信息论第2章(信息量、熵及互信息量)PPT课件

合集下载

信息论与编码 第二章 信源与信息熵

信息论与编码 第二章 信源与信息熵

现概率是它自身的先验概率。
无记忆信源
{发出符号序列的无记忆信源
发出单个符号的无记忆信源
{
离散 连续
2.1.1 无记忆信源
发出单个符号的离散无记忆信源
——指信源每次只发出一个符号代表一个消息, 且消息的取值个数是有限的(或可列无限多个)。 例如扔骰子,每次实验结果必然是1~6点中的某一 个面朝上。每次实验的结果不随实验次数变化,也 不与先前的实验结果相关,因而该信源是单符号离
p( X1 , X 2 , X l , X L ) p( X l ) [ p( X )]L
l 1
L
2.1.2 有记忆信源
有记忆信源——在不同时刻发出的符号是相互依赖的。 发出符号序列的有记忆信源 ——每次发出1组含2个以上符号的符号序列来代表一 个消息的信源,且各符号之间是相互依赖的。
I=-log2(1/2m)=m bit
2.2.1 自信息量
自信息量I (xi)的特性:
⑴ I (xi)是非负值
⑵ 当p(xi) = 1时, I (xi) = 0
⑶ 当p (xi) = 0时, I (xi) =∞
⑷ I (xi)是先验概率p (xi)的单调递减函数,即 当p (x1)>p (x2)时, I (x1) < I (x2) ⑸可加性 : 两个独立事件的联合信息量等于它们分别的信 息量之和。
发出符号序列的无记忆信源
——每次发出1组含2个以上符号的符号序列来代表一 个消息的信源,且各符号之间没有统计关联性。
需要用随机序列(或随机矢量) X =(X1, X2,…, Xl, …, XL)来描 述信源输出的消息,用联合概率分布p(X1, X2,…, Xl, …, XL)来表 示信源特性。 p (X 1 ) p (X 2 ) … p (X l ) … p (X L ) 若离散信源输出的每个符号是统计独立的,且具有相同的概 率空间,则该信源是离散平稳无记忆信源,亦称为独立同分布 (independently identical distribution,i. i. d.)信源。

信息论与编码,曹雪虹,课件第2章-2

信息论与编码,曹雪虹,课件第2章-2
信息论与编码
第二章
信源与信息熵
内容
2.1 信源的描述和分类 2.2 离散信源熵和互信息 2.3 离散序列信源的熵 2.4 连续信源的熵和互信 2.5 冗余度
3
信源的分类
• 离散信源
– 指发出在时间和幅度上都是离散分布的离散 消息的信源,如文字、数字、数据等符号都 是离散消息。
{ 离散
{ { 信源
W1
W2
W3
W4
• 稳态分布概率
W1
3 35
,
W2
6 35
,
W3
6 35
,
W4
4 7
• 稳态后的符号概率分布
p(a1)
i
p(a1
|
si
)
p(siΒιβλιοθήκη )1 23 35
1 3
6 35
1 4
6 35
1 5
4 7
9 35
p(a2 )
i
p(a2
|
si )
p(si )
1 2
3 35
2 3
6 35
(1)1/2
s2 01
00 s1
(0)1/4
(0)1/3 (1)3/4
10 s3
(1)2/3
s4 0 2 / 3 0 4 / 5
11 (0)1/5
s4
(1)4/5
8
Wi pij W j
i
1 2
W1
1 2
W1
W1 W2 W3 W4 1
1 3
W2
2 3 W2
1 2
W3
3 4
W3
1 5
W4
4 5 W4
3 4
6 35

