三极管输入输出特性测试(—)

合集下载

晶体三极管输入和输出特性

晶体三极管输入和输出特性
发射结反偏,集电结反偏:截止模式
24
例子
总结:在放大电路中三极管主要工作于放大状态,
即要求,发射结正偏(正偏压降近似等于其 PN结的导通压降),集电结反偏(反偏压降
远远大于其导通电压才行)。
对NPN管各极电位间要求:Ve<Vb < Vc 对PNP管各极电位间要求:Ve>Vb>Vc
管子类型判别例 子(黑板)
晶体管的三种工作状态如下图所示
IC
IB
UBC < 0 +
+ +
UCE
UBE > 0
(a)放大
IC 0
IB = 0
UBC < 0 +
+ +
UCE UCC
UBE 0
IB
UBC > 0
IC
UCC RC
+
+ +
UCE 0
UBE > 0
(b)截止
Hale Waihona Puke (c)饱和22➢ 三极管特性——具有正向受控作用
60
死区电 压,硅管
40
0.5V,锗 20
管0.2V。
工作压降: 硅管 UBE0.6~0.7V,锗 管UBE0.2~0.3V。
0.4 0.8 UBE(V)
3 首 页 上一页 下一页
3、三极管共射组态的输入特性曲线
iB=f(uBE ,uCE)
以 VCE为参变量的输入特性曲线 :
iB=f(uBE)| uCE=常数
当 uCE 较 小 时 , 曲 线 陡 峭 , 这 部
分称为饱和区。在饱和区,iB增加
iC
时 线几iC变乎化重不合大,,表不明同iB对iB下iC失的去几控条制曲,饱和区

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。

依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。

利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。

晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。

由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。

晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。

从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

实验三 光电三极管特性测试及其变换电路

实验三 光电三极管特性测试及其变换电路

实验三光电三极管特性测试及其变换电路实验目的、学习掌握光电三极管的工作原理2、学习掌握光电三杨管的基本特性掌掘光电三极管特性测试的方法4、了解光电三极管的基本应用二、实验内容1、光电三极管光电流测试实验2、光电三极管伏安特性测试实验3、光电三极管光电特性测试实验4、光电三极管时间特性测试实验5、光电三极管光谱特性测试实验三、实验仪器1、光电器件和光电技术综合设计平台1台2、光源驱动模块1个3、负载模块1个1、光通路组件1套5、光电三极管及封装组件1套6、2#迭插头对(红色,50cm) 10根7、2#迭插头对(黑色,50cm) 10根8、示波器1台四、实验原理光电三极管与光电二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。

光敏三极管有两个PN结,因而可以获得电流增益,它比光敏二极管具有更高的灵敏度。

其结构如图3-1 (a)所示。

当光敏三极管按图3-1 (b) 所示的电路连接时,它的集电结反向偏置,发射结正向偏置,无光照时仅有很小的穿透电流流过,当光线通过透明窗口照射集电结时,和光敏二极管的情况相似,将使流过集电结的反向电流增大,这就造成基区中正电荷的空穴的积累,发射区中的多数载流子(电子)将大量注人基区,由于基区很薄,只有一小部分从发射区注入的电子与基区的空穴复合,而大部分电子将穿过基区流向与电源正极相接的集电极,形成集电极电流。

