arcsinx, -1≤x <1,1, x ≥1.试确定常数a,b,并求E(X).解:(1)f (x )=F '(x )={b 1-x 2, -1≤x <10, 其他∫+∞-∞f (x )dx =∫1-1b 1-x 2dx =b ∙arcsinx|1-1=bπ=1, 即b =1π又因当时-1≤x <1F (X )=∫X-1f (x )dx =∫x-11π∙11-x 2dx =1π∙arcsinx|x-1=1π∙arcsinx +12, 即a =12(2)E (X )=∫+∞-∞xf (x )dx =∫1-1xπ∙11-x 2=03.设轮船横向摇摆的随机振幅X 的概率密度为f(x)={1σ2e-x 22σ2, x >0,0, x ≤0.求E(X).解:E (X )=∫+∞-∞xf (x )dx =1σ2∫+∞0x ∙e -x 22σ2dx =14.设X 1, X 2,….. X n 独立同分布,均值为,且设,求E(Y).μY =1n ∑n i =1X i 解:E (Y )=E (1n ∑ni =1X i )=1n E (∑ni =1X i )=1n ∙n μ=μ5.设(X,Y)的概率密度为f(x,y)={e -y, 0≤x ≤1,y >0,0, 其他.求E(X+Y).解:E (X +Y )=∫+∞-∞∫+∞-∞(x +y )f (x,y )dxdy =∫+∞0∫10(x +y )e -ydxdy =∫+∞012∙e ‒y +y ∙e ‒y dy =326.设随机变量X 1, X 2相互独立,且X 1, X 2的概率密度分别为f 1(x )={2e -2x, x >0,0, x ≤0,求:f 2(x )={3e -3x, x >0,0, x ≤0,(1)E (2X 1+3X 2); (2)E (2X 1-3X 22); (3)E (X 1X 2解:(1)E (2X 1+3X 2)=2E (X 1)+3E (X 2)=2*12+3*13=2(2)E (2X 1-3X 22)==2E (X 1)-3E (X 22)=1-3*∫+∞x 23e -3xdx =1-3*[-∫+∞x 2d(e -3x)]=1-3*[-x 2∙e -3x|+∞0+∫+∞e -3xdx 2]=1-3*[0+∫+∞e -3x∙2xdx]=1-3*[23∫+∞e -3x∙3xdx ]=1-3*23*13=13(3)E (X 1X 2)=E (X 1)E (X 2)=12*13=167.求E(X).解:E (X )=∑i ∑j x i p ij =0*0.1+0*0.3+1*0.2+1*0.1+2*0.1+2*0.2=0.98.设随机变量X 的概率密度为且E(X)=0.75,求常数c 和.f(x)={cx α, 0≤x ≤1,0, 其他.α解:E (X )=∫+∞-∞xf (x )dx =∫10x ∙cx αdx =0.75习题4.21.设离散型随机变量X 的分布律为X -100.512P0.10.50.10.10.2求E (X ),E (X 2),D (X ).解: E (X )=(-1)*0.1+0*0.5+0.5*0.1+1*0.1+2*0.2=0.45E (X 2)=(-1)2*0.1+0*0.5+(0.5)2*0.1+12*0.1+22*0.2=1.025D (X )=(-1-0.45)2*0.1+(0-0.45)2*0.5+(0.5-0.45)2*0.1+(1-0.45)22.盒中有5个球,其中有3个白球,2个黑球,从中任取两个球,求白球数X 的期望和方差.解: X 的可能取值为0,1,2P {X =0}=C 22C 25=0.1P {X =1}=C 13∙C 12C 25=0.6P {X =2}=C 23C 25=0.3E (X )=0∗0.1+1∗0.6+2∗0.3=1.2D (X )=(0‒1.2)2∗0.1+(1‒1.2)2∗0.6+(2‒1.2)2∗0.3=0.144+0.024+0.192=0.363.设随机变量X,Y 相互独立,他们的概率密度分别为f X (x )={2e ‒2x, x >0,0, x ≤0,f Y(y )={4, 0<y ≤14,0, 其他,求D(X+Y).解:D (X +Y )=D (X )+D (Y )=122+(14‒0)212=491924.设随机变量X 的概率密度为f X (x )=12e ‒|x |, ‒∞<x <+∞,求D(X)解:E (X )=∫+∞‒∞x2e ‒|x |dx =0E(X2)=∫+∞‒∞x 22e‒|x|dx=2∫+∞‒∞x22e‒x=∫+∞‒∞x2e‒x=2=D(X) E(X2)‒[E(X)]2=25.设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,求D(X-Y).解: D(X‒Y)=D(X)+D(Y)=1+2=36.若连续型随机变量X的概率密度为f(x)={ax2+bx+c, 0<x<1,0, 其他,且E(X)=0.5,D(X)=0.15.求常数a,b,c.解:E(X)=∫10x(ax2+bx+c)dx=a4+b3+c2=0.5E(X2)=∫10x2(ax2+bx+c)dx=a5+b4+c3=0.15+(0.5)2=0.4∫+∞‒∞f(x)dx=∫10(ax2+bx+c)dx=a3+b2+c=1解得a=12,b=-12,c=3.习题4.31.设两个随机变量X,Y相互独立,方差分别为4和2,则随机变量3X-2Y的方差是 D .A. 8B. 16C. 28D. 442.设二维随机变量(X,Y)的概率密度为f(x,y)={18(x+y), 0≤x≤2,0≤y≤2,0, 其他求Cov(X,Y).解:E(X)=∫20[∫20x8(x+y)dy]dx=∫20(x28∙y+x8∙y22)|20d x=76E(Y)=∫20[∫20y8(x+y)dx]dy=76E(XY)=∫20[∫20xy8(x+y)dy]dx=43Cov(X,Y)=E(XY)‒E(X)E(Y)=43‒76∗76=‒1363.设二维随机变量(X,Y)的概率密度为f(x,y)={ye‒(x+y), x>0,y>0,0, 其他求X与Y的相关系数ρxy.解:E(X)=∫+∞0(∫+∞0xye‒(x+y)dy)dx=1E(Y)=∫+∞0(∫+∞0y2e‒(x+y)dx)dy=∫+∞0(∫+∞0y2e‒x e‒y dx)dy=∫+∞0y2e‒y dy=‒∫+∞0y2d(e‒y)=‒y2e‒y|+∞0+∫+∞0e‒y d(y2)=0+∫+∞0e‒y∙2ydy=2∫+∞0e‒y∙ydy=2E(XY)=∫+∞0(∫+∞0xy2e‒(x+y)dy)dx=2Cov(X,Y)=E(XY)‒E(X)E(Y)=2‒2∗1=0所以ρxy=Cov(X,Y)D(X)D(Y)=04.设二维随机变量(X,Y)服从二维正态分布,且E(X)=0, E(Y)=0, D(X)=16, D(Y)=25, Cov(X,Y)=12,求(X,Y)的联合概率密度函数f(x,y).布解:f (x,y )=12πσ1σ21‒ρ2e‒12(1‒ρ2){(x ‒μ1)2σ12‒2ρ(x ‒μ1)(y ‒μ2)σ1σ2+(y ‒μ2)2σ22}∵E (X )=0,E (Y )=0∴μ1=0, μ2=0,∵D(X)=16, D(Y)=25∴σ1=4,σ2=5∵Cov(X,Y)=12∴ρ=Cov (X,Y )D(X)D(Y)=124∗5=35∴f (x,y )=132πe‒2532(x 216‒3xy 50+y 225)5. 证明D(X-Y)=D(X)+D(Y)-2Cov(X,Y).