几何原本与九章算术的异同
《九章算术》与《几何原本》的比较研究综述
《九章算术》与《几何原本》的比较研究综述摘要:《九章算术》和《几何原本》是东西方数学代表性的两本巨著,从中反映出两者不同的文化背景和水平。
一些研究者都对其进行比较研究,分别从数学教育视野、东西方文化差异等视角。
本文从成书的背景、内容、文化价值、数学教育启示、传播影响等方面进行研究综述。
关键词:九章算术;几何原本;历史背景;研究综述;数学文化价值;数学教育启示中图分类号:G423文献标识码:A文章编号:随着国际发展、中国崛起的形势,文化自信成为当前的发展需要。
中国科学技术文化的历史发展、层次与水平成为广大人民感兴趣的话题。
数学文化是中国近20年处于显著位置的文化现象,研究中国古代数学教育与文化现象成为数学教育界和社会各界的热门话题。
中国古代以《九章算术》为代表的数学教科书和教育载体,在长达1000多年的历史长河中一直处于特别重要的位置,近些年数学史家、数学家和科技史专家围它进行了广泛的研究,和东西方对古希腊数学典籍《几何原本》的研究形成鲜明的对照。
本文尝试对两者进行探索分析和文献综述,以期推进当前的数学课程思政和立德树人实践。
一、《九章算术》和《几何原本》成书背景比较研究邓宗琦(1994)认为,《几何原本》和《九章算术》都有十分深远的历史源头,其中《几何原本》是欧几里得将好几个世纪的数学家的创造的几何知识用演绎法进行整理,从定义、定理等出发形成的;《九章算术》是集体的成果,但产生的具体时间有待考证[1]。
张维忠(1996)认为,《九章算术》所形成的时期从墨家到刘徽时期,在中国没有形成逻辑学派,因此《九章算术》体系的非逻辑结构,反映当时数学研究的主流思想;同时当时社会生产实践的发展也快速推动应用数学发展;《几何原本》成书时候正好处在古希腊形式逻辑发展时期,将形式逻辑思想方法应用到具体数学研究,但是排除数学应用[2]。
王晓亚、张守波、范文贵、司成勇(2011)认为,《九章算术》产生时候体现非逻辑特点,但不是一点形式逻辑没有,“问-答-术”中的“术”是通过简单推理证明而得到;《几何原本》诞生于形式逻辑鼎盛阶段,将其思想运用到数学研究是非常自然的事,当然当时数学的特点排斥数学应用,但是其思维方式也是特别严密、理性的[3]。
从数学教育的角度比较分析《九章算术》与《几何原本》
从数学教育的角度比较分析《九章算术》与《几何原本》【摘要】本文主要从数学教育的角度比较分析了《九章算术》与《几何原本》这两部经典著作。
在我们介绍了这两部著作,并阐明了比较分析的目的和意义。
在我们对这两部著作的历史背景进行了分析,并比较了它们的教学内容和教学方法,同时探讨了它们在数学教育中的影响与应用。
我们对这两部著作在当今教学环境中的现状进行了分析。
在我们总结了比较分析的结果,并展望了未来这两部著作在数学教育中的发展前景。
通过本文的分析,可以更好地了解《九章算术》与《几何原本》在数学教育中的地位和作用,为今后的教学实践提供参考和借鉴。
【关键词】九章算术,几何原本,数学教育,比较分析,历史背景,教学内容,教学方法,影响与应用,教学现状,总结分析,未来发展。
1. 引言1.1 介绍《九章算术》与《几何原本》《九章算术》是中国古代数学经典之一,是我国古代最重要的数学著作之一,《九章算术》中有“两筹”、“阵”、“野算”、“分甘”、“阶”、“方田”、“平尺”七种运算法则和“正”、“方程”二种方法,主要是为了解决实际生活和生产中的计算问题而编写的。
而《几何原本》是古希腊数学家欧几里得创作的几何学著作,是几何学的经典之作,在几何学发展史上具有非常重要的地位。
《九章算术》和《几何原本》都是古代数学的经典著作,虽然分别来自不同的文化和思想体系,但都对后世数学的发展产生了深远影响。
通过比较分析这两部作品,可以更好地了解古代数学在不同文化背景下的发展和特点,进一步挖掘其中蕴含的数学思想与方法,对于推动数学教育的发展和提高数学教学水平都具有重要的意义。
1.2 目的与意义《九章算术》与《几何原本》是中国古代数学领域的两部重要著作,它们对中国数学教育的发展起到了重要作用。
通过比较分析这两部著作,我们可以更加深入地了解中国古代数学的发展历程,及其对现代数学教育的启示。
2. 通过比较分析《九章算术》与《几何原本》的教学内容和方法,可以帮助我们更好地发掘和利用这些古代数学文化遗产。
从数学教育的角度比较分析《九章算术》与《几何原本》
从数学教育的角度比较分析《九章算术》与《几何原本》【摘要】本文通过对《九章算术》和《几何原本》两部古代数学经典著作进行比较分析,从数学教育的角度探讨它们的特点、基础知识、教学方法以及对数学教育的启示。
在《九章算术》中,强调实用计算方法和应用技巧;而《几何原本》则注重几何理论的发展和应用。
基础知识方面,《九章算术》更注重运算技巧,而《几何原本》更侧重几何原理的理解。
在教学方法上,前者偏向实践操作,后者则更注重推理和证明。
文章总结比较分析的结果并展望未来,指出古代数学经典对当代数学教育的启示和借鉴意义。
通过本文的研究,可以更全面地了解两部古代数学经典著作,为数学教育提供新的思路和启示。