信息论第二章信息的度量

信息论第二章信息的度量

I(xi yj ) = - log p(xi yj ) = log 60 = 5.907(比特)
(2)在二维联合集X Y上的条件分布概率为 事件提供给甲的信息量为条件自信息量
p(y j
1 xi ) 12
,这一
I(yj︱xi) = -log p(yj︱xi) = log12 = 3.585(比特)
2.1.2 互信息量和条件互信息量
2.联合自信息量
XY
P
(
XY
)
p(a a 11 b b 11 ,) ,,,pa (1 a b 1m bm ,) ,,,pa (a nb n1 b,1) ,,,p a(nb am nbm )
其中 0 p(aibj ) 1(i 1,2,,n; j 1,2,,m)
nm
p(aibj ) 1。
根据概率互换公式p(xi yj) = p(yj︱xi)q(xi)=φ(xi︱yj)ω(yj) 互信息量I(xi ;yj )有多种表达形式:
I(xi;yj)loq(p x g (ix ) iy (jy )j)I(xi)I(yj)I(xiyj) (2-7)
I(xi;yj)lopg (y(yjjx)i)I(yj)I(yj xi)(2-8)
第2章 信息的度量
内容提要:
根据香农对于信息的定义,信息是一个系 统不确定性的度量,尤其在通信系统中, 研究的是信息的处理、传输和存储,所以 对于信息的定量计算是非常重要的。本章 主要从通信系统模型入手,研究离散情况 下各种信息的描述方法及定量计算,讨论 它们的性质和相互关系。
பைடு நூலகம் 2.1 自信息量和互信息量
x
i(i = 1,2,
X q(X)
x1 1
3
x2 1

信息论举例讲解信息量熵及互信息量

信息论举例讲解信息量熵及互信息量

计算机科学领域的应用
数据压缩
计算机科学中的数据压缩技术同样基于信息论的原理,通 过去除数据中的冗余信息,实现数据的压缩存储和传输。
加密与安全
信息论在密码学和安全领域也有广泛应用,如利用信息论中的 混淆和扩散原则设计加密算法,保护信息的机密性和完整性。
机器学习
在机器学习中,信息论用于特征选择、模型评估等方面。例如 ,利用互信息来衡量特征与目标变量之间的相关性,从而进行
熵的性质
非负性
熵的值总是非负的,表示系统的不确定性或混乱程度不可能为负值。
可加性
对于相互独立的事件或系统,其熵的和等于各事件或系统熵的和, 表示不确定性或混乱程度可以叠加计算。
最大值性
当系统中各个事件发生的概率相等时,该系统的熵达到最大值,表 示此时系统的不确定性或混乱程度最高。
熵的计算举例
二进制信源熵的计算
举例1
对于离散随机变量 X 和 Y,其联合概率分布为 p(x,y)=[0.1, 0.2, 0.3, 0.4],边缘概率分布为 p(x)=[0.3, 0.7] 和 p(y)=[0.5, 0.5]。根据互信息量的定义公式,可以计算出 I(X;Y)=0.1979。
举例2
对于连续随机变量 X 和 Y,其联合概率密度函数为 f(x,y),边缘概率密度函数为 fX(x) 和 fY(y)。可以通过 数值积分的方法计算出互信息量。例如,对于正态分布 N(0,1) 和 N(0,2) 的随机变量 X 和 Y,其互信息量 为 I(X;Y)=0.5×log⁡2≈0.3466。
要点一
目的
通过举例讲解信息量、熵和互信息量的概念,使读者更好 地理解和掌握这些概念。
要点二
意义
信息量、熵和互信息量是信息论中的基本概念,对于理解 和应用信息论具有重要意义。通过本次讲解,读者可以更 加深入地了解这些概念,并能够在实际问题中加以应用。 同时,这些概念在其他领域也有广泛的应用,如计算机科 学、控制论、统计学等,因此本次讲解也有助于读者在其 他领域中更好地应用信息论的知识。

信息论基础-第二、三章

信息论基础-第二、三章

信息论基础-信源及信源熵
离散信源又可以细分为: 1.根据有无记忆: (1)(离散)无记忆信源:所发出的各个符号之间是相 互独立的,发出的符号序列中的各个符号之间没有统 计关联性,各个符号的出现概率是它自身的先验概率。 (2)(离散)有记忆信源:发出的各个符号之间不是相 互独立的,各个符号出现的概率是有关联的。
中国矿业大学信电学院
School of Information and Electrical Engineering, CUMT, 9
信息论基础-信源及信源熵
(1)发出单个符号的无记忆信源;(离散无记忆单符号信源; 先验概率) (2)发出符号序列的无记忆信源;(离散无记忆序列信源,离 散联合概率) (3)发出符号序列的有记忆信源;(离散有记忆序列信源,联 合概率) (4)发出单符号的有记忆信源;(离散有记忆单符号信源,条 件概率) 一类重要的离散有记忆单符号信源——马尔可夫信源: 某 一个符号出现的概率只与前面一个或有限个符号有关,而不 依赖更前面的那些符号。
X=( x1 , x2 ,L , xN )
来描述,其中N可为有限正整数或可数的无限 中国矿业大学信电学院 值。 School of Information and Electrical Engineering, CUMT,
14
信息论基础-信源及信源熵
在上述随机矢量中,若每个分量是随机变量 xi (i 1,2,, N )
中国矿业大学信电学院
School of Information and Electrical Engineering, CUMT, 17
信息论基础-信源及信源熵
表述有记忆信源要比表述无记忆信源困难得多。 这种关联性可用两种方式表示:
1)有记忆序列信源(离散有记忆序列信源)

