甘肃省兰州市2021年中考数学试卷(I)卷
2021年数学中考试卷与答案
高中段招生统一考试 数学试卷卷 I一. 选择题(本题有10小题;每小题3分;共30分)1. 2的倒数是( ) A. 21 B.-21C. -2D. 0.22. 正方形是轴对称图形;它的对称轴共有( )A. 2条B. 3条C. 4条D. 6条3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 圆柱的底面半径为5cm;高为12cm;则该圆柱的侧面积等于( )A. 60cm 2B. 60πcm 2C. 120cm 2D. 120πcm 25. 如图;在Rt △ABC 中;∠C=90°;CD ⊥AB;垂足为D;AD=8;DB=2;则CD 的长为( )A. 4B. 16C. 25D. 456. 已知⊙O 1与⊙O 2的半径分别为5cm 和3cm;圆心距O 1O 2=7cm;则⊙O 1与⊙O 2的位置关系为( )A. 外离B. 外切C. 内切D. 相交7. 已知一元二次方程x 2+3x-4=0的两个根为x 1;x 2;则x 1·x 2的值是( )A. 4B. -4C. 3D. –38. 方程组⎩⎨⎧=++=-03212y x y x 的解是( )⎩⎨⎧-==⎩⎨⎧==⎩⎨⎧-=-=⎩⎨⎧=-=12012121y x D y x C y x B y x A9. 已知抛物线和直线l 在同一直角坐标系中的图象如图所示;抛物线的对称轴为直线x=-1;P 1(x 1;y 1);P 2(x 2;y 2)是抛物线上的点;P 3(x 3;y 3)是直线l 上的点;且-1<x 1<x 2;x 3<-1;则y 1;y 2;y 3的大小关系为( )A. y 1<y 2<y 3B. y 3<y 1<y 2C. y 3<y 2<y 1D. y 2<y 1<y 310. 小强拿了一张正方形的纸如图(1);沿虚线对折一次得图(2);再对折一次得图(3);然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角;再打开后的形状应是( )卷 II二. 填空题(本题有10小题;每小题3分;共30分)11. -1的相反数是 。
2021年甘肃省白银市、天水市、武威市、张掖市、平凉市、酒泉市、庆阳市、定西市、陇南市中考数学试卷
2021年甘肃省卷 数学一、选择题:本大题共10小题,每小题3分,共30分. 每小题只有一个正确选项. 1. 3的倒数是( ) A.-3B.3C.-13D.132. 2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是( )3. 下列运算正确的是( ) A.3+3=3B.45-5=4C.3×2=6D.32 ÷8 =44. 中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助. 预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献. 数据“50亿”用科学记数法表示为( )A.5×108B.5×109C.5×1010D.50×1085. 将直线y =5x 向下平移2个单位长度,所得直线的表达式为( ) A.y =5x -2B.y =5x +2C.y =5(x +2)D.y =5(x -2)6. 如图,直线DE ∥BF ,Rt △ABC 的顶点B 在BF 上, 若∠CBF =20°,则∠ADE =( ) A.70° B.60°C.75°D.80°7. 如图,点A ,B ,C ,D ,E 在⊙O 上,AB =CD ,∠AOB =42°, 则∠CED =( )A.48°B.24°C.22°D.21°8. 我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步. 问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( )A.⎩⎪⎨⎪⎧3(y -2)=x 2y -9=xB.⎩⎪⎨⎪⎧3(y +2)=x 2y +9=xC.⎩⎪⎨⎪⎧3(y -2)=x 2y +9=xD.⎩⎪⎨⎪⎧3(y -2)=x 2y +x =99. 对于任意的有理数a ,b ,如果满足a 2 +b 3 =a +b 2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ). 若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]=( )A.-2B.-1C.2D.310. 如图1,在△ABC 中,AB =BC ,BD ⊥AC 于点D (AD >BD ). 动点M 从A 点出发,沿折线AB →BC 方向运动,运动到点C 停止. 设点M 的运动路程为x ,△AMD 的面积为y ,y 与x 的函数图象如图2,则AC 的长为( )A.3B.6C.8D.9二、填空题:本大题共8小题,每小题3分,共24分. 11. 因式分解:4m -2m 2= .12. 关于x 的不等式13 x -1>12的解集是 .13. 关于x 的方程x 2-2x +k =0有两个相等的实数根,则k 的值是 .14. 开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如下表:体温(℃) 36.3 36.4 36.5 36.6 36.7 36.8 天数(天)233411这14天中,小芸体温的众数是 ℃.15. 如图,在矩形ABCD 中,E 是BC 边上一点,∠AED =90°, ∠EAD =30°,F 是AD 边的中点,EF =4cm ,则BE =cm.16. 若点A (-3,y 1),B (-4,y 2)在反比例函数y =a 2+1x的图象上,则y 1 y 2.(填“>”或“<”或“=”)17. 如图,从一块直径为4dm 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为 dm 2.18. 一组按规律排列的代数式:a +2b ,a 2-2b 3,a 3+2b 5,a 4-2b 7,…, 则第n 个式子是 .三、解答题:本大题共5小题,共26分. 解答时,应写出必要的文字说明、证明过程或演算步骤.19. (4分)计算:(2021-π)0+(12)-1-2cos45°.20. (4分)先化简,再求值:(2-2x x -2 )÷x 2-4x 2-4x +4,其中x =4.21. (6分)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理. 如图,已知AB ︵,C 是弦AB 上一点,请你根据以下步骤完成这个引理的作图过程. (1)尺规作图(保留作图痕迹,不写作法):①作线段AC 的垂直平分线DE ,分别交AB ︵于点D ,AC 于点E ,连接AD ,CD ;②以点D 为圆心,DA 长为半径作弧,交AB ︵于点F (F ,A 两点不重合),连接DF ,BD ,BF . (2)直接写出引理的结论:线段BC ,BF 的数量关系.22. (6分)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑. 宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”. 某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔CD 垂直于地面,在地面上选取A ,B 两处分别测得∠CAD 和∠CBD 的度数(A ,D ,B 在同一条直线上).数据收集:通过实地测量:地面上A ,B 两点的距离为58m ,∠CAD =42°,∠CBD =58°. 问题解决:求宝塔CD 的高度(结果保留一位小数).参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0,85,cos58°≈0.53,tan58°≈1.60.根据上述方案及数据,请你完成求解过程.23. (6分)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).四、解答题:本大题共5小题,共40分. 解答时,应写出必要的文字说明、证明过程或演算步骤.24. (7分)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E 五个等级,并绘制了如下不完整的统计图. 请结合统计图,解答下列问题:(1)本次调查一共随机抽取了名学生的成绩,频数分布直方图中m=;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?25. (7分)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计). 小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图2所示.(1)小刚家与学校的距离为m,小刚骑自行车的速度为m/min;(2)求小刚从图书馆返回家的过程中,y与x的函数表达式;(3)小刚出发35分钟时,他离家有多远?26. (8分)如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OA C.过圆心O作BC的平行线交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.27. (8分)问题解决:如图1,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF于点G.(1)求证:四边形ABCD是正方形;(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE =AF,∠AED=60°,AE=6,BF=2,求DE的长.28. (10分)如图,在平面直角坐标系中,抛物线y =12x 2+bx +c 与坐标轴交于A (0,-2),B (4,0)两点,直线BC :y =-2x +8交y 轴于点C.点D 为直线AB 下方抛物线上一动点,过点D作x 轴的垂线,垂足为G ,DG 分别交直线BC ,AB 于点E ,F .(1)求抛物线y =12 x 2+bx +c 的表达式;(2)当GF =12时,连接BD ,求△BDF 的面积;(3)①H 是y 轴上一点,当四边形BEHF 是矩形时,求点H 的坐标;②在①的条件下,第一象限有一动点P ,满足PH =PC +2,求△PHB 周长的最小值.甘肃省2021年中考数学试卷解析1.D 【解析】根据倒数的定义可知,3的倒数是13.2.B 【解析】A .不符合轴对称图形的定义,不合题意;B .符合轴对称图形的定义,符合题意;C .不符合轴对称图形的定义,不合题意;D .不符合轴对称图形的定义,不合题意.3.C 【解析】3+3=23,故A 选项错误;45-5=35,故B 选项错误;3×2=6,C 选项正确;32÷8=2,故D 选项错误.4.B 【解析】50亿即5000000000,故用科学记数法表示为5×109.5.A 【解析】直线y =5x 向下平移2个单位后所得直线的解析式为y =5x -2.6.A 【解析】∵在Rt △ABC 中,∠CBF =20°,∠ABC =90°,∴∠ABF =90°-∠CBF =90°-20°=70°,∵DE ∥BF ,∴∠ADE =∠ABF =70°.7.D 【解析】∵点A ,B ,C ,D ,E 在⊙O 上,AB =CD ,∠AOB =42°,∴AB ︵=CD ︵,∠CED =12∠AOB =12×42°=21°.8.C 【解析】设共有x 人,y 辆车,则⎩⎪⎨⎪⎧3(y -2)=x2y +9=x .9.A 【解析】∵(m ,n )是“相随数对”,∴m 2+n 3=m +n2+3,整理得9m +4n =0,∴3m +2[3m+(2n -1)]=3m +6m +4n -2=9m +4n -2=-2.10.B 【解析】根据函数图象可知,点M 的运动路程x =AB +BC =213,点 M 运动到点B 的位置时,△AMD 的面积y 达到最大值3,即△ABD 的面积为3.∵AB =BC ,BD ⊥AC ,∴AB =BC =13,AC =2AD ,12AD ·BD =3.∴AD 2+BD 2=AB 2=(13)2=13,2AD ·BD =12.∴AD 2+2AD ·BD +BD2=13+12=25,即(AD +BD )2=25,AD 2-2AD ·BD +BD 2=13-12=1,即(AD -BD )2=1.∵AD >BD ,∴AD +BD =5,AD -BD =1.两式相加,得2AD =6.∴AC =2AD =6.11. 2m (2-m ) 【解析】4m -2m 2=2m (2-m ).12.x >92 【解析】13x -1>12去分母,得2x -6>3, 移项,得2x >9,∴x >92.13. 1 【解析】根据一元二次方程根的判别式,可由方程有两个相等的实数根得b 2-4ac =4-4k =0,解得k =1.14. 36.6 【解析】根据表格数据可知众数是36.6 ℃.15. 6 【解析】∵∠AED =90°,F 是AD 边的中点,EF =4 cm ,∴AD =2EF =8, ∵∠DAE =30°,∴AE =AD ·cos 30°=8×32=43,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABE =90°,∴∠AEB =∠DAE =30°,∴BE =AE ·cos 30°=43×32=6. 16.< 【解析】∵a 2+1>0, ∴y =a 2+1x的图象在一,三象限,且在每一象限内,y 随x 的增大而减小,∵-3>-4, ∴y 1<y 2.17. 2π 【解析】如解图,连接AB , ∵∠ACB =90°,∴AB 为圆的直径,AB =4, ∴AC 2+BC 2=AB 2,AC =BC , ∴AC =BC =22.∴S =90°π×(22)2360°=2π.第17题解图18.a n +(-1)n +1·2b2n -1【解析】∵当n 为奇数时,(-1)n +1=1,当n 为偶数时,(-1)n+1=-1,∴第n 个式子是:a n+(-1)n +1·2b2n -1.19.解:(2021-π)0+(12)-1-2cos 45°=1+2-2×22=3- 2.20.解:原式=(2x -4x -2-2x x -2)·(x -2)2(x +2)(x -2)=-4x -2·x -2x +2=-4x +2,当x =4时,原式=-44+2=-23. 21.解:(1)作图如解图所示;第21题解图(2)结论:BC =BF .【解法提示】由作图可得:DE 是AC 的垂直平分线,DA =DF , ∴DA =DC =DF ,∴∠DAC =∠DCA ,AD ︵=FD ︵, ∴∠DBC =∠DBF ,∵四边形ABFD 是圆的内接四边形, ∴∠DAB +∠DFB =180°, ∵∠DCA +∠DCB =180°, ∴∠DFB =∠DCB , ∵DB =DB , ∴△DCB ≌△DFB , ∴BC =BF .小鹿提示:图画得这么标准,数量关系我一眼就看出来啦! 22.解:∵CD ⊥AB , 设CD =xm, 在Rt △ACD 中,AD =CD tan ∠CAD =x tan 42°=x 0.9,在Rt △CBD 中,BD =CDtan ∠CBD =xtan 58°=x1.6,∵AD +BD =AB , ∴x 0.9+x1.6=58, ∴125x =4176, 解得x ≈33.4.答:宝塔的高度约为33.4 m .23.解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右, ∴估计摸到红球的概率为0.75, 设白球有x 个,依题意得33+x =0.75.解得x =1.经检验:x =1是原分式方程的解,且符合题意, 所以箱子里可能有1个白球; (2)列表如下:或画树状图如解图:第23题解图由表格或树状图可知一共有16种等可能的结果,其中两次摸出的小球颜色恰好不同的有:(红1,白)、(红2,白)、(红3,白)、(白,红1)、(白,红2)、(白,红3)共6种.∴P (两次摸出的小球恰好颜色不同)=616=38.24.解:(1)200,16;【解法提示】B 等级人数40人,由扇形图可知B 等级的百分比为20%,∴本次调查一共随机抽取了40÷20%=200名学生的成绩,C 等级有200×25%=50人,∴m =200-40-50-70-24=16.(2)补全频数分布直方图如解图所示:第24题解图(3)C ;【解法提示】频数分布直方图已将数据从小到大排序,一共抽取了200个数据,根据中位数定义中位数位于第100,101两位置上成绩的平均数,16+40=56<100,16+40+50=106>101,∴中位数在C 等级内.(4)成绩80分以上的在D 、E 两等级中,人数为70+24=94人,占抽样的百分比为94÷200×100%=47%,全校共有2000名学生,成绩优秀的学生有2000×47%=940(人). 答:全校2000名学生中,估计成绩优秀的学生有940人.25.解:(1)3000,200;【解法提示】小刚骑自行车匀速从学校到图书馆,从起点3000 m 处的学校出发去5000 m 处的图书馆,∴小刚家与学校的距离为3000 m ,小刚骑自行车匀速行驶10分钟,从3000 m 走到5000 m ,行驶的路程为5000-3000=2000 m ,骑自行车的速度为2000÷10=200 m /min .