《平方根》课件ppt
合集下载
《平方根》PPT教学课文课件
2. 性质:(1)正数的算术平方根是一个正数; (2)0 的算术平方根是0; (3)负数没有算术平方根; (4)被开方数越大,对应的算术平方根也越大.
感悟新知
例 1 求下列各数的算术平方根. (1)64; (2)2 1 ; (3)0.36; (4)72; (5) (-5)2; 4 (6)0; (7) 81 ; (8)7; (9)-16. 解题秘方:先根据平方运算找出这个正数,然后根 据算术平方根的定义求出算术平方根.
感悟新知
解:(1) 1 9 表示1 9 的平方根.
16
16
5 4
2
25 16
19 16
,
1 9 5. 16 4
(2) 0.81表示0.81 的算术平方根, 0.04 表示0.04 的算
术平方根.
∵ 0.92=0.81,0.22=0.04,∴ 0.81 =0.9, 0.04=0.2.
∴ 0.81 - 0.04 =0.9-0.2=0.7.
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.
∴
99-7 3 2 <2.
∵32=1150,85=1160,∴32<85,
∴
99-7 8 2 <5.
感悟新知
例 5 已知 7.16 ≈ 2.676, 71.6 ≈ 8.462, (1) 0.0716 ≈_0_._2_6_7_6__ ,71600 ≈ __2_6_7_._6__ . (2) 0.00716 ≈ _0_._0_8_4_6_2_ , 7160 ≈ __8_4_._6_2__. (3)若 a ≈ 26.76,则整数a 的值是 ____7_1_6____. 解题秘方:利用计算器求出各个算术平方根,对照 被开方数和算术平方根寻找小数点移动的规律.
感悟新知
例 1 求下列各数的算术平方根. (1)64; (2)2 1 ; (3)0.36; (4)72; (5) (-5)2; 4 (6)0; (7) 81 ; (8)7; (9)-16. 解题秘方:先根据平方运算找出这个正数,然后根 据算术平方根的定义求出算术平方根.
感悟新知
解:(1) 1 9 表示1 9 的平方根.
16
16
5 4
2
25 16
19 16
,
1 9 5. 16 4
(2) 0.81表示0.81 的算术平方根, 0.04 表示0.04 的算
术平方根.
∵ 0.92=0.81,0.22=0.04,∴ 0.81 =0.9, 0.04=0.2.
∴ 0.81 - 0.04 =0.9-0.2=0.7.
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.
∴
99-7 3 2 <2.
∵32=1150,85=1160,∴32<85,
∴
99-7 8 2 <5.
感悟新知
例 5 已知 7.16 ≈ 2.676, 71.6 ≈ 8.462, (1) 0.0716 ≈_0_._2_6_7_6__ ,71600 ≈ __2_6_7_._6__ . (2) 0.00716 ≈ _0_._0_8_4_6_2_ , 7160 ≈ __8_4_._6_2__. (3)若 a ≈ 26.76,则整数a 的值是 ____7_1_6____. 解题秘方:利用计算器求出各个算术平方根,对照 被开方数和算术平方根寻找小数点移动的规律.
平方根PPT精品课件
即:x2 a(x 0), x叫做a的算术平方根,
记作:x a
特殊:0的算术平方根是0。记作 :0 0
例1 求下列各数的算术平方根:
(1)100 (2)6449 (3)0.0001
解:(1)因为 102 =100,所以100的算术平方根为10,
即 100 =10。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
A.①③
B.①④
C.②③
D.②④
规律技巧总结
如何分析气压带的成因 (1)由于地面冷热不均,引起大气的膨胀上升, 或收缩下沉,从而导致近地面形成低气压区或高 气压区的原因,称之为热力原因。如赤道低气压 带和极地高气压带。
(1)图甲中字母所表示的纬度,正确的是( B )
A.A为10°N
B.C为30°N
变式训练2:读风带示意图,回答(1)~(2)题。
规律技巧总结
(1)从气压带来看,全球七个气压带是高低 相间分布的,且以赤道为轴南北对称分布。
(2)风带的分布是以赤道为轴南北对称分布 的。
由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
x= 2
你知道 2有多大吗?