这个过程与普通三极管的电流放大作用相似,它使集电极电流是原始光电流的(1+B )倍。

这样集电极电流将随入射光照度的改变而更加明显地变化。

在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si单晶体制造NPN或PNP型光敏三极管。

其结构使用电路及等效电路如图4所示。

光敏三极管可以等效一个光电二极管与另一个-般晶体管基极和集电极并联:集电极基极产生的电流,输入到三极管的基极再放大。

常用半导体器件_三极管的输出特性曲线

常用半导体器件_三极管的输出特性曲线

第四章 常用半导体器件
4.3 双极型三极管
例4.3.1 在放大电路中测得4个三极管的各管脚对“地”电位如图所 示。试判断各三极管的类型(是NPN型还是PNP型,是硅管 还是锗管),并确定e、b、c三个电极。
3V
8V
−3V 2.3V
−5V
0V
−0.8V −1V
3.7V
2V
−0.6V
6V
(a)
0
U(BR)CEO uCE
第四章 常用半导体器件
4.3 双极型三极管
2. 三极管型号的意义 国家标准对半导体三极管的命名如下:
3 D G 110 B
用字母表示同一型号中的不同规格
用数字表示同种器件型号的序号
用字母表示器件的种类
用字母表示材料
三极管 第二位:A 锗PNP管, B 锗NPN管, C 硅PNP管, D 硅NPN管 第三位:X 低频小功率管,D 低频大功率管,
B
ic
C
发射结正偏、集电结反偏,管子放大。
第四章 常用半导体器件
4.3 双极型三极管
−1.4V 硅管
−2.8V −3.5V 1.1V
锗管
1.3V 1V
12V 硅管 2V
发射结正偏、集电结反偏,管子放大。
发射结偏、集电结均正偏,管子饱和。
UBE=2.7V,远大于发射结正偏时的电压, 故管子已损坏。
−0.7V
iC
iB
+
u+−BE
uCE −
当三极管饱和时,UCE 0,C-E iC/mA 饱和区
间如同一个开关的接通。
IB=40μA 4
当三极管截止时,IC 0 , C-E 3
之间如同一个开关的断开。

三极管的特性曲线实验

三极管的特性曲线实验

实验目的•测试三极管的输入和输出特性并绘制特性曲线小灯泡的伏安特性测试电路图集电极基极b发射极思考探究...1.R1和R2有什么作用2.电流表电压表如何选取?uAv mA实验电路图Kmv实验器材1.万用表2.直流稳压电源 6.直流微安表7.直流毫安表5.直流毫伏表 3.滑动变阻器4.电阻箱v BE i B o 实验方法:控制变量法,描点法v CEi c o 以输出口电压v CE 为参变量,反映i B 和v BE 的函数关系()|CE B BE v Ci f v ==以输入口电压v BE 为参变量,反映i C 和v CE 的函数关系()B C CE Ii f v ==常数实验总结v BEi Bv ON v BE I I B2V CE =0V V CE =3V V CE =1V 1.共射输入特性曲线门坎电压当Vbe 一定时,随着Vce 的增大,Ib 减小2. 输出特性I B 20μA 40μA 60μA 80μA 100μA I C (mA )U CE (V)9O 放大区解惑:晶体管放大的过程,实际上是指小信号控制大信号的过程。

而不是小信号独自生成大信号的过程。

所被控制放大信号的能量是由电源提供的。

而且晶体管本身也有能量的损耗。

(1)三极管具有电流放大能力,通过一定的电路还可形成电压放大能力。

换言之,三极管具有功率放大能力,这是否违背能量守恒定律?为什么?(2)测量输出特性的实验中,为什么当Uce接近零时,ib会有明显变化?(3)麦克风,音响,那么他们的放大功能对应输出曲线上的哪一区域???。