【关键词】数学教育、《九章算术》、《几何原本》、比较分析、背景介绍、研究意义、特点、基础知识、教学方法、启示、总结、展望未来1. 引言1.1 背景介绍《九章算术》与《几何原本》是中国古代数学经典之作,分别展现了古代数学和几何学的辉煌成就。
《九章算术》是我国古代一部重要的数学著作,内容包括有关算术、代数、几何等方面的知识,被誉为中国古代数学的“集大成者”。
而《几何原本》则是古希腊数学家欧几里得所著,是世界几何学的奠基之作,其中包含了几何学的基本概念、定理和证明方法。
这两部经典著作在数学教育领域具有重要的地位,对于了解古代数学和几何学的发展历程以及学习数学的方法和技巧具有重要意义。
本文将从数学教育的角度比较分析《九章算术》与《几何原本》,探讨它们在数学教育中的作用和价值,为今后的数学教育提供借鉴和启示。
1.2 研究意义《九章算术》和《几何原本》作为中国古代数学经典著作,对于了解我国古代数学教育和数学思想具有重要的意义。
通过对这两部著作的比较分析,可以帮助我们更好地把握古代数学教育的特点和发展轨迹,进而启发和促进当代数学教育的发展。
深入研究这两部著作也有助于我们更好地挖掘和传承我国数学文化的精髓,为提高学生的数学素养提供更好的教育资源和参考。
数学教育视野下《九章算术》与《几何原本》的比较研究
作者简介 : 王晓亚(9 5一) 女 , 18 , 渤海大学硕士研究生 , 从事课程论研究.
ቤተ መጻሕፍቲ ባይዱ
第1 期
王晓 亚 , 守波 , 张 范文 贵 , : 学教 育视 野 下《 等 数 九章 算术 》 几何 原本 》 与《 的比较研 究 2 3
发展 演绎 推理 。
《 几何原本》 成书时的古希腊 与《 九章算术》 成书时中国的情形完全不同 , 当时的古:腊正处于形式 希 逻辑 的发 展时 期 。把形 式逻 辑 的思 想方 法运 用 于数 学 研究 并 排 斥 数 学应 用 , 当 时形 成 了一种 强 大 的 在 思潮 . 欧几 里得 ( ul ) E c d 正处 于这 个 时 期 , i 他在 几 个 世 纪 以 来 的几 代 数 学 家 的 肩膀 上 , 几 何 知 识 用 演 将
比较九章算数和几何原本.doc
《九章算术》和《儿何原本》在思维方法上有很大的不同我国数学史上有一部堪与欧几里得《几何原木》媲美的书,这就是历来被尊为算经之首的《九章算术》。
其中的勾股章提出了勾股数问题的通解公式,在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这己比《九章算术》晚约3个世纪了。
勾股章还有些内容, 在西方却还是近代的事。
《九章算术》及其刘徽注,以杰出的数学成就,独特的数学体系。
不仅对东方数学,而且对整个世界数学的发展产生了深远的影响,在科学史上占有极为重要的地位。
它的出现,标志着从公元前1世纪开始,中国取代古希腊成为世界数学的中心,为此后中国数学领先世界1500多年奠定了基础。
《儿何原本》是欧儿里德一生著有的多部数学著作其中最有价值的一部。
它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系一一几何学。
《九章算术》是一部经儿代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年(公元前一世纪)。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
《九章算术》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。
它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。
由于历史条件的限制,欧儿里得在《儿何原本》中提出儿何学的“根据” 问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。
《九章算术》与《几何原本》作业
《九章算术》与《几何原本》异同一、《九章算术》与《几何原本》的内容相似有以下几个方面:1、《九章算法》的第一章“方田”:主要讲述了平面几何图形面积的计算方法。
包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法;而《几何原本》第一卷:几何基础。
重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理;第二卷:几何与代数。
讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。
第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。
第四卷:讨论圆内接和外切多边形的做法和性质;它们都是在平面上来研究几何图形的面积及性质。