证:D (X ‒Y )=E [X ‒Y ‒E (X ‒Y )]2=E [(X ‒E (X ))‒(Y ‒E (Y ))]2=E [(X ‒E (X ))2]‒2E [X ‒E (X )]∙E [Y ‒E (Y )]+E [(Y ‒E (Y ))2]=D (X )+D (Y )‒2Cov(X,Y)6. 设(X,Y)的协方差矩阵为,求X 与Y 的相关系数ρxy.C =(4‒3‒39)解:∵C =(4‒3‒39)∴Cov (X,Y )=‒3, D (X )=4,D (Y )=9∴ρxy =Cov (X,Y )D(X)D(Y)=‒32∗3=‒12自测题4一、 选择题1.设随机变量X 服从参数为0.5的指数分布,则下列各项中正确的是 B .A. E(X)=0.5, D(X)=0.25 B. E(X)=2, D(X)=4C. E(X)=0.5, D(X)=4 D. E(X)=2, D(X)=0.25解: 指数分布的E (X )=1λ, D (X )=1λ22. 设随机变量X,Y 相互独立,且X~B(16,0.5),Y 服从参数为9的泊松分布,则D(X-2Y+1)= C.A.-14B. 13C. 40D. 41解: D (X )=npq =16∗0.5∗0.5=4, D (Y )=λ=9D (X ‒2Y +1)=D (X )+4D (Y )+D (1)=4+4∗9+0=403. 已知D(X)=25,D(Y)=1, ρxy=0.4, 则D(X-Y)= B .A.6B. 22C. 30D. 464. 设(X,Y)为二维连续随机变量,则X 与Y 不相关的充分必要条件是 C .A. X 与Y 相互独立B. E(X+Y)=E(X)+E(Y)C. E(XY)= E(X)E(Y)D. (X,Y)~N()μ1,μ2,σ12,σ22,0解: ∵X 与Y 不相关∴ρxy =0, ∴Cov (X,Y )=0∴E(XY)= E(X)E(Y)5.设二维随机变量(X,Y)~N(),则Cov(X,Y)= B .1,1,4,9,12A. B. 3C. 18D. 3612解: ∵ρxy =12=Cov (X,Y )D(X)D(Y)=Cov (X,Y )2*3, ∴Cov (X,Y )=36.已知随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)= A .A. 3B. 6C. 10D. 12解: ∵X~U (‒1,3),Y~U (2,4)∴E (X )=a +b 2=‒1+32=1, E (Y )=2+42=3E (XY )= E (X )E (Y )=1∗3=37.设二维随机变量(X,Y)~N(),Ø(x)为标准正态分布函数,则下列结论中错误的是 C .0,0,1,1,0A. X 与Y 都服从N(0,1)正态分布 B. X 与Y 相互独立C. Cov(X,Y)=1 D. (X,Y)的分布函数是Φ(x)∙Φ(y)二、 填空题1.若二维随机变量(X,Y)~N(),且X 与Y 相互独立,则ρ= 0 .μ1,μ2,σ12,σ22,0解:Cov(X,Y)=0∵2.设随机变量X 的分布律为 3 .X -1012P0.10.20.30.4令Y=2X+1,则E(Y)= 3 .解: E(2X+1)=(2*-1+1)*0.1+(2*0+1)*0.2+(2*1+1)*0.3+(2*2+1)*0.4=33.已知随机变量X 服从泊松分布,且D(X)=1,则P{X=1}= .e ‒1解: ∵ D (X )=λ=1∴P {X =1}=λ1e ‒λ1!=e ‒14.设随机变量X 与Y 相互独立,且D(X)= D(Y)=1,则D(X-Y) =2 .5.已知随机变量X 服从参数为2的泊松分布,= 6.E (X 2)解: ∵E (X )=λ=2,D (X )=λ=2,∴ E (X 2)=E 2(X )+D (X )=4+2=66.设X为随机变量,且E(X)=2, D(X)=4,则= 8 .E(X2)7.已知随机变量X的分布函数为F(x)={0, x<0x4, 0≤x<41, x≥4则E(X) = 2 .解: f(x)=F'''"(x)={14, 0≤x<40, 其他E(X)=∫40x4dx=08.设随机变量X与Y相互独立,且D(X)=2, D(Y)=1,则D(X-2Y+3)= 6 .三、设随机变量X的概率密度函数为f(x)={32x2, ‒1≤x≤1,0, 其他试求: (1)E(X), D(X); (2).P{|X‒E(X)|<2D(X)}解:(1) E(X)=∫1‒132x3dx=0D(X)=E(X2)‒E2(X)=∫1‒132x4=32∙x55|1‒1=35(2)P{|X‒E(X)|<2D(X)}=P{|X|<65}=∫65‒65f(x)dx=∫1‒132x2dx=1四、设随机变量X的概率密度为f(x)={x 0≤x≤12‒x, 1≤x<20, 其他试求: (1)E(X), D(X); (2),其中n为正整数.E(X n)解:(1)E(X)=∫1x2dx+∫21x(2‒x)dx=13+13=1D(X)=E(X2)‒E2(X)=∫10x3dx+∫21x2(2‒x)‒1=14+(143‒154)‒1=16(2)E(X n)=∫1x n+1dx+∫21x n(2‒x)=2(2n+1‒1)(n+1)(n+2)五、 设随机变量X 1与X 2相互独立,且X 1~N(), X 2~N().令X= X 1+X 2, Y= X 1-X 2.μ,σ2μ,σ2求: (1)D(X), D(Y); (2)X 与Y 的相关系数ρxy.解:(1)D (X )=D (X 1+X 2)=D (X 1)+D (X 2)=σ2+σ2=2σ2D (Y )=D (X 1‒X 2)=D (X 1)+D (X 2)=2σ2(2) Cov (X,Y )=E (XY )‒E (X )E (Y )=0ρxy =Cov (X,Y )D(X)D(Y)=0六、 设随机变量X 的概率密度为f (x )={2e ‒2x, x >0, 0, x ≤0.(1)求E(X),D(X);(2)令,求Y 的概率密度f Y (y).Y =X ‒E(X)D(X)解:(1)E (X )=∫+∞2xe ‒2x dx =12D (X )=E (X 2)‒E 2(X )=∫+∞02x 2e ‒2x dx ‒14=12‒14=14(2)Y =X ‒E(X)D(X)=X ‒1212=2X ‒1由Y=2X-1得, X’=X =Y +1212=∴f Y (y )={2e‒2(Y +12)∙12,Y +12>00, Y +12≤0{e ‒(y +1), y >‒10, y ≤‒1七、 设二维随机变量(X,Y)的概率密度为f (x,y )={2, 0≤x≤1,0≤y ≤x,0, 其他求: (1)E(X+Y); (2)E(XY); (3). P{X +Y ≤1}解:(1)E (X +Y )=∫10dx ∫x 02(x +y )dy =∫102x 2+x 2dx =1(2)E(XY)=∫1dx∫x2xy dy=∫1x3dx=14(3) P{X+Y≤1}=∬x+y≤1f(x,y)dxdy=∫12(∫1‒yy2dx)dy=∫122‒4ydy=12八、设随机变量X的分布律为X-101P 131313记Y=X2,求: (1)D(X), D(Y); (2) ρxy.解:(1)E(X)=(‒1)∗13+0∗13+1∗13=0D(X)=(‒1‒0)2∗13+(0‒0)2∗13+(1‒0)2∗13=23 E(Y)=(‒1)2∗13+0∗13+12∗13=23D(Y)=(1‒23)2∗13+(0‒23)2∗13+(1‒23)2∗13=29E(XY)=(0∙‒1)∙9+(1∙‒1)∙29+(0∙0)∙19+(0∙1)∙29+(1∙0)∙19+(1∙1)∙29=0Cov(X,Y)=E(XY)‒E(X)E(Y)=0‒0∗23=0ρxy=Cov(X,Y)D(X)D(Y)=0。