信息论基础课件2[1][1].1.1- 2

信息论基础课件2[1][1].1.1- 2
r i 1
a2

ar p(ar)
p(a2) …
0 p(a i ) 1i 1,2, r
p(a i ) 1
信息论与编码-信源熵
需要注意的是,大写字母X,Y,Z代表随机变量,指 的是信源整体,带下标的小写字母代表随机事件的 某一结果或信源的某个元素。两者不可混淆。
信息论与编码-信源熵
(4) 如p(xi)=1,则I(xi) =0 ;(必然事件不含有任何不确定 性,所以不含有任何信息量)
(5) 自信息量也是一个随机变量,它没有确定的值。
信息论与编码-信源熵
例2、 设有12枚同值硬币,其中有一枚为假币,且只知道假币
的重量与真币的重量不同,但不知究竟是轻是重。现采 用天平比较两边轻重的方法来测量(因无法码)。问至 少需要称多少次才能称出假币? 解:用天平每称一次能获得一定的信息量,能消除部分的不 确定性。测量若干次后,能消除全部不确定性,获得全部信 息,也就能确定出假币。 设“在12枚同值硬币中,某一枚为假币”该事件为a, p(a ) 1 / 12 则 p 又设“假币是重、或是轻”该事件为b,则(b) 1 / 2
(5)当X与Y相互独立时,
p( y j / xi ) p( y j ), p( xi / y j ) p( xi ), p( xi y j ) p( xi ) p( y j )
( 6) p( x i / y j ) p( x i y j )
p( x i y j )
i 1
n
p( y j / xi )
i 1 n j 1 i 1 j 1 i 1
n
m
n
m
n
p( xi y j ) p( y j ), p( xi y j ) p( xi )

第2章 信源熵 第1讲 自信息量 与 互信息量

第2章 信源熵 第1讲 自信息量 与 互信息量

余 映 云南大学
17/38
计算举例
• 对于 2n 进制的数字序列, 假设每一符号的出现完 全随机且概率相等,求任一符号的自信息量。 解:设任一码元 xi 出现概率为 p(xi),根据题意, p(xi) = 1/ 2n I (xi) = –log(1/ 2n) = n (bit) • 事件的自信息量只与其概率有关,而与它的取值 无关。
余 映 云南大学
18/38
信息量与不确定性的关系
• 信源中某一消息发生的不确定性越大,一旦它发生,并为 收信者收到后,消除的不确定性就越大,获得的信息也就 越大。 • 由于各种原因(例如噪声太大),收信者接收到受干扰的 消息后,对某信息发生的不确定性依然存在或者一点也未 消除时,则收信者获得较少的信息或者说一点也没有获得 信息。
余 映 云南大学 21/38
信息量与不确定性的关系
• 自信息量和不确定度的含义又有区别
– 不确定度只与事件的概率有关,是一个统计量,在静 态状态下也存在; – 自信息量只有该随机事件出现时才给出,不出现时不 给出,因此它是一个动态的概念。
余 映 云南大学
22/38
自信息的含义
• 在事件 xi 发生前:表示事件 xi 发生的不确定性。 • 在事件 xi 发生后:表示事件 xi 所提供的信息量。
余 映 云南大学
19/38
信息量与不确定性的关系
• 信息量的直观定义:
收到某消息获得的信息量=不确定性减少的量 =(收到此消息前关于某事件发生的不确定性) -(收到此消息后关于某事件发生的不确定性) • 在无噪声时,通过信道传输,可以完全不失真地收到消息, 收到此消息后关于某事件发生的不确定性完全消除,此项 为零。因此得 收到某消息获得的信息量 =收到此消息前关于某事件发生的不确定性 =信源输出的某消息中所含有的信息量