三极管放大电路输入输出电阻计算

三极管放大电路输入输出电阻计算

三极管放大电路输入输出电阻计算三极管是一种常见的电子元件,广泛应用于各种放大电路中。

在三极管放大电路中,输入输出电阻是一个重要的参数,它决定了电路的输入和输出特性。

本文将从三极管的基本工作原理、输入输出电阻的定义和计算方法等方面进行详细介绍,帮助读者更好地理解和应用三极管放大电路。

一、三极管的基本工作原理三极管是一种半导体器件,由三个掺杂不同的半导体材料层构成。

其中,掺杂浓度最高的被称为发射区(Emitter),掺杂浓度次之的被称为基区(Base),掺杂浓度最低的被称为集电区(Collector)。

三极管的工作原理是利用外加电压控制发射区和集电区之间的电流,从而实现对电流的放大作用。

在正常工作状态下,三极管的基区和集电区之间形成一个正向偏置的二极管结,发射区和基区之间形成一个正向偏置的二极管结。

当外加正向偏置电压时,发射区和基区之间的二极管结导通,同时集电区和基区之间的二极管结截断。

由于发射区和集电区之间的电流放大作用,使得从集电区到发射区的电流得到放大,实现了信号的放大作用。

二、输入输出电阻的定义在三极管放大电路中,输入输出电阻是指在电路的输入端或输出端加上一个测试信号时,测试信号源所感受到的等效电阻。

输入电阻是指当输入端加上一个测试信号时,测试信号源所感受到的等效电阻;输出电阻是指当输出端加上一个测试信号时,测试信号源所感受到的等效电阻。

输入输出电阻是衡量电路输入输出特性的重要参数,它直接影响电路的输入输出特性,是电路设计中需要考虑的关键参数之一。

三、输入输出电阻的计算方法1.输入电阻的计算方法输入电阻是指在输入端加上一个测试信号时,测试信号源所感受到的等效电阻。

在三极管放大电路中,输入电阻可以通过以下方法进行计算。

首先将输入端接地,然后加上一个测试信号源,并测出输入端的电压。

接着去掉测试信号源,用一个理想的电压源代替,在理想电压源的电压不变的情况下,测出输入端的电流。

输入电阻就等于理想电压源的电压除以测出的输入端电流。

三极管的特性曲线

三极管的特性曲线
三极管的特性曲线
20/131
3.1.3 三极管的特性曲线
三极管的特性 指管子各电极的电压与电流的关系曲线。
共发射极接法三极管的特性曲线
Ib是输入电流,Ube是输入电压,加在B、E两电极之间。 Ic是输出电流,Uce是输出电压,从C、E两电极取出。
Ic
输入特性曲线:Ib=f (Ube) Uce=C
输出特性曲线:Ic=f (Uce) Ib=C
制作单位:北京交通大学电子信息工程学院 《模拟电子技术》课程组
③ ①②
载流子,且基区复合减少, 特性曲
线将向右稍微移动一些, IC / IB 增 大。但UCE再增加时,曲线右移很不 明显。通常只画一条。
输入特性曲线分三个区 ① 死区
IB Rb
+ Ui-
IC
Uo
IE
Rc
EB EC
② 非线性区 ③ 线性区
发射极正偏 时: NPN Si管: Ube= 0.6~0.7V PNP Ge管: Ube= 0.2~0.3V
+ U-i
Rb Ib c
be
Ie
Uo Rc
说明:符号Ube表示矢量信号。
EB
EC
21/13•1 三极管输入特性曲线 IB=f(UBE) U CE=常数
1. UCE=0V时,发射极与集电极短路,
发射结与集Байду номын сангаас结均正偏,实际上
是 两个二极管并联的正向特性曲线
。 2. 当UCE ≥1V时,UCB= UCE - UBE >0, 集电结已进入反偏状态,开始收集
特点:发射结反偏,集电结反偏。 IB=0 曲线的下方的区域 当IB=0 时,IC=ICEO NPN管,UBE< 0.7V(硅管)时管 子就处于截止态。

三极管的特性曲线

三极管的特性曲线

三极管的特性曲线
 三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。

它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。

 对于三极管的不同连接方式,有着不同的特性曲线。

应用最广泛的是共发射极电路,其基本测试电路如图Z0118所示,共发射极特性曲线可以用描点法绘出,也可以由晶体管特性图示仪直接显示出来。

 一、输入特性曲线
 在三极管共射极连接的情况下,当集电极与发射极之间的电压UBE 维持不同的定值时,
 UBE和IB之间的一簇关系曲线,称为共射极输入特性曲线,如图Z0119所示。

输入特性曲线的数学表达式为:
 IB=f(UBE)| UBE = 常数 GS0120
 由图Z0119 可以看出这簇曲线,有下面几个特点:。

实验三三极管输入输出特性测试

实验三三极管输入输出特性测试

实验三三极管输入‎输出特性测‎试(二)一、实验目的通过对三极‎管输入回路‎和输出回路‎电压和电流‎的测量,得到三极管‎的输入特性‎和输出特性‎数据。

了解三极管‎的放大功能‎,认识三极管‎放大信号的‎特征(比较基极电‎流Ib和集‎电极电流I‎c)。

二、实验原理三极管外部‎各极电压和‎电流的关系‎曲线,称为三极管‎的特性曲线‎,又称伏安特‎性曲线。

它不仅能反‎映三极管的‎质量与特性‎,还能用来定‎量地估算出‎三极管的某‎些参数,是分析和设‎计三极管电‎路的重要依‎据。

对于三极管‎的不同连接‎方式,有着不同的‎特性曲线。

应用最广泛‎的是共发射‎极电路,可以采用传‎统的逐点法‎测量,其基本测试‎连线电路如‎图-1所示。

图-1 三极管输入‎、输出特性曲‎线测量连线‎图输入特性曲‎线在三极管共‎射极连接的‎情况下,当集电极与‎发射极之间‎的电压维持固定值‎时,和之间的一‎簇关系曲线‎,称为共射极‎输入特性曲‎线,如图-2所示。