12 2 22 2 1.41421356
1 2 2
逼 1.42 2 1.52 近 法 1.4 2 1.5
1.412 2 1.422
无限不循环小数
1.41 2 1.42
1.4142 2 1.4152
25
0.81
0
判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。
记作:x a
特殊:0的算术平方根是0。记作 :0 0
例1 求下列各数的算术平方根:
(1)100 (2)6449 (3)0.0001
解:(1)因为 102 =100,所以100的算术平方根为10,
即 100 =10。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
A.①③
B.①④
C.②③
D.②④
规律技巧总结
如何分析气压带的成因 (1)由于地面冷热不均,引起大气的膨胀上升, 或收缩下沉,从而导致近地面形成低气压区或高 气压区的原因,称之为热力原因。如赤道低气压 带和极地高气压带。
(1)图甲中字母所表示的纬度,正确的是( B )
A.A为10°N
B.C为30°N
变式训练2:读风带示意图,回答(1)~(2)题。
规律技巧总结
(1)从气压带来看,全球七个气压带是高低 相间分布的,且以赤道为轴南北对称分布。
(2)风带的分布是以赤道为轴南北对称分布 的。
由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
x= 2
你知道 2有多大吗?
12 2 22 2 1.41421356
1 2 2
逼 1.42 2 1.52 近 法 1.4 2 1.5
1.412 2 1.422
无限不循环小数
1.41 2 1.42
1.4142 2 1.4152
25
0.81
0
判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。
平方根ppt课件
在直角三角形中,直角边的平方和等 于斜边的平方。因此,斜边的平方根 是直角边的长度与另一条直角边的长 度之间的比例中项。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。
《平方根》第一课时课件
总结词
掌握平方根减法运算的技巧和注意事项
详细描述
平方根减法运算是指将两个平方根相减的过程。在进行平 方根减法运算时,需要先将两个平方根化为最简形式,然 后根据减法运算法则进行合并。
平方根的乘法运算
理解平方根乘法运算的规则和步骤
输入 总标结题词
掌握平方根乘法运算的技巧和注意事项
总结词
总结词
平方根乘法运算是指将两个平方根相乘的过程。在进 行平方根乘法运算时,需要先将两个平方根化为最简
在物理学中的应用
重力加速度
在物理学中,重力加速度的计算涉及到平方根。重力加速度公式为$g = sqrt{frac{GM}{r^2}}$,其中$G$为万有引力常数,$M$为地球质量,$r$为地球半 径。
声音传播速度
声音在不同介质中的传播速度不同,计算公式为$v = sqrt{frac{D}{rho}}$,其中 $D$为声阻率,$rho$为介质密度。
掌握平方根加法运算的技巧和 注意事项
了解平方根加法运算在数学中 的实际应用
平方根加法运算是指将两个平 方根相加的过程。在进行平方 根加法运算时,需要先将两个 平方根化为最简形式,然后根 据加法运算法则进行合并。
平方根的减法运算
总结词
理解平方根减法运算的规则和步骤
总结词
了解平方根减法运算在数学中的实际应用
在学习过程中,遇到了一些困难和挑 战,但通过不断尝试和思考,最终克 服了这些困难,增强了解决问题的能 力。
通过练习和例题,加深了对平方根的 理解和应用,提高了数学运算能力。
意识到数学在实际生活中的应用价值, 更加重视数学的学习,希望能够在未 来的学习和工作中更好地运用数学知 识和技能。
THANKS
04
《平方根》ppt课件
那么这个数叫做a的平方根 (1)-9的平方根是-3 (
)
判断一个数有没有平方根,只要看这个数的符号。
一个数的平方根的表示方法:
那么x叫做a 平方根。
(4)1 的平方根是 1 (
)
01的平方根是 ( )
例如: 3 =9;(-3) =9; 2 即:若x2=a,那么x叫做a平方根。
∴(
)
2
(1)-9的平方根是-3 (
+1
-1
1
1
+1 -1
+2 -2
4
4
+2 -2
+3
9
9
-3
+3 -3
注意:开平方运算的结果往往不是唯一的 4
填空:
16 25 49 81
如果一个数的平方等于a 那么这个数叫做a的平方根
5
概念:
如果一个数的平方等于a a是x的2次幂
(1)-9的平方根是-3 (
)
即:若x2=a,
1、检验下面各题中前面的数是不是后面的数的平方根。
(2)∵ (0.3)2 = 0.09
∴ (C)
(A)0.09 是 0.3的平方根. (B)0.09是0.3的3倍. (C)0.3 是0.09 的平方根. (D)0.3不是0.09的平方根.