概率论与数理统计课后习题参考答案

概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。

2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。

3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。

2012数学强化讲义---张伟---概率

2012数学强化讲义---张伟---概率

.
例22 某人向同一目标独立重复射击, 每次射击 命中目标的概率为p(0 < p < 1),则此人第4次 射击恰好第2次命中目标的概率为 ( A) 3 p(1− p)2. (B) 6 p(1− p)2. (C) 3 p2 (1− p)2. (D) 6 p2 (1− p)2.
例23 做一系列独立试验, 每次试验成功的概率 都是p, 试求下列事件的概率 : A ="4次失败在第3次成功之前"; B ="成功10次之前至多失败2次"; C ="现进行n次重复试验,已知试验没有 全部失败, 成功不止一次".
P(B | A) = 0.2,
则P( A) =
.
例9 设事件A, B同时发生时, 事件C一定发生, 则 ( A) P(C) ≤ P( A) + P(B) −1. (B) P(C) ≥ P( A) + P(B) −1. (C) P(C) = P( AB). (D) P(C) = P(A ∪ B).
例10
⎪⎩ 0
若x ∈[ 0, 1 ], 若x ∈[ 3, 6 ],
其他.
若使得P{X ≥ k}= 2 , 则k的取值
3
范围是 ______
例11
设随机变量X的密度函数为ϕ(x),且ϕ(−x) = ϕ(x).
F (x)是X的分布函数, 则对任意实数a, 有
∫ ∫ ( A) F (−a) = 1− aϕ(x)dx. (B) F (−a) = 1 − aϕ(x)dx.
例6 设F1(x)与F2 (x)为两个分布函数, 其相应的概率密度f1(x)与f2 (x) 是连续函数, 则必为概率密度的是
( A) f1(x) f2 (x)(B) 2 f2 (x)F1(x) (C) f1(x)F2 (x) (D) f1(x)F2 (x) + f2 (x)F1(x)

概率论与数理统计课后题参考答案

概率论与数理统计课后题参考答案

第一章 基本概念1、试对下列随机试验各写出一个样本空间: (1)掷一颗骰子;(2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球; (3)10只产品中有3只是次品,每次从中任取一只(取出后不放回),直到将3只次品全部取出,记录抽取的次数;(4)对某工厂生产的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如果查出2件次品就停止检查,或者查满4件也就停止检查,记录检查结果。

解:(1)}6,5,4,3,2,1{=Ω(2))}5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1{(=Ω5个球中选3各球进行组合,有1035=C 种。

(3)}109876543{,,,,,,,=Ω最少抽取的次数是每次取出的都是次品;最多抽取的次数是把10只产品全部取出,总能抽出3个是次品。

(4)用数字1代表正品,数字0代表次品;样本空间包括查出2件是次品和查满4件产品这两种情况。

)}1,1,1,0(),1,1,1,1(),1,0,1,1(),1,1,0,1(),0,1,1,1(),0,0,1,1(),0,1,0,1(),0,1,1,0(),0,0,1(),0,1,0(),0,0{(=Ω2、工厂对一批产品作出厂前的最后检查,用抽样检查方法,约定,从这批产品中任意取出4件产品来做检查,若4件产品全合格就允许这批产品正常出厂;若有1件次品就再作进一步检查;若有2件次品则将这批产品降级后出厂;若有2件以上次品就不允许出厂。

试写出这一试验的样本空间,并将“正常出厂”、“再作检查”、“降级出厂”、“不予出厂”这4个事件用样本空间的子集表示。

解:用数字1代表正品,数字0代表次品设=“正常出厂”; =“再作检查”; =“降级出厂”;D =“不予出厂”)}1,1,1,1{(=A)}0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0{(=B)}0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0{(=C )}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{(=D)}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0(),0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0(),0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0(),1,1,1,1{(=⋃⋃⋃=ΩDC B A3、设A 、B 、C 是三个事件,试用A 、B 、C 的运算关系表示下列事件: (1)A 与B 都发生,但C 不发生;(2)A 发生,但B 与C 可能发生也可能不发生; (3)这三个事件都发生; (4)这三个事件都不发生; (5)这三个事件中至少有一个发生; (6)这三个事件中最多有一个发生; (7)这三个事件中至少有两个发生; (8)这三个事件中最多有两个发生; (9)这三个事件中恰有一个发生; (10)这三个事件中恰有两个发生。

概率论与数理统计答案(汇总版)

概率论与数理统计答案(汇总版)
(2)两个“王姓”学生正好一头一尾包含 2 ⋅ 28! 个样本点,故
2 ⋅ 28! 1 = 435 。 两个“王姓”学生正好一头一尾的概率为 30!
8、解 (1)设 A = {“1 红 1 黑 1 白”},则
1 1 1 C2 C3C2 12 = ; 3 C7 35
P( A) =
(2)设 B = {“全是黑球”},则
排列,故(1)
p( Ai ) =
8! 9! 。
(2)1 号车配对,9 号车不配对指 9 号车选 2~8 号任一个车位,其余 7 辆车任意排列,共有
7 ⋅ 7!个样本点。故
(3)
p A1 A9 =
(
)
7 ⋅ 7! 7 = 9! 72 .
p A1 A2 L A8 A9 = p A2 L A8 A1 A9 p ( A1 A9 )
P(C ) =
所要求的概率是:
P(C | D) =
P(CD) 2825 = ≈ 0.3944 。 P( D) 7163
17 解: (1)第三天与今天持平包括三种情况:第 2 天平,第 3 天平;第 2 天涨,第 3 天跌; 第 2 天跌,第 3 天涨。则
p1 = α 3γ 3 + α1α 2 + α 2 β1
(1 ) P ( A | A
= U B)
P( AI ( AU B)) P( AU B)
=
P( A) 7 = ; P( AU B) 9
(2) P ( AB ) = P ( B ) − P ( AB ) = 0.4 − 0.2 = 0.2
P( AU B) = P( A ) +P( B) − P( AB) = 0.5
= 0.86
12、解 设 A = {该职工为女职工}, B = {该职工在管理岗位},由题意知,

概率论与数理统计教程(答案及课件)chapter3

概率论与数理统计教程(答案及课件)chapter3


,
则有
1 PZ x 2
e
x
du x

于是
Z
X

~ N 0 , 1 .
X ~ N , 2
X x FX x P X x P x
根据定理1,只要将标准正态分布的分布函数制 成表,就可以解决一般正态分布的概率计算问题.
2
设 X~ N ( , 2 ) ,
X 的分布函数是
2σ 2
F x
x 1 e 2πσ
( t μ )2
dt , x
正态分布由它的两个参数μ和σ唯一确定, 当μ和
σ不同时,是不同的正态分布。 下面我们介绍一种最重要的正态分布
标准正态分布
3
标准正态分布
7 (3)求P 1 X 2

kx , x f ( x ) 2 , 2 0,

0 x3 3 x4 其它
(1) 由
0
1 f ( x )dx 1得k 6
3
4
x
F x
x

f t dt , x
x2 x1
f ( x )dx
利用概率密度可确 定随机点落在某个 范围内的概率
4
若 f (x) 在点 x 处连续 , 则有
F ( x ) f ( x ).
5. 对连续型 r.v X , 有
P (a X b) P (a X b) P (a X b) P (a X b)
F(x) = P(X x) x<0 时,{ X x } = , 故 F(x) =0 0 x < 1 时, 1 F(x) = P{X x} = P(X=0) = 3