图-2 三极管的输‎入特性曲线‎三极管输出‎特性曲线是‎指以三极管‎的基极电流‎b I 维持固定值‎时,测量集电极‎、发射极之间‎电压与三极‎ce U 管集电极电‎流的关系曲‎c I 线。

曲线如图-3所示。

图-3 三极管的输‎出特性曲线‎三、实验内容实验目的:通过对三极‎管输出回路‎电压和电流‎的测量,认识三极管‎的输出特性‎。

弄清三极管‎放大信号的‎特征是电流‎放大(对比基极电‎流Ib 和集‎电极电流I ‎c )。

实验内容与‎规划:要组建一个‎三极管输出‎回路便于测‎量回路中的‎电压与电流‎的变化数据‎。

(注意点:测量三极管‎输出回路时‎,三极管的输‎入回路电流‎Ib 要固定‎,否则影响输‎出回路的测‎量)大家先准备‎好实验方案‎,上课用15‎分钟来讨论‎定案。

实验结束后‎关注基极电‎流Ib 和集‎电极电流I ‎c 的关系。

实验电路图‎:V11VR1100RRV1100Q12N3392R2100RV21V+88.8Volts+88.8Amps数据记录:Ib=20uA Uce1 0.361 0.489 0.98 2.01 2.97 3.44 4.05 5.01 Ic1 3.168 3.321 3.342 3.541 3.548 3.55 3.561 3.574 Ib=40uA Uce2 0.18 0.531 0.914 2.045 3.025 4.32 4.65 5.125 Ic2 5.686 6.572 6.648 6.687 6.786 6.927 7.032 7.168 Ib=60uA Uce3 0.328 0.522 0.885 1.942 2.98 4.121 4.776 5.064 Ic3 8.756 10.085 10.269 10.604 11.062 11.189 11.201 11.229曲线图:数据处理:①:ΔIc/ΔIb=161.88②:ΔIc/ΔIb=193.06四、心得体会1、一开始就忘‎记测0的时‎候的数据,之后只有默‎认为0,下次一定要‎注意。

三极管的简单检测方法(经验判断)

三极管的简单检测方法(经验判断)

一、三极管的简单检测方法〔经历判断〕1.冒状的三极管:对于这种冒状三极管,一般都有个凸出的部分,那么突出部分对应为E极,然后B极应该为中间的引脚,另外一脚那么为C极;2.普通的三极管:对于这种三极管,首先用数字万用表检测出B极〔万用表打到导通挡,假设测得某一引脚与其他两引脚的压降为无穷大,调换表笔,测得此引脚与其他两引脚都存在一定的压降,那么可断定此引脚为B极〕,检测出B极后,将万用表打到导通挡〔即二极管挡〕,分别测量另外两支引脚对B极的正向偏压,其中偏压较大的为E极,偏压较小的为C极;〔注:一般三极管假设检测出B极在一端,那么另一端为E极,中间为C极〕二、电容的串、并联:1.电容串联电路的根本特征:a):电容串联后总电容的倒数等于各电容容量的倒数之和,即1/C=1/C1+1/C2+…,这一点与电阻并联电路一样。

〔记住一个特例:当两个容量相等电容串联后,其总的电容容量为原来单个电容容量的一半。

〕b):在电容串联电路中,容量大的电容两端电压小,容量小的电容两端电压大〔由Q=C*U,存储在串联电路中各个电容的电荷量Q相等,所以容量越大,电容两端电压越小。

〕,当某个电容的容量远大于其他电容时,该电容相当于通路,此时电路中起决定性作用的是容量小的电容。

c):两只有极性电解电容顺串联的结果仍然为一只有极性的电容,总电容的容量减小,总电容的耐压进步;逆串联后电容没有极性,两根引脚可以任意接入电路中。

2.电容并联电路的根本特征:a):电容并联电路中的总电容等于各电容的容量之和,即总容量C= C1+C2+…,这一点与电阻串联特性相似。

b):电容并联电路中各电容上电压相等,各电容支路中,大容量电容支路中的电流大,小容量电容支路中的电流小。

〔因为并联电路两端电压相等,容量大容抗小,电流大〕说明:〔平板电容公式为c=εs/4πkd.平行板电容器的电容c跟介电常数ε成正比,跟正对面积成s正比,跟极板间的间隔d成反比,其中式中的k是静电力常量。