信息论第2章(信息量、熵及互信息量)PPT课件

信息论第2章(信息量、熵及互信息量)PPT课件
假设一条电线上串联了8个灯泡x这8个灯泡损坏的可能性是等概率的假设有也只有一个灯泡损坏用万用表去测量获得足够的信息量才能获知和确定哪个灯泡x损坏
信息论基础
The Basis of Information Theory
主题No2:信息量、熵和互信息量
在上一次课中我们提到香农对信息定性的 定义——事物运动状态或存在方式的不确定性 的描述。事实上,香农对信息不仅作了定性描 述,而且还进行了定量分析。
信源发出的消息常常是随机的,具有不确 定性。如果信源中某一消息的不确定性越大, 一旦发生,并为收信者收到,消除的不确定性 就越大,获得的信息也就越大。同时事件发生 的不确定性与事件发生的概率有关,概率越小, 不确定性就越大。
研究通信系统的目的就是要找到信息传输 过程的共同规律,以提高信息传输的可靠性、 有效性、保密性和认证性,以达到信息传输系 统最优化。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
I(X;Y)是一个用来衡量信道好坏的 非常好的工具。
计算条件熵的例子
例6 设一个二进制对称信道BSC:
其先验概率为p(0)=p(1)=1/2,试计算条 件熵. [解答]由已知条件得:
由条件熵的定义有:
结果表明,虽然每个字符的错误率只有 0.1,可导致整个信宿对信源的平均不确定 性达到了0.469,将近一半。可见通信系统 对信道的要求非常高。

信息论与编码_曹雪虹_PPT第二章

信息论与编码_曹雪虹_PPT第二章
信源描述与分类 离散信源的信息熵和互信息 离散序列信源的熵 连续信源的熵与互信息 冗余度
引言
有效性和可靠性是通信系统中研究的中 心问题,信息论是在信息可度量基础上, 研究有效地和可靠地传递信息的科学。因 此,概率论、随机过程是信息论研究的基 础和工具。
信源的数学模型 正如绪论中所述,在通信系统中收信者在未收到 消息以前,对信源发出什么消息是不确定的, 所以可用随机变量或随机矢量来描述信源输出 的消息。或者说,用概率空间来描述信源。 离散信源的数学模型就是离散型的概率空间:
信息量与不确定性: 信息是事物运动状态或存在方式的不确定性的 描述。那么 , 根据香农信息的定义,信息该如何度 量呢? 当人们收到一封E_Mail,或看了电视,到底得 到多少信息量呢?显然,信息量与不确定性消除的 程度有关。消除多少不确定性,就获得多少信息量 。那么,不确定性的大小能度量吗? 用数学的语言来讲,不确定性就是随机性,具 有不确定性的事件就是随机事件。因此,可以应用 研究随机事件的数学工具 —— 概率论来度量不确 定性的大小。简单地说,不确定性的大小可以直观 地看成是猜测某随机事件是否发生的难易程度。
连续参数马尔可夫链
马尔可夫过程
有限维概率分布(簇) 转移概率
绝对概率
极限分布
平稳分布
状态空间的性质
补1 马尔可夫过程的概念
补1.1 有关定义
随机过程马尔可夫性:(物理描述)
当随机过程在时刻 ti 所处的状态为已知的条件下,过 程在时刻 t(>ti)所处的状态,与过程在ti时刻以前的状态无 关,而仅与在ti时刻的状态有关。这种已知“现在”状态的 条件下,“将来”状态与“过去”状态无关的性质,称为 马尔可夫性或无后效性。 具有马尔可夫性或无后效性的随机过程,即是马尔可 夫过程。