2、《九章算术》第四章“少广”:已知面积,体积,反求其一边长和径长等;第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;而《几何原本》第十一卷、十二、十三卷:最后讲述立体几何的内容.它们研究都涉及立体几何的内容。
3、《九章算术》第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;第三章“衰分”:比例分配问题;而《几何原本》第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是“最重要的数学杰作之一”。
第六卷:讲相似多边形理论,并以此阐述了比例的性质。
第五、第七、第八、第九、第十卷:讲述比例和算术的理论。
它们都涉及到比例的算法。
4、《九章算术》第九章“勾股”:利用勾股定理求解的各种问题,提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,《几何原本》中的命题1.47,证明了是欧几里德最先发现的勾股定理。
在它们研究的范围内都用到勾股定理。
二、《九章算术》与《几何原本》的思维方面有很大的区别:1、《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。
《九章算术》与《几何原本》的比较解析
包头师范学院本科毕业论文二〇一三年三月摘要《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,是现代数学思想的两大源泉。
两书同是古代数学名著,却有着截然不同的风格。
将从数学教育的角度,解读一下两书在成书背景、结构和内容等方面的不同,并从比较研究中得到一些对当代数学教育改革的启示。
关键词:九章算术;几何原本;形式逻辑;数学教育AbstractNine Chapters of Arithmetic”and”Principles of Geometry”are two famous books in the world history of mathematics,serving as two origins of modem mathematics education.The two books belong to famous ancient mathematics books,but with different styles.From the perspective of mathematics education,a compari-son is made of the two books in their backgrounds,structures and content,and some enlightenment is derivedfrom them for current mathematics education reforill.目录引言(绪论) (5)一《几何原本》 (6)(一)《几何原本》的基本内容 (6)(二)《几何原本》的特点 (7)1.封闭的演绎体系 (7)2.抽象化的内容 (8)3.公理化的方法 (8)(三)《几何原本》的意义 (9)二、《九章算术》 (10)(一)《九章算术》的基本内容 (11)(二)《九章算术》的特点 (11)1.开放的归纳体系 (11)2.算法化的内容 (12)3.模型化的方法 (12)(三)《九章算术》的意义 (12)1.《九章算术》的影响巨大而深远 (12)2.《九章算术》中的数学成就是多方面的 (12)3.《九章算术》对中国周边国家数学及社会的发展也有一定的作用 (13)4.《九章算术》的思想方法不仅对古代数学的发展产生了重大影响,而且也是现代数学思想发展的源泉 (13)三.《九章算术》与《几何原本》的比较 (13)(一)形成《九章算术》与《几何原本》迥异的背景 (13)(二)两书体例的比较 (14)(三)两书内容的比较 (15)(四)对当代数学教育改革的启示 (15)1.数学教育观 (15)2.数学教育目的 (16)3.数学教材 (17)4.数学文化 (18)参考文献 (19)引言(绪论)《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,某种意义上说是现代数学思想的两大源泉。
《九章算术》与《几何原本》的比较
包头师范学院本科毕业论文二〇一三年三月摘要《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,是现代数学思想的两大源泉。
两书同是古代数学名著,却有着截然不同的风格。
将从数学教育的角度,解读一下两书在成书背景、结构和内容等方面的不同,并从比较研究中得到一些对当代数学教育改革的启示。