晶体三极管的输入输出特性曲线

晶体三极管的输入输出特性曲线

晶体三极管的输入、输出特性曲线三极管的特性曲线是指三极管各极上的电压和电流之间的关系曲线,是三极管内部性能的外部表现。

从使用三极管的角度来说,了解它的特性曲线是重要的。

由于三极管有两个PN结,因此它的特性曲线不像二极管那样简单。

最常用的有输入特性和输出特性曲线两种,在实际应用中,通常利用晶体管特性图示仪直接观察,也可用图1的电路开展测试逐点描绘。

(一)输入特性曲线输入特性是指,当三极管的集电极与发射极之间电压UCE保持为某一固定值时,加在三极管基极与发射极之间的电压UBE与基极电流IB之间的关系。

以3DG130C为例,按图1实验电路测试。

当UCE分别固定在O和1伏两种情况下,调整RPl测得的IB和UBE的值,列于表1。

它的输入特性曲线,如图2所示。

为了说明输入特性,图中画出两种曲线,表示UCE不同的两种情况。

但两条线不会同时存在。

图1晶体三极管输入、输出特性实验电路图2晶体三极管输入特性曲线表1三极管输入特性数据1.当UCE = O伏时,也就是将三极管的集电极与发射极短接,如图3所示,相当于正向接法的两个并联二极管。

图2中曲线A的形状跟二极管的正向伏安特性曲线非常相似,IB和UBE 也是非线性关系。

2.当UCE=I伏时,集电结反偏,产生集电极电流IC, 在一样的UBE条件下,基极电流IB就要减小。

(图2中a点降到b 点),因此曲线B相对曲线A右移一段距离。

可见,UCE 对IB有一定影响。

当UCE>1伏以后,IB与UCE几乎无关,其特性曲线和UCE = I优那条曲线非常接近,通常按UCE = I 伏的输出特性曲线分析。

图3 UCE=O时的等效电路图4 3AX52B的输入特性曲线图4是3AX52B错三极管的输入特性,注意横坐标是一UBE,这是指PNP型错管的基极电位低于发射极电位。

可见,错管和硅管它们的输入特性曲线都是非线性的,都有“死区”, 错管和硅管相比,错管在较小的UBE值下,就可使发射结正偏导通。

电子技术试验:三极管输入、输出特性曲线的测试

电子技术试验:三极管输入、输出特性曲线的测试
坐标。
五、下次预习要求
(P147实验4.14)
现代电子技术实验
4.13、三极管输入、输出特性曲线 的测试
现代电子技术实验
预习情况检查
1.半导体管特性图示仪的基本原理与应用。 2.晶体三极管的伏安特性曲线的特点及其主要
参数定义。
现代电子技术实验
一.实验目的
1. 进一步熟悉晶体管图示仪的面板旋钮。 2. 掌握晶体管输入输出特性的图测方法。 3. 掌握用晶体管特性曲线求参数的方法。
பைடு நூலகம்
设VCE =5V,适当选择和记录IBQ
ebc
1008:NPN型
IC
I B VCE 5V
IC
IB VCE 5V
iC
△IC IC
IB 10 A IB 8 A
IB 4 A
IB 2 A
VCE =5V
vCE
四、实验报告要求
1.写出所测参数的定义及其物理意义。 2.用坐标纸定量描绘特性曲线,正确标明相应
2.共射输出特性曲线
以输入口电流iB为参变量,反映输出口iC与vCE的函 数关系曲线。
iC f (vCE ) IB 常数
iC
iB5 iB4
iB3
iB2 iB1
O
uCE
3.三极管输出特性测试电路
图示仪面板主要包括
阶梯信号部分
晶体管输出特性的动态测量
半 导 体 特 性 图
示 集电 仪 极电 操源
作 面 板
测试台
Y轴
X轴 阶梯电

三、实验内容
1.晶体管输出特性的测量
(1)调节图示仪有关控制旋钮,测绘输出特性曲线。
(2)在曲线上标出饱和区、截止区和放大区。

实验一 三极管输入输出特性实验报告

实验一 三极管输入输出特性实验报告

三极管输入输出特性姓名:班级:学号:指导老师:1.实验背景输入特性曲线(共射极)i=f(v BE) v CE=const.B(1)当v CE=0V时,相当于发射结的正向伏安特性曲线。