信息论PPT第二章

信息论PPT第二章
2011-11-12
7
2.1 信源的数学模型及分类
B. N次扩展信源的信源空间 次扩展信源的信源空间
因为信源XN 的每一个消息[Xi],(i=1,2,…,N)均 因为信源 的每一个消息 , 均 由信源X的符号集 的符号集A:{a1,a2,…aq}中的 个符号组成, 中的N个符号组成 由信源 的符号集 中的 个符号组成, 所 以 , XN 的 某 一 个 具 体 符 号 α i 可 以 表 示 为 [αi]=(ai1,ai2,…aij…aiN) aij∈A:{a1,a2,…aq},这个关系 , 表明扩展信源的每个符号取值于同一个单符号信源 空间, 空间,A:{ a1,a2,…aq}。 。 因此扩展信源X 就有q 种不同的符号, 因此扩展信源 N就有 N 种不同的符号 , 可以表 示为 [XN ]: {[α1],[α2],…[αi],…[αqN]}; (i=1,2, qN)
X1 1 2 = P(x1) 1/4 1/4
H(x) - H(x1) = 1--获得1bit信息量 X2 1 2 3 4 5 6 7 = P(x2) 1/2 1/2 0 0 0 0 0 H(x1) - H(x2) =1 --获得1bit信息量 X3 = P(x3) 1 1 2 0 3 0 4 0 5 0 6 0 7 0
根据消息的不同的随机性质对信源进行分类: 根据消息的不同的随机性质对信源进行分类: 离散信源:信源输出的都是单个符号( 离散信源:信源输出的都是单个符号(或代 的消息, 码)的消息,它们符号集的取值是有限的或 可数的。 可数的。可用一维离散型随机变量X来描述这 些信源的输出。这样的信源称为~。 些信源的输出。这样的信源称为~。
H(x2) = log2 = 1(bit/符号)
8 H(x3) 0 = log1 = 0(bit/符号)

信息论基础第2章

信息论基础第2章


U
(t
,

)
a.e.

0,

a.e.
当t T /2时
U (t,) U (t,), 当 t T / 2时
这里,U (t, )为一周期性随机过程;
“a.e.”为almost everywhere, 几乎处处含义下相等(收敛)
2019/10/14
P.10
常用的展开式 (续):
类似于周期性确知信号,在时域内可做下列付氏级数展开:当 t T / 2 时,
b
a R(t1t2 ) (t2 )dt2 (t1 )
下面简要介绍积分方程的概念,所谓积分方程,是指未知函数在积 分号内的方程式,我们这里讨论的是最常见的线性积分方程。即一 般积分方程可写为:
b
a(x)(x) f (x) a K (x, )( )d
2019/10/14
对消息序列信源有:

UL
pu


U u1U unL p(u1) p(unL )

2019/10/14
P.5
2)实际信源 (续)
例:最简单L=3的三位PCM信源:这时L=3, n=2, 即i={0,1},则有:

U3 p(u)


U
000,U p03 ,
2019/10/14
P.14
常用的展开式 (续):


U
(t
,

)
a.e


ai ()i (t)


i 1
ቤተ መጻሕፍቲ ባይዱi
(
)
a.e

b
a U (t,)i (t)dt

信息论第二章ppt

信息论第二章ppt
1
特别,对于离散情形,记 xi 表示时刻t i 所取的值, { X (t )} 若 为平稳过程,则其各维联合概率分布均与 t i, t j,( i j) 时间起点无关,即当时 ,有 , P( x ) P( x ) ,
i j
P( xi xi1 ) P(x j x j 1 )
为描述随机过程在不同时刻的状态之间的统 计联系,一般可对任意个 n(n 2,3, ) 不同时 刻 t1, t2 , , tn T,引入 n 维随机变 量 ( X (t1 ), X (t2 ), , X (tn )) ,它的分布函数记为:
FX ( x1, x2 , , xn ; t1, t2 , , tn ) P{X (t1) x1, X (t2 ) x2 , , X (tn ) xn}, xi R, i 1,2, , n
当t1 t2 t
2
2 2 ( t ) C ( t , t ) R ( t , t ) X X X (t ) 时, X

如果对每一个 t T ,随机过程 {X (t ), t T }的二 阶矩 E[ X (t )] 都存在,则称它为二阶过程。二阶过 程的相关函数总存在。 例3. 求随机相位正弦波的均值函数、方差函 数和自过程
(1) 如果X (t ) E[ X (t )] X (t ) 以概率1成立,称随机过程{ X (t )} 的均值具有各态历经性; (2) 若对任意实数 ,RX ( ) E[ X (t) X (t )] X (t) X (t ) 以概率1成立,则称随机过程 {X (t )} 的自相关函数具有各 态历经性,特别当 0 时,称均方值具有各态历经 性; (3) 如果随机过程 { X (t )} 的均值和自相关函数都具有各 态历经性,则称 { X (t )}是各态历经过程,或称{ X (t )} 是各 态历经的。各态历经性有时也称作遍历性或埃尔谷德性。