关键词:九章算术;几何原本;形式逻辑;数学教育AbstractNine Chapters of Arithmetic”and”Principles of Geometry”are two famous books in the world history of mathematics,serving as two origins of modem mathematics education.The two books belong to famous ancient mathematics books,but with different styles.From the perspective of mathematics education,a compari-son is made of the two books in their backgrounds,structures and content,and some enlightenment is derivedfrom them for current mathematics education reforill.目录引言(绪论) (5)一《几何原本》 (6)(一)《几何原本》的基本内容 (6)(二)《几何原本》的特点 (7)1.封闭的演绎体系 (7)2.抽象化的内容 (8)3.公理化的方法 (8)(三)《几何原本》的意义 (9)二、《九章算术》 (10)(一)《九章算术》的基本内容 (11)(二)《九章算术》的特点 (11)1.开放的归纳体系 (11)2.算法化的内容 (12)3.模型化的方法 (12)(三)《九章算术》的意义 (12)1.《九章算术》的影响巨大而深远 (12)2.《九章算术》中的数学成就是多方面的 (12)3.《九章算术》对中国周边国家数学及社会的发展也有一定的作用 (13)4.《九章算术》的思想方法不仅对古代数学的发展产生了重大影响,而且也是现代数学思想发展的源泉 (13)三.《九章算术》与《几何原本》的比较 (13)(一)形成《九章算术》与《几何原本》迥异的背景 (13)(二)两书体例的比较 (14)(三)两书内容的比较 (15)(四)对当代数学教育改革的启示 (15)1.数学教育观 (15)2.数学教育目的 (16)3.数学教材 (17)4.数学文化 (18)参考文献 (19)引言(绪论)《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,某种意义上说是现代数学思想的两大源泉。
几何原本与九章算术的异同
几何原本》与《九章算术》的异同《几何原本》和《九章算术》都是经典的数学著作,一部是西方的著作,一部是中国的古代著作,这两部著作都对后来的数学发展做出了很大的贡献,并对人类文明产生深远的影响。
《几何原本》和《九章算术》本身是关于纯数学的专著,但高度抽象化的数学是必定是需要和其它的学科相结合的。
下面,我就《几何原本》和《九章算术》的异同做一些阐述,首先,《几何原本》和《九章算术》产生的背景不同:《几何原本》产生的背景:欧几里得的生平,现在知道的甚少,欧几里得在公元前300 年左右,来到亚历山大里亚教学.人们称赞欧几里得治学精神严谨、谦虚,是一个温良敦厚的数学教育家.欧几里得在从事数学教育中,总是循循善诱地启发学生,提倡刻苦钻研,弄懂弄通,反对投机取巧、急功近利的狭隘思想.欧几里得在从事数学教育中,善于积累数学知识,并进行了拓宽与创新.他的巨著《几何原本》是一生中最重要的工作,这部著作的形成具有无以伦比的历史意义.他精僻地总结了人类长时期积累的数学成就,建立了数学的科学体系,为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机.这部著作长时期被人崇拜、信仰,从来没有一本教科书,像《几何原本》那样长期广为传颂.从1482年到19世纪末,欧几里得《几何原本》的印刷本竟用各种文字印刷1000 版以上,在此之前,它的手抄本统御几何学也已达近1800 年之久.欧几里得继承和发展了前人的数学知识,《几何原本》所用到的材料大部分是希腊前期各学派创建的成果.欧几里得是柏拉图的门徒,他的著作基本沿续了柏拉图的传统思想,承袭了《共和国》中所论及的科学方法.欧几里得在《几何原本》中,发展了柏拉图的以哲学为基础,“数论、几何、音乐、天文”4 科为内容的科学思想.另外,欧几里得还采用了欧多克索斯等学者的一些定理,并加以完善.《几何原本》所采用的公理、定理都是经过细致斟酌、筛选而成,并按严谨的科学体系进行编排,使之系统化、理论化,超过了以前的所有著作,因此,当《几何原本》问世之后,其它诸类逐渐消声匿迹了.九章算术》的背景:中国数学经过长期积累,到西汉时期已有了相当丰富的内容.除《周髀算经》外,西汉初期出现了第一部数学专著---《算术书》,用竹简写成.全书共60多个标题,如“相乘”、“增减”、“少广”、“税田”、“金价”、“合分”等,标题下列有各种问题.《九章算术》的体例便受到《算术书》的影响.另外,当时西汉已有初步的负数及比例概念,面积和体积计算的知识也增多了.这些都为我国初等数学体系的形成准备了条件.现传本《九章算术》约成书于西汉末年,作者不详,可能经多人之手而成.它是一部承前启后的著作,一方面总结了西汉及西汉以前的数学成果,集当时初等数学之大成;另一方面又对后世数学发展产生了深远的影响.其次,《几何原本》和《九章算术》的内容的异同:<<几何原本本>>各卷简介:第一卷:几何基础。
几何原本VS九章算术,中西数学的差别在哪里?