10
1. 判断下列说法是否正确:
× (1)-9的平方根是-3 (
)
× (2)49的平方根是7 (
)
√ (3)(-2)2的平方根是±2 (
)
× (4)1 的平方根是 1 (
)
√ (5)-1 是 1的平方根 (
)
× (6)7的平方根是±49 (
)
× (7)若X2 = 16, 则X = 4 (
浙教版七年级数学上册《平方根》课件(共23张PPT)
1.2是1.44的 平方根
因为1.2²=1.44, 所以1.2是1.44的平方根 因为(–1.2)²=1.44, 所以–1.2也是1.44的平方根
一般地,如果一个数的平方等于ɑ,那
么这个数叫做ɑ的平方根(或二次方根)
一般地,如果一个数的平方等于ɑ,那
么这个数叫做ɑ的平方根(或二次方根)
根据定义,就学能科网 求一个数的平方根
例如:32 9 3是9的平方根 又329 3是也9的平方根
可以合写为:
32 9 9的平方根是3
∵ (_±__4_)2 = 16 , ∴ 16的平方根是__±__4_
∵(_±__0_._7_)2 = 0.49 ,∴ 0.49的平方根是_±__0_._7
∵zx(xk_w _0__)2 = 0 ,
∴ 0的平方根是__0__
(× )
(5)-1 是 1的平方根;
(√ )
(6)7的平方根是±49.
(× )
(7)若X2 = 16 则X = 4
(× )
5 2 的平方根是 5
,
2
64
64
,
52 5 ,
64 8 ,
当
a 0 时,
2
a
a
,
9
2 5 的算术平方根是 3 ,
5
3 2 的平方根是 3
,
若 x2 49 ,则 x 7
则:16的平方根可以写作:____1_6_=±4 3 表示:__3_的__平__方__根_____
练习一:判断正误,若错误请说明理由
(1)-zxxkw 4的平方根是-2
(2) 4 没有平方根
(3)1 的平方根是 1
(×) ( ×) (× )
(4)-1 是 1的平方根 ( √ )
因为1.2²=1.44, 所以1.2是1.44的平方根 因为(–1.2)²=1.44, 所以–1.2也是1.44的平方根
一般地,如果一个数的平方等于ɑ,那
么这个数叫做ɑ的平方根(或二次方根)
一般地,如果一个数的平方等于ɑ,那
么这个数叫做ɑ的平方根(或二次方根)
根据定义,就学能科网 求一个数的平方根
例如:32 9 3是9的平方根 又329 3是也9的平方根
可以合写为:
32 9 9的平方根是3
∵ (_±__4_)2 = 16 , ∴ 16的平方根是__±__4_
∵(_±__0_._7_)2 = 0.49 ,∴ 0.49的平方根是_±__0_._7
∵zx(xk_w _0__)2 = 0 ,
∴ 0的平方根是__0__
(× )
(5)-1 是 1的平方根;
(√ )
(6)7的平方根是±49.
(× )
(7)若X2 = 16 则X = 4
(× )
5 2 的平方根是 5
,
2
64
64
,
52 5 ,
64 8 ,
当
a 0 时,
2
a
a
,
9
2 5 的算术平方根是 3 ,
5
3 2 的平方根是 3
,
若 x2 49 ,则 x 7
则:16的平方根可以写作:____1_6_=±4 3 表示:__3_的__平__方__根_____
练习一:判断正误,若错误请说明理由
(1)-zxxkw 4的平方根是-2
(2) 4 没有平方根
(3)1 的平方根是 1
(×) ( ×) (× )
(4)-1 是 1的平方根 ( √ )
《平方根》课件PPT1
只有非负数才有算 术平方根
25 我们看到,±3的平方等于 9,9 的平方根是±3,
5
0.09 0.3
121 11
2
0 0 3 3
获取新知 知识点一:平方根的概念
思考 所以平方与开平方互为逆运算.
因为(±11)2=121,所以121的平方根是_____.
问 题 一个正数的两个平方根,
C.1
如 果 一 D.-3或1
解:(1)因为62=36,所以 =6;
出它们的算术平方根. 例3 一个正数的两个平方根分别是2a+1和a-4,求这个数.
(3)因为
,所以
.