(2)小刚从图书馆返回家的时间:5000÷200=25(min ). 总时间:25+20=45(min ).设返回时y 与x 的函数表达式为y =kx +b (k ≠0),把(20,5000),(45,0)代入得:⎩⎪⎨⎪⎧20k +b =500045k +b =0,解得:⎩⎪⎨⎪⎧k =-200b =9000,∴y =-200x +9000(20≤x ≤45); (3)小刚出发35分钟,即当x =35时,y =-200×35+9000=2000,答:此时他离家2000 m . 26. (1)证明:∵OA =OC , ∴∠OAC =∠OCA ,∵∠DCB =∠OAC , ∴∠OCA =∠DCB , ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠OCA +∠OCB =90°,∴∠DCB +∠OCB =90°,即∠OCD =90°, ∴OC ⊥DC ,又∵OC 是⊙O 的半径, ∴CD 是⊙O 的切线;小鹿提示:证明切线就等于证明垂直,直径所对的圆周角是直角,只要证角相等就可以啦! (2)解:∵BC ∥OE ,∴BD OB =CD CE ,即BD OB =46=23, ∴设BD =2x ,则OB =OC =3x ,OD =OB +BD =5x , ∵OC ⊥DC , ∴OC 2+CD 2=OD 2,∴(3x )2+42=(5x )2,解得x =1, ∴OC =3x =3.即⊙O 的半径为3, ∵BC ∥OE , ∴∠OCB =∠EOC , 在Rt △OCE 中,tan ∠EOC =EC OC =63=2, ∴tan ∠OCB =tan ∠EOC =2. 27.解:问题解决:(1)证明:如题图1,∵四边形ABCD 是矩形, ∴∠ABC =∠DAB =90°. ∴∠BAF +∠GAD =90°.∵DE⊥AF,∴∠ADG+∠GAD=90°.∴∠BAF=∠ADG.又∵AF=DE,∴△ABF≌△DAE,∴AB=AD.∴矩形ABCD是正方形;(2)解:△AHF是等腰三角形.理由如下:∵AB=AD,∠ABH=∠DAE=90°,BH=AE,∴△ABH≌△DAE,∴AH=DE.又∵DE=AF,∴AH=AF,即△AHF是等腰三角形;类比迁移:如解图,延长CB到点H,使得BH=AE=6,连接AH. ∵四边形ABCD是菱形,∴AD∥BC,AB=AD,∴∠ABH=∠BAD.∵BH=AE,∴△ABH≌△DAE.∴AH=DE,∠AHB=∠DEA=60°.又∵DE=AF,∴AH=AF.∵∠AHB=60°,∴△AHF是等边三角形,∴AH=HF,∴DE=AH=HF=HB+BF=AE+BF=6+2=8.第27题解图28.解:(1)∵抛物线y=12x2+bx+c过A(0,-2),B(4,0)两点,∴⎩⎪⎨⎪⎧c=-28+4b+c=0,解得⎩⎪⎨⎪⎧b=-32c=-2,∴y=12x2-32x-2;(2)∵B(4,0),∴OB=4.同理OA=2.又∵GF⊥x轴,OA⊥x轴,∴在Rt△BOA和Rt△BGF中,tan∠ABO=OAOB=GFGB,即24=12GB,∴GB=1,∴OG=OB-GB=4-1=3.当x=3时,y D=12×32-32×3-2=-2,∴D(3,-2),即GD=2.∴FD=GD-GF=2-12=32,∴S△BDF=12FD·BG=12×32×1=34;(3)①如解图,连接BH ,交EF 于点N . ∵四边形BEHF 是矩形, ∴EF =BH ,BN =NH =12BH .又∵EF ∥AC ,,∴BN NH =BFAF=1, ∴BG OG =BE CE =BFAF=1. ∵四边形BEHF 是矩形, ∴HF ∥BC . ∴CH AH =BFAF=1, ∵当x =0时,y C =8, ∴OC =8,∵AC =OC +AO =8+2=10, ∴CH =5,∴OH =OC -CH =8-5=3, ∴H (0,3);第28题解图②在Rt △OBH 中,HB =OH 2+OB 2=32+42=5, ∵PH =PC +2.∴C △PHB =PH +PB +HB =PC +2+PB +5=PC +PB +7,∴要使C △PHB 最小,就要PC +PB 最小. ∵PC +PB ≥BC ,∴当点P 在BC 上时,PC +PB =BC 为最小. 在Rt △OBC 中,BC =OC 2+OB 2=82+42=4 5. ∴△PHB 周长的最小值是45+7.。
(精品中考卷)甘肃省兰州市中考数学真题(解析版)
2022年甘肃省兰州市中考数学真题一、选择题1. 的结果是( )A. ±2B. 2C.D.【答案】B 【解析】表示4的算术平方根,根据算术平方根的定义即可求出结果.【详解】4的算术平方根是2=2, 故选B .【点睛】本题考查算术平方根的定义,比较基础,正确把握算术平方根的定义是解题的关键.2. 如图,直线a b ∥,直线c 与直线a ,b 分别相交于点A ,B ,AC b ⊥,垂足为C .若152∠=︒,则2∠=( )A. 52°B. 45°C. 38°D. 26°【答案】C 【解析】【分析】根据平行线的性质可得∠ABC =52°,根据垂直定义可得∠ACB =90°,然后利用直角三角形的两个锐角互余,进行计算即可解答. 【详解】解:∵a ∥b , ∴∠1=∠ABC =52°, ∵AC ⊥b , ∴∠ACB =90°, ∴∠2=90°-∠ABC =38°, 故选:C .【点睛】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键. 3. 下列分别是2022年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥运会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是( )A. B.C. D.【答案】D 【解析】【分析】在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形为轴对称图形.详解】解:A .不能沿一条直线折叠完全重合; B .不能沿一条直线折叠完全重合; C .不能沿一条直线折叠完全重合; D .能够沿一条直线折叠完全重合; 故选:D .【点睛】本题考查了轴对称图形的概念,关键在于熟练掌握轴对称图形的概念,并对选项作出正确判断.4. 计算:()22x y +=( ) A. 2244x xy y ++B. 2224x xy y ++C. 2242x xy y ++D.224x x +【答案】A 【解析】【分析】根据完全平方公式展开即可. 【详解】解:原式=2244x xy y ++ 故选:A .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.5. 如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )【A. 70°B. 60°C. 50°D. 40°【答案】C 【解析】【分析】由CD 是⊙O 的直径,根据直径所对的圆周角是直角,得出∠CAD =90°,根据直角三角形两锐角互余得到∠ACD 与∠D 互余,即可求得∠D 的度数,继而求得∠B 的度数.【详解】解:∵CD 是⊙O 的直径, ∴∠CAD =90°, ∴∠ACD +∠D =90°, ∵∠ACD =40°, ∴∠ADC =∠B =50°. 故选:C .【点睛】本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.6. 若一次函数21y x =+的图象经过点()13,y -,()24,y ,则1y 与2y 的大小关系是( ) A. 12y y <B. 12y y >C. 12y y ≤D.12y y ≥【答案】A 【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据-3<4即可得出结论. 【详解】解:∵一次函数y =2x +1中,k =2>0, ∴y 随着x 的增大而增大.∵点(-3,y 1)和(4,y 2)是一次函数y =2x +1图象上的两个点,-3<4, ∴y 1<y 2. 故选:A .【点睛】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象的增减性是解答此题的关键.7. 关于x 的一元二次方程2210kx x +-=有两个相等的实数根,则k =( )A. -2B. -1C. 0D. 1【答案】B 【解析】【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b 2−4ac =0,据此可列出关于k 的等量关系式,即可求得k 的值. 【详解】∵原方程有两个相等的实数根, ∴△=b 2−4ac =4−4×(−k )=0,且k ≠0; 解得1k =-. 故选:B .【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件. 8. 已知ABC DEF ∽△△,12AB DE =,若2BC =,则EF =( ) A. 4 B. 6C. 8D. 16【答案】A 【解析】【分析】根据相似三角形的性质得到AB BCDE EF=,代入求解即可. 【详解】解:∵ABC DEF ∽△△, ∴12AB BC DE EF ==,即212EF =, 解得4EF =. 故选:A .【点睛】此题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形性质.相似三角形性质:相似三角形对应边成比例,对应角相等.相似三角形的相似比等于周长比,相似三角形的相似比等于对应高,对应角平分线,对应中线的比,相似三角形的面积比等于相似比的平方.9. 无色酚酞溶液是一中常见常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( ) A.15B.25C.35D.45【答案】B 【解析】【分析】根据概率公式求解即可.【详解】解:∵酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色, ∵总共有5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色概率是:25. 故选:B .【点睛】此题考查了概率的知识,解题的关键是熟练掌握概率的求解方法. 10. 如图,菱形ABCD 对角线AC 与BD 相交于点O ,E 为AD 的中点,连接OE ,60ABC ∠=︒,BD =,则OE =( )A. 4B.C. 2【答案】C 【解析】【分析】根据菱形的性质得出AB AD DC BC ===,AC BD ⊥,再由AOD △直角三角形斜边上的中线等于斜边一半得出12OE AD =.利用菱形性质、直角三角形边长公式求出4=AD ,进而求出2OE =.【详解】ABCD 是菱形,E 为AD 的中点,AB AD DC BC ∴===,AC BD ⊥.∴AOD △是直角三角形,12OE AD =. 60ABC ∠=︒,BD =,113022ADO ADC ABC ∴∠=∠=∠=︒,1122OD BD ==⨯=22214AD AD OD -= ,即23124AD =, 4AD ∴=,114222OE AD ==⨯=.故选:C .【点睛】本题主要考查菱形、直角三角形的性质的理解与应用能力.解题关键是得出的的12OE AD =并求得4=AD .求解本题时应恰当理解并运用菱形对角线互相垂直且平分、对角相等,直角三角形斜边上的中线等于斜边一半的性质.11. 已知二次函数2245y x x =-+,当函数值y 随x 值的增大而增大时,x 的取值范围是( ) A. 1x < B. 1x > C. 2x < D. 2x >【答案】B 【解析】【分析】先将函数表达式写成顶点式,根据开口方向和对称轴即可判断. 【详解】解:∵()22245213y x x x =-+=-+ ∵开口向上,对称轴为x =1,∴x >1时,函数值y 随x 的增大而增大. 故选:B .【点睛】本题考查的是二次函数的图像与性质,比较简单,需要熟练掌握二次函数的图像与性质.12. 如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A. 24.25m πB. 23.25m πC. 23m πD.22.25m π【答案】D 【解析】【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可. 【详解】解:S 阴影=S 扇形AOD -S 扇形BOC=22120120360360OA OB ππ⋅⋅-=()22120360OA OB π-=()223 1.53π-=2.25π(m 2) 故选:D .【点睛】本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.二、填空题13. 因式分解:216a -=___________. 【答案】(4)(4)a a +- 【解析】【分析】利用平方差公式分解因式即可得. 【详解】解:原式224a =-,(4)(4)a a =+-,故答案为:(4)(4)a a +-.【点睛】本题考查了利用平方差公式分解因式,熟练掌握因式分解的方法是解题关键. 14. 如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是______.【答案】()4,1- 【解析】【分析】根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,然后根据点的坐标的表示方法写出黄河母亲像的坐标; 【详解】解:如图,根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系, ∴黄河母亲像的坐标是 ()4,1-. 故答案为:()4,1-.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征是解题的关键.15. 如图,在矩形纸片ABCD 中,点E 在BC 边上,将CDE △沿DE 翻折得到FDE V ,点F 落在AE 上.若3cm CE =,2AF EF =,则AB =______cm .【答案】 【解析】【分析】由将△CDE 沿DE 翻折得到△FDE ,点F 落在AE 上,可得EF =CE =3cm ,CD =DF ,∠DEC =∠DEF ,由矩形的性质得∠DFE =∠C =90°=∠DFA ,从而得AF =6cm ,AD =AE =9cm ,进而由勾股定理既可以求解。
2023年甘肃省兰州市中考数学真题(含解析)
2023年甘肃省兰州市中考数学真题学校:___________姓名:___________班级:___________考号:___________A .40︒B .50︒3.计算:255a aa -=-( )A .5a -B .5a +A .45︒B .60︒C .1105.方程213x =+的解是( )A .1x =B .=1x -C .x 6.如图1是一段弯管,弯管的部分外轮廓线如图220cm OA =,圆心角90AOB ∠=︒,则»=AB ( )A .20cm πB .10cmπ7.已知二次函数()2323y x =---,下列说法正确的是(A .对称轴为2x =-B .顶点坐标为是-38.关于x 的一元二次方程2x bx c ++=A .2021年新能源汽车月度销量最高是12月份,超过40万辆B .2022年新能源汽车月度销量超过50万辆的月份有6个C .相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了D .相对于2021年,2022年从5月份开始新能源汽车同比增长速度持续降低10.我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA OB =;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a b ∥.按以上作图顺序,若35MNO ∠=︒,则AOC ∠=( )A .35︒B .30︒C .25︒D .20︒11.一次函数1y kx =-的函数值y 随x 的增大而减小,当2x =时,y 的值可以是( )A .2B .1C .-1D .-212.如图,在矩形ABCD 中,点E 为BA 延长线上一点,F 为CE 的中点,以B 为圆心,BF 长为半径的圆弧过AD 与CE 的交点G ,连接BG .若4AB =,10CE =,则AG =( )A .2B .2.5C .3D .3.5二、填空题13.因式分解:2225x y -=______.14.如图,在ABCD Y 中,BD CD =,AE BD ⊥于点E ,若70C ∠=︒,则BAE ∠=______︒.15.如图,将面积为7的正方形针旋转,使OA,OD落在数轴上,______.16.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如下表:累计抛(1)求反比例函数kyx=与一次函数(2)当1OD=时,求线段BC的长.21.综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第分一个已知角.”即:作一个已知角的平分线,如图请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)22.