几何原本VS九章算术,中西数学的差别在哪里?记得小时候,如果数学考试没考好,家长们就会非常郑重地告诉我们:“数学可是非常重要的,如果数学没学好,去买菜老板找错钱你都不知道,那就亏大了。
”想想也对,我们吃鱼吃肉绝不吃亏,数学好像真的很重要。
到后来,有人开始反对数学。
准确的说是反对高等数学,给出的理由是:你买菜会用到微积分么?那些日常的计算问题,我学会了初中的加减乘除就已经足够了。
对于那些不是科学家、工程师的人,可能他一辈子也不会再用到什么解析几何、微积分,那我还要浪费时间去学这些东西干嘛呢?所以,一般人数学只要学到初中就够了。
这种观点你一听很想去反驳,但是仔细一想好像确实也有道理,毕竟买菜真的不需要微积分。
为什么我们会觉得上面两种说法好像都很有道理呢?为什么我们潜意识里会觉得“学好数学以方便买菜”是理所当然的事情呢?因为我们的数学,自古以来就是奔着实用性去的。
中国古代以农业立国,给每个农民分多少地,这需要去测量计算。
造物造船等工程问题,也需要去计算各种物料。
可以说,如何更好的计算这些实际问题,就是中国古代数学的核心。
因此,我们古人其实并不说什么“数学”,而是说“算术”。
算术算术,直观的看,这就是和计算相关的一些技巧和经验。
【中国古代数学以实用性为导向】对中国古代影响最大的数学书是什么?答案是《九章算术》,它在中国被当了一千多年的数学教科书。
如果翻一翻这本书就会发现它跟我们现在的数学书风格上是完全不一样的。
它就是一本应用问题集:搜集了246个与生产、生活实践相关联的应用问题。
书的第一章第一段就是这样写的:“假如一块方田广15步,纵16步,它的面积是多大?答:1亩。
”后面也都是这种问答的形式,在这里看不到什么“公理”“定理”这样熟悉的数学字眼,没有什么整数或者直线的定义,也没有什么证明和推理,看到的都是跟生活相关的各种实际计算题。
《九章算术》给中国的古代数学定了一个基调,于是我们对数学的理解也就这样潜移默化的形成了:数学就是用来计算这些实际问题的,它要讲究实用性。
从《九章算术》与《几何原本》略谈中西方数学文化的不同
第 1 7卷
第 5期
天 津 职 业 院 校 联 合 学 报
J o u r n a l o f Ti a n j i n V o c a t i o n a l I n s t i t u t e s
足 及 比例 的运 算 ; 几 何 的部 分 是关 于 勾 股 、 面积及体积的运算 ; 代数部分是利用开平方 、 开 立 方 等 方 法 来 解
决 解 方 程 的 问题 。该 书 体 现 的 是 秦汉 及 以前 的 数 学 成 就 , 当时 , 中国社会 随着各 种行业 的进一 步发展 , 在 这 些 行 业 中产 生 了许 多 实 际 的 数 学 问 题 。数 学 家 们 把 这 些 问题 集 中起 来 , 进行 整理 , 归类 , 并 从 中 总 结 出 对 应 的算 法 , 再 用 总结 好 的方 法 去解 决 实 际 生 活 中更 多 的 同样 类 型 的 问题 。 《 几 何原 本 》 是 由“ E l e me n t s ” 翻 译 过来 的 , 另 一 种 名称 也 可 以叫《 原本纲要》 。 中 国明 代末 期 徐 光 启 和传 教 士 利 玛 窦在 翻译 的时 候加 上 了“ 几何” 二 字 。全 书共 1 3卷 , 包 含 了平 面几 何 、 比例论 、 数论 、 无理量论 、 立 体 几 何 等 几 大部 分 。在 西 方学 者 的眼 里 , 《 几何原本》 是“ 科 学 的 圣经 ” , 是用 公 理 建 立 起演 绎 体 系 最早 的典 范 。
比较九章算数和几何原本
、《九章算术》和《几何原本》在思维方法上有很大的不同我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》。
其中的勾股章提出了勾股数问题的通解公式,在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。
勾股章还有些内容,在西方却还是近代的事。
《九章算术》及其刘徽注,以杰出的数学成就,独特的数学体系。
不仅对东方数学,而且对整个世界数学的发展产生了深远的影响,在科学史上占有极为重要的地位。
它的出现,标志着从公元前1世纪开始,中国取代古希腊成为世界数学的中心,为此后中国数学领先世界1500多年奠定了基础。
《几何原本》是欧几里德一生著有的多部数学著作其中最有价值的一部。
它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
《九章算术》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。