所以可以借助算术平方根来
25 09 ,
, 0, 2,
.
-36 , 0.09 , , 0 , 知识点一:平方根的概念
(3)因为(±0.
121
2,
32 .
“± ”的意义是( )
(3)因为( 7 )2 49 ,所以 49 7 .
39
93
例3 一个正数的两个平方根分别是2a+1和a-4,求这个数.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1. 所以这个数为(2a+1)2=(2+1)2=9.
题目改为:2a+1和a-4是 一个正数的两个平方根, 是否答案照旧呢?
记作 a
a﹙a≥0﹚的平方根表示为 a
例题讲解
例2 求下列各式的值:
(1) 36; (2) 0.81; (3) 49 . 9
解:(1)因为62=36,所以 36 =6;
算术平方根是平方根中正的那个, 同时正数平方根两个互为相反数,
所以可以借助算术平方根来 解决平方根问题
14.1 平方根 - 第1课时课件(共20张PPT)
-3
-
-1
0
1
3
...
x2
...
...
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.
平方根的性质:
归纳:
平方根的表示方法:正数a的正的平方根记作: 读作“根号a”.正数a的负的平方根记作: 读作“负根号a”.正数a的两个平方根记作:
2.某正数的两个不同的平方根是2a-1与-a+2,则这个数是( )A.1 B.3 C.-3 D.93.7的平方根是________.
Dห้องสมุดไป่ตู้
4.求下列各数的平方根:(1)64;(2)1.21;(3)2
拓展提升
1.若一个数的平方等于5,则这个数等于________.2.
C
3.若3x-2和5x+6是一个正数a的平方根,求这个正数a的值.
新知引入
做一做
定义:
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根,也叫做a的二次方根.
一起探究
1.填写下表:2.观察填写后的表格,探究:(1)正数的平方根有几个,它们之间有什么关系?(2)0有平方根吗?如果有,它是什么数?(3)负数有平方根吗?
x
...
归纳小结
同学们再见!
授课老师:
时间:2024年9月15日
被开方数
读作:正、负根号a
观察框图,说一说求一个数的平方运算和求一个数的平方根运算具有怎样的关系.
谈一谈
我们把求一个数的平方根的运算,叫做开平方.
对于正数来说,开平方与平方互为逆运算.
例1 求下列各数的平方根:(1)81;(2);(3)0.04.
例题解析
随堂练习
-
-1
0
1
3
...
x2
...
...
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.
平方根的性质:
归纳:
平方根的表示方法:正数a的正的平方根记作: 读作“根号a”.正数a的负的平方根记作: 读作“负根号a”.正数a的两个平方根记作:
2.某正数的两个不同的平方根是2a-1与-a+2,则这个数是( )A.1 B.3 C.-3 D.93.7的平方根是________.
Dห้องสมุดไป่ตู้
4.求下列各数的平方根:(1)64;(2)1.21;(3)2
拓展提升
1.若一个数的平方等于5,则这个数等于________.2.
C
3.若3x-2和5x+6是一个正数a的平方根,求这个正数a的值.
新知引入
做一做
定义:
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根,也叫做a的二次方根.
一起探究
1.填写下表:2.观察填写后的表格,探究:(1)正数的平方根有几个,它们之间有什么关系?(2)0有平方根吗?如果有,它是什么数?(3)负数有平方根吗?
x
...
归纳小结
同学们再见!
授课老师:
时间:2024年9月15日
被开方数
读作:正、负根号a
观察框图,说一说求一个数的平方运算和求一个数的平方根运算具有怎样的关系.
谈一谈
我们把求一个数的平方根的运算,叫做开平方.
对于正数来说,开平方与平方互为逆运算.
例1 求下列各数的平方根:(1)81;(2);(3)0.04.
