2019中职数学高考全真模拟题

合集下载

2019年陕西省高考数学全真模拟试卷(理科)

2019年陕西省高考数学全真模拟试卷(理科)

2019年陕西省高考数学全真模拟试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.集合P={x|x2﹣9<0},Q={x∈Z|﹣1≤x≤3},则P∩Q=()A.{x|﹣3<x≤3}B.{x|﹣1≤x<3}C.{﹣1,0,1,2,3}D.{﹣1,0,1,2}3.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.74.若命题p:对任意的x∈R,都有x3﹣x2+1<0,则¬p为()A.不存在x∈R,使得x3﹣x2+1<0B.存在x∈R,使得x3﹣x2+1<0C.对任意的x∈R,都有x3﹣x2+1≥0D.存在x∈R,使得x3﹣x2+1≥05.在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2 B.﹣2 C.3 D.﹣36.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.7.函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称的充要条件是()A.φ=2kπ﹣,k∈Z B.φ=kπ﹣,k∈Z C.φ=2kπ﹣,k∈Z D.φ=kπ﹣,k∈Z8.执行如图所示的程序框图(算法流程图),输出的结果是()A.9 B.121 C.130 D.170219.双曲线的离心率为2,则的最小值为()A.B. C.2 D.110.5的展开式中,x5y2的系数为()A.﹣90 B.﹣30 C.30 D.9011.已知不等式组表示平面区域D,现在往抛物线y=﹣x2+x+2与x 轴围成的封闭区域内随机地抛掷一小颗粒,则该颗粒落到区域D中的概率为()A.B.C.D.12.定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1﹣1|<|x2﹣1|时,有()A.f(2﹣x1)≥f(2﹣x2)B.f(2﹣x1)=f(2﹣x2)C.f(2﹣x1)<f(2﹣x2)D.f(2﹣x1)≤f(2﹣x2)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(),0a t =r ,()1,3b =-r,若4a b ⋅=r r ,则2a b -=r r . 14.若()52132x a x x ⎛⎫-- ⎪⎝⎭的展开式中3x 的系数为80,则a = .15.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且ABC ∆的外接圆半径为1,若6abc =,则ABC ∆的面积为 .16.已知抛物线()2:20C x py p =>的焦点为F ,O 为坐标原点,点4,2p M ⎛⎫- ⎪⎝⎭,1,2p N ⎛⎫-- ⎪⎝⎭,射线,MO NO 分别交抛物线C 于异于点O 的点,A B ,若,,A B F 三点共线,则p = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知正项数列3n n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列,且12,9,a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .18. 2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过4个直道与弯道的交接口()1,2,3,4k A k =.已知某男子速滑运动员顺利通过每个交接口的概率均为34,摔倒的概率均为14.假定运动员只有在摔倒或到达终点时才停止滑行,现在用X 表示一名顺利进入最后一圈的运动员在滑行结束后,在最后一圈顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率; (2)求X 的分布列及数学期望()E X .19. 如图,在三棱锥P ABC -中,D 为棱PA 上的任意一点,,,F G H 分别为所在棱的中点.(1)证明:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB BC ⊥,2AB =,45BAC ∠=︒,当二面角C GF H --的平面角为3π时,求棱PC 的长.20. 已知椭圆()2222:10x y E a b a b+=>>的焦距为2c ,且b =,圆()222:0O x y r r +=>与x 轴交于点,,M N P 为椭圆E 上的动点,2PM PN a +=,PMN ∆(1)求圆O 与椭圆E 的方程;(2)设圆O 的切线l 交椭圆E 于点,A B ,求AB 的取值范围.21. 已知函数()()326,f x x x ax b a b =-++∈R 的图象在与x 轴的交点处的切线方程为918y x =-. (1)求()f x 的解析式; (2)若()()212910kx x f x x k -<<+对()2,5x ∈恒成立,求k 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C的极坐标方程为3cos ρθ=. (1)求圆C 的参数方程;(2)设P 为圆C 上一动点,()5,0A ,若点P 到直线sin 3πρθ⎛⎫-= ⎪⎝⎭求ACP ∠的大小.23.选修4-5:不等式选讲 已知函数()3121f x x x a =--++. (1)求不等式()f x a >的解集;(2)若恰好存在4个不同的整数n ,使得()0f n <,求a 的取值范围.2019年陕西省高考数学全真模拟试卷(理科)一、选择题1.