它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。
由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。
肖临骏:从数学教育的角度比较分析《九章算术》与《几何原本》
肖临骏:从数学教育的角度比较分析《九章算术》与《几何原本》第一篇:肖临骏:从数学教育的角度比较分析《九章算术》与《几何原本》《九章算术》是“算经十书”中最重要的一种,该书内容非常丰富,且系统化总结并概括了战国、秦朝,以及汉时期的数学成就。
此外,该书在数学领域也取得了杰出的成就,首次提出分数、负数及加减运算法则等。
概括来说,《九章算术》是一本综合性的数学历史著作,该书的出现标志着中国古代数学体系的基本形成。
《几何原本》在数学界又被称为《原本》,该书为欧洲数学的发展奠定了良好的基础,且被广泛认为是历史上最成功的教科书,书中主要总结并归纳了平面几何的五大公设。
除此之外,《几何原本》在西方也占据着相当重要的位置,仅次于《圣经》。
这两本著名的数学著作对数学的发展都发挥着非常重要的作用,但是二者还存在诸多差异。
本文对这两本书从成书背景、体例、内容等方面进行研究后,得出二者的差异所在。
在此基础上,对其数学教育观、数学教育目的、数学教材及数学文化也进行了详细论述,基于现代数学视野,对现代数学教育改革提供启示,以供参考。
一、成书背景的对比《九章算术》是中国古代的数学专著,也是“算经十书”中最重要的一种。
众所周知,我国春秋战国时期,诸子百家争鸣,众多学派相继出现,在形式逻辑研究方面,相比其他学派而言,墨家比较突出,但之后形式逻辑在我国并没有太大的进展,而《九章算术》恰巧问世。
该书成书最迟是在东汉前期,但内容的定型却在西汉后期,这时候出现,就注定其呈现出非逻辑结构的特点。
中国古代数学专著都是在不断总结生活现象的过程中逐渐衍生而来的,《九章算术》也不例外,该书主要强调的是数学知识的应用,在不断地总结、归纳、推理、论证的过程中,最终发展成演绎推理。
《几何原本》是一部集前人思想和欧几里得个人创造于一体的不朽之作,整本书的内容是把人们公认的一些事实归纳成定义和公理,将形式逻辑的方法运用于教学研究。
通过这些定义和公理对几何图形的性质进行探讨,最终建立起一套数学理论体系,简称几何学。
九章算术与几何原本的比较讲解
LOGO
Arkey Works
作为基础的五条公理和公设
五条公理
1.等于同量的量彼此相等;
2.等量加等量,其和相等;
3.等量减等量,其差相等;
4.彼此能重合的物体是全等的;
5.整体大于部分。
五条公设
1.过两点能作且只能作一直线;
2.线段(有限直线)可以无限地延长;
3.以任一点为圆心,任意长为半径,可作一圆;
(2)、在几何方面,主要是面积、体积计算。
(3)、在代数方面,主要有一次方程组解法、平方、 立方、一般二次方程解法等。“方程”一章还在世界数学史 上首次引入了负数及其加减法运算法则.作为一部世界科 学名著,《九章算术》在隋唐时期就已传入朝鲜、日本。 现在它已被译成日、俄、德、英、法等多种文字。
田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾
股九章如下所示。原作有插图,今传本已只剩下正文了。
《九章算术》的九章的主要内容分别是:
第一章“方田”:田亩面积计算;
第二章“粟米”:谷物粮食的按比例折换;
第三章“衰分”:比例分配问题;
第四章“少广”:已知面积、体积、求其一边长和径长等;
LOGO
作者简介
欧几里得( 约公元前330年—前275年)古希腊数 学家,被称为“几何之父”。他活跃于托勒密一 世(公元前323年-前283年)时期的亚历山大里 亚,他最著名的著作《几何原本》是欧洲数学 的基础,提出五大公设,发展欧几里得几何,被广泛的认为是 历史上最成功的教科书。除《几何原本》外还有不少著作 , 如《已知数》,《纠错集》,《圆锥曲线论》,《曲面轨迹》, 《观测天文学》等 ,遗憾的是 除《几何原本》外这些都没有 留存下来消失在时空的黑暗之中了。
《几何原本》与《九章算术》——中西古代数学思想的差异及教学的启示
《几何原本》与《九章算术》——中西古代数学思想的差异
及教学的启示
何一鸾;邓鹏
【期刊名称】《中学教研:数学版》
【年(卷),期】2008(000)001
【摘要】欧几里得的《几何原本》和中国古代的《九章算术》是2部里程碑式的名著,它们分别以其突出的贡献和重大的历史意义,在人类科学史尤其是数学史上各领风骚数千年,直到今天对后世的数学研究和发展仍能带来启迪作用.本文仅谈一谈其中折射出的东西方古代数学思想的差异,及对当今新课程改革下中学数学课程及教学的启示.