如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD 高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD 位于垂直地面的基座BC 上,在平行于水平地面的A 处测得38BAC ∠=︒、53BAD ∠=︒,18m AB =.求“龙”字雕塑CD 的高度.(B ,C ,D 三点共线,BD AB ⊥.结果精确到0.1m )(参考数据:sin 380.62︒≈,cos380.79︒≈,tan 380.78︒≈,sin 530.80︒≈,cos530.60︒≈,tan 53 1.33︒≈)23.一名运动员在10m 高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB 的高度()m y 与离起跳点A 的水平距离()m x 之间的函数关系如图所示,运动员离起跳点A 的水平距离为1m 时达到最高点,当运动员离起跳点A 的水平距离为3m 时离水面的距离为7m .(1)求y 关于x 的函数表达式;(2)求运动员从起跳点到入水点的水平距离OB 的长.24.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CD OE ∥,直线CE 是线段OD 的垂直平分线,CE 分别交OD AD ,于点F ,G ,连接DE .(1)判断四边形OCDE 的形状,并说明理由;(2)当4CD =时,求EG 的长.25.某校八年级共有男生300人,为了解该年级男生排球垫球成绩和掷实心球成绩的情信息二:排球垫球成绩在D . 2025x ≤<这一组的是:20,20,21,21,21,22,22,23,24,24信息三:掷实心球成绩(成绩用y 表示,单位:米)的人数(频数)分布表如下:分组 6.0y < 6.0 6.8y ≤< 6.87.6y ≤<人数2m 10(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.27.在平面直角坐标系中,给出如下定义的距离等于图形M 上任意两点距离的最大值时,那么点例如:如图1,已知点()1,2A ,(3,2B 轴的“伴随点”.P 是直线EF :y x b =-+的“伴随点”.请直接写出b 的取值范围.28.综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,GD DF ⊥,AG DG ⊥,AG CF =.试猜想四边形ABCD 的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,AH CE ⊥于点H ,GD DF ⊥交AH 于点G ,可以用等式表示线段FH ,AH ,CF 的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD 中,E 是边AB 上一点,AH CE ⊥于点H ,点M 在CH 上,且AH HM =,连接AM ,BH ,可以用等式表示线段CM ,BH 的数量关系,请你思考并解答这个问题.参考答案:9.D【分析】根据折线图逐项分析即可得出答案.【详解】解:A 、2021年新能源汽车月度销量最高是12月份,超过40万辆,正确,本选项不符合题意;B 、2022年新能源汽车月度销量超过50万辆的月份有6个,正确,本选项不符合题意;C 、相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%,正确,本选项不符合题意;D 、相对于2021年,2022年从6月份开始新能源汽车同比增长速度持续降低,原说法错误,本选项不符合题意;故选:D .【点睛】此题考查了折线统计图,从折线统计图中获取数据做出分析,正确识别图中的数据是解题的关键.10.A【分析】证明35NMO MNO ∠=∠=︒,可得23570AOB ∠=⨯︒=︒,结合OA OB =,C 为AB 的中点,可得35AOC BOC ∠=∠=︒.【详解】解:∵35MNO ∠=︒,MO NO =,∴35NMO MNO ∠=∠=︒,∴23570AOB ∠=⨯︒=︒,∵OA OB =,C 为AB 的中点,∴35AOC BOC ∠=∠=︒,故选A .【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.11.D【分析】根据一次函数的增减性可得k 的取值范围,再把2x =代入函数1y kx =-,从而判断函数值y 的取值.【详解】∵一次函数1y kx =-的函数值y 随x 的增大而减小∴0k <∴当2x =时,211y k =-<-【点睛】本题考查的是全等三角形的判定与性质,知角的角平分线,理解题意,熟练的作角的平分线是解本题的关键.22.“龙”字雕塑CD的高度为△和【分析】在Rt ABC△【详解】解:在Rt ABC∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,∴DB DF =,∴224FG DG DB ===.【点睛】本题考查了切线的判定,等腰三角形的性质与判定,圆周角定理,熟练掌握以上知识是解题的关键.27.(1)()3,0P (2)2(3)11b -≤≤【分析】(1)过点P 作PQ EF ⊥于点Q ,根据新定义得出2PQ =,根据已知得出30TGO ∠=︒,则24GP PQ ==,即可求解;(2)当P 到x 轴的距离最小时,点P 在线段BC 上,设ABC 的边长为a ,以C 为圆心a 为半径作圆,当C 与x 轴相切时,如图所示,切点为H ,此时点P 是直线EF :x 轴的“伴随∵()1,0A ,()3,0B ,则2AB =,点P ∴2PQ =,∵()1,0G -,30,3T ⎛⎫ ⎪ ⎪⎝⎭,∴313OG TO ==,,则C 的纵坐标为a ,即CH =∵ABC 是等边三角形,且BC ∴BD DC =12a =,∴1,2C a a ⎛⎫ ⎪⎝⎭,∵5=OC ,∵()1,0A ,()2,0B ,()2,1C ∴1AB =,22AC AB ==,∵()1,0A ,()2,1C 设直线AC 的解析式为y mx =∠=∠,∵BEH AEC。
初中数学 2024年甘肃省兰州市安宁区中考数学模拟试卷(一)
2024年甘肃省兰州市安宁区东方学校中考数学模拟试卷(一)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.A.B.C.D.1.(3分)《国家宝藏》节目立足于中华文化宝库资源.通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是( )A.a5b5B.a4b5C.ab5D.a5b62.(3分)计算(a2b)3•的结果是( )b2aA.B.C.D.3.(3分)不等式组的解集在数轴上可以表示为( ){-x≤-1x<3A.4b(b-a)+a2B.(2b-a)2C.(2b-a)(2b-a)D.(2b+a)24.(3分)因式分解4b2-4ab+a2正确的是( )A.130°B.140°C.150°D.160°5.(3分)如图是路政工程车的工作示意图,工作篮底部与支撑平台平行.若∠1=30°,∠2=50°,则∠3的度数为( )A .3-B .-2C .-1D .3-6.(3分)如图的数轴上,点A ,C 对应的实数分别为1,3,线段AB ⊥AC 于点A ,且AB 长为1个单位长度,若以点C 为圆心,BC 长为半径的弧交数轴于0和1之间的点P ,则点P 表示的实数为( )M 5M 5M 5M 10A .1B .2C .1.5D .07.(3分)若一次函数y =(k -1)x -2的函数值y 随x 的增大而减小,则k 值可能是( )A .B .C .D .8.(3分)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( ){x +5y =35x +y =2{5x +y =3x +5y =2{5x =y +3x =5y +2{5x =y +2x =5y +3A .k <4B .k ≤4且k ≠3C.k >4D .k ≤49.(3分)已知二次函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .扇形统计图中“自驾”所对应的扇形的圆心角是120°D .样本中选择公共交通出行的有2500人10.(3分)五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )11.(3分)如图,将正方形ABCD 绕着点A 逆时针旋转得到正方形AEFG ,点B 的对应点E 落在正方形ABCD 的对角线AC 上,D =1,则CF的长为( )A二、填空题:本大题共4小题,每小题3分,共12分.A .B .C .D .π√28π√24π8π4A .1B .C .2D .2.512.(3分)如图,在Rt △ABC 中,∠ACB =90°,AD 为中线,E 为AD 的中点,F 为BE 的中点,连结DF .若AC =4,DF ⊥BE ,则DF 的长为( )M 3M 313.(3分)函数y =的自变量x 的取值范围是 .M x -1214.(3分)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《子》的概率是.15.(3分)如图,△ABC 与△DEF 是位似图形,点O 为位似中心,OC :CF =1:2.若△ABC 的周长为4,则△DEF 的周长是.16.(3分)已知正方形ABCD 的边长为4,若G 为AB 的中点,连接DG 交正方形的对角线AC 于点E ,F 是DG 延长线上一点,FB ⊥BE ,则AF 的长是.三、解答题:本大题共12小题,共72分.解答时写出必要的文字说明、证明过程或演算步骤.17.(4分)计算:2+-.M 813M 1834M 3218.(4分)解方程:-1=.y y -12y3y -319.(4分)先化简,再求值:[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =-1.5.20.(5分)请阅读下列材料,完成相应的任务:有这样一个题目:设有两只电阻,分别为R 1和R 2,问并联后的电阻值R 是多少?我们可以利用公式=+,求得R 的值,也可以设计一种图形直接得出结果,具体如下:如图①,在直线l 上任取两点A 、B ,分别过点A 、B 作直线l 的垂线,并在这两条垂线上分别截取AC =R 1,BD =R 2,且点C ,D 位线l 的同侧,连接AD 、BC ,交于点E ,过点E 作EF ⊥直线1,则线段EF 的长度就是并联后的电阻值R .证明:∵EF ⊥l ,CA ⊥l ,∴∠EFB =∠CAB =90°,又∵∠EBF =∠CBA ,∴△EBF ∽△CBA (依据1),∴=(依据2).同理可得:=,∴+=+,∴1=+,∴=+,即:=+.任务:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:;(2)如图②,两个电阻并联在同一电路中,已知R 1=3千欧,R 2=6千欧,总阻值R =千欧;(3)请仿照①的作图过程在图③中(1个单位长度代表1千欧,例:AB =CD =9千欧)画出(2)中表示该电路图中总阻值R 段长;用无刻度直尺和圆规将所给图形补充完整.(保留作图痕迹,不写作法)1R 1R 11R 2BF AB EF ACAF AB EFBDBF AB AF AB EF AC EFBDEF ACEF BD 1EF 1AC 1BD 1R 1R 11R 221.(5分)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y (单位:cm ),宽x (单位:cm )的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶的长宽比 3.8 3.7 3.5 3.4 3.8 4.0 3.6 4.0 3.6 4.0荔枝树叶的长宽比2.02.02.02.41.81.91.82.01.31.9【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽比 3.74m 4.00.0424荔枝树叶的长宽比 1.912.0n0.0669【问题解决】(1)上述表格中:m =,n =;(2)①A 同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B 同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm ,宽5.6cm 的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.22.(7分)在平面直角坐标系中,已知k 1k 2≠0,设函数=与函数y 2=k 2(x -2)+3的图象交于点A ,B .已知点A 的横坐标是2,点B 的纵坐标是-1.(1)求k 1,k 2的值.(2)连接OA 并延长至点P ,使得OA =AP ,过点P 作x 轴的垂线,交x 轴于点C ,交y 1的图象于点D ,连接OD .设△OPD 的面积为S 1,△OCD 的面积为S 2,求的值.y 1k 1x S 1S 223.(6分)实验是培养学生的创新能力的重要途径之一.如图是小红同学安装的化学实验装置,安装要求为试管略向下倾斜管夹应固定在距试管口的三分之一处.已知试管,AB =30cm ,BE =AB ,试管倾斜角α为10°.(1)求酒精灯与铁架台的水平距离CD 的长度;(2)实验时,当导气管紧贴水槽MN ,延长BM 交CN 的延长线于点F ,且MN ⊥CF (点C ,D ,N ,F 在一条直线上),经测得:D 1.7cm ,MN =8cm ,∠ABM =145°,求线段DN 的长度.(参考数据:sin 10°≈0.17,cos 10°≈0.98,tan 10°≈0.18)1324.(7分)如图,在△ABC 中,AB =AC .以AB 为直径的⊙O 与BC 交于点E ,与AC 交于点D ,点F 在边AC 的延长线上,且∠CBF =∠BAC .12(1)试说明FB 是⊙O 的切线;(2)过点C 作CG ⊥AF ,垂足为C .若CF =4,BG =3,求⊙O 的半径.25.(7分)如图,将⏥ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交BC 于点F .(1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,判断四边形BECD 的形状并给出证明.26.(6分)小明发现某乒乓球发球器有“直发式”与“间发式”两种模式,在“直发式”模式下,球从发球器出口到第一次接触台运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接面到第二次接触台面的运动轨迹近似为一条抛物线.如图1和图2分别建立平面直角坐标系xOy .通过测量得到球距离台面高度y (单位:dm )与球距离发球器出口的水平距离x (单位:dm )的相关数据,如下表所示:表1 直发式x (dm )024********…y (dm ) 3.843.9643.96m3.642.561.44…表2 间发式x (dm )024681012141618y (dm )3.36n1.680.841.402.4033.203根据以上信息,回答问题:(1)表格中m =,n =;(2)求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;(3)若“直发式”模式下球第一次接触台面时距离出球点的水平距离为d 1,“间发式”模式下球第二次接触台面时距离出球点的平距离为d 2,则d 1d 2(填“>”“=”或“<”).27.(8分)旋转是几何图形中最基本的图形变换之一,利用旋转可将分散的条件相对集中,以达到解决问题的目的.【探究发现】如图①,在等边三角形ABC 内部有一点P ,PA =2,PB =,PC =1,求∠BPC 的度数,爱动脑筋的小明发现:段BP 绕点B 逆时针旋转60°得到线段BP ′,连结AP ′、PP ′,则△BPC ≌△BP ′A ,然后利用△BPP ′和△APP ′形状的特殊性求出P ′A 的度数,就可以解决这道问题.下面是小明的部分解答过程:解:将线段BP 绕点B 逆时针旋转60°得到线段BP ′,连结AP ′、PP ′,∵BP =BP ′,∠P ′BP =60°,∴△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB =.∵△ABC 是等边三角形,M 3M 3∴∠ABC =60°,BC =BA ,∴∠ABC -∠ABP =∠P ′BP -∠ABP ,即∠PBC =∠P ′BA .(1)请你补全余下的解答过程.【类比迁移】(2)如图②,在正方形ABCD 内有一点P ,且PA =,PB =2,PC =1,求∠BPC 的度数.【拓展延伸】(3)如图③,在②的条件下,若正方形ABCD 的边长为2,则线段PD 的最小值为.M 17√228.(9分)在平面直角坐标系xOy 中,⊙O 的半径为1,对于直线l 和线段PQ ,给出如下定义:若线段PQ 关于直线l 的对称图形是⊙O 的弦P ′Q ′(P ′,Q ′分别为P ,Q 的对应点),则称线段PQ 是⊙O 关于直线l 的“对称弦”.(1)如图,点A 1,A 2,A 3,B 1,B 2,B 3的横、纵坐标都是整数.线段A 1B 1,A 2B 2,A 3B 3中,是⊙O 关于直线y =x +1的“对称弦”的是 ;(2)CD 是⊙O 关于直线y =kx (k ≠0)的“对称弦”,若点C 的坐标为(-1,0),且CD =1,求点D 的坐标;(3)已知直线y =-x +b 和点M (3,2),若线段MN 是⊙O 关于直线y =-x +b 的“对称弦”,且MN =1,直接写值.M 33M 3M 33。