概率论和数理统计课后习题答案解析

概率论和数理统计课后习题答案解析

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布求a.解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:故(1)在Y=1条件下,X的条件分布律为(2)在X=2的条件下,Y的条件分布律为表(a)表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为亦即表P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3), P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为试求:(1)Z=X+Y; (2)Z=XY; (3)Z=X/Y; (4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.于是(1)(2)Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。

概率论与数理统计习习题解答

概率论与数理统计习习题解答

欢迎阅读第一章随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和;(2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,(6)A、B、C至少有一个发生;(7)A、B、C不多于一个发生;(8)A、B、C至少有两个发生.解所求的事件表示如下欢迎阅读3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立?(3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立? 解(1(2(3(4立.4.设解 所以 5. 解 则–6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率:A ={两球颜色相同},B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B 的事件数为1111112a b b a a b A A A A A A +=, 则2211222()()a b a b a ba bA A A AP A P B A A +++==欢迎阅读7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率;(2)每次从中任取一件,有放回地取三次,求取到三次次品的概率.解 (1)设A={取得三件次品} 则33人颗,(2) 取到两颗白子,一颗黑子的概率; (3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则欢迎阅读3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C .(3) 设C={取三颗子中至少的一颗黑子} ()1()0.745=-=P C P A .(4) 设D={取到三颗子颜色相同}3384+C C 10. (年按(2解(1) (2)11. 将成解 因此有12. 从解 要共有45C 13. 解 设A i = {第i 个零件不合格},i=1,2,3, 则()1i i P A p i==+ 所以()11i i i P A p i=-=+ 由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A =欢迎阅读14.假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解设A={目标出现在射程内},B={射击击中目标},B i ={第i次击中目标}, i=1,2.则P(A)=0.7, P(B i|A)=0.6 另外B=B1+B2,由全概率公式,件C={产品中次品不超两件}, 由题意由于A0, A1, A2, A3, A4构成了一个完备的事件组, 由全概率公式由Bayes公式故欢迎阅读16.由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解设B={三件都是好的},A1={损坏2%}, A2={损坏10%}, A1={损坏P(A2由为17.和(1(2)通过验收的箱中确定无残次品的概率β.解设H i={箱中实际有的次品数}, 0,1,2i, A={通过验收}则P(H0)=0.8, P(H1)=0.15, P(H2)=0.05, 那么有:(1)由全概率公式(2)由Bayes公式得欢迎阅读18.一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被使用的概率为0.1,问在同一时刻(1)恰有两台设备被使用的概率是多少?(2)至少有三台设备被使用的概率是多少?解设5台设备在同一时刻是否工作是相互独立的, 因此本题可以第二章 随机变量及其分布1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X 的分律. 解 X 的分布率如下表所示:律?解 由题意, 1()1k f x ∞==∑, 即解得:1(1)C e λ=-7. 已知X的分布律 X -112P162636求:(1)X 的分布函数;(2)12P X ⎛⎫< ⎪⎝⎭;(3)312P X ⎛⎫<≤ ⎪⎝⎭.解 (1) X 的分布函数为()()k k x xF x P X x p ≤=≤=∑(1) P(A) =2232233(2)(1)3(1)P C p p p p -=-=-(2) P(B) =22323333233333(2)(3)(1)(1)32P P C p p C p p p p --+=-+-=- 12. 一电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求: 13. (1)每分钟恰有6次呼唤的概率; 14. (2)每分钟的呼唤次数不超过10次的概率.解(1) P(X=6) =6440.104!6!k e e k λλ--==或者P(X=6) = !kek λλ-446744!!k k k k e e k k ∞∞--===-∑∑= 0.21487 – 0.11067 =X~B(1000, 0.003), 由于n 比较大,p 比较小,np=3, 因此可以用泊松分布来近似, 即X~π(3). 因此 (1) P(X=2)2330.2242!e -==(2)323(2)1(2)110.80080.1992!k k P X P X e k ∞-=<=-≥=-=-=∑(3)333(2)(2)0.5768!k k P X P X e k ∞-=>=>==∑(4)313(1)0.9502!k k P X e k ∞-=≥==∑17. 设连续型随机变量X 的分布函数为18.20,0(),011,1x F x kx x x <⎧⎪=≤≤⎨⎪>⎩1/21/1/21111arcsin 1/22663P x x ππππ--⎛⎫⎛⎫<===-= ⎪ ⎪-⎝⎭⎝⎭⎰ (3) X 的分布函数 21. 某城市每天用电量不超过100万千瓦时,以Z 表示每天的耗电率(即用电量除以100万千瓦时),它具有分布密度为若该城市每天的供电量仅有80万千瓦时,求供电量不够需要的概率是多少?如每天供电量为90万千瓦时又是怎样的?解 如果供电量只有80万千瓦,供电量不够用的概率为: P(Z>80/100)=P(Z>0.8)=120.812(1)0.0272x x dx -=⎰如果供电量只有80万千瓦,供电量不够用的概率为:P(Z>90/100)=P(Z>0.9)=120.912(1)0.0037x x dx -=⎰解 由于()()10|10|10222a X a P X a P a X a P --⎛⎫-<=-<-<=<<⎪⎝⎭所以0.952a ⎛⎫Φ= ⎪⎝⎭查表可得,2a=1.65即 a = 3.325.设某台机器生产的螺栓的长度X服从正态分布N(10.05,0.062),规定X在范围(10.05±0.12)厘米内为合格品,求螺栓不合格的概率.解由题意,设P为合格的概率,则则不合格的概率=1?P = 0.045626.设随机变量X服从正态分布N(60,9),求分点x1,x2,使X分别落在(-∞,x1)、(x1,x2)、(x2,+∞)的概率之试求:(1)2X的分布列;(2)x2的分布列.解(1) 2X的分布列如下2X -4 0 4 6(2) x 2的分布列 29. 设X 服从N(0,1)分布,Y =|X |的密度函数.解 的反函数为,0h(y)=,x x x x -<⎧⎨≥⎩, 从而可得Y=|X|的密度函数为:当y>0时,222222()()|()'|()|'|yyy Y X X f y f y y f y y e e e---=--+==解 由于ln y x =严格单调,其反函数为(),'()y y h y e h y e ==且, 则 32. 设随机变量X 服从N(μ,2σ)分布,求Y =x e 的分布密度. 解 由于x y e =严格单调,其反函数为1()ln ,'(),h y y h y ==且yy>0,则 当0y ≤时()0Y f y =因此221(ln )2,0()0,y Y y f y y μσ--⎧>=≤⎩33. 假设随机变量X 服从参数为2的指数分布,证明:Y =21x e --在区间(0, 1)上服从均匀分布.解 由于21x y e -=-在(0, +∞)上单调增函数,其反函数为:1()ln(1),01,2h y y y =--<<35. 在10件产品中有2件一级品,7件二级品和1件次品,从10件产品中无放回抽取3件,用X 表示其中一级品件数,Y 表示其中二级品件数,求: 36. (1)X 与Y 的联合概率分布; (2)X 、Y 的边缘概率分布;(3)X 与Y 相互独立吗?解 根据题意,X 只能取0,1,2,Y 可取的值有:0,1,2,3,由古典概型公式得:(1) 271310(,),i j k ijC C C p P X i Y j C====其中,3,0,1,2,i j k i ++==0,1,2,3j =P(X=4,Y=4)=1/6+1/6+1/6=1/2.38. 