【总页数】2页(P45-46)
【作者】何一鸾;邓鹏
【作者单位】四川西华师范大学数学与信息学院,637002
【正文语种】中文
【中图分类】O112
【相关文献】
1.中西外语教学文化差异的对比分析及教学启示 [J], 陈建军
2.由中西文化差异探究我国古代数学衰落的原因及启示 [J], 卫艳荣;郝祥晖
3.中西思维方式差异对英语写作教学的启示 [J], 胡延伟
4.中西方商务文化差异研究及对商务英语教学的启示 [J], 王柔曦
5.中西方商务文化差异研究及对商务英语教学的启示 [J], 王柔曦
因版权原因,仅展示原文概要,查看原文内容请购买。
古中国数学与古希腊数学之比较
《九章算术》和《几何原本》的比较摘要:在数学发展史上,古代东西方文明各有一部极具代表性的著作——中国的《九章算术》和西方的欧几里得的《几何原本》,这两部著作对后来的数学发展都做出了很大的贡献,并对人类文明产生深远的影响。
本文主要从两本书的产生背景、内容结构、数学成就三个方面进行比较,阐述两者之间的异同。
关键词:九章算术几何原本比较一、背景据史书记载,秦时掌管过国家图书的张仓,西汉时的大司农耿寿昌以及许商、杜忠等人都编写过或校订过算书,《九章算术》就是在这些算书的基础上,系统总结了先秦和东汉初年我国数学成就,经历代名家补充、修改、增订而逐步形成的。
至迟在1世纪时,已有了现传本的内容。
现传世的《九章算术》是三国时魏晋数学家刘徽于263年注释的版本。
它是一部承前启后的著作,一方面总结了西汉及西汉以前的数学成果,集当时初等数学之大成;另一方面又对后世数学发展产生了深远的影响。
在公元前300年左右,欧几里得来到亚历山大里亚教学,在从事数学教育中积累数学知识,继承和发展了前人的数学知识,并进行了拓宽与创新。
《几何原本》所用到的材料大部分是希腊前期各学派创建的成果。
欧几里得是柏拉图的门徒,他的著作基本沿续了柏拉图的传统思想,承袭了《共和国》中所论及的科学方法。
《几何原本》是欧几里得一生中最重要的工作。
这部著作的形成具有无以伦比的历史意义,他精僻地总结了人类长时期积累的数学成就,建立了数学的科学体系,为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机。
二、内容《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
其中的绝大多数内容是与当时的社会生活密切相关的。
从《九章算术》的内容可以看出,书中所涉及的都是当时社会生产和生活方面需要解决的数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《几何原本》与《九章算术》的异同《几何原本》和《九章算术》都是经典的数学著作,一部是西方的著作,一部是中国的古代著作,这两部著作都对后来的数学发展做出了很大的贡献,并对人类文明产生深远的影响。
《几何原本》和《九章算术》本身是关于纯数学的专著,但高度抽象化的数学是必定是需要和其它的学科相结合的。
下面,我就《几何原本》和《九章算术》的异同做一些阐述,首先,《几何原本》和《九章算术》产生的背景不同:《几何原本》产生的背景:欧几里得的生平,现在知道的甚少,欧几里得在公元前300年左右,来到亚历山大里亚教学.人们称赞欧几里得治学精神严谨、谦虚,是一个温良敦厚的数学教育家.欧几里得在从事数学教育中,总是循循善诱地启发学生,提倡刻苦钻研,弄懂弄通,反对投机取巧、急功近利的狭隘思想.欧几里得在从事数学教育中,善于积累数学知识,并进行了拓宽与创新.他的巨著《几何原本》是一生中最重要的工作,这部著作的形成具有无以伦比的历史意义.他精僻地总结了人类长时期积累的数学成就,建立了数学的科学体系,为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机.这部著作长时期被人崇拜、信仰,从来没有一本教科书,像《几何原本》那样长期广为传颂.从1482年到19世纪末,欧几里得《几何原本》的印刷本竟用各种文字印刷1000版以上,在此之前,它的手抄本统御几何学也已达近1800年之久.欧几里得继承和发展了前人的数学知识,《几何原本》所用到的材料大部分是希腊前期各学派创建的成果.欧几里得是柏拉图的门徒,他的著作基本沿续了柏拉图的传统思想,承袭了《共和国》中所论及的科学方法.欧几里得在《几何原本》中,发展了柏拉图的以哲学为基础,“数论、几何、音乐、天文”4科为内容的科学思想.另外,欧几里得还采用了欧多克索斯等学者的一些定理,并加以完善.《几何原本》所采用的公理、定理都是经过细致斟酌、筛选而成,并按严谨的科学体系进行编排,使之系统化、理论化,超过了以前的所有著作,因此,当《几何原本》问世之后,其它诸类逐渐消声匿迹了.《九章算术》的背景:中国数学经过长期积累,到西汉时期已有了相当丰富的内容.除《周髀算经》外,西汉初期出现了第一部数学专著---《算术书》,用竹简写成.全书共60多个标题,如“相乘”、“增减”、“少广”、“税田”、“金价”、“合分”等,标题下列有各种问题.《九章算术》的体例便受到《算术书》的影响.另外,当时西汉已有初步的负数及比例概念,面积和体积计算的知识也增多了.这些都为我国初等数学体系的形成准备了条件.现传本《九章算术》约成书于西汉末年,作者不详,可能经多人之手而成.它是一部承前启后的著作,一方面总结了西汉及西汉以前的数学成果,集当时初等数学之大成;另一方面又对后世数学发展产生了深远的影响.其次,《几何原本》和《九章算术》的内容的异同:<<几何原本本>>各卷简介:第一卷:几何基础。
重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理;第二卷:几何与代数。
讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。
第三卷:讨论了圆与角。
第四卷:讨论圆内接和外切多边形的做法和性质;第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论第六卷:讲相似多边形理论;第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。
第十一卷、十二、十三卷:最后讲述立体几何的内容。