例题解析
随堂练习
平方根ppt课件
平方根ppt课件
目 录
• 引言 • 平方根的基本概念 • 平方根的运算规则 • 平方根的应用 • 练习与思考 • 总结与回顾
01
引言
什么是平方根
01
平方根是一个数学术语,它指的 是一个数的二次方根。
02பைடு நூலகம்
平方根通常用符号“√”表示,例 如,4的平方根是2。
平方根的重要性
平方根在数学中有着重要的应用,例 如在解决几何问题、计算面积和体积 等方面。
平方根的概念也是进一步学习数学的 基础。
02
平方根的基本概念
平方的概念
定义
一个数乘以其自身所得的结果称 为这个数的平方。
例子
4的平方是16,因为4乘以其自身 等于16。
应用
平方的概念在生活和科学计算中都 有广泛的应用,如计算面积和体积 等。
平方根的符号和读法
01
02
03
符号
一个数的平方根可以用符 号“√”表示,读作“根 号”。
算术根是平方根中的一个特例,它只取非负的那 一根;而平方根则包含正负两个方向。
平方根与指数幂的关系
平方根和指数幂是互为逆运算。一个数的平方根 等于该数的指数幂的倒数。
3
平方根的应用
平方根在现实生活中有着广泛的应用,如测量、 工程设计、物理学等领域。
THANKS FOR WATCHING
感谢您的观看
例子
√16表示16的平方根,读 作“根号16”。
注意
平方根的符号和算术平方 根的符号不同,算术平方 根的符号是“√( )”。
平方根与算术平方根
定义
一个非负数a的平方根有两个, 它们是互为相反数的数,分别 称为a的平方根和负平方根。
例子
目 录
• 引言 • 平方根的基本概念 • 平方根的运算规则 • 平方根的应用 • 练习与思考 • 总结与回顾
01
引言
什么是平方根
01
平方根是一个数学术语,它指的 是一个数的二次方根。
02பைடு நூலகம்
平方根通常用符号“√”表示,例 如,4的平方根是2。
平方根的重要性
平方根在数学中有着重要的应用,例 如在解决几何问题、计算面积和体积 等方面。
平方根的概念也是进一步学习数学的 基础。
02
平方根的基本概念
平方的概念
定义
一个数乘以其自身所得的结果称 为这个数的平方。
例子
4的平方是16,因为4乘以其自身 等于16。
应用
平方的概念在生活和科学计算中都 有广泛的应用,如计算面积和体积 等。
平方根的符号和读法
01
02
03
符号
一个数的平方根可以用符 号“√”表示,读作“根 号”。
算术根是平方根中的一个特例,它只取非负的那 一根;而平方根则包含正负两个方向。
平方根与指数幂的关系
平方根和指数幂是互为逆运算。一个数的平方根 等于该数的指数幂的倒数。
3
平方根的应用
平方根在现实生活中有着广泛的应用,如测量、 工程设计、物理学等领域。
THANKS FOR WATCHING
感谢您的观看
例子
√16表示16的平方根,读 作“根号16”。
注意
平方根的符号和算术平方 根的符号不同,算术平方 根的符号是“√( )”。
平方根与算术平方根
定义
一个非负数a的平方根有两个, 它们是互为相反数的数,分别 称为a的平方根和负平方根。
例子
湘教八年级数学上册《平方根》课件(共17张PPT)
3.1平方根
一个正数x的平方等于a,即 x2= a,这 个正数x叫做a的算术平方根
a的算术平方根记为 a 读作“根号a”
x2 = a (x为正数)
x a
规定0的算术平方根是0,记作 0 0
被开方数a≥0 算术平方根 a ≥0
( 1) 9的 算 术 平 方 根 是3_ _
(2) 9 的算术平方根是_3 _
1.若12.53.53, 51.251.118 那么1251 1.8 ;0 .125 0.35 35 。
2.若 已7.知 452.72, 9y27.92; 那y么 745 00。
求下列各数的算术平方根,并用“ < ” 分别 把被开方数和算术平方根连接起来 1,4,9,16,25
02的 值 , 对 于a任 ,a2意 ? |数 a|
练习 1.( : m1) 2 3,则 m 4或- 2 。
2.若(a 2)2 2a,则 a的取值范围是 a ≤2 。
探究:
若(x3)2 x30, 则x的取值范围 是X ≤0 。
(2) 求 ( 4)2, (9)2, (2) 52, (4) 92, (0)2的 值 , 对 于 任 意a, 非( 负 a)2数 ?