设二维连续型随机变量(X, Y)的联合分布函数为(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭,求:(1)系数A 、B 及C ; (2)(X, Y)的联合概率密度; (3)X ,Y 的边缘分布函数及边缘概率密度;(4)求:(1)常数A ;(2)X ,Y 的边缘概率密度;(3)(01,02)P X Y <≤<≤.解 (1) 由联合概率密度的性质,可得解得 A=12.(2) X, Y 的边缘概率密度分别为:(3) (01,02)P x y <≤<≤41. 设随机变量(X ,Y )的联合概率密度为 求 P(X +Y ≥1).解 由题意,所求的概率就是(X,Y)落入由直线x=0 ,x=1, y=0, y=2, x+y=1围的区域G 中, 则 42. 设二维随机变量(X, Y)在图2.20所示的区域G 上服从均匀分布,试求(X, Y)的联合概率密度及边缘概率密度.12153101434求二维随机变量(X ,Y )的联合分布律. 解 由独立性,计算如下表46. 设X123Y函数为 求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <1时, ()0X f x =当x ≥1时,113331222()1y y X f x e dy e x x x+∞--+∞-===⎰再计算()Y f y , 当y <1时, ()0Y f y =当y ≥1时,11132121()1y y y Y f y e dx e e x x+∞---+∞-===⎰可见, (,)()()X Y f x y f x f y =, 所以随机变量X, Y 相互独立49. 设二维随机变量(X ,Y )的联合分布函数为求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y因此, 得Z 的密度函数为: 51. 设随机变量X 和Y 独立,X ~2()N μ,σ,Y 服从[-b ,b ](b>0)上的均匀分布,求随机变量Z =X +Y 的分布密度. 解 解法一 由题意,令)/,,[,],z y a t dy dt y b b σσ--==-∈-(则 解法二 52. 设X 服从参数为12的指数分布,Y 服从参数为13的指数分布,且X 与Y 独立,求Z =X +Y 的密度函数. 解 由题设,X ~12120,0(),0X xx f x e x -≤⎧⎪=⎨>, Y ~13130,0(),0Y xx f y e x -≤⎧⎪=⎨> P(Z=2)=P(X=2,Y=0) + P(X=0,Y=2) + P(X=1,Y=1) = 0.19 P(Z=3)=P(X=3,Y=0) + P(X=1,Y=2) + P(X=2,Y=1) = 0.35 P(Z=4)=P(X=2,Y=2) + P(X=3,Y=1) = 0.28 P(Z=5)=P(X=3,Y=2) = 0.12U∈{0,1,2,3}同理,V=min(X,Y)的分布分别如下V∈{0,1,2}第三章 随机变量的数字特征1. 随机变量X 的分布列为X -1 0 1212P13161611214求E(X),E(-X +1),E(X 2) 解111111136261243()1012E X =-⨯+⨯+⨯+⨯+⨯=5. 设随机变量X 的密度函数为 求E(2X),E(2x e -). 解(2)2()2x E X xf x dx xe dx ∞∞--∞==⎰⎰6. 对球的直径作近似测量,其值均匀分布在区间[a ,b ]上,求球的体积的数学期望.解 由题意,球的直接D~U(a,b), 球的体积V=()3432D π因此,341()()32bax E V Vf x dx dx b aπ∞-∞⎛⎫== ⎪-⎝⎭⎰⎰ 7. 设随机变量X ,Y 的密度函数分别为 求E(X +Y),E(2X -3Y 2). 解()()()E X Y E X E Y +=+8. 设随机函数X 和Y 相互独立,其密度函数为E(X 1+X 2+…+X 12)=12E(X) = 42D(X 1+X 2+…+X 12) =D(X 1)+D(X 2)+…+D(X 12)=12D(X)=35 12. 将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球,将一只球装入与球同号码的盒子中,称为一个配对,记X 为配对的个数,求E(X), D(X).解 (1)直接求X 的分布律有些困难,我们引进新的随机变量X k1,0,k k X k ⎧=⎨⎩第只球装入第k 号盒子第只球没装入第k 号盒子,则有:1nkk X X ==∑,X k 服0-1分布因此:11(0)11,(1),kk P X p P X p n n==-=-===解 由切比雪夫不等式, 取27.5, 2.5==εσ, 得 22.52(()7.5)7.545P X E X -≥≤=.16. 在每次试验中,事件A 发生的概率为0.5,如果作100次独立试验,设事件A 发生的次数为X ,试利用切比雪夫不等式估计X 在40到60之间取值的概率解由题意,X~B(100,0.5), 则E(X) = np = 50, D(X) = npq = 25根据切比雪夫不等式, 有253=-=.1100417.设连续型随机变量X的一切可能值在区间[a,b]内,其密度函数为()f x,证明:(1)a≤E(X)≤b;XY矩阵.解由题设,E(XY) = 0×0×0.1+0×1×0.2+1×0×0.3+1×1×0.4 = 0.4cov(X,Y) = E(XY)?E(X)E(Y) = 0.4?0.6×0.7 = ?0.02协方差矩阵为19.设二维随机变量(X,Y)的分布律为X-1 01Y-1 18 1818 0 18 01821. 已知随机变量(X, Y)服从正态分布,且E(X)=E(Y)=0,D(X)=16,D(Y)=25,cov(X,Y)=12,求(X, Y)的密度函数.解 由题意, 123205===ρ则密度函数为22.设随机变量X和Y相互独立,且E(X)=E(Y)=0,D(X)=D(Y)=1,试求E((X+Y)2).解()()22222+=++=++E X Y E X Y XY E X E Y E XY()2()()(2)由于()()222222-=-=D(X)=E(X)E(X)E(X)=1,D(Y)=E(Y)E(Y)E(Y)=1因此有23.设随机变量X和Y的方差分别为25,36,相关系数为0.4,试求D(X+Y),D(X-Y).第四章 大数定律与中心极限定理1. 设X i ,i =1,2,…,50是相互独立的随机变量,且它们都服从参数为?=0.02的泊松分布. 记X =X 1+X 2+…+X 50,试利用中心限定理计算P(X ≥2). 解 由题意,E(X i ) = D(X i ) = ????????,501ii X X ==∑????????由中心极限定理???1X ==-近似服从标准正态分布解 设X i 表示一部分的长度, i=1, 2, …, 10. 由于X 1, X 2, …, X 10相互独立, 且E(X i ) =2, D(X i )=0.052, 根据独立同分布中心极限定理,随机变量1011(2)(20)0.158kkX X=-=-近似地服从标准正态分布.于是4.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5, 0.5)上服从均匀分布.查表得=1.645,解得:n=443即443个数相加可使误差总和绝对值小于10的概率为0.05的概率5.为了确定事件A的概率,进行了一系列试验. 在100次试验中,事件A发生了36次,如果取频率0.36作为事件A的概率p的近似值,求误差小于0.05的概率.解(删除)6.一个复杂系统由10000个相互独立的部件组成,在系统运行期间,每个部件损坏的概率为0.1,又知为使系统正常运行,至少有89%的部件工作.(1)求系统的可靠度(系统正常运行的概率);(2)上述系统由n个相互独立的部件组成,而且要求至问该单位总机要安装多少条外线才能以90%以上的概率保证分机使用外线时不等待?解设X为某时刻需要使用外线的户数(分机数),显然X~(200, 0.05),E(X) = np = 10, D(X) = np(n-p) = 9.5.设k是为要设置的外线的条数,要保证每个要使用外线的用户能够使用上外线,必须有k≥X. 根据题意应有:这里n=200,较大,可使用中心极限定理,近似地有X~N(10, 9.5):1.29,13.97k ≥≥, 取k = 14即至少14条外线时,才能保证要使用外线的用户都能使用外线的概率大于95%.8. 设μn 为n 重伯努利试验中成功的次数,p 为每次成功的概率,当n 充分大时,试用棣莫弗-拉普拉斯定律证明6的概率保证其中良种的比例与16相差多少?这时相应的良种粒数落在哪个范围?解 设X 为6000粒种子中良种粒数,设所求的差异为p, 则所求的概率为:因为,X ~ B(6000, 1/6), E(X) = np = 1000, D(X) = np(1-p)= 2500/3, 由棣莫弗-拉普拉斯定理,有因此0.995Φ=查表可得 2.575,=解得0.0124p==由于0.0124600074⨯=所以, 良种的粒数大约落在区间(926, 1074)之间.第五章 数理统计的基本概念1. 在总体N(52,632)中随机抽取一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率. 解 由题意,由定理1 (1),~(0,1)N = 2. 在总体N(80,202)中随机抽取一容量为100的样本,求样本均值与总体均值的绝对值大于3的概率是多少? 解 这里总体均值为?=80, ?=20, n=100, 由定理1(1)1936,1697,3030,2424,2020,2909,1815,2020,2310.采用下面简化计算法计算样本均值和样本方差. 即先作变换2000i i y x =-,再计算y 与2y S ,然后利用第5题中的公式获得x 和2x S 的数值.解做变换后,得到的样本值为:-61,-303,1030,424,20,-91,-185,20,3107.某地抽样调查了1995年6月30个工人月工资的数据,试画出它们的直方图,然后利用组中间值给出经验分布函数.440 444 556 430 380 420 500 430 420 384合计:30 1由于第6组与第9组频数为0,可将其与下一组合并。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案第⼀章概率论的基本概念[四] 设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P .求A ,B ,C ⾄少有⼀个发⽣的概率。