从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。
因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。
属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。
《九章算术》的九章的主要内容分别是:第一章“方田”:田亩面积计算;第二章“栗米”:谷物粮食的按比例折换;第三章“衰分”:比例分配问题;第四章“少广”:已知面积、体积、求其一边长和径长等;第五章“商功”:土石工程、体积计算;第六章“均输”:合理摊派赋税;第七章“盈不足”:即双设法问题;第八章“方程”:一次方程组问题;第九章“勾股”:利用勾股定理求解的各种问题.九章算术》和《几何原本》在思维方法上有很大的不同。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
《九章算术》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。
它的一些成就还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
《几何原本》是欧几里德一生著有的多部数学著作其中最有价值的一部。
它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。
几何原本的一些内容五条公理1.等于同量的量彼此相等;2.等量加等量,其和相等;3.等量减等量,其差相等;4.彼此能重合的物体是全等的;5.整体大于部分。
a五条公设1.过两点能作且只能作一直线;2.线段(有限直线)可以无限地延长;3.以任一点为圆心,任意长为半径,可作一圆;4.凡是直角都相等;5.在一平面内,过直线外一点,可作且只可作一直线跟已知直线平行。
(最后一条公设就是著名的平行公设,或者叫做第五公设。
它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。
)关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。
所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
再次,数学史的演变发展与人类社会的文明发展史一样悠久漫长,从远古时期的数学萌芽,到16世纪前的初等数学,再到欧洲文艺复兴之后的变量数学,直至19世纪以来的现代数学,每一个重大数学成就都有其产生的背景和深远意义。
《几何原本》与《九章算术》还有其他不同的地方:1《几何原本》与理性思维欧几里得的《几何原本》作为人类智慧的光辉结晶,它在数学史上的作用是没有任何一本著作可以与之比拟的。
把《几何原本》放在古希腊文化的系统中,并从文化史的宏观角度去进行分析,可以看到她有着更为广泛和重要的意义。
《几何原本》依据柏拉图哲学、亚里士多德的逻辑学和欧几里得的精心构思,在人类数学史上第一次给出了一个公理化了的数学理论体系,所表现出的已不仅是一种数学命题的真理特征,更为重要的是它借助数学表现了一种认识世界、表述世界的独特文化意义,并由此给人们提供一种思维的理性方式:从几个简单的原理出发,可以逻辑演绎出整个理论体系,进而表现这个理论所揭示的真理。
一种数学方法能最终演化成为一种认识世界的理性思维方式,这不能不说是数学所能达到的最高的文化意义。
2《九章算术》与实用算法汉代出现的《九章算术》,标志着中国古代数学体系的形成。
全书采用问题集形式,以方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股共九类实践应用题分成九章,计246个数学问题,共给出202个具体的计算方法(术),每题大致由问(问题)、答(答案)、术(解题方法或过程)组成。
《九章算术》在中国古代数学史上拥有至高无上之地位,在世界数学史上也是屈指可数,与希腊之《几何原本》交相辉映,同为世界数学发展之源,我国的传统数学有它自己的体系和方式,有着它自身发展途径和独到思想体系,不能以西方数学的模式生搬硬套。
《几何原本》和《九章算术》的思想方法的异同:《几何原本》的思想方法的特点:(一)封闭的演绎体系因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公里或前面已经证明过的定理,并且引入的概念也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西,因此《几何原本》是一个封闭的演绎体系。
(二)抽象化的内容《几何原本》中研究的对象都是抽象的概念和命题,它所探讨的是这些概念和命题之间的逻辑关系,不讨论这些概念和命题与社会生活之间的关系,也不考察这些数学模型所由之产生的现实原型,因此《几何原本》的内容是抽象的。
(三)公理化的方法《几何原本》的第一篇中开头5个公设和5个公里,是全书其它命题证明的基本前提,接着给出23个定义,然后再逐步引入和证明定理。
定理的引入是有序的,在一个定理的证明中,允许采用的论据只有公设和公理与前面已经证明过的定理。
以后各篇除了不再给出公设和公理外也都照此办理。
这种处理知识体系与表述方法就是公理化方法《九章算术》思想方法的特点:(1)开放的归纳体系从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。
在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综合起来,就得到整个《九章算术》。
另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。
因此,《九章算术》是一个开放的归纳体系。
(2)算法化的内容《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。
因此,内容的算法化是《九章算术》思想方法上的特点之一。
(3)模型化的方法《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。
当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。