21.414213 56
31.73205 08
52.23606 79
72.64575 13
利用计算器计算:
0.06250.25 0.625 0.791
6.25 2.5
62.5 7.91
625 25
6250 79.1
62500 250
你能直接说 625出00与 006250的 00值吗 你发现其中有什 ?么规律
( 3) 0.01的 算 术 平 方 根 是0_.1_
(4) 10 -6 的算术平方根是__
一个正数x的平方等于a,即 x2= a,这 个正数x叫做a的算术平方根
a的算术平方根记为 a 读作“根号a”
x2 = a (x为正数)
x a
规定0的算术平方根是0,记作 0 0
被开方数a≥0 算术平方根 a ≥0
( 1) 9的 算 术 平 方 根 是3_ _
(2) 9 的算术平方根是_3 _
1.若12.53.53, 51.251.118 那么1251 1.8 ;0 .125 0.35 35 。
2.若 已7.知 452.72, 9y27.92; 那y么 745 00。
求下列各数的算术平方根,并用“ < ” 分别 把被开方数和算术平方根连接起来 1,4,9,16,25
02的 值 , 对 于a任 ,a2意 ? |数 a|
练习 1.( : m1) 2 3,则 m 4或- 2 。
2.若(a 2)2 2a,则 a的取值范围是 a ≤2 。
探究:
若(x3)2 x30, 则x的取值范围 是X ≤0 。
(2) 求 ( 4)2, (9)2, (2) 52, (4) 92, (0)2的 值 , 对 于 任 意a, 非( 负 a)2数 ?
21.414213 56
31.73205 08
52.23606 79
72.64575 13
利用计算器计算:
0.06250.25 0.625 0.791
6.25 2.5
62.5 7.91
625 25
6250 79.1
62500 250
你能直接说 625出00与 006250的 00值吗 你发现其中有什 ?么规律
( 3) 0.01的 算 术 平 方 根 是0_.1_
(4) 10 -6 的算术平方根是__
平方根ppt课件
别
取值范
正数的算术平方根
正数的平方根是一
围不同
一定是正数
正一负
感悟新知
知3-讲
续表:
算术平方根
具有包
联 含关系
平方根
平方根包含算术平方根,算术平方根是
平方根中正的那个(0除外)
系 存在条 平方根和算术平方根都只有非负数才有,
件相同
0的平方根与算术平方根都是0
感悟新知
知3-讲
特别提醒
1. 任何一个数的平方都是非负数,所以求算术平方根时,被开
C. ±6是36的平方根: =±6
D. -2是4的负的平方根: =-2
感悟新知
知3-练
6-2. 求下列各式的值:
(1) ;
(2)-
;
解: 1 600=40.
-
14
2 =-
25
(3)± (-);± (-2)2=±2.
(4) . .
0.003 6=0.06.
解:因为152=225,所以225的算术平方根是15.
(2)72;
72的算术平方根是7.
感悟新知
知3-练
(3)(-6)2;
解:因为(-6)2=36=62,所以(-6)2的算术平方根是6.
(4) .
因为 16=4=22,所以 16的算术平方根是 2.
感悟新知
知3-练
例 5 已知a的算方:根据平方根的性质,找出两个平方根
之间的关系列方程求值.
感悟新知
知2-练
(1)一个正数的两个平方根分别是3a-5 和a-3,则这个正
数是多少?
解:根据题意,得(3a-5)+(a-3)=0,
解得a=2,所以这个正数为(3a-5)2=(3×2-5)2=1.
《平方根》PPT课件
第六章 实数
6.1.3 平方根
判断下列各数有没有算术平方根,如果有请求出它们 的算术平方根。
9 100;1 6 ;0.25 ; 0 ; -25; 9 ;
解:因为102 100 ,所以100的算术平方根是10,即 100 10
因为
3 4
2
的算术平方根是 4 ,即
9 16
(1)100
9
(2) 16
(3) 0.25
9
100 16
3
算术平方根 10 4
平方根
10
3 4
0.25
0.5
0.5
0 -2 -3 5
0 没有 没有 5 0 没有 没有 5
7 a(a 0)
7
a
7 a
观察这个表格,你发现平方根有什么特点呢?