解:P (A ,B ,C ⾄少有⼀个发⽣)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )= 8508143=+-.[九] 从5双不同鞋⼦中任取4只,4只鞋⼦中⾄少有2只配成⼀双的概率是多少?记A 表“4只全中⾄少有两⽀配成⼀对” 则A 表“4只⼈不配对”∵从10只中任取4只,取法有??410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每⼀双⾥任取⼀只。

取法有4245???? ??21132181)(1)(2182)(410445=-=-===∴A P A P C C A P[⼗四] )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。

解:由61)()(314121)()|()()()()|(=??=→?=B P B P B P A B P A P B P AB P B A P 有定义由已知条件由乘法公式,得121)|()()(==A B P A P AB P 由加法公式311216141)()()()(=-+=-+=?AB P B P A P B A P [⼗七] 已知10只晶体管中有2只次品,在其中取⼆次,每次随机地取⼀只,作不放回抽样,求下列事件的概率。

(1)⼆只都是正品(记为事件A )法⼀:⽤组合做在10只中任取两只来组合,每⼀个组合看作⼀个基本结果,每种取法等可能。

62.04528)(21028===C C A P法⼆:⽤排列做在10只中任取两个来排列,每⼀个排列看作⼀个基本结果,每个排列等可能。

4528)(21028==A A A P法三:⽤事件的运算和概率计算法则来作。

概率论与数理统计课后习题答案1-8章_习题解答

概率论与数理统计课后习题答案1-8章_习题解答

第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()A B AB AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

第三版详细《概率论与数理统计》课后习题答案._【精品文档】

第三版详细《概率论与数理统计》课后习题答案._【精品文档】

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计习题解答

概率论与数理统计习题解答

习 题 答 案第一章习题一1.连续抛掷2枚硬币,观察其出现正反面的情况。

写出这个随机试验的样本空间。

解:样本空间Ω=}{(),()()正,正(正,反),反,正,反,反 2.任取一个有3个孩子的家庭,记录3个孩子的性别情况。

写出这个随机试验的样本空间。

解:设A i (i =1,2,3)表示第i 个孩子是男孩,则i A 表示第i 个孩子是女孩。

样本空间Ω=}{123123123123123123123123,,,,,,,A A A A A A A A A A A A A A A A A A A A A A A A3.从一批零件中任取两个,设事件A=“第1个零件为合格品”,事件B=“第2个零 件合格”。

问AB ,,,A B AB A B A B AB -+,,及分别表示什么事件。

解:它们分别表示:两个都为合格品,第1个不合格,第2个不合格,两个都不合格, 第1个合格而第2个不合格,两个中至少有一个合格,两个至少有一个不合格。

4.(题略)解:(1) A BC(2)ABC (3)ABC(4)A+B+C (5)ABC ABC ABC ++(6) ()A B C +(7)AB BC CA ++(即至少2个事件发生的对立事件)或ABC ABC ABC ABC +++(都不发生或恰有一个发生)(8) AB+BC+CA(9)ABC (3个都发生的对立事件)或A B C ++(10) ABC ABC ABC ++ 5.(题略)解:(1) 是 (2)是 (3)B A =。

(0件次品的对立事件)或123B A A A =++。

6.连掷两颗骰子,求点数和大于10的概率。

解:设(x ,y )表示第1颗的点数为x ,第2颗的点数为y ,则x ,y 都可取1~6中的某 个正整数。

这种样本点(x ,y )共6×6=36(个)其中(5,6),(6,5),(6,6),三个样本点满足点数和大于10,从而所求概率为P =313612=。

概率论与数理统计答案完整版

概率论与数理统计答案完整版

概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

《概率论与数理统计教程》课后习题解答答案1-8章

《概率论与数理统计教程》课后习题解答答案1-8章

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 ,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1 ,2 ,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则 {1 ,2 ,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) A {1 ,2 } (ⅱ) B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC 成立? (3)什么时候关系式B C 是正确的? (4) 什么时候B A 成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC 等价于AB C ,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i 1)。

用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

解 (1)ni i A 1; (2) n i i n i i A A 11; (3) n i ni j j j i A A 11)]([ ;(4)原事件即“至少有两个零件是合格品”,可表示为 nji j i jiAA 1,;1.4 证明下列各式:(1)A B B A ; (2)A B B A (3) C B A )()(C B A ; (4) C B A )()(C B A(5) C B A )( )(C A )(C B (6)ni i ni i A A 11证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

《概率论与数理统计》课后习题答案

《概率论与数理统计》课后习题答案

《概率论与数理统计》课后习题答案习题1.1解答1. 将⼀枚均匀的硬币抛两次,事件C B A ,,分别表⽰“第⼀次出现正⾯”,“两次出现同⼀⾯”,“⾄少有⼀次出现正⾯”。

试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰⼦的试验中,事件D C B A ,,,分别表⽰“点数之和为偶数”,“点数之和⼩于5”,“点数相等”,“⾄少有⼀颗骰⼦的点数为3”。

试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表⽰某城市居民订阅⽇报、晚报和体育报。

试⽤C B A ,,表⽰以下事件:(1)只订阅⽇报;(2)只订⽇报和晚报;(3)只订⼀种报;(4)正好订两种报;(5)⾄少订阅⼀种报;(6)不订阅任何报;(7)⾄多订阅⼀种报;(8)三种报纸都订阅;(9)三种报纸不全订阅。