2023年甘肃省兰州市中考数学真题(解析版)
2023年兰州市初中学业水平考试数 学注意事项:1.全卷共120分,考试时间120分钟.2.考生必须将姓名、准考证号、考场号、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.一、选择题(本大题共12小题,每小题3分,共36分)1. -5的相反数是( )A. 15- B. 15 C. 5 D. -5【答案】C【解析】【分析】根据相反数的定义解答即可.【详解】-5的相反数是5.故选C .【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键.2. 如图,直线AB 与CD 相交于点O ,则BOD Ð=( )A. 40°B. 50°C. 55°D. 60°【答案】B【解析】【分析】利用对顶角相等得到BOD AOC Ð=Ð,即可求解.【详解】解:读取量角器可知:50AOC Ð=°,∴50BOD AOC Ð=Ð=°,故选:B .【点睛】本题考查了对顶角相等,量角器读数,是基础题.3. 计算:255a a a -=-( )A. 5a - B. 5a + C. 5 D. a【答案】D【解析】【分析】分子分解因式,再约分得到结果.【详解】解:255a a a --()55a a a -=-a =,故选:D .【点睛】本题考查了约分,掌握提公因式法分解因式是解题的关键.4. 如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中.如图2是八角形空窗的示意图,它的一个外角1Ð=( )A. 45°B. 60°C. 110°D. 135°【答案】A【解析】【分析】由正八边形的外角和为360°,结合正八边形的每一个外角都相等,再列式计算即可.【详解】解:∵正八边形的外角和为360°,∴3601=458°Ð=°,故选A【点睛】本题考查的是正多边形的外角问题,熟记多边形的外角和为360°是解本题的关键.5. 方程213x =+的解是( )A. 1x = B. =1x - C. 5x = D. 5x =-【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得解.【详解】解:去分母得:23x =+,解得=1x -,经检验=1x -是分式方程的解.故选:B .【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解题的关键.6. 如图1是一段弯管,弯管的部分外轮廓线如图2所示是一条圆弧 AB ,圆弧的半径20cm OA =,圆心角90AOB Ð=°,则»=AB ( )A. 20cmp B. 10cm p C. 5cm p D. 2cmp 【答案】B【解析】【分析】根据弧长公式求解即可.【详解】解:弧的半径20cm OA =,圆心角90AOB Ð=°,∴»902010180AB p p ´==,故选:B .【点睛】题目主要考查弧长公式,熟练掌握运用弧长公式是解题关键.7. 已知二次函数()2323y x =---,下列说法正确的是( )A. 对称轴为2x =- B. 顶点坐标为()2,3 C. 函数的最大值是-3 D. 函数的最小值是-3【答案】C【解析】【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x =,顶点坐标为()2,3-∵30-<∴二次函数图象开口向下,函数有最大值,为=3y -∴A 、B 、D 选项错误,C 选项正确故选:C【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数图象和性质是解题的关键.8. 关于x 的一元二次方程20x bx c ++=有两个相等的实数根,则()2212b c -+=( )A. -2B. 2C. -4D. 4【答案】A【解析】【分析】由一元二次方程根的情况可得240b c -=,再代入式子即可求解.【详解】∵关于x 的一元二次方程20x bx c ++=有两个相等的实数根∴240b c D =-=∴()2221242022b c b c -+=--=-=-,故选:A .【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.9. 2022年我国新能源汽车销量持续增长,全年销量约为572.6万辆,同比增长91.7%,连续8年位居全球第一.下面的统计图反映了2021年、2022年新能源汽车月度销量及同比增长速度的情况.(2022年同比增长速度20222021100%2021-=´年当月销量年当月销量年当月销量)根据统计图提供的信息,下列推断不合理的是( )A. 2021年新能源汽车月度销量最高是12月份,超过40万辆B. 2022年新能源汽车月度销量超过50万辆的月份有6个C. 相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%D. 相对于2021年,2022年从5月份开始新能源汽车同比增长速度持续降低【答案】D【解析】【分析】根据折线图逐项分析即可得出答案.【详解】解:A 、2021年新能源汽车月度销量最高是12月份,超过40万辆,推断合理,本选项不符合题意;B 、2022年新能源汽车月度销量超过50万辆月份有6个,推断合理,本选项不符合题意;C 、相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%,推断合理,本选项不符合题意;D 、相对于2021年,2022年从6月份开始新能源汽车同比增长速度持续降低,原说法推断不合理,本选项符合题意;故选:D .【点睛】此题考查了折线统计图,从折线统计图中获取数据做出分析,正确识别图中的数据是解题的关键.10. 我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M,的N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA OB =;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a b ∥.按以上作图顺序,若35MNO Ð=°,则AOC Ð=( )A. 35°B. 30°C. 25°D. 20°【答案】A【解析】【分析】证明35NMO MNO Ð=Ð=°,可得23570AOB Ð=´°=°,结合OA OB =,C 为AB 的中点,可得35AOC BOC Ð=Ð=°.【详解】解:∵35MNO Ð=°,MO NO =,∴35NMO MNO Ð=Ð=°,∴23570AOB Ð=´°=°,∵OA OB =,C 为AB 的中点,∴35AOC BOC Ð=Ð=°,故选A .【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.11. 一次函数1y kx =-的函数值y 随x 的增大而减小,当2x =时,y 的值可以是( )A. 2B. 1C. -1D. -2【答案】D【解析】【分析】根据一次函数的增减性可得k 的取值范围,再把2x =代入函数1y kx =-,从而判断函数值y 的取值.【详解】∵一次函数1y kx =-的函数值y 随x 的增大而减小∴0k <∴当2x =时,211y k =-<-故选:D【点睛】本题考查一次函数的性质,不等式的性质,熟悉一次函数的性质是解题的关键.12. 如图,在矩形ABCD 中,点E 为BA 延长线上一点,F 为CE 的中点,以B 为圆心,BF 长为半径的圆弧过AD 与CE 的交点G ,连接BG .若4AB =,10CE =,则AG =( )A. 2B. 2.5C. 3D. 3.5【答案】C【解析】【分析】利用直角三角形斜边中线的性质求得5BG BF ==,在Rt ABG △中,利用勾股定理即可求解.【详解】解:∵矩形ABCD 中,∴90ABC BAC Ð=Ð=°,∵F 为CE 的中点,10CE =,∴152BG BF CE ===,在Rt ABG △中,3AG ===,故选:C.【点睛】本题考查了矩形的性质,直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线的长等于斜边的一半”是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)13. 因式分解:2225x y -=______.【答案】()()55x y x y +-【解析】【分析】直接利用平方差分解即可.【详解】解:()()222555x y x y x y -=+-.故答案为:()()55x y x y +-.【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式.14. 如图,在ABCD Y 中,BD CD =,AE BD ^于点E ,若70C Ð=°,则BAE Ð=______°.【答案】50【解析】【分析】证明70DBC C Ð=Ð=°,18027040BDC Ð=°-´°=°,由AB CD ∥,可得40ABE BDC Ð=Ð=°,结合AE BD ^,可得904050BAE Ð=°-°=°.【详解】解:∵BD CD =,70C Ð=°,∴70DBC C Ð=Ð=°,18027040BDC Ð=°-´°=°,∵ABCD Y ,∴AB CD ∥,∴40ABE BDC Ð=Ð=°,∵AE BD ^,∴904050BAE Ð=°-°=°;故答案为:50【点睛】本题考查的是等腰三角形的性质,平行四边形的性质,三角形的内角和定理的应用,熟记基本几何图形的性质是解本题的关键.15. 如图,将面积为7的正方形OABC 和面积为9的正方形ODEF 分别绕原点O 顺时针旋转,使OA ,OD 落在数轴上,点A ,D 在数轴上对应的数字分别为a ,b ,则b a -=______.【答案】3【解析】【分析】分别求出两个正方形的边长,从而得到a ,b 的值,代入计算即可.【详解】∵正方形OABC 的面积为7,正方形ODEF 的面积为9∴OA =3OD ==即a =,3b =∴3b a -=故答案为:3【点睛】本题考查算术平方根的意义,在数轴上表示实数,正确求出算术平方根是解题的关键.16. 某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如下表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872850盖面朝上频率0.56000.54000.53000.52670.52800.52700.52800.52900.5300下面有三个推断:①通过上述实验的结果,可以推断这枚瓶盖有很大的可能性不是质地均匀的;②第2000次实验的结果一定是“盖面朝上”;③随着实验次数的增大,“盖面朝上”的概率接近0.53.其中正确的是______.(填序号)【答案】①③【解析】【分析】根据表中数据及频率估计概率依次判断即可.【详解】解:①通过上述实验的结果,发现盖面朝上的次数多与累计次数的一半,可以推断这枚瓶盖有很大的可能性不是质地均匀的,故正确;②实验是随机的,第2000次实验的结果不一定是“盖面朝上”,故错误;③随着实验次数的增大,“盖面朝上”的概率接近0.53,故正确.故答案为:①③.【点睛】题目主要考查频率估计概率,结合表中数据求解是解题关键.三、解答题(本大题共12小题,共72分)17..【解析】【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=-.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.18. 计算:()()()2234x y x y y y +---.【答案】23x y-【解析】【分析】先计算平方差公式及单项式乘以多项式,然后计算加减法即可.【详解】解:()()()2234x y x y y y +---222=434x y y y --+23x y =-.【点睛】题目主要考查整式的乘法运算及加减运算,熟练掌握运算法则是解题关键.19. 解不等式组:312(1)223x x x x ->+ìï+í>-ïî.【答案】34x <<【解析】【分析】分别解不等式组中的两个不等式,再取两个不等式的解集的公共部分即可.【详解】解:312(1)223x x x x ->+ìïí+>-ïî①②,由①得:32>21x x -+,解得:>3x ,由②得:2>36x x +-,解得:4x <,∴不等式组的解集为:34x <<.【点睛】本题考查的是一元一次不等式组是解法,掌握解一元一次不等式组的方法与步骤是解本题的关键.20. 如图,反比例函数()0ky x x=<与一次函数2y x m =-+的图象交于点()1,4A -,BC y ^轴于点D ,分别交反比例函数与一次函数的图象于点B ,C .(1)求反比例函数ky x=与一次函数2y x m =-+的表达式;(2)当1OD =时,求线段BC 的长.【答案】(1)反比例函数的表达式为4y x=-;一次函数的表达式为22y x =-+; (2)142BC =.【解析】【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的表达式为1y =,再分别求得B C 、的坐标,据此即可求解.【小问1详解】解:∵反比例函数()0ky x x=<的图象经过点()1,4A -,∴144k =-´=-,∴反比例函数的表达式为4y x=-;∵一次函数2y x m =-+的图象经过点()1,4A -,∴()421m =-´-+,∴2m =,∴一次函数的表达式为22y x =-+;小问2详解】解:∵1OD =,【∴()01D ,,∴直线BC 的表达式为1y =,∵1y =时,14x=-,解得4x =-,则()41B -,,∵1y =时,122x =-+,解得12x =,则112C æöç÷èø,,∴()114422BC =--=.【点睛】本题考查一次函数、反比例函数图象上点的坐标特征,待定系数法是求函数解析式的基本方法.21. 综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB Ð的平分线.请写出OE 平分AOB Ð的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE V 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB Ð的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB Ð的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)【答案】(1)SSS ;(2)证明见解析;(3)作图见解析;【解析】【分析】(1)先证明()SSS OCE ODE V V ≌,可得AOE BOE Ð=Ð,从而可得答案;(2)先证明()SSS OCM OCN V V ≌,可得AOC BOC Ð=Ð,可得OC 是AOB Ð的角平分线;(3)先作BAC Ð的角平分线,再在角平分线上截取AE AD =即可.【详解】解:(1)∵OC OD =,CE DE =,DE DE =,∴()SSS OCE ODE V V ≌,∴AOE BOE Ð=Ð,∴OE 是AOB Ð的角平分线;故答案为:SSS(2)∵OM ON =,CM CN =,OC OC =,∴()SSS OCM OCN V V ≌,∴AOC BOC Ð=Ð,∴OC 是AOB Ð的角平分线;(3)如图,点E 即为所求作的点;.【点睛】本题考查的是全等三角形的判定与性质,角平分线的定义与角平分线的性质,作已知角的角平分线,理解题意,熟练的作角的平分线是解本题的关键.22. 如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD 高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD 位于垂直地面的基座BC 上,在平行于水平地面的A 处测得38BAC Ð=°、53BAD Ð=°,18m AB =.求“龙”字雕塑CD 的高度.(B ,C ,D 三点共线,BD AB ^.结果精确到0.1m )(参考数据:sin 380.62°»,cos380.79°»,tan 380.78°»,sin 530.80°»,cos530.60°»,tan 53 1.33°»)【答案】“龙”字雕塑CD 的高度为9.9m .【解析】【分析】在Rt ABC △和Rt △ABD 中,分别求得BC 和BD 的长,据此求解即可.【详解】解:在Rt ABC △中,18m AB =,38BAC Ð=°,∴()tan 380.781814.04m BC AB =°»´=,在Rt △ABD 中,18m AB =,53BAD Ð=°,∴()tan 53 1.331823.94m BD AB =°»´=,∴()23.9414.049.9m CD BD BC =-=-=,答:“龙”字雕塑CD 的高度为9.9m .【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23. 