(2)当v CE≥1V时,v CB= v CE - v BE>0,集电结已进入反偏状态,开始收集电子,基区复合减少,同样的v BE下i B减小,特性曲线右移。

图1输出特性曲线(共射极)iC=f(vCE) iB=const.饱和区:vCE很小,iC iB,三极管如同工作于短接状态,一般vCE vBE,此管压降称为饱和压降。

此时,发射结正偏,集电结正偏或反偏电压很小。

截止区:iB=0,iC= iCEO0,三极管如同工作于断开状态,此时, vBE小于死区电压。

放大区: vBE >Vth,vCE反电压大于饱和压降,此时,发射结正偏,集电结反偏。

图22.实验目标1.掌握不同连接时的三极管的伏安特性曲线2.掌握利用PSpice A/D仿真功能中提供直流扫描分析(DC Sweep)以及参数分析(Parametric Analysis)3.实验方法1> 电路图中的参数用花括号括起,如下图中的{VCE}等2> 图中的PARAMETERS: place→part→add library后,添加special.olb3> 双击PARAMETERS:出现property editor,选择New column, name 中写入相应的参数名,例如下图中的VCE,初始值VCE=0V,IB=10uA,IE=1mA4> 仿真过程,需要先进行DC Sweep 设定,然后options中选择parametric sweep, 在sweep varaible栏中选择GLOBAL PARAMETER,在parameter name中将相应的参数名写入。

在sweep type栏中分别写入参数的变化,包括该参数的初始值、终值以及增量值。

晶体管特性曲线的测量

晶体管特性曲线的测量

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________实验名称:晶体管特性曲线的测量类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.复习三极管的输入特性曲线2.掌握三极管输入输出特性曲线的实验设计方法3.通过分析特性曲线,求取三极管主要参数二、实验内容和原理1.三极管的输入特性曲线三极管在共射连接情况下,保持U CE不变,通过不断增加U BE,测得U BE与i B之间的伏安特性曲线,即为三极管的输入特性曲线。

在输入特性曲线中,U CE=0的曲线与PN结的伏安特性曲线相类似。

当U CE增大至1V的过程中,曲线逐渐右移。

当U CE从1V起继续增大,曲线近似与U CE=1V保持不变,可用任何一条曲线代替所有曲线。

2.三极管的输出特性曲线三极管在共射连接情况下,保持i B不变,通过不断增加U CE,测得U CE与i C之间的伏安特性曲线,即为三极管的输出特性曲线。

在输出特性曲线中分为三个区:截止区、放大区、饱和区。

截止区:发射结反偏,集电结反偏,i C≤I CEO,I C近似认为为0。

放大区:发射结正偏,集电结反偏。

对于硅管,UCE>0.7,对于锗管,UCE>0.3。

iC仅决定于iC,与UCE无关。

理想情况下,放大区的曲线是一族横轴的等距离平行线,iC=βiB,△iC=β△iB。

饱和区:发射结正偏,集电结正偏。

当深度饱和的时候,对于硅管,UCE=0.3,对于锗管,UCE=0.1。

三、主要实验仪器DP832A 可编程线性直流电源;MY61数字万用表;综合实验箱四、操作方法和实验步骤1.测量输入特性曲线①将三极管插入万用表的测量三极管增益系数的插口中,大致测量β的近似值。

实验三三极管输入输出特性实验报告

实验三三极管输入输出特性实验报告

HUNAN UNIVERSITY 课程实习报告题目:基于PSpice软件的二极管特性仿真学生姓名学生学号专业班级指导老师完成日期实验三 三极管输入输出特性一、实验目的1. 掌握不同连接时的三极管的伏安特性曲线2. 掌握利用PSpice A/D 仿真功能中提供直流扫描分析(DC Sweep )以及参数分析(Parametric Analysis)二、实验内容1. 仿真共射极连接时的输入、输出特性曲线(三极管Q2N2222)Q1Q2N2222000PARAMETERS:V3AC =TRAN =DC = {VCE}V4AC =TRAN =DC = 5v I实验结果截屏:Q1Q2N2222V1AC =TRAN =DC = 15v I1{IB}0PARAMETERS:I实验结果截屏:2. 仿真共基极连接时的输出特性曲线V1AC =TRAN =DC = 10v I1AC =TRAN =DC = {IE}Q1Q2N222200PARAMETERS:I实验结果截屏:三、实验心得1> 电路图中的参数用花括号括起,如下图中的{VCE}等2> 图中的PARAMETERS: place →part →add library 后,添加special.olb 3> 双击PARAMETERS: 出现property editor ,选择New column, name 中写入相应的参数名,例如下图中的VCE ,初始值VCE=0V ,IB=10uA , IE=1mA4> 仿真过程,需要先进行DC Sweep 设定,然后options 中选择parametric sweep, 在sweep varaible 栏中选择GLOBAL PARAMETER ,在parameter name 中将相应的参数名写入。