解:(1)C B A ;(2)C AB ;(3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ;(9)C B A ++4. 甲、⼄、丙三⼈各射击⼀次,事件321,,A A A 分别表⽰甲、⼄、丙射中。

概率论与数理统计统计课后习题答案

概率论与数理统计统计课后习题答案

第二章习题解答1. 设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数, 则b a ,的值可取为( A ).A . 52,53-==b aB . 32,32==b a C . 23,21=-=b a D . 23,21-==b a2. 解:因为随机变量X ={这4个产品中的次品数}X 的所有可能的取值为:0,1,2,3,4.且4015542091{0}0.2817323C C P X C ===≈; 31155420455{1}0.4696969C C P X C ===≈;2215542070{2}0.2167323C C P X C ===≈; 1315542010{3}0.0310323C C P X C ===≈;041554201{4}0.0010969C C P X C ===≈.3.解:设{1}P x p ==,则{0}1P x p ==-. 由已知,2(1)p p =-,所以23p =X 当0x <时,(){}0F x P X x =≤=;当01x ≤<时,1(){}{0}3F x P X x P X =≤===; 当1x ≥时,(){}{0}{1}1F x P X x P X P X =≤==+==.X 的分布函数为:00()1/30111x F x x x <⎧⎪=≤<⎨⎪≥⎩. 4. 解:设X ={在取出合格品以前,已取出不合格品数}. 则X 的所有可能的取值为0,1,2,3.7{0}10P x ==; 377{1}10930P x ==⋅=;3277{2}1098120P x ==⋅⋅=; 32171{3}10987120P x ==⋅⋅⋅=. 所以X 的概率分布为:5.解:设X ={其中黑桃张数}.则X 的所有可能的取值为0,1,2,3,4,5.0513395522109{0}0.22159520C C P x C ===≈; 14133955227417{1}0.411466640C C P x C ===≈; 23133955227417{2}0.274399960C C P x C ===≈; 32133955216302{3}0.0815199920C C P x C ===≈; 411339552429{4}0.010739984C C P x C ===≈; 50133955233{5}0.000566640C C P x C ===≈. 所以X 的概率分布为:6.解:由已知,()XG p所以()(1),0,1,2iP X i p p i ==-=.7.解:X 的所有可能的取值为0,1,2,3. 且1{0}2P X ==; 111{1}224P X ==⨯=;1111{2}2228P X ==⨯⨯=;1111{3}2228P X ==⨯⨯=;8. 一家大型工厂聘用了100名新员工进行上岗培训,据以前的培训情况,估计大约有4%的培训者不能完成培训任务. 求:(1)恰有6个人不能完成培训的概率; (2)不多于4个的概率. 解:设X ={不能完成培训的人数}.则(100,0.04)XB ,(1)6694100{6}0.040.960.1052P X C ==⋅=;(2)4100100{4}0.040.960.629k k k k P X C-=≤=⋅=∑.9. 一批产品的接收者称为使用方,使用方风险是指以高于使用方能容许的次品率p 接受一批产品的概率. 假设你是使用方,允许次品率不超过05.0=p ,你方的验收标准为从这批产品中任取100个进行检验,若次品不超过3个则接受该批产品. 试求使用方风险是多少?(假设这批产品实际次品率为0. 06).解:设X ={100个产品中的次品数},则(100,0.06)X B ,所求概率为1001003{3}(0.06)(0.94)0.1430k k k k P X C-≤≤==∑.10. 甲、乙两人各有赌本30元和20元,以投掷一枚均匀硬币进行赌博. 约定若出现正面,则甲赢10元,乙输10元;如果出现反面,则甲输10元,乙赢10元. 分别求投掷一次后甲、乙两人赌本的概率分布及相应的概率分布函数.解:设甲X ={投掷一次后甲的赌本},乙X ={投掷一次后乙的赌本}. 则甲X 的取值为20,40,且1{20}{40}2P X P X ====甲甲,1{10}{30}2P X P X ====乙乙,所以甲X 与乙X 的分布律分别为:0,201,204021,40X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩甲(), 0,101,103021,30X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩乙() 11. 设离散型随机变量X 的概率分布为:(1){}2,1,2,,100k P X k a k ===;(2){}2,1,2,k P X k a k -===,分别求(1)、(2)中常数a 的值.解:(1)因为{}1001001121,kk k P X k a =====∑∑即 1002(12)112a -⋅=-,所以)12(21100-=a . (2) 因为{}1121,kk k P X k a ∞∞-=====∑∑即121112a ⋅=-,所以 1=a .12. 已知一电话交换台服从4=λ的泊松分布,求:(1)每分钟恰有8次传唤的概率;(2)每分钟传唤次数大于8次的概率.解:设X ={每分钟接到的传唤次数},则()XP λ,查泊松分布表得(1){8}{8}{9}0.05110.02140.0297P X P X P X ==≥-≥=-=; (2){8}0.02136P X ≥=.13. 一口袋中有5个乒乓球,编号分别为1、2、3、4、5,从中任取3个,以示3个球中最小号码,写出X 的概率分布.解:X 的所有可能的取值为1,2,3.243563{1}105C P x C ====;23353{2}10C P x C ===;22351{3}10C P x C ===.所以X 的概率分布为:14. 已知每天去图书馆的人数服从参数为(0)λλ>的泊松分布. 若去图书馆的读者中每个人借书的概率为(01)p p <<,且读者是否借书是相互独立的. 求每天借书的人数X 的概率分布.解:设Y ={每天去图书馆的人数},则()YP λ,{},0,1,2,!iP Y i e i i λλ-===当{}Y i =时,(,)XB i p ,{}{}(1)k k i k i i kP X k P Y i C p p +∞-====⋅-∑!(1)(1)!!!()!iik k i kk i k ii k i ki e C p p e p p i i k i k λλλλ+∞+∞----===⋅-=-⋅-∑∑!(1)(1)!!()!!()!ik k i k k i ki k i ki k i p ep p e p i k i k k i k λλλλλ-+∞+∞----===-=-⋅--∑∑(1)()(1)e !()!!!k ki kk kk i kp pi kp p p ep e ek i k k k λλλλλλλλ-+∞-----==-=⋅=-∑即X 的概率分布为(){}e ,0,1,2,!k pp P X k k k λλ-===.15. 设随机变量X 的密度函数为 ,010,⎩⎨⎧<<+= x b ax f(x)其它, 且⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<3131X P X P ,试求常数a 和b . 解:1301()3183a b P X ax b dx ⎧⎫<=+=+⎨⎬⎩⎭⎰; 113142()393a b P X ax b dx ⎧⎫>=+=+⎨⎬⎩⎭⎰,由421183932a b a b +=+=得,71.5,.4a b =-= 16. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B x arctan , 求常数A , B ;{1}P X <以及概率密度f (x ).解:由()lim (arctan )02()lim (arctan )12x x F A B x A B F A B x A B ππ→-∞→+∞⎧-∞=+=-=⎪⎪⎨⎪+∞=+=+=⎪⎩得121A B π⎧=⎪⎪⎨⎪=⎪⎩.所以11()arctan 2F x x π=+; {1}{11}(1)(1)0.5P X P x F F <=-<<=--=; 211()'()1f x F x x π==⋅+.17. 设连续型随机变量X 的分布函数为20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩求:(1)常数A 的值;(2)X 的概率密度函数)(x f ;(3){}2≤X P .解:(1)由()F x 的连续性得(10)(10)(1)1F F F -=+==即21lim 1x Ax -→=,所以1A =,20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(2)2,01()'()0,x x f x F x <<⎧==⎨⎩其他;(3){2}(2)1P X F ≤==.18. 设随机变量X 的分布密度函数为 , 01 , 1)(2⎪⎩⎪⎨⎧<-=其它当x xAx f 试求:(1)系数A ;(2)⎭⎬⎫⎩⎨⎧<<221X P ;(3)X 的分布函数)(x F . 解:(1)因为1111()arcsin f x dx A x A π+∞--∞-====⎰⎰所以1A π=,1() 0 ,x f x <=⎩其它; (2)12111221112()arcsin 23P X f x dx x π⎧⎫<<====⎨⎬⎩⎭⎰;(3) 当1x <-时,(){}0f x P X x =≤=, 当01x ≤<时,11(){}arcsin 2xf x P X x x π-=≤==+⎰, 当1x ≥时,1(){}1f x P X x -=≤==⎰,所以 ⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,arcsin 1211,0x x x x x F π)( 19. 假设你要参加在11层召开的会议,在会议开始前5 min 你正好到达10层电梯口,已知在任意一层等待电梯的时间服从0到10 min 之间的均匀分布. 电梯运行一层的时间为10 s ,从11层电梯口到达会议室需要20 秒. 如果你不想走楼梯而执意等待电梯,则你能准时到达会场的概率是多少?解:设X ={在任意一层等待电梯的时间},则(0,10)XU ,由题意,若能准时到达会场,则在10等电梯的时间不能超过4.5 min , 所求概率为 4.50{ 4.5}0.45100P X -≤==-.20. 设顾客在某银行窗口等待服务的时间X (min )服从51=λ的指数分布. 某顾客在窗口等待服务,若超过10 min ,他就离开. 若他一个月到银行5次,求: (1) 一个月内他未等到服务而离开窗口的次数Y 的分布; (2) 求{}1≥Y P . 解:(1)由已知,1(),(5,)5XE Y B p其中10{10}1{10}1()p P X P X f x dx -∞=>=-≤=-⎰110250115e dx e --=-=⎰所以Y 的分布为55{}(1)k k k P Y k C p p -==-2255()(1),(0,1,2,3,4,5)k k k C e e k ---=-=;(2){}02025511{0}1()(1)0.5167P Y P Y C e e --≥=-==--=.21. 设随机变量)4,5(~N X ,求α使:(1){}903.0=<αX P ;(2){}01.05=>-αX P .解:由)4,5(~N X 得5~(0,1)2X N - (1){}555()0.903222X P X P ααα---⎧⎫<=<=Φ=⎨⎬⎩⎭ 查标准正态分布表得:51.32α-=,所以6.7=α;(2)由{}01.05=>-αX P 得,{}50.99P X α-<=所以{}{}55PX P X ααα-<=-<-<5()()2()10.99222222X P ααααα-⎧⎫=-<<=Φ-Φ=Φ-=⎨⎬⎩⎭即()0.9952αΦ=,查标准正态分布表得2.582α=,所以16.5=α22. 设)2,10(~2N X ,求{}{}210 , 1310<-<<X P X P . 解:由)2,10(~2N X 得10~(0,1)2X N - {}101013=P 0 1.5(1.5)(0)0.99320.50.49322X P X -⎧⎫<<<<=Φ-Φ=-=⎨⎬⎩⎭;{}102{2102}P X P X -<=-<-< 10{11}(1)(1)2(1)120.841310.68262X P -=-<<=Φ-Φ-=Φ-=⨯-=. 23. 某地8月份的降水量服从185mm,28mm μσ==的正态分布,求该地区8月份降水量超过250 mm 的概率.解:设随机变量X ={该地8月份的降水量}, 则2(185,28)XN ,从而185(0,1)28X N -所求概率为185250185{250}{}1(2.32)10.98980.01022828X P X P --≥=>=-Φ=-= 24. 测量某一目标的距离时,产生的随机误差(cm)X 服从正态分布)400,0(N ,求在3次测量中至少有1次误差的绝对值不超过30 cm 的概率.解:由(0,400)X N 得(0,1)20X N设Y ={在3次测量中误差的绝对值不超过30 cm 的次数},则(3,)Y B p其中{30}{3030}{1.5 1.5}p P X P X P X =<=-<<=-<<(1.5)( 1.5)2(1.5)120.933210.8664=Φ-Φ-=Φ-=⨯-=所以P {3次测量中至少有1次误差的绝对值不超过30 cm }={1}P Y ≥00331{0}10.86640.13320.9976P Y C =-==-⋅=25. 已知测量误差2~(7.5,10)X N ,X 的单位是mm ,问必须进行多少次测量,才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9.解:设必须进行n 次测量才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9.由已知2~(7.5,10)X N ,7.5~(0,1)10X N - 设Y ={n 次测量中,绝对误差不超过10mm 的次数},则(,)Y B n p其中7.5{10}{0.25}(0.25)0.598710X p P X P -=≤=≤=Φ= 所求概率为{1}0.9P Y ≥>,即{0}0.1P Y =≤000.59870.40130.1n n C ⋅≤,解之得,3n ≥必须进行3次测量,才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9. 26. 参加某项综合测试的380名学生均有机会获得该测试的满分500分. 设学生的得分)(~2σμ,N X ,某教授根据得分X 将学生分成五个等级:A 级:得分)(σμ+≥X ;B 级:)(σμμ+<≤X ;C 级:μσμ<≤-X )(;D 级:)()2(σμσμ-<≤-X ;F 级:)2(σμ-<X . 已知A 级和C 级的最低得分分别为448分和352分,则: (1)μ和σ是多少?(2)多少个学生得B 级?解:(1)由已知,448352μσμσ+=⎧⎨-=⎩,解之得40048μσ=⎧⎨=⎩(2){}{01}X P X P μμμσσ-≤<+=≤<(1)(0)0.84130.50.3413=Φ-Φ=-=由于0.3413×380=129.66,故应有130名学生得B 级。