6.例题解析
例5 说出下列各式的意义,并求 它们的值:
• 32 =__9__
• 3² =__9__
• 42=__1_6_
• 4² =__1_6_
• 52 =__2_5_
• 5² =_2_5__
32= 9
42=16
∵(±3)²=9 ∴±3是9的平方 根,也可以说9的
平方根是±3
52=25
可逆
平方运算
开平方运算
3.例题解析
例1 求下列各数的平方根:
(1)81x2 49 0 ;(2)49x2 1 50
解:(1)原方程变形为x2 49,所以
(2)原方程变形为
x2
81
1
50
,
x2
x 49 7
1
81
, 所以x
9
1
49 49
7
(1) 36 ; (2) 0.81; (3) 49 . 9
6.1.3 平方根
判断下列各数有没有算术平方根,如果有请求出它们 的算术平方根。
9 100;1 6 ;0.25 ; 0 ; -25; 9 ;
解:因为102 100 ,所以100的算术平方根是10,即 100 10
因为
3 4
2
的算术平方根是 4 ,即
9 16
(1)100
9
(2) 16
(3) 0.25
9
100 16
3
算术平方根 10 4
平方根
10
3 4
0.25
0.5
0.5
0 -2 -3 5
0 没有 没有 5 0 没有 没有 5
7 a(a 0)
7
a
7 a
观察这个表格,你发现平方根有什么特点呢?
6.例题解析
例5 说出下列各式的意义,并求 它们的值:
• 32 =__9__
• 3² =__9__
• 42=__1_6_
• 4² =__1_6_
• 52 =__2_5_
• 5² =_2_5__
32= 9
42=16
∵(±3)²=9 ∴±3是9的平方 根,也可以说9的
平方根是±3
52=25
可逆
平方运算
开平方运算
3.例题解析
例1 求下列各数的平方根:
(1)81x2 49 0 ;(2)49x2 1 50
解:(1)原方程变形为x2 49,所以
(2)原方程变形为
x2
81
1
50
,
x2
x 49 7
1
81
, 所以x
9
1
49 49
7
(1) 36 ; (2) 0.81; (3) 49 . 9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)∵179=196,
4 3
2
=196,∴±
197=±43.
(3)∵
4 3
2
=196,
4 3
2
=196,∴±
4 3
2
=±43.
(4)∵-(-22)3=64,(±8)2=64,∴± --223=±8.
【规律总结】(1)一个正数的平方根总是成对出现的,且它 们互为相反数;
(2)求一个带分数的平方根应先将带分数化成假分数;
B.4245的平方根是±225 C.0.3 是 0.09 的算术平方根 D.32 的平方根是 3 5.16 的平方根是___±__4___,算术平方根是_____4___. 6.一个正数的平方根是 2a-1 和-a+2,则 a=___-__1_, 这个正数是_____9_____.
注意区分平方根与算术平方根 【例题】求下列各数的平方根.
(1)0.49;(2)179;(3)
4 3
2
;(4)-(-22)3.
思路点拨:根据平方与开平方互逆关系求解.
感谢您的阅读! 为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
学习永远不晚。 JinTai College
解:(1)∵(±0.7)2=0.49,∴± 0.49=±0.7.
( D) A.1 B.0 C.-1 D.1 或 0 2.1 196的算术平方根是______54______.
3.求下列各数的算术平方根.
(1)8215; 解:(1)
(2)3-4; 2851=59.
(3)52-42.
(2)
3-4=
1 9
2
=19.
(3) 52-42= 9=3.
平方根和开平方(重难点) 1.平方根的概念:一般地,如果一个数 x 的平方等于 a, 即 x2=a,那么这个数 x 就叫做 a 的__平__方__根__(也叫二次方根).
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/
PPT课件:/kejian/ 数学课件:/kejian/shuxue/ 美术课件:/kejian/meishu/
科学课件:/kejian/kexue/ 物理课件:/kejian/wuli/
(3)求一个运算式的平方应先算出这个算式具体的值,然后
求这个值的平方根.
2.平方根的性质:
(1)一个正数有___两_____个平方根,且它们互为相反数.
(2)0
Hale Waihona Puke 只有一个平方根,它是 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuwen/ 英语课件:/kejian/yingyu/
平方根
算术平方根(重点) 1.算术平方根的概念:一般地,如果一个正数 x 的平方等 于 a,即__x_2_=__a__,那么这个正数 x 就叫做 a 的算术平方根,记 为“___a___”,读作“根号 a”. 2.算术平方根的性质:算术平方根 a具有双重非负性: (1) a≥0;(2)a≥0.
随堂小练 1.如果一个数的算术平方根等于它本身,那么这个数是
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
0
本身.
(3)负数没有平方根.
3.开平方:求一个数 a 的平方根的运算,叫做开平方,其
中 a 叫做被开方数.
随堂小练 4.下列说法正确的是( C ) A.0.09 是 0.3 的平方根