第2章信源与信息熵

第2章信源与信息熵

1. 非负性 2. 对称性
n
pi 1,
i 1
pi 0
(i 1, 2,..., n)
3. 确定性
4. 连续性
5. 扩展性
6. 最大熵定理
7. 条件熵小于无条件熵
熵函数的非负性
H ( X ) H ( p1, p2 , , pn ) 0
0 pi 1, log pi 0
pi log pi 0
i
熵的物理意义
H(X)表示信源发出任何一个消息状态所携带的平均信 息量
也等于在无噪声条件下,接收者收到一个消息状态所获 得的平均信息量
熵的本意为热力学中表示分子状态的紊乱程度 信息论中熵表示信源中消息状态的不确定度 信源熵与信息量有不同的意义
H(X)表示信源X每一个状态所能提供的平均信息量 H(X)表示信源X在没有发出符号以前,接收者对信源的
第2章 信源与信息熵
主要内容 1. 信源的分类与描述 2. 离散信源的信息熵和互信息 3. 离散序列信源的熵 4. 连续信源的熵与互信息 5. 冗余度
2.1 信源的分类与描述
信源的定义
产生消息(符号)、消息序列和连续消息的来源。
信源的基本特性是具有随机不确定性
分类
1. 时间
离散
2. 幅度
离散
3. 记忆

பைடு நூலகம்
连续 连续 无
介绍三类信源
➢ 单符号离散信源 ➢ 符号序列信源(有记忆和无记忆) ➢ 连续信源
单符号离散信源
单符号离散信源:用随机变量X来描述
X的概率空间
X p(xi
)
X
x1, p1,
X x2, p2 ,
, X xn
,
pn

信息论与编码课件第二章

信息论与编码课件第二章
信源分类和描述
无记忆信源
X N N ( )N (X 1,X 2, ,X N ) N (X l) l 1
有记忆信源
p ( X l|X l 1 ,X l 2 , ,X l m )
信息的特性
事件(消息)的信息量大小与其不确定 度(概率)有关
事件概率越小,信息量越大 确定性事件的信息量为零,不可能事件
I (x ) y I (x ) I (y |x )p (x) yp (x )p (y|x )
I (x ;y ) I (x ) I (x |y ) I(x;y)loagp(px(x|)y) I (x ;y |z ) I (x |z ) I (x |y )z I (x ;y ) I (x ) I (y ) I (x )y
pX (x)0p
1 1p
离散信源信息熵的含义
H(X)表示信源的平均不确定度——平均 信息量
H(X)表示信源的随机性 H(X)表示信源输出每个符号所提供的平
均信息量 H(X)表示信宿所能获得的最大信息量
条件自信息量与条件熵
条件自信息量定义
I ( x|y ) = log 1 = - log p(x|y) p(x | y)
1
3
pXYZ (0,0,0) 8 , pXYZ (0,1,0) 8
3
1
pXYZ (1,0,0) 8 , pXYZ (1,1,1) 8
pXYZ (1,1,0) pXYZ (0,0,1) pXYZ (1,0,1) pXYZ (0,1,1) 0
根据上述概率分布函数,分别求得:
H ( X ) H (Y ) 1(bit )
I(x;y)loagp(px(x|)y)

设某班学生在一次考试中获优(A)、良(B)、中(C) 、及格(D)和不及格(E)的人数相等。当教师通知某甲 :“你没有不及格”,甲获得了多少比特信息?为确定自己 的成绩,甲还需要多少信息?

第二章信息量和熵d.ppt

第二章信息量和熵d.ppt
平均互信息与熵的关系: I(X;Y) ≤H(X) or H(Y)
平均互信息量
H(X)
H(X|Y)
I(X;Y)
H(Y)
H(Y|X)
平均条件互信息与联合互信息
I ( X ;Y
|
Z)
xyz
p(xyz) log
p(xy | z) p(x | z)
I(X ;Y | Z) H(X | Z) H(X | YZ)
I (xk ; y j3 | y j1 y j2 )
I (xk ; y j ) loga
p(xk | y j ) q(xk )
loga
p( y j | xk )
( y j )
I ( y j ; xk )
条件互信息和联合事件互信息
三个事件集的条件互信息定义为
I (u1;u2
| u3)
log
输出空间Y={yj,j=1,2,…,J},概率记为ω(yj)
联合空间XY={xkyj ;k=1,2,…,K;j=1,2,…,J}, 概率 为p(xkyj)
p(xkyj)= p(xk|yj)ω(yj)= p(yj|xk)q(xk)
非平均互信息量
例2.1.1
输入消息 码字
X1
000
X2
001
X3
第二章 信息量和熵
信息量和熵
2.1 离散变量的非平均信息量 2.2 离散集的平均自信息量-熵 2.3 离散集的平均互信息量 2.4 连续随机变量的互信息和熵 2.5 凸函数和互信息的凸性
2.1 离散变量的非平均信 息量
输入,输出空间定义
输入空间X={xk,k=1,2,…,K},概率记为q(xk)
I (xk
)
log