一名运动员在10m 高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB 的高度()m y 与离起跳点A 的水平距离()m x 之间的函数关系如图所示,运动员离起跳点A 的水平距离为1m 时达到最高点,当运动员离起跳点A 的水平距离为3m 时离水面的距离为7m .(1)求y 关于x 的函数表达式;(2)求运动员从起跳点到入水点的水平距离OB 的长.【答案】(1)y 关于x 的函数表达式为2210y x x =-++; (2)运动员从起跳点到入水点的水平距离OB的长为(1m .【解析】【分析】(1)由题意得抛物线的对称轴为1x =,经过点()010,,()37,,利用待定系数法即可求解;(2)令0y =,解方程即可求解.【小问1详解】解:由题意得抛物线的对称轴为1x =,经过点()010,,()37,,设抛物线的表达式为2y ax bx c =++,∴1210937b a c a b c ì-=ïï=íï++=ïî,解得1210a b c =-ìï=íï=î,∴y 关于x 的函数表达式为2210y x x =-++;【小问2详解】解:令0y =,则22100x x -++=,解得1x =±,∴运动员从起跳点到入水点的水平距离OB的长为(1m +.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握运用待定系数法求抛物线的解析式是解题的关键.24. 如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CD OE ∥,直线CE 是线段OD 的垂直平分线,CE 分别交OD AD ,于点F ,G ,连接DE .(1)判断四边形OCDE 的形状,并说明理由;(2)当4CD =时,求EG 的长.【答案】(1)四边形OCDE 是菱形,理由见解析 (2)EG =【解析】【分析】(1)证明COD △和EOD △是等边三角形,即可推出四边形OCDE 是菱形;(2)利用含30度角的直角三角形的性质以及勾股定理求得DF 和CF的长,利用菱形的性质得到EF CF ==,在Rt CGF △中,解直角三角形求得GF 的长,据此求解即可.小问1详解】证明:四边形OCDE 是菱形,理由如下,∵矩形ABCD 的对角线AC 与BD 相交于点O ,∴1122OC OD AC BD ===,∵直线CE 是线段OD 的垂直平分线,∴CO CD =,EO ED =,∴CO CD OD ==,即COD △是等边三角形,∴60OCD DCO DOC Ð=Ð=Ð=°,1302OCF DCF OCD Ð=Ð=Ð=°,∵CD OE ∥,∴60EOD EDO CDO Ð=Ð=Ð=°,∴EOD △是等边三角形,∴CO CD EO ED ===,∴四边形OCDE 是菱形;【小问2详解】【解:∵直线CE 是线段OD 的垂直平分线,且30DCF Ð=°,∴122DF CD ==,CF ==,由(1)得四边形OCDE 是菱形,∴EF CF ==,在Rt DGF V 中,9030GDF ODC Ð=°-Ð=°,∴tan 302GF DF =°==,∴EG EF GF =-=.【点睛】本题考查了菱形的判定和性质,等边三角形的判定与性质,解直角三角形,线段垂直平分线的性质,解答本题的关键是明确题意,找出所求问题需要的条件.25. 某校八年级共有男生300人,为了解该年级男生排球垫球成绩和掷实心球成绩的情况,从中随机抽取40名男生进行测试,对数据进行整理、描述和分析,下面是给出的部分信息.信息一:排球垫球成绩如下图所示(成绩用x 表示,分成六组:A . 10x <;B . 1015x £<;C . 1520x £<;D . 2025x £<;E . 2530x £<;F . 30x £).信息二:排球垫球成绩在D . 2025x £<这一组的是:20,20,21,21,21,22,22,23,24,24信息三:掷实心球成绩(成绩用y 表示,单位:米)的人数(频数)分布表如下:分组 6.0y < 6.0 6.8y £< 6.87.6y £<7.68.4y £<8.49.2y £<9.2y£人数2m10962信息四:这次抽样测试中6名男生的两项成绩的部分数据如下:学生学生1学生2学生3学生4学生5学生6排球垫球262523222215掷实心球▲7.87.8▲8.89.2根据以上信息,回答下列问题:(1)填空:m =______;(2)下列结论正确的是_____;(填序号)①排球垫球成绩超过10个的人数占抽取人数的百分比低于60%;②掷实心球成绩的中位数记为n ,则6.87.6n £<;③若排球垫球成绩达到22个及以上时,成绩记为优秀.如果信息四中6名男生两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀.(3)若排球垫球成绩达到22个及以上时,成绩记为优秀,请估计全年级男生排球垫球成绩达到优秀的人数.【答案】(1)11 (2)②③ (3)75人【解析】【分析】(1)由总人数减去各小组已知人数即可得到答案;(2)由排球垫球成绩超过10个的人数除以总人数可判断①,由中位数的含义可判断②,分三种情况进行分析讨论可判断③,从而可得到答案;(3)由样本的百分率乘以总人数即可得到答案.【小问1详解】解:由题意可得:4021096211m =-----=;【小问2详解】①排球垫球成绩超过10个的人数占抽取人数的百分比为3690%40=,故①不符合题意;②∵掷实心球成绩排在第20个,第21个数据落在6.87.6y £<这一组,∴掷实心球成绩的中位数记为n ,则6.87.6n £<;故②符合题意;③由排球垫球成绩达到22个及以上时,成绩记为优秀.∴从这点出发可得:学生1,学生2,学生3,学生4,学生5为优秀,∵信息四中6名男生的两项成绩恰好为优秀的有4名,∴若学生1为优秀,则学生4不为优秀,可得学生3优秀;若学生4为优秀,学生1不为优秀,可得学生3优秀;的学生1,学生4不可能同时为优秀,∴学生3掷实心球的成绩必为优秀,故③符合题意;故答案为:②③【小问3详解】排球垫球成绩达到22个及以上时,成绩记为优秀,估计全年级男生排球垫球成绩达到优秀的人数为103007540´=(人).【点睛】本题考查的是从频数分布表,统计表中获取信息,利用样本估计总体,熟练的从频数分布表与统计表中获取互相关联的信息是解本题的关键.26. 如图,ABC V 内接于O e ,AB 是O e 的直径, BCBD =,DE AC ^于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F Ð=Ð,连接BD .(1)求证:BF 是O e 的切线;(2)判断DGB V 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析 (2)DGB V 是等腰三角形,理由见解析(3)4FG =【解析】【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC Ð=Ð=Ð,根据已知得出F BAC Ð=Ð,根据DEAC ^得出90AEG Ð=°,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG Ð=Ð=°,即可得证;(2)根据题意得出 AD AC =,则ABD ABC Ð=Ð,证明EF BC ∥,得出AGE ABC Ð=Ð,等量代换得出FGB ABD Ð=Ð,即可得出结论;(3)根据FGB ABD Ð=Ð,AB BF ^,设FGB ABD a Ð=Ð=,则90DBF F a Ð=Ð=°-,等边对等角得出DB DF =,则224FG DG DB ===.【小问1详解】证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC Ð=Ð=Ð,∵2BOD F Ð=Ð,∴F BAC Ð=Ð,∵DEAC ^,∴90AEG Ð=°,∵AGE FGB Ð=Ð∴90FBG AEG Ð=Ð=°,即AB BF ^,又AB 是O e 的直径,∴BF 是O e 的切线;【小问2详解】∵ BCBD =,AB 是O e 的直径,∴ AD AC =,BC AC ^,∴ABD ABC Ð=Ð,∵DEAC ^,BC AC ^,∵EF BC ∥,∴AGE ABC Ð=Ð,又AGE FGB Ð=Ð,∴FGB ABD Ð=Ð,∴DGB V 是等腰三角形,【小问3详解】∵FGB ABD Ð=Ð,AB BF ^,设FGB ABD a Ð=Ð=,则90DBF F a Ð=Ð=°-,∴DB DF =,∴224FG DG DB ===.【点睛】本题考查了切线的判定,等腰三角形的性质与判定,圆周角定理,熟练掌握以上知识是解题的关键.27. 在平面直角坐标系中,给出如下定义:P 为图形M 上任意一点,如果点P 到直线EF 的距离等于图形M 上任意两点距离的最大值时,那么点P 称为直线EF 的“伴随点”.例如:如图1,已知点()1,2A ,()3,2B,()2,2P 在线段AB 上,则点P 是直线EF :x 轴的“伴随点”.(1)如图2,已知点()1,0A ,()3,0B ,P 是线段AB 上一点,直线EF 过()1,0G -,T æççè两点,当点P 是直线EF 的“伴随点”时,求点P 的坐标;(2)如图3,x 轴上方有一等边三角形ABC ,BC y ^轴,顶点A 在y 轴上且在BC 上方,=OC 点P 是ABC V 上一点,且点P 是直线EF :x 轴的“伴随点”.当点P 到x 轴的距离最小时,求等边三角形ABC 的边长;(3)如图4,以()1,0A ,()2,0B ,()2,1C 为顶点的正方形ABCD 上始终存在点P ,使得点P 是直线EF :y x b =-+的“伴随点”.请直接写出b 的取值范围.【答案】(1)()3,0P(2)2(3)11b -££或35b ££【解析】【分析】(1)过点P 作PQ EF ^于点Q ,根据新定义得出2PQ =,根据已知得出30TGO Ð=°,则24GP PQ ==,即可求解;(2)当P 到x 轴的距离最小时,点P 在线段BC 上,设ABC V 的边长为a ,以C 为圆心a 为半径作圆,当C e 与x 轴相切时,如图所示,切点为H ,此时点P 是直线EF :x 轴的“伴随点”.且点P 到x 轴的距离最小,则C 的纵坐标为a ,即CH a =,ABC V 是等边三角形,且BC y ^轴,设BC 交于点D ,则AD BC ^,得出1,2C a a æöç÷èø,根据=OC(3)由正方形的边长为1,即可求出P 到EF ,从而可得P 既在正方形的边上,也在到EF的直线上,当1b £时,EF 向上平移2个单位长度得1l ,分别求出1l 过A 、C 时b 的值;当1b >时,EF 向下平移2个单位长度得1l ,分别求出1l 过A 、C 时b 的值,即可求出b 的取值范围.【小问1详解】解:如图所示,过点P 作PQ EF ^于点Q ,∵()1,0A ,()3,0B ,则2AB =,点P 是直线EF 的“伴随点”时,∴2PQ =,∵()1,0G -,T æççè,∴1OG TO ==,,∵tan TGO Ð==,∴30TGO Ð=°,∴24GP PQ ==,∴()3,0P ;【小问2详解】解:当P 到x 轴距离最小时,∴点P 在线段BC 上,设ABC V 的边长为a ,以C 为圆心a 为半径作圆,当C e 与x 轴相切时,如图所示,切点为H ,此时点P 是直线EF :x 轴的“伴随点”.且点P 到x 轴的距离最小,则C 的纵坐标为a ,即CH a =,∵ABC V 是等边三角形,且BC y ^轴,设BC 交于点D ,则AD BC ^,∴BD DC =12a =,∴1,2C a a æöç÷èø,∵=OC ∴22152a a æö+=ç÷èø,解得:2a =或2-(舍去),∴等边三角形ABC 的边长为2;【小问3详解】解:由题意知,正方形ABCD 的边长为1,所以正方形ABCD上任意两点距离的最大值为=即正方形ABCD 上始终存在点P ,P 到EF.则EF 向上或者向下平移2个单位长度得到直线1l ∵1l 与EF,的∴P 既在1l 上,又在正方形ABCD 的边上,∴1l 与正方形ABCD 有交点.当1b £时,1l 为2y x b =-++,当1l 过A 时,012b =-++,即1b =-,当1l 过C 时,122b =-++,即1b =;∴11b -££;当1b >时,1l 为2y x b =-+-,当1l 过A 时,012b =-+-,即3b =,当1l 过C 时,122b =-+-,即5b =;∴35b ££;综上,当11b -££或35b ££时,正方形ABCD 上始终存在点P ,使得点P 是直线EF :y x b =-+的“伴随点”.【点睛】本题考查了几何新定义,解直角三角形,切线的性质,直线与坐标轴交点问题,正方形的性质,理解新定义是解题的关键.28.综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD 中,E 是边AB 上一点,DF CE ^于点F ,GD DF ^,AG DG ^,AG CF =.试猜想四边形ABCD 的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD 中,E 是边AB 上一点,DF CE ^于点F ,AH CE ⊥于点H ,GD DF ^交AH 于点G ,可以用等式表示线段FH ,AH ,CF 的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD 中,E 是边AB 上一点,AH CE ⊥于点H ,点M 在CH 上,且AH HM =,连接AM ,BH ,可以用等式表示线段CM ,BH 的数量关系,请你思考并解答这个问题.【答案】(1)四边形ABCD 是正方形,证明见解析;(2)FH AH CF =+;(3)MC =,证明见解析;【解析】【分析】(1)证明ADG CDF V V ≌,可得AD CD =,从而可得结论;(2)证明四边形DGHF 是矩形,可得90G DFC Ð=°=Ð,同理可得:ADG CDF Ð=Ð,证明ADG CDF V V ≌,DG DF =,AG CF =,证明四边形DGHF 是正方形,可得HG HF =,从而可得结论;(3)如图,连接AC ,证明90AHE ABC Ð=Ð=°,AC AB=,45BAC Ð=°,AHE CBE V V ∽,可得AE HE CE BE=,再证明HEB AEC V V ∽,可得HBE MCA Ð=Ð,证明AHB AMC V V ∽,可得HB AB MC AC ==【详解】解:(1)∵GD DF ^,DF CE ^,AG DG ^,∴90G DFC Ð=Ð=°,90ADG ADF Ð+Ð=°,∵矩形ABCD ,∴90ADC ADF CDF Ð=°=Ð+Ð,∴ADG CDF Ð=Ð,∵AG CF =,∴ADG CDF V V ≌,∴AD CD =,∴矩形ABCD 是正方形.(2)∵DF CE ^,AH CE ⊥,GD DF ^,∴90DFH H GDF Ð=Ð=Ð=°,∴四边形DGHF 是矩形,∴90G DFC Ð=°=Ð,同理可得:ADG CDF Ð=Ð,∵正方形ABCD ,∴AD CD =,∴ADG CDF V V ≌,∴DG DF =,AG CF =,∴四边形DGHF 是正方形,∴HG HF =,∴FH HG AH AG AH CF ==+=+.(3)如图,连接AC ,∵AH CE ⊥,正方形ABCD ,∴90AHE ABC Ð=Ð=°,ACAB =,45BAC Ð=°,∵AEH CEB Ð=Ð,∴AHE CBE V V ∽,∴AE HECE BE =,∵BEH AEC Ð=Ð,∴HEB AEC V V ∽,∴HBE MCA Ð=Ð,∵,AH CE AH HM ^=,∴45HAM BAC Ð=°=Ð,∴HAE MAC Ð=Ð,∴AHB AMC V V ∽,∴HB AB MC AC ==。
2021年甘肃省兰州市中考数学试卷及答案
一、选择题:本大题12小题,每小题3分,共36分.每小题只有一个正确选项.
1.若 ,则 的余角为( )
A.30°B.40°C.50°D.140°
2.如图,该几何体 主视图是( )
A. B.
C. D.
3.计算: ( )
A. B. C. D.
4.关于 的一元一次不等式 的解集在数轴上表示为( )
(3)探究性质:随着自变量 的不断增大,函数 的变化趋势;
(4)解决问题:当 时, 的长度大约是______ .(结果保留两位小数)
26.如图, 内接于 , 是 的直径, 为 上一点, ,延长 交 于点 , .
(1)求证: 是 的切线;
信息二:脱贫攻坚以来财政专项扶贫资金投入
信息三:脱贫攻坚以来贫困地区农村居民和全国农村居民年人均可支配收入及增长率
年份、统计量
名称
2013
2014
2015
2016
2017
2018
2019
2020
平均数
贫困地区农村居民年人均可支配收入/元
6079
6852
7653
8452
9377
10371
11567
12588
9117
贫困地区农村居民年人均可支配收入增长率/%
全国农村居民年人均可支配收入增长率/%
请根据以上信息,解决下列问题:
(1)2019年底中国农村贫困人口数量为______万人.
(2)2013年底至2020年底,贫困地区农村居民年人均可支配收入的极差为______元.
(3)下列结论正确的是______(只填序号).
A.4B.3C. D.2
二、填空题:本大题4小题,每小题3分,共12分.