在sweep type 栏中分别写入参数的变化,包括该参数的初始值、终值以及增量值。

5> 在设置数值时需要写好单位,否则可能得不到预期的结果。

三极管的特性曲线

三极管的特性曲线

三极管的特性曲线三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。

它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。

对于三极管的不同连接方式,有着不同的特性曲线。

应用最广泛的是共发射极电路,其基本测试电路如图Z0118所示,共发射极特性曲线可以用描点法绘出,也可以由晶体管特性图示仪直接显示出来。

一、输入特性曲线在三极管共射极连接的情况下,当集电极与发射极之间的电压UBE 维持不同的定值时,UBE和IB之间的一簇关系曲线,称为共射极输入特性曲线,如图Z0119所示。

输入特性曲线的数学表达式为:IB=f(UBE)| UBE = 常数GS0120由图Z0119 可以看出这簇曲线,有下面几个特点:(1)UBE = 0的一条曲线与二极管的正向特性相似。

这是因为UCE = 0时,集电极与发射极短路,相当于两个二极管并联,这样IB与UCE 的关系就成了两个并联二极管的伏安特性。

(2)UCE由零开始逐渐增大时输入特性曲线右移,而且当UCE的数值增至较大时(如UCE>1V),各曲线几乎重合。

这是因为UCE由零逐渐增大时,使集电结宽度逐渐增大,基区宽度相应地减小,使存贮于基区的注入载流子的数量减小,复合减小,因而IB减小。

如保持IB为定值,就必须加大UBE ,故使曲线右移。

当UCE 较大时(如UCE >1V),集电结所加反向电压,已足能把注入基区的非平衡载流子绝大部分都拉向集电极去,以致UCE再增加,IB 也不再明显地减小,这样,就形成了各曲线几乎重合的现象。

(3)和二极管一样,三极管也有一个门限电压Vγ,通常硅管约为0.5~0. 6V,锗管约为0.1~0.2V。

二、输出特性曲线输出特性曲线如图Z0120所示。

测试电路如图Z0117。

输出特性曲线的数学表达式为:由图还可以看出,输出特性曲线可分为三个区域:(1)截止区:指IB=0的那条特性曲线以下的区域。

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。

依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。

利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。

晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。

由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。

晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。

从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路分析实验报告
三极管输入输出特性测试(—)
一、实验摘要
通过对三极管输入回路和输出回路电压和电流的测量,得到三极管的输入特性和输出特性数据。

二、实验环境
三极管电阻电位器直流电源万用表
三、实验原理
三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又
称伏安特性曲线。

它不仅能反映三极管的质量与特性,还能用来定量
地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。

四、实验步骤
在面包板上搭建电路
5v 0.1A 0V/1V/2V 0.1A
设定直流电源输入/输出电流和
电压
调节电位器改变分压
记录电压电流得到三极管特性曲线
五、实验数据
VCE=0V
V/v 0.5 0.625 0.628 0.648 0.652 0.659 0.664 0.706 I/A 0.00337 0.04928 0.06074 0.1208 0.14025 0.17675 0.20929 0.84831
VCE=1V
V/v 0.613 0.755 0.756 0.763 0.773 0.779 0.784 0.788 I/A 0.00709 0.5514 0.61795 0.6531 0.7683 0.7836 0.85145 1.14519
VCE=2V
V/v 0.757 0.762 0.774 0.781 0.783 0.786 0.791 0.793 I/A 0.54868 0.58846 0.86204 0.9535 1.10292 1.55215 1.56623 2.48202
六、实验总结
在本次实验中了解到了三极管的输入特性和输出特性以及三极管的特性曲线。

但是自己数据取的不好,特性图画出来不是很好。

相关文档
最新文档