几何原本与九章算术的异同

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《几何原本》与《九章算术》的异同

《几何原本》和《九章算术》都是经典的数学著作,一部是西方的著作,一部是中国的古代著作,这两部著作都对后来的数学发展做出了很大的贡献,并对人类文明产生深远的影响。《几何原本》和《九章算术》本身是关于纯数学的专著,但高度抽象化的数学是必定是需要和其它的学科相结合的。

下面,我就《几何原本》和《九章算术》的异同做一些阐述,首先,《几何原本》和《九章算术》产生的背景不同:

《几何原本》产生的背景:

欧几里得的生平,现在知道的甚少,欧几里得在公元前300年左右,来到亚历山大里亚教学.人们称赞欧几里得治学精神严谨、谦虚,是一个温良敦厚的数学教育家.欧几里得在从事数学教育中,总是循循善诱地启发学生,提倡刻苦钻研,弄懂弄通,反对投机取巧、急功近利的狭隘思想.欧几里得在从事数学教育中,善于积累数学知识,并进行了拓宽与创新.他的巨著《几何原本》是一生中最重要的工作,这部著作的形成具有无以伦比的历史意义.他精僻地总结了人类长时期积累的数学成就,建立了数学的科学体系,为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机.这部著作长时期被人崇拜、信仰,从来没有一本教科书,像《几何原本》那样长期广为传颂.从1482年到19世纪末,欧几里得《几何原本》的印刷本竟用各种文字印刷1000版以上,在此之前,它的手抄本统御几何学也已达近1800年之久.欧几里得继承和发展了前人的数学知识,《几何原本》所用到的材料大部分是希腊前期各学派创建的成果.欧几里得是柏拉图的门徒,他的著作基本沿续了柏拉图的传统思想,承袭了《共和国》中所论及的科学方法.欧几里得在《几何原本》中,发展了柏拉图的以哲学为基础,“数论、几何、音乐、天文”4科为内容的科学思想.

另外,欧几里得还采用了欧多克索斯等学者的一些定理,并加以完善.《几何原本》所采用的公理、定理都是经过细致斟酌、筛选而成,并按严谨的科学体系进行编排,使之系统化、理论化,超过了以前的所有著作,因此,当《几何原本》问世之后,其它诸类逐渐消声匿迹了.

《九章算术》的背景:

中国数学经过长期积累,到西汉时期已有了相当丰富的内容.除《周髀算经》外,西汉初期出现了第一部数学专著---《算术书》,用竹简写成.全书共60多个标题,如“相乘”、“增减”、“少广”、“税田”、“金价”、“合分”等,标题下列有各种问题.《九章算术》的体例便受到《算术书》的影响.另外,当时西汉已有初步的负数及比例概念,面积和体积计算的知识也增多了.这些都为我国初等数学体系的形成准备了条件.

现传本《九章算术》约成书于西汉末年,作者不详,可能经多人之手而成.它是一部承前启后的著作,一方面总结了西汉及西汉以前的数学成果,集当时初等数学之大成;另一方面又对后世数学发展产生了深远的影响.

其次,《几何原本》和《九章算术》的内容的异同:<<几何原本本>>

各卷简介:

第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和

多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理;

第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。

第三卷:讨论了圆与角。

第四卷:讨论圆内接和外切多边形的做法和性质;

第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论第六卷:讲相似多边形理论;

第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。

第十一卷、十二、十三卷:最后讲述立体几何的内容。

从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。

《九章算术》的九章的主要内容分别是:

第一章“方田”:田亩面积计算;

第二章“栗米”:谷物粮食的按比例折换;

第三章“衰分”:比例分配问题;

第四章“少广”:已知面积、体积、求其一边长和径长等;第五章“商功”:土石工程、体积计算;

第六章“均输”:合理摊派赋税;

第七章“盈不足”:即双设法问题;

第八章“方程”:一次方程组问题;

第九章“勾股”:利用勾股定理求解的各种问题.

九章算术》和《几何原本》在思维方法上有很大的不同。

《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。《九章算术》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。

《几何原本》是欧几里德一生著有的多部数学著作其中最有价值的一部。它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。

几何原本的一些内容

五条公理

1.等于同量的量彼此相等;

2.等量加等量,其和相等;

3.等量减等量,其差相等;

4.彼此能重合的物体是全等的;

5.整体大于部分。

a

五条公设

1.过两点能作且只能作一直线;

2.线段(有限直线)可以无限地延长;

3.以任一点为圆心,任意长为半径,可作一圆;

4.凡是直角都相等;

5.在一平面内,过直线外一点,可作且只可作一直线跟已知直线平行。(最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。)

关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明

相关文档
最新文档