2022年甘肃省兰州市中考数学试卷
2022年甘肃省兰州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:=()A.±2B.2C.±D.2.如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°3.下列分别是2022年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是()A.B.C.D.4.计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y25.如图,△ABC内接于⊙O,CD是⊙O的直径,∠ACD=40°,则∠B=()A.70°B.60°C.50°D.40°6.若一次函数y=2x+1的图象经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y27.关于x的一元二次方程kx2+2x﹣1=0有两个相等的实数根,则k=()A.﹣2B.﹣1C.0D.18.已知△ABC∽△DEF,=,若BC=2,则EF=()A.4B.6C.8D.169.无色酚酞溶液是一种常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是()A.B.C.D.10.如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC =60°,BD=4,则OE=()A.4B.2C.2D.11.已知二次函数y=2x2﹣4x+5,当函数值y随x值的增大而增大时,x的取值范围是()A.x<1B.x>1C.x<2D.x>212.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()A.4.25πm2B.3.25πm2C.3πm2D.2.25πm2二、填空题(本大题共4小题,每小题3分,共12分)13.因式分解:a2﹣16=.14.如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是.15.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F 落在AE上.若CE=3cm,AF=2EF,则AB=cm.16.2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100100050008000100001500020000878934485722489831344318044幼树移植成活数(棵)0.8700.8930.8970.9030.8980.8960.902幼树移植成活的频率估计该种幼树在此条件下移植成活的概率是.(结果精确到0.1)三、解答题(本大题共12小题,共72分.解答时写出必要的文字说明、证明过程或演算步骤)17.(4分)解不等式:2(x﹣3)<8.18.(4分)计算:(1+)÷.19.(4分)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC =AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.20.(6分)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m 的测角仪DE测得∠ADC=31°,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得∠AFC=42°.求凉亭AB的高度.(A,C,B三点共线,AB⊥BE,AC⊥CD,CD=BE,BC=DE.结果精确到0.1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)21.(6分)人口问题是“国之大者”,以习近平同志为核心的党中央高度重视人口问题,准确把握人口发展形势,有利于推动社会持续健康发展,为开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军创造良好的条件.某综合与实践研究小组根据我国第七次人口普查数据进行整理、描述和分析,给出部分数据信息:信息一:普查登记的全国大陆31个省、自治区、直辖市人口数的频数分布直方图如下:(数据分成6组:0≤x<20,20≤x<40,40≤x<60,60≤x<80,80≤x<100,100≤x ≤120)信息二:普查登记的全国大陆31个省、自治区、直辖市人口数(百万人)在40≤x<60这一组的数据是:58,47,45,40,43,42,50;信息三:2010﹣2021年全国大陆人口数及自然增长率;请根据以上信息,解答下列问题:(1)普查登记的全国大陆31个省、自治区、直辖市人口数的中位数为百万人.(2)下列结论正确的是.(只填序号)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢;③2010﹣2021年全国大陆人口自然增长率持续降低.(3)请写出2016﹣2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,结合变化趋势谈谈自己的看法.22.(6分)综合与实践问题情境:我国东周到汉代一些出土实物上反映出一此几何作图方法,如侯马铸铜遗址出土车軎(wèi)范、芯组成的铸型(如图1),它的端面是圆形.如图2是用“矩”(带直角的角尺)确定端面圆心的方法:将“矩”的直角尖端A沿圆周移动,直到AB=AC,在圆上标记A,B,C三点;将“矩”向右旋转,使它左侧边落在A,B点上,“矩”的另一条边与的交点标记为D点,这样就用“矩”确定了圆上等距离的A,B,C,D四点,连接AD,BC相交于点O,即O为圆心.问题解决:(1)请你根据“问题情境”中提供的方法,用三角板还原我国古代几何作图确定圆心O.如图3,点A,B,C在⊙O上,AB⊥AC,且AB=AC,请作出圆心O.(保留作图痕迹,不写作法)类比迁移:(2)小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB和AC不相等,用三角板也可以确定圆心O.如图4,点A,B,C在⊙O上,AB⊥AC,请作出圆心O.(保留作图痕迹,不写作法)拓展探究:(3)小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图的方法确定圆心可以减少误差.如图5,点A,B,C是⊙O上任意三点,请用不带刻度的直尺和圆规作出圆心O.(保留作图痕迹,不写作法)请写出你确定圆心的理由:.23.(6分)如图,在Rt△ABC中,∠ACB=90°,AC=3cm,BC=4cm,M为AB边上一动点,BN⊥CM,垂足为N.设A,M两点间的距离为xcm(0≤x≤5),B,N两点间的距离为ycm(当点M和B点重合时,B,N两点间的距离为0).小明根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.51 1.5 1.82 2.53 3.54 4.55 y/cm4 3.96 3.79 3.47a 2.99 2.40 1.79 1.230.740.330请你通过计算,补全表格:a=;(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:;(4)解决问题:当BN=2AM时,AM的长度大约是cm.(结果保留两位小数)24.(6分)掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为m,当水平距离为3m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.图1来源:《2022年兰州市高中阶段学校招生体育考试规则与测试要求》25.(6分)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴,垂足为B(3,0),过C(5,0)作CD⊥x轴,交过B点的一次函数y=x+b的图象于D点,交反比例函数的图象于E点,S△AOB=3.(1)求反比例比数y=(x>0)和一次函数y=x+b的表达式;(2)求DE的长.26.(7分)如图,⊙O是△ABC的外接圆,AB是直径,OD⊥OC,连接AD,∠ADO=∠BOC,AC与OD相交于点E.(1)求证:AD是⊙O的切线;(2)若tan∠OAC=,AD=,求⊙O的半径.27.(8分)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD 上任意一点,且点P的“倾斜系数”k<,请直接写出a的取值范围.28.(9分)综合与实践【问题情境】数学活动课上,老师出示了一个问题:如图1,在正方形ABCD中,E是BC的中点,AE ⊥EP,EP与正方形的外角∠DCG的平分线交于P点.试猜想AE与EP的数量关系,并加以证明;【思考尝试】(1)同学们发现,取AB的中点F,连接EF可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP =90°,连接CP,可以求出∠DCP的大小,请你思考并解答这个问题.【拓展迁移】(3)突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接DP.知道正方形的边长时,可以求出△ADP周长的最小值.当AB =4时,请你求出△ADP周长的最小值.2022年甘肃省兰州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:=()A.±2B.2C.±D.【分析】利用算术平方根的性质求解.【解答】解:∵==2.故选:B.【点评】本题考查了算术平方根的性质,掌握性质特征是解题的关键.2.如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.【点评】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键.3.下列分别是2022年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是()A.B.C.D.【分析】在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形为轴对称图形.【解答】解:A.不能沿一条直线折叠完全重合;B.不能沿一条直线折叠完全重合;C.不能沿一条直线折叠完全重合;D.能够沿一条直线折叠完全重合;故选:D.【点评】本题考查了轴对称图形的概念,关键在于熟练掌握轴对称图形的概念,并对选项作出正确判断.4.计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【分析】利用完全平方公式计算即可.【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.5.如图,△ABC内接于⊙O,CD是⊙O的直径,∠ACD=40°,则∠B=()A.70°B.60°C.50°D.40°【分析】由CD是⊙O的直径,根据直径所对的圆周角是直角,得出∠CAD=90°,根据直角三角形两锐角互余得到∠ACD与∠D互余,即可求得∠D的度数,继而求得∠B 的度数.【解答】解:∵CD是⊙O的直径,∴∠CAD=90°,∴∠ACD+∠D=90°,∵∠ACD=40°,∴∠ADC=∠B=50°.故选:C.【点评】此题考查了三角形的外接圆与外心,圆周角定理,直角三角形的性质,难度不大,注意掌握数形结合思想的应用.6.若一次函数y=2x+1的图象经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图象上的两个点,﹣3<4,∴y1<y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象的增减性是解答此题的关键.7.关于x的一元二次方程kx2+2x﹣1=0有两个相等的实数根,则k=()A.﹣2B.﹣1C.0D.1【分析】利用一元二次方程的定义和判别式的意义得到k≠0且Δ=22﹣4k×(﹣1)=0,然后解关于k的方程即可.【解答】解:根据题意得k≠0且Δ=22﹣4k×(﹣1)=0,解得k=﹣1.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.8.已知△ABC∽△DEF,=,若BC=2,则EF=()A.4B.6C.8D.16【分析】利用相似三角形的性质可得,代入即可得出EF的长.【解答】解:∵△ABC∽△DEF,∴,∵=,BC=2,∴,∴EF=4,故选:A.【点评】本题主要考查了相似三角形的性质,熟练掌握相似三角形的对应边成比例是解题的关键.9.无色酚酞溶液是一种常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是()A.B.C.D.【分析】总共5种溶液,其中碱性溶液有2种,再根据概率公式求解即可.【解答】解:∵总共5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色的概率是,故选:B.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC =60°,BD=4,则OE=()A.4B.2C.2D.【分析】根据菱形的性质可得,∠ABO=30°,AC⊥BD,则BO=2,再利用含30°角的直角三角形的性质可得答案.【解答】解:∵四边形ABCD是菱形,∠ABC=60°,∴BO=DO,∠ABO=30°,AC⊥BD,AB=AD,∴BO=2,∴AO==2,∴AB=2AO=4,∵E为AD的中点,∠AOD=90°,∴OE=AD=2,故选:C.【点评】本题主要考查了菱形的性质,含30°角的直角三角形的性质等知识,熟练掌握菱形的性质是解题的关键.11.已知二次函数y=2x2﹣4x+5,当函数值y随x值的增大而增大时,x的取值范围是()A.x<1B.x>1C.x<2D.x>2【分析】将二次函数解析式化为顶点式,由抛物线对称轴及开口方向求解.【解答】解:∵y=2x2﹣4x+5=2(x﹣1)2+3,∴抛物线开口向上,对称轴为直线x=1,∴x>1时,y随x增大而增大,故选:B.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.12.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()A.4.25πm2B.3.25πm2C.3πm2D.2.25πm2【分析】根据S阴=S扇形DOA﹣S扇形BOC,计算即可.【解答】解:S阴=S扇形DOA﹣S扇形BOC=﹣=2.25πm2.故选:D.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S=是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)13.因式分解:a2﹣16=(a﹣4)(a+4).【分析】直接利用平方差公式分解因式即可.【解答】解:a2﹣16=(a﹣4)(a+4).故答案为:(a﹣4)(a+4).【点评】此题主要考查了公式法分解因式,正确运用平方差公式是解题关键.14.如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是(﹣4,1).【分析】根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,然后根据点的坐标的表示方法写出黄河母亲像的坐标;【解答】解:如图,根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,∴黄河母亲像的坐标是(﹣4,1).故答案为:(﹣4,1).【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.15.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F 落在AE上.若CE=3cm,AF=2EF,则AB=3cm.【分析】根据将△CDE沿DE翻折得到△FDE,点F落在AE上,可得EF=CE=3cm,CD=DF,∠DEC=∠DEF,∠DFE=∠C=90°=∠DF A,而AF=2EF,即得AF=6cm,AE=9cm,由四边形ABCD是矩形,可得AB=CD=DF,AD∥BC,从而AD=AE=9cm,在Rt△ADF中,用勾股定理得DF=3cm,从而AB=DF=3cm.【解答】解:∵将△CDE沿DE翻折得到△FDE,点F落在AE上,∴EF=CE=3cm,CD=DF,∠DEC=∠DEF,∠DFE=∠C=90°=∠DF A,∵AF=2EF,∴AF=6cm,AE=AF+EF=6+3=9(cm),∵四边形ABCD是矩形,∴AB=CD=DF,AD∥BC,∴∠ADE=∠DEC=∠DEF,∴AD=AE=9cm,在Rt△ADF中,AF2+DF2=AD2,∴62+DF2=92,∴DF=3(cm),∴AB=DF=3(cm),故答案为:3.【点评】本题考查矩形中的翻折问题,解题的关键是掌握翻折的性质,能熟练应用勾股定理列方程解决问题.16.2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100100050008000100001500020000878934485722489831344318044幼树移植成活数(棵)0.8700.8930.8970.9030.8980.8960.902幼树移植成活的频率估计该种幼树在此条件下移植成活的概率是0.9.(结果精确到0.1)【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:∵幼树移植数20000棵时,幼树移植成活的频率为0.902,∴估计幼树移植成活的概率为0.902,精确到0.1,即为0.9.故答案为:0.9.【点评】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.三、解答题(本大题共12小题,共72分.解答时写出必要的文字说明、证明过程或演算步骤)17.(4分)解不等式:2(x﹣3)<8.【分析】先去括号,再移项、合并同类项,不等式两边同乘以,即可得出不等式的解集【解答】解:去括号,得:2x﹣6<8,移项,得:2x<8+6,合并同类项,得:2x<14,两边同乘以,得:x<7.故原不等式的解集是x<7.【点评】本题主要考查了解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.18.(4分)计算:(1+)÷.【分析】根据分式的加减运算以及乘除运算法则即可求出答案.【解答】解:原式===.【点评】本题考查分式的混合运算,熟练掌握分式的加减运算以及乘除运算法则是解题的关键.19.(4分)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC =AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAD+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.【点评】本题考查了全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m 的测角仪DE测得∠ADC=31°,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得∠AFC=42°.求凉亭AB的高度.(A,C,B三点共线,AB⊥BE,AC⊥CD,CD=BE,BC=DE.结果精确到0.1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【分析】根据题意可得BC=FG=DE=1.5m,DF=GE=3m,∠ACF=90°,然后设CF =xm,则CD=(x+3)m,先在Rt△ACF中,利用锐角三角函数的定义求出AC的长,再在Rt△ACD中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:由题意得:BC=FG=DE=1.5m,DF=GE=3m,∠ACF=90°,设CF=xm,∴CD=CF+DF=(x+3)m,在Rt△ACF中,∠AFC=42°,∴AC=CF•tan42°≈0.9x(m),在Rt△ACD中,∠ADC=31°,∴tan31°==≈0.6,∴x=6,经检验:x=6是原方程的根,∴AB=AC+BC=0.9x+1.5=6.9(m),∴凉亭AB的高约为6.9m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.21.(6分)人口问题是“国之大者”,以习近平同志为核心的党中央高度重视人口问题,准确把握人口发展形势,有利于推动社会持续健康发展,为开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军创造良好的条件.某综合与实践研究小组根据我国第七次人口普查数据进行整理、描述和分析,给出部分数据信息:信息一:普查登记的全国大陆31个省、自治区、直辖市人口数的频数分布直方图如下:(数据分成6组:0≤x<20,20≤x<40,40≤x<60,60≤x<80,80≤x<100,100≤x ≤120)信息二:普查登记的全国大陆31个省、自治区、直辖市人口数(百万人)在40≤x<60这一组的数据是:58,47,45,40,43,42,50;信息三:2010﹣2021年全国大陆人口数及自然增长率;请根据以上信息,解答下列问题:(1)普查登记的全国大陆31个省、自治区、直辖市人口数的中位数为40百万人.(2)下列结论正确的是①②.(只填序号)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢;③2010﹣2021年全国大陆人口自然增长率持续降低.