第2章信源及信源熵 145页PPT文档

第2章信源及信源熵 145页PPT文档

【例2.1】
设信源只有两个符号“0”和“1”,且它们以消 息的形式向外发送时均以等概率出现,求它们 各自的自信息量。
(二)不确定度d(ai)与自信息量I(ai) 两者的联系
数值上相等,单位也相等,但含义不同。
两者的区别
具有某种概率分布的随机事件,不管其发生与否, 都存在不确定度,不确定度是任何随机事件本身所 具有的属性。
信源空间:
X P(x)
a1 a2 … aN =
P(a1) P(a2) … P(aN)
显然有:
例:对于二进制数据、数字信源:X={0,1}, 若这两个符号是等概率出现的,则有:
X P(x)
a1 = 0a2 = 1 Nhomakorabea=
P(a1) =0.5 P(a2) = 0.5
(二)多符号离散信源
是发出符号序列的信源
一般来说,信源输出的随机序列的统计特性比较复杂,分析起来也比 较困难。为了便于分析,我们假设信源输出的是平稳的随机序列,也 就是序列的统计性质与时间的推移无关。很多实际信源也满足这个假 设。
若在信源输出的随机序列X= (X1,X2,…,XN)中,每个随机变 量Xi (i=1,2,…,N)都是取值离散的离散型随机变量,即每个随机变量 Xi的可能取值是有限的或可数的;而且随机矢量X的各维概率分布都 与时间起点无关,也就是在任意两个不同时刻随机矢量X的各维概率 分布都相同。这样的信源称为离散平稳信源。如中文自然语言文字, 离散化平面灰度图像都是这种离散型平稳信源。
离散无记忆信源
在某些简单的离散平稳信源情况下,信源先后发出的 一个个符号彼此是统计独立的。也就是说发出的信源 发出的符号是相互独立的,发出符号序列中各个符号 之间也是相互独立的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1/6 log6
2 1/2 log2
自信息量的涵义
自信息量代表两种含义: 一、事件x发生以前,I(x)表示事件x发生的不 确定性; 二、当事件x发生以后,I(x)表示事件x所提供 的信息量(在无噪情况下)。
在通信系统模型中,不仅可以用自信息量来 研究信源中的每个消息,对信宿也可同样可以。
自信息量计算的应用
yi
0
1
P(yi) 0.99 0.01
在现实中,能找到很多类似的模型,我们想 知道这两个信源本质的区别在哪里?
平均自信息量——熵的定义
设X是一个集合(即信息系统如信源或信 道),其概率模型为{xi,p(xi)},则定义系统X 的平均自信息量——熵为:
熵的单位是比特/符号. 我们知道,I(xi)是唯一确定xi所需要的信
信源熵
前面我们根据信源或信宿的概率模型,通过 自信息量的计算,能得到信源以及信宿中每个消 息的不确定性。然而,事实上,人们往往关注的 并不紧紧是每个消息的不确定性,而是整个系统 的不确定性的统计特性即整个信源自信息量的统 计平均值——熵。
我们先来看一个例子: 例3 有两个信源X和Y:
xi 0 1 P(xi) 0.5 0.5
显然,H(X)>>H(Y),这表示信源X的平均不稳 定性远远大于信源Y的平均不稳定性。
条件自信息量
前面我们引入自信息量以及熵的概念,用 以描述信源或信宿,事实上,信宿收到的消息 是与信源发出的消息密切相关。并且接受信息 与发送信息之间的关系往往是判定一个信道的 好坏的最佳标准。所以,我们需要引入互信息 量。在学习互信息量之前我们先来了解条件信 息量的概念。
单位为比特
量的定义得 由条件自信息
我们知道,在通信之前,消息x具有不确定 性p(x),其大小为x的自信息量:
I(x)=-log p(x)
当我们收到消息y,它是否由x发出也有一定的 不确定性p(x|y),其大小为条件自信息量:
I(x|y)=-log p(x|y)
两者之间的差就是我们通过这一次通信所 获得到的信息量的大小。
计算熵的例子
例4 计算下面一个信源的熵:
xi 000 001 010 011 100 101 110 111 q(xi) 1/4 1/4 1/8 1/8 1/16 1/16 1/16 1/16
[解]由定义有: (比特/符号)
我们再回过头来看一下例3中两个信源熵分 别是多少, 结果反映了一个怎样的事实? [例3解答]由定义有:
事实上,由概率论概率的乘积公式有:
故:
这样,用I(x;y)或I(y;x)记该差式, 称为x与y之间的互信息量,单位也为比特。
信息论基础
The Basis of Information Theory
主题No息定性的 定义——事物运动状态或存在方式的不确定性 的描述。事实上,香农对信息不仅作了定性描 述,而且还进行了定量分析。
信源发出的消息常常是随机的,具有不确 定性。如果信源中某一消息的不确定性越大, 一旦发生,并为收信者收到,消除的不确定性 就越大,获得的信息也就越大。同时事件发生 的不确定性与事件发生的概率有关,概率越小, 不确定性就越大。
例2:假设一条电线上串联了8个灯泡x1,x2,…,x8, 这8个灯泡损坏的可能性是等概率的,假设有也只 有一个灯泡损坏,用万用表去测量,获得足够的信 息量,才能获知和确定哪个灯泡xi损坏。下面就来 看我们最少需要获得多少信息量才能判断出。
[解]第一次测量获得的信息量: 第二次测量获得的信息量: 第三次测量获得的信息量: 故共需要3bit信息量.
同样,收到的消息为y具有不确定性p(y),其 大小为y的自信息量:
I(y)=-log p(y)
当我们发出消息x,它是否收到y也有一定的不 确定性p(y|x),其大小为条件自信息量:
I(y|x)=-log p(y|x)
两者之间的差也是我们通过这一次通信所 获得到的信息量的大小。
互信息量
很显然,从通信的角度来看,上述两个差 值应该相等,即:
(2)信息量应具有可加性:对于两个独立事件, 其信息量应等于各自信息量之和; (3)当p(x)=1时,I(x)=0:表示确定事件发生得 不到任何信息; (4)当p(x)=0时,I(x)=∞:表示不可能事件一旦 发生,信息量将无穷大。
自信息量的计算公式
综合上述条件,在概率上已经严格证明了
其中p(x)为消息的先验概率。 自信息量的单位:若这里的对数底取2,则
设消息x发出的先验概率为p(x),收到消 息y是由x发出的条件概率为p(x|y),则在收到y 是由x发出的条件自信息量I(x|y)定义为:
(比特)
计算条件自信息量的例子
例5 在二进制对称信道BSC中,若信道转移概 率矩阵为: 计算下列条件自信息量(若p(0)=p(1)=1): [解答]由已知条件可得:
息量,那么H(X)就是唯一确定X中任一事件所需 的平均信息量。它反映了X中事件xi出现的平均 不确定性。
熵的几条性质
(1)对称性:熵只和分布有关,不关心某一具 体事件对应哪个概率; (2)非负性:H(X)≥0;
(3)确定性:若离散事件是确定事件,则H(X)=0
(4)极值性——最大离散熵定理:设|X|为信 源消息的个数,则有H(X)小于等于log|X|,等 号当且仅当信源X中各消息等概率时成立,即 各消息等概率分布时( p=1/|X|),信源熵最大.
单位为比特bit,由于在计算机上是二进制,我 们一般都采用比特。其他单位以及相互之间转 换关系查阅教材。
计算自信息量的例子
例1:信源消息X={0,1,2} 的概率模型如下:
xi
0
1
2
P(xi) 1/3
1/6
1/2
则该信源各消息的自信息量分别为:
xi P(xi) I(xi)
单位:比特
0 1/3 log3
研究通信系统的目的就是要找到信息传输 过程的共同规律,以提高信息传输的可靠性、 有效性、保密性和认证性,以达到信息传输系 统最优化。
离散集自信息量的性质
因此,某事件x发生所提供的信息量I(x) 应该是该事件发生的先验概率p(x)的函数:
I(x)=f(p(x))
且应满足以下四点:
(1)I(x)应该是事件概率p(x)的单调递减函数;
相关文档
最新文档