张伟概率讲义

张伟概率讲义
学府考研培训学校
·2013 年强化班讲义·
【概率统计部分】
主讲:张伟
学府考研培训学校 2012 年 7 月

0
概率论与数理统计
概率论和数理统计六大类考点 (1) 随机事件和概率 (2) 一维随机变量及其分布 (3) 多维随机变量及其分布 (4) 随机变量的数字特征 (5) 大数定律和中心极限定理 (6) 数理统计的基本概念、参数估计和假设检验
( A) uα
2
(B)
u
1−
α
2
(C) u1−α
2
(D) u1−α
7
例18
设f1(x)为标准正态分布的概率密度, f2(x)为[−1,3]上的均匀分布的概率密度,
( A) 与a无关,随λ增大而增大;
(B) 与a无关,随λ增大而减小;
(C) 与λ无关,随a增大而增大;
(D) 与λ无关,随a增大而减小.
例10
⎧1 3,
设随机变量X的概率密度为f (x) = ⎪⎨2 9,
⎪ ⎩
0,
若x ∈[ 0,1 ], 若x ∈[ 3, 6 ],
其他.
若使得P{X ≥ k}= 2 , 则k的取值范围是 ______.
(B)若AB ≠ φ, 则A, B有可能独立. (D)若AB = φ, 则A, B一定不独立.
3
例18 对于任意二事件A和B,已知0 < P( A) < 1, 则 ( A)若A ⊂ B, 则A, B一定不独立. (B)若B ⊂ A, 则A, B一定不独立.
(C)若AB = φ, 则A, B一定不独立. (D)若A = B, 则A, B一定不独立.
(D)1− e−1
2
2
离散型随机变量的概率 分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档