(3)请写出2016﹣2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,结合变化趋势谈谈自己的看法.【分析】(1)根据已知发现中位数在第三组内,从小到大排列找出处在中间位置的一个数即可求出中位数;(2)①根据频数分布直方图进行判断即可;②根据条形图与折线图即可判断;③根据折线图即可判断;(3)根据条形图与折线图可写出2016﹣2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,根据变化趋势写出看法即可.【解答】解:(1)将这31个省、自治区、直辖市人口数从小到大排列处在中间位置的数是40百万人,因此中位数是40百万人,故答案为:40;(2)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区,故原结论正确,符合题意;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢,故原结论正确,符合题意;③2010﹣2021年全国大陆人口自然增长率的情况是:2010﹣2012,2013﹣2014,2015﹣2016年增长率持续上升;2012﹣2013,2014﹣2015,2016﹣2021年增长率持续降低,故原结论错误,不符合题意.所以结论正确的是①②.故答案为:①②;(3)2016﹣2021年全国大陆人口数增长缓慢,全国大陆人口自然增长率持续降低.看法:放开计划生育,鼓励多生优生,以免人口自然增长率为负(答案不唯一).【点评】本题考查频数分布直方图、条形统计图、折线统计图,中位数,理解统计图中数量之间的关系是正确解答的前提.22.(6分)综合与实践问题情境:我国东周到汉代一些出土实物上反映出一此几何作图方法,如侯马铸铜遗址出土车軎(wèi)范、芯组成的铸型(如图1),它的端面是圆形.如图2是用“矩”(带直角的角尺)确定端面圆心的方法:将“矩”的直角尖端A沿圆周移动,直到AB=AC,在圆上标记A,B,C三点;将“矩”向右旋转,使它左侧边落在A,B点上,“矩”的另一条边与的交点标记为D点,这样就用“矩”确定了圆上等距离的A,B,C,D四点,连接AD,BC相交于点O,即O为圆心.问题解决:(1)请你根据“问题情境”中提供的方法,用三角板还原我国古代几何作图确定圆心O.如图3,点A,B,C在⊙O上,AB⊥AC,且AB=AC,请作出圆心O.(保留作图痕迹,不写作法)类比迁移:(2)小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB和AC不相等,用三角板也可以确定圆心O.如图4,点A,B,C在⊙O上,AB⊥AC,请作出圆心O.(保留作图痕迹,不写作法)拓展探究:(3)小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图的方法确定圆心可以减少误差.如图5,点A,B,C是⊙O上任意三点,请用不带刻度的直尺和圆规作出圆心O.(保留作图痕迹,不写作法)请写出你确定圆心的理由:垂直平分弦的直线经过圆心.【分析】问题解决:(1)以B为顶点,以AB为一边,用三角板作∠ABD是直角,∠ABD的另一边与圆交于D,连接AD,BC,AD,BC的交点即是圆心O;类比迁移:(2)方法同(1);拓展探究:(3)连接AC,AB,作AC,AB的垂直平分线,两条垂直平分线的交点即为圆心,根据是垂直平分弦的直线经过圆心.【解答】解:问题解决:(1)如图:O即为圆心;类比迁移:(2)如图:O即为所求作的圆心;拓展探究:(3)如图:O即为所求作的圆心,理由是垂直平分弦的直线经过圆心,故答案为:垂直平分弦的直线经过圆心.【点评】本题考查圆的综合应用,涉及用三角板或尺规确定圆心,解题的关键是掌握若圆周角是直角,它所对的弦是直径及垂径定理与推论的应用.23.(6分)如图,在Rt△ABC中,∠ACB=90°,AC=3cm,BC=4cm,M为AB边上一动点,BN⊥CM,垂足为N.设A,M两点间的距离为xcm(0≤x≤5),B,N两点间的距离为ycm(当点M和B点重合时,B,N两点间的距离为0).小明根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.51 1.5 1.82 2.53 3.54 4.55 y/cm4 3.96 3.79 3.47a 2.99 2.40 1.79 1.230.740.330请你通过计算,补全表格:a= 3.2;(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:y随x的增大而减小;(4)解决问题:当BN=2AM时,AM的长度大约是 1.67cm.(结果保留两位小数)【分析】(1)先求出AB边上的高,进而求出AM',判断出点M与M'重合,即可得出答案;(2)先描点,再连线,即可画出图象;(3)根据图象直接得出结论;(4)利用表格和图象估算出AM的长度.【解答】解:(1)如图,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AC=5,过点C作CM'⊥AB于M,∴S△ABC=AC•BC=AB•CM',∴CM'=,在Rt△ACM'中,根据勾股定理得,AM'==1.8,当x=1.8时,点M与点M'重合,∴CM⊥AB,∵BN⊥CM,∴点M,N重合,∴a=BN=BM=AB﹣AM=3.2,故答案为:3.2;(2)如图所示,。
2024年甘肃省中考数学试卷(含解析)
2024年甘肃省中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下列各数中,比﹣2小的数是()A.﹣1B.﹣4C.4D.12.(3分)如图所示,该几何体的主视图是()A.B.C.D.3.(3分)若∠A=55°,则∠A的补角为()A.35°B.45°C.115°D.125°4.(3分)计算:=()A.2B.2a﹣b C.D.5.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ABD=60°,AB=2,则AC的长为()A.6B.5C.4D.36.(3分)如图,点A,B,C在⊙O上,AC⊥OB,垂足为D,若∠A=35°,则∠C的度数是()A.20°B.25°C.30°D.35°7.(3分)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A.y=3x B.y=4x C.y=3x+1D.y=4x+18.(3分)近年来,我国重视农村电子商务的发展.下面的统计图反映了2016﹣2023年中国农村网络零售额情况,根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C.2016﹣2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元9.(3分)敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为(15,16),那么有序数对记为(12,17)对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步10.(3分)如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.D.二、填空题:本大题共6小题,每小题4分,共24分.11.(4分)因式分解:2x2﹣8=.12.(4分)已知一次函数y=﹣2x+4,当自变量x>2时,函数y的值可以是(写出一个合理的值即可).13.(4分)定义一种新运算*,规定运算法则为:m*n=m n﹣mn(m,n均为整数,且m≠0).例:2*3=23﹣2×3=2,则(﹣2)*2=.14.(4分)围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D中的一处即可,A,B,C,D位于棋盘的格点上)15.(4分)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y(单位:m)与距离停车棚支柱AO的水平距离x(单位:m)近似满足函数关系y=﹣0.02x2+0.3x+1.6的图象,点B(6,2.68)在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD=4m,高DE=1.8m的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).16.(4分)甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC和扇形OAD有相同的圆心O,且圆心角∠O=100°,若OA=120cm,OB=60cm,则阴影部分的面积是cm2.(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.(6分)计算:×.18.(6分)解不等式组:.19.(6分)先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.20.(8分)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知⊙O和圆上一点M.作法如下:①以点M为圆心,OM长为半径,作弧交⊙O于A,B两点;②延长MO交⊙O于点C;即点A,B,C将⊙O的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将⊙O的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB,AC,BC,若⊙O的半径为2cm,则△ABC的周长为cm.21.(10分)在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22.(10分)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH垂直于地面,测角仪CD,EF在AH两侧,CD=EF=1.6m,点C与点E相距182m(点C,H,E在同一条直线上),在D处测得筒尖顶点A的仰角为45°,在F处测得筒尖顶点A的仰角为53°.求风电塔简AH的高度.(参考数据:sin53°≈,cos53°≈,tan53°≈.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.(8分)在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图;信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m 9.18.9中位数9.29.0n 根据以上信息,回答下列问题:(1)写出表中m ,n 的值:m =,n =;(2)从甲、丙两位选手的得分折线图中可知,选手发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24.(10分)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =(x >0)的图象交于点A (2,4).过点B (0,2)作x 轴的平行线分别交y =ax +b 与y=(x >0)的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =的表达式;(2)连接AD ,求△ACD 的面积.25.(10分)如图,AB 是⊙O 的直径,=,点E 在AD 的延长线上,且∠ADC =∠AEB .(1)求证:BE 是⊙O 的切线;(2)当⊙O 的半径为2,BC =3时,求tan ∠AEB 的值.26.(10分)【模型建立】(1)如图1,已知△ABE和△BCD,AB⊥BC,AB=BC,CD⊥BD,AE⊥BD.用等式写出线段AE,DE,CD的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD中,点E,F分别在对角线BD和边CD上,AE⊥EF,AE=EF.用等式写出线段BE,AD,DF的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD中,点E在对角线BD上,点F在边CD的延长线上,AE⊥EF,AE=EF.用等式写出线段BE,AD,DF的数量关系,并说明理由.27.(12分)如图1,抛物线y=a(x﹣h)2+k交x轴于O,A(4,0)两点,顶点为B(2,2),点C 为OB的中点.(1)求抛物线y=a(x﹣h)2+k的表达式;(2)过点C作CH⊥OA,垂足为H,交抛物线于点E.求线段CE的长.(3)点D为线段OA上一动点(O点除外),在OC右侧作平行四边形OCFD.①如图2,当点F落在抛物线上时,求点F的坐标;②如图3,连接BD,BF,求BD+BF的最小值.参考答案一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.【答案】B【解析】解:根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣4,故选:B.2.【答案】C【解析】解:该几何体的主视图是.故选:C.3.【答案】D【解析】解:若∠A=55°,则∠A的补角为180°﹣55°=125°,故选:D.4.【答案】A【解析】解:原式===2.故选:A.5.【答案】C【解析】解:∵四边形ABCD为矩形,对角线AC,BD相交于点O,AB=2,∴OA=OB=OC=OD,∵∠ABD=60°,∴△OAB为等边三角形,∴OA=OB=AB=2,∴OC=OA=2,∴AC=OA+OC=4,故选:C.6.【答案】A【解析】解:∵∠A=35°,∴∠O=2∠A=70°,∵AC⊥OB,∴∠CDO=90°,∴∠C=90°﹣∠O=90°﹣70°=20°.故选:A.7.【答案】B【解析】解:由图可知,“回文”的桌面的总面积为4x(x+y),其中每张长桌的桌面面积为xy,每张中桌的桌面面积为3x2,每张小桌的桌面面积为2x2.根据题意,得2xy+2×3x2+3×2x2=4x(x+y),解得y=4x.故选:B.8.【答案】D【解析】解:A、由统计图可知,2023年中国农村网络零售额为24900亿元,是2016﹣2023年中总额最高的;B、由统计图可知,2016年中国农村网络零售额为8945亿元,是2016﹣2023年中总额最低的;C、由统计图可知,2016﹣2023年中,中国农村网络零售额是持续增加的;D、由统计图可知,中国农村网络零售额从2021年开始突破了20000亿元,而非2020年;故选:D.9.【答案】D【解析】解:根据(15,16)可得,横从上面从右向左看,纵从右边自下而上看,∴(12,17)对应的是半亩八十四步,故选:D.10.【答案】C【解析】解:结合图象,得到当x=0时,PO=AO=4,∴当点P运动到点B时,PO=BO=2,∵菱形ABCD,∴AC⊥BD,∴∠AOB=∠BOC=90°,∴,当点P运动到BC中点时,PO的长为,故选:C.二、填空题:本大题共6小题,每小题4分,共24分.11.2(x+2)(x﹣2)【答案】观察原式,找到公因式2,提出后,再利用平方差公式分解即可得出答案.【解析】解:2x2﹣8=2(x+2)(x﹣2).12.【答案】﹣2【解析】解:当x=3时,y=﹣2×3+4=﹣2;故答案为:﹣2(答案不唯一).13.【答案】8【解析】解:∵m*n=m n﹣mn,∴(﹣2)*2=(﹣2)2﹣(﹣2)×2=4+4=8,故答案为:8.14.【答案】A(答案不唯一)【解析】解:白方如果落子于点A(答案不唯一)的位置,则所得的对弈图是轴对称图形.故答案为:A(答案不唯一).15.【答案】能【解析】解:∵CD=4m,B(6,2.68),∴6﹣4=2,在y=﹣0.02x2+0.3x+1.6中,当x=2时,y=﹣0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴货车能完全停到车棚内,故答案为:能.16.【答案】3000π【解析】解:S阴影=S扇形AOD﹣S扇形BOC===3000π(cm2),故答案为:3000π.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.【答案】0【解析】解:原式=3﹣3=0.18.【答案】<x<7【解析】解:由2(x﹣2)<x+3,得:x<7,由<2x,得:x>,所以不等式组解集为<x<7.19.【答案】3【解析】解:原式=[4a2+4ab+b2﹣(4a2﹣b2)]÷2b=(4a2+4ab+b2﹣4a2+b2)÷2b=(4ab+2b2)÷2b=2a+b,当a=2,b=﹣1时,原式=2×2﹣1=3.20.【答案】(1)见解析;(2)6.【解析】解:(1)如图,点A,B,C即为所求.(2)设CM交AB于点E.∵==,∴AB=CB=AC,∠AOB=120°,∵=,∴∠AOM=∠BOM=60°,∵OA=OB,∴OE⊥AB,AE=EB=AO•sin60°=2×=(cm),∴AB=2(cm),∴△ABC的周长为6cm.故答案为:6.21.【答案】(1)甲获胜的概率为;(2)游戏不公平.【解析】解:(1)画树状图得:共有12种等可能的结果,其中甲获胜的结果有8种,∴甲获胜的概率为;(2)不公平.由树状图可知,乙获胜的结果有4种,∴乙获胜的概率为,∵,∴游戏不公平.22.【答案】风电塔简AH的高度约为105.6m【解析】解:连接DF交AH于点G,由题意得:CD=EF=GH=1.6m,DF=CE=182m,DF⊥AH,设DG=x m,∴FG=DF﹣DG=(182﹣x)m,在Rt△ADG中,∠ADG=45°,∴AG=DG•tan45°=x(m),在Rt△AFG中,∠AFG=53°,∴AG=FG•tan53°≈(182﹣x)m,∴x=(182﹣x),解得:x=104,∴AG=104m,∴AH=AG+GH=104+1.6=105.6(m),∴风电塔简AH的高度约为105.6m.四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.【答案】(1)9.1,9.1;(2)甲;(3)应该推荐甲选手.【解析】解:(1)甲的平均数是:m=×(9.2+8.8+9.3+8.4+9.5)=9.1,把这些数从小到大排列为:8.3,8.4,9.1,9.3,9.4,中位数n=9.1;故答案为:9.1,9.1;(2)由题意可知,甲五轮比赛成绩的波动较小,丙的波动较大,所以选手甲发挥的稳定性更好.故答案为:甲;(3)应该推荐甲,理由如下:甲的中位数和平均数都比乙的大,且甲的成绩稳定性比乙好,所以应该推荐甲选手.24.【答案】(1)y=.(2)6.【解析】解:(1)因为函数y=ax+b的图象由函数y=ax的图象向上平移3个单位长度得到,所以b=3.将点A坐标代入一次函数解析式得,2a+3=4,解得a=,所以一次函数解析式为y=.将点A坐标代入反比例函数解析式得,k=2×4=8,所以反比例函数解析式为y=.(2)将y=2代入y=得,,解得x=﹣2,所以点B的坐标为(﹣2,2).将y=2代入y=得,x=4,所以点D的坐标为(4,2),所以CD=4﹣(﹣2)=6,所以.25.【答案】(1)证明见解析;(2).【解析】(1)证明:连接BD,OC,OD,∵,∴BC=BD,∵OC=OD,∴点O、B在CD的垂直平分线上,∴OB垂直平分CD,∴∠AFD=90°,∵∠ADC=∠AEB,∴CD∥BE,∴∠ABE=∠AFD=90°,∴AB⊥BE,∵AB是⊙O的直径,∴BE是⊙O的切线;(2)解:∵⊙O的半径为2,∴AB=2×2=4,∵AB是⊙O的直径,∴∠ACB=90°,∵BC=3,∴,∴,∵,∴∠ADC=∠ABC,∵∠AEB=∠ADC,∴∠AEB=∠ABC,∴.26.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】解:(1)DE+CD=AE,理由如下:∵CD⊥BD,AE⊥BD,AB⊥BC,∴∠ABC=∠D=∠AEB=90°,∴∠ABE+∠CBD=∠C+∠CBD=90°,∴∠ABE=∠C,∵AB=BC,∴△ABE≌△BCD(AAS),∴BE=CD,AE=BD,∴DE=BD﹣BE=AE﹣CD,∴DE+CD=AE;(2),理由如下:过E点作EM⊥AD于点M,过E点作EN⊥CD于点N,如图,∵四边形ABCD是正方形,BD是正方形的对角线,∴∠ADB=∠CDB=45°,BD平分∠ADC,∠ADC=90°,∴,∴,∵EN⊥CD,EM⊥AD,∴EM=EN,∵AE=EF,∴Rt△AEM≌Rt△FEN(HL),∴AM=NF,∵EM=EN,EN⊥CD,EM⊥AD,∠ADC=90°,∴四边形EMDN是正方形,∴ED是正方形EMDN对角线,MD=ND,∴,NF=ND﹣DF=MD﹣DF,∴,,∴,∴,∵,∴,∴;(3),理由如下:过A点作AH⊥BD于点H,过F点作FG⊥BD,交BD的延长线于点G,如图,∵AH⊥BD,FG⊥BD,AE⊥EF,∴∠AHE=∠G=∠AEF=90°,∴∠AEH+∠HAE=∠AEH+∠FEG=90°,∴∠HAE=∠FEG,∵AE=AF,∴△HAE≌△GEF(AAS),∴HE=FG,∵在正方形ABCD中,∠BDC=45°,∴∠FDG=∠BDC=45°,∴∠DFG=45°,∴△DFG是等腰直角三角形,∴,∴,∵∠ADB=45°,AH⊥HD,∴△ADH是等腰直角三角形,∴,∴,∴,∵,∴,∴.27.【答案】(1)y=﹣x2+2x;(2);(3)①F(2+,);②BD+BF最小值为:DF′==2【解析】解:(1)由题意得:y=a(x﹣2)2+2,将点A的坐标代入上式得:0=a×(4﹣2)2+2,解得:a=﹣,抛物线y=a(x﹣h)2+k的表达式为y=﹣x2+2x;(2)由(1)知,y=﹣(x﹣2)2+2,由中点坐标公式得点C(1,),当x=1时,y=﹣(x﹣2)2+2=,则CE=﹣=;(3)①由(2)知,C(1,),当y=时,y=﹣(x﹣2)2+2=,则x=2+(不合题意的值已舍去),即点F(2+,);②设点D(m,0),则点F(m+1,),过点B作直线l⊥y轴,作点F关于直线l的对称点F′(m+1,3),连接DF′,则BD+BF=BD+BF′≥DF′,当D、B、F′共线时,BD+BF=DF′为最小,由定点F′、D的坐标得,直线DF′的表达式为:y=3(x﹣m),将点B的坐标代入上式得:2=3(2﹣m),解得:m=,则点F′(,3),点D(,0),则BD+BF最小值为:DF′==2.。
2021年甘肃省平凉市数学中考真题含答案解析及答案(word解析版)
甘肃省白银市2021年中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内1.(3分)(2012•绍兴)3的相反数是( ) A.3B.﹣3C.D.﹣考点:相反数.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号。
一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•白银)下列运算中,结果正确的是( ) A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5D.a3•a4=a12考点:同底数幂的除法。
合并同类项。
幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项、同底数幂的除法法则:底数不变,指数相减,同底数幂的乘法法则:底数不变,指数相加,可判断各选项.解答:解:A、4a﹣a=3a,故本选项正确。
B、a10÷a2=a10﹣2=a8≠a5,故本选项错误。
C、a2+a3≠a5,故本选项错误。
D、根据a3•a4=a7,故a3•a4=a12本选项错误。
故选A.点评:此题考查了同类项的合并,同底数幂的乘除法则,属于基础题,解答本题的关键是掌握每部分的运算法则,难度一般.3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ) A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.解答:解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误。
B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误。
2021年中考一模考试《数学卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
2021年中考数学试卷(含答案)
2021年高中阶段学校招生考试数学试卷本试卷满分150分,考试时间120分钟。
注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡上,并检查条形码粘贴是否正确。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.) 1. -2021的绝对值是A .-2021B .2021C .2021±D .120212.下列计算中,正确的是A .2239a a +=+() B . 842a a a ÷=C . 22a b a b -=-() D . 2222a a a += 3.如右图所示的几何体是由6个完全相同的小正方体搭成,其主视图是A .B .C .D .4. 国家统计局2021年5月11日公布了第七次全国人口普查结果,全国总人口约14.1亿人, 将14.1亿用科学记数法表示为A. 14.1×108 B . 1.41×108 C . 1.41×109D . 0.141×10105. 如右图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为A .12cm 2B .9cm 2C .6cm 2D .3cm 2 6. 下列说法正确的是A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式141298523x x b y a a π++,,,,,中,142x b a aπ+,,是分式D. 若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是47. 不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是 A. B .C .D .8. 如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是 A . 1 B .43C .32D . 539. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为43,∠CDF =15°,则阴影部分的面积为 A .16123π- B .16243π- C .20123π- D .20243π-10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ≠);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2. 其中正确的结论有 A. 2个B . 3个 C .4个D . 5个二、填空题(本大题共5个小题,每小题4分,共20分) 11. 若20a a b -++=,则ab =▲.12. 如右图,在△ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则△ABD 的周长是▲.13. 已知关于x ,y 的二元一次方程组235423x y ax y a +=⎧⎨+=+⎩满足x -y >0,则a 的取值范围是▲. 14. 下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第▲个图形共有210个小球.15. 如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:①ABF=DBE ∠∠②ABF DBE ∽③AF BD ⊥④22BG BH BD = ⑤若CE:DE=1:3,则BH:DH=17:16 你认为其中正确是▲(填写序号)三、计算或解答题(本大题共10个小题,共90分) 16.(7分)计算:11tan 60233122-⎛⎫-+︒--+-- ⎪⎝⎭(π)▲17.(7分)先化简,再求值:⎪⎭⎫ ⎝⎛++-÷+--339442223m m m m m m ,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数.▲18.(8分)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F . (1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形, 并说明理由.▲19.(9分)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加。
2021年甘肃省白银市数学中考试题(含答案)
2021年中考数学试题(甘肃白银卷)(本试卷满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项是符合题目要求的,将此选项的代号填入题后的括号内.1.【 】A .3B .-3C .-2D .2【答案】A 。
2.将如图所示的图案通过平移后可以得到的图案是【 】A .B .C .D .【答案】A 。
3.下列调查中,适合用普查(全面调查)方式的是【 】A .了解一批袋装食品是否含有防腐剂B .了解某班学生“50米跑”的成绩C .了解江苏卫视“非诚勿扰”节目的收视率D .了解一批灯泡的使用寿命【答案】B 。
4.方程 的解是【 】A .x=±1B .x=1C .x=-1D .x=0【答案】B 。
5.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是【】A .B .C .D .【答案】D。
=2x 10x 1-=+6.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是【】A .10吨B .9吨C .8吨D .7吨【答案】A 。
7.如图,直线l 1∥l 2,则∠α为【 】A .150°B .140°C .130°D .120°【答案】D 。
8.如图,边长为(m+3)的正方形纸片,剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是【】A .m+3B .m+6C .2m+3D .2m+6【答案】C 。
9.二次函数的图象如图所示,则函数值时x 的取值范围是【】A .B .x >3C .-1<x <3D .或x >3【答案】C 。
10.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D,E 两点,且∠ACD=45°,DF ⊥AB 2y ax bx c =++y 0<x 1<-x 1<-于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x,DE=y,下列中图象中,能表示y 与x 的函数关系式的图象大致是【】A .B .C .D .【答案】 A 。
2021年中考数学试题及解析:甘肃兰州-解析版
甘肃省兰州市2021年中考数学试卷一、选择题(本题15小题,每小题4分,共60分)1、(2021•兰州)下列方程中是关于x的一元二次方程的是()A、B、ax2+bx+c=0 C、(x﹣1)(x+2)=1 D、3x2﹣2xy﹣5y2=0考点:一元二次方程的定义。
专题:方程思想。
分析:一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:A、由原方程,得x4+1=0,未知数的最高次数是4;故本选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C、由原方程,得x2+x﹣3=0,符号一元二次方程的要求;故本选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故本选项错误.故选C.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2、(2021•兰州)如图,某反比例函数的图象过点M(﹣2,1),则此反比例函数表达式为()A、y=B、y=﹣C、y=D、y=﹣考点:待定系数法求反比例函数解析式。
专题:待定系数法。
分析:利用待定系数法,设,然后将点M(﹣2,1)代入求出待定系数即可.解答:解:设反比例函数的解析式为(k≠0),由图象可知,函数经过点P(﹣2,1),∴1=,得k=﹣2,∴反比例函数解析式为y=﹣.故选B.点评:本题考查了待定系数法求反比例函数的解析式:图象上的点满足解析式,满足解析式的点在函数图象上.利用待定系数法是求解析式时常用的方法.3、(2021•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A、20°B、30°C、40°D、50°考点:切线的性质;圆周角定理。
2021年甘肃省兰州市中考数学试题及答案
2021年甘肃省兰州市中考数学试题及答案2021年兰州市中考数学试题一、单项选择题(每小题4分,共60分)1.sin60°的相反数是【】A。
- 1/2 B。
- 1 C。
- √3/2 D。
- √3/22.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m。
则y与x的函数关系式为【】A。
y = 100/x B。
y = 1600/x C。
y = 400/x D。
y = 6400/x3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是【】B。
外切4.抛物线y = -2x^2 + 1的对称轴是【】C。
y轴5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为【】C。
126.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为【】A。
π B。
1 C。
2 D。
2π/37.抛物线y = (x + 2)^2 - 3可以由抛物线y = x^2平移得到,则下列平移过程正确的是【】A。
先向左平移2个单位,再向上平移3个单位8.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是【】B。
0.39.在反比例函数y = k/x (k < 0)的图象上有两点(-1.y1),(-4.y2),则y1 - y2的值是【】C。
正数10.某学校准备修建一个面积为200m^2的矩形花圃,它的长比宽多10m,设花圃的宽为x m,则可列方程为【】A。
x(x - 10) = 20011.已知二次函数y = a(x+1)^2 - b (a ≠ 0)有最小值,则a、b的大小关系为【】B。
a < b12.如图,AB是⊙O的直径,弦BC = 2cm,F是弦BC的中点,⊙ABC = 60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当⊙BEF1.当三角形为直角三角形时,t(s)的值为1.2.在四边形ABCD中,若⊙BAD=120°,⊙B=⊙D=90°,在BC、CD上分别找一点M、N,使⊙AMN周长最小时,⊙AMN+⊙ANM的度数为110°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省兰州市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题3分,共36分) (共12题;共36分)1. (3分) (2016七上·莆田期中) 在有理数(﹣1)2、、﹣|﹣2|、(﹣2)3中负数有()个.A . 4B . 3C . 2D . 12. (3分)如图所示的是三通管的立体图,则这个几何体的俯视图是()A .B .C .D .3. (3分) (2020九下·台州月考) 二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A . 70分,70分B . 80分,80分C . 70分,80分D . 80分,70分4. (3分) (2018八上·黔南期末) 对于分式,当x=-1时,其值为0,当x=1时,此分式没有意义,那么()A . a=b= -1B . a=b=1C . a=1,b= -1D . a=- 1,b=15. (3分)若x2-Mxy+4y2是一个完全平方式,那么M的值是()A . 2B . ±2C . 4D . ±46. (3分)点P(5,﹣3)关于原点的对称点是()A . (5,3)B . (﹣3,5)C . (﹣5,3)D . (3,﹣5)7. (3分)关于x的方程3x2+mx﹣8=0有一个根是,另一个根及m的值分别是()A . 3、﹣5B . ﹣4、10C . ﹣4、﹣10D . 3、58. (3分)(2017·东河模拟) 已知下列命题:①各边相等的多边形是正多边形;②相等的圆心角所对的弧相等;③若a2=b2 ,则a=b;④若直线y=kx+b经过第一、二、四象限,则k<0,b>0.其中原命题与逆命题都是真命题的个数是()A . 1个B . 2个C . 3个D . 4个9. (3分) (2016九上·山西期末) 如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A . 26°B . 116°C . 128°D . 154°10. (3分) (2017八下·通辽期末) 如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A . 12B . 24C . 12D . 1611. (3分)如图,D,E分别△ABC的边AB,AC的中点,给出下列结论:①BC=2DE;②△ADE∽△ABC;③AD:AE=AB:AC;④S△ADE:S四边形BCED=1:3.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个12. (3分)(2018·潘集模拟) 如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是线段AB上的一点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:① ②若点D是AB的中点,则AF= AB;③当B,C,F,D四点在同一个圆上时,DF=DB;④若 ,则 ,其中正确的结论序号是()A . ①②B . ③④C . ①②③D . ①②③④二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)13. (3分) (2019七上·新疆期中) 的相反数是________,它的倒数是________。
14. (3分)(2018·兴化模拟) 已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为________千克.15. (3分)(2017·淮安) 如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=________°.16. (3分)(2019·鄞州模拟) 小明有5把钥匙,其中有2把钥匙能打开教室门,则小明任取一把钥匙,恰好能打开教室门的概率是________.17. (3分)如图,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,以边AC所在的直线为轴旋转一周得到一个圆锥,则这个圆锥的面积是________ cm2 .18. (3分) (2020九下·安庆月考) 如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P 由点A出发,沿AB→BC→CD向点D运动。
设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为________。
三、解答题(本大题共8小题,满分66分。
) (共8题;共66分)19. (10分) (2016八上·杭州期末) 解不等式组,并把它的解集在数轴上表示出来.20. (5分)画出△ABC的三条角平分线.21. (6分) (2018九上·三门期中) 我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有1;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形2“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD ﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;① = ;② = ;③“十字形”ABCD的周长为12 .22. (8.0分) (2016七下·广饶开学考) 为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.组别捐款额(x)元户数A1≤x<50aB50≤x<10010C100≤x<150D150≤x<200E x≥200请结合以上信息解答下列问题.(1) a=________,本次调查样本的容量是________;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区有1500户住户,请根据以上信息估计,全社区捐款不少于150元的户数是多少?23. (8分)(2019·瑶海模拟) 互联网给生活带来极大的方便据报道,2016底全球支付宝用户数为4.5亿,2018年底达到9亿.(参考数据:≈1.414)(1)求平均每年增长率;(2)据此速度,2020底全球支付宝用户数是否会超过17亿?请说明理由.24. (8分) (2018八上·江汉期中) 已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F 点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.25. (11.0分)(2018·辽阳) 如图,直线y=x-3与坐标轴交于A、B两点,抛物线经过点B,与直线y=x-3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.26. (10分) (2018八下·青岛期中) 如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转。
当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是________②设△BDC的面积为S1,△AEC的面积为S2。
则S1与S2的数量关系是________.(2)猜想论证:当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想。
(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使 ,请直接写出相应的BF的长.参考答案一、选择题(本大题共12小题,每小题3分,共36分) (共12题;共36分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题共8小题,满分66分。
) (共8题;共66分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。