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数,求出复数在复平面上对应的点的坐标,则答案可求.【解答】解:=,则复数在复平面上对应的点的坐标为:(,),位于第一象限.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.集合P={x|x2﹣9<0},Q={x∈Z|﹣1≤x≤3},则P∩Q=()A.{x|﹣3<x≤3}B.{x|﹣1≤x<3}C.{﹣1,0,1,2,3}D.{﹣1,0,1,2}【考点】交集及其运算.【分析】求出集合P中一元二次不等式的解集确定出集合P,取集合Q中解集的整数解确定出集合Q,然后找出既属于P又属于Q的元素即可确定出两集合的交集.【解答】解:由集合P中的不等式x2﹣9<0,解得:﹣3<x<3,∴集合P={x|﹣3<x<3};由集合Q中的解集﹣1≤x≤3,取整数为﹣1,0,1,2,3,∴集合Q={﹣1,0,1,2,3},则P∩Q={﹣1,0,1,2}.故选D【点评】此题属于以不等式解集为平台,考查了交集的元素,是一道基础题,也是高考中常考的题型.3.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.7【考点】两角和与差的正切函数;弦切互化.【分析】先根据cosα的值求出tanα的值,再由两角和与差的正切公式确定答案.【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.【点评】本题主要考查两角和与差的正切公式.属基础题.4.若命题p:对任意的x∈R,都有x3﹣x2+1<0,则¬p为()A.不存在x∈R,使得x3﹣x2+1<0B.存在x∈R,使得x3﹣x2+1<0C.对任意的x∈R,都有x3﹣x2+1≥0D.存在x∈R,使得x3﹣x2+1≥0【考点】命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定¬p为:存在x∈R,使得x3﹣x2+1≥0故选:D【点评】本题主要考查全称命题的否定,要求掌握全称命题的否定是特称命题.5.在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2 B.﹣2 C.3 D.﹣3【考点】等比关系的确定.【分析】由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列,即(s2+2)2=(S+2)(S3+2)1代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解方程即可求解【解答】解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.【点评】等比数列得前n项和公式的应用需要注意公式的选择,解题时要注意对公比q=1,q≠1的分类讨论,体现了公式应用的全面性.6.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.【考点】数量积表示两个向量的夹角.【分析】利用向量的坐标运算求出;利用向量的数量积公式求出两个向量的数量积;利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式求出两个向量的夹角余弦.【解答】解:∵∴∴∵∴两个向量的夹角余弦为故选C【点评】本题考查向量的数量积公式,利用向量的数量积公式求向量的夹角余弦、考查向量模的坐标公式.7.函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称的充要条件是()A.φ=2kπ﹣,k∈Z B.φ=kπ﹣,k∈Z C.φ=2kπ﹣,k∈Z D.φ=kπ﹣,k∈Z【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用辅助角公式对函数化简可得,f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+),由函数的图象关于原点对称可知函数f(x)为奇函数,由奇函数的性质可得,f(0)=0代入可得sin(φ)=0,从而可求答案.【解答】解:∵f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+)的图象关于原点对称∴函数f(x)为奇函数,由奇函数的性质可得,f(0)=0∴sin(φ)=0∴φ=kπ∴φ=故选:D【点评】本题主要考查了利用辅助角公式把不同名的三角函数化为y=Asin(x+)的形式,进而研究函数的性质;还考查了奇函数的性质(若奇函数的定义域内有0,则f(0)=0)的应用,灵活应用性质可以简化运算,减少运算量.8.执行如图所示的程序框图(算法流程图),输出的结果是()A.9 B.121 C.130 D.17021【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的a,b,c的值,当c=16900时,不满足条件c<2016,退出循环,输出a的值为121.【解答】解:模拟执行程序,可得a=1,b=2,c=3满足条件c<2016,a=2,b=9,c=11满足条件c<2016,a=9,b=121,c=130满足条件c<2016,a=121,b=16900,c=17021不满足条件c<2016,退出循环,输出a的值为121.故选:B.【点评】本题主要考察了程序框图和算法,正确理解循环结构的功能是解题的关键,属于基本知识的考查.9.双曲线的离心率为2,则的最小值为()A.B. C.2 D.1【考点】双曲线的简单性质;基本不等式.【分析】根据基本不等式,只要根据双曲线的离心率是2,求出的值即可.【解答】解:由于已知双曲线的离心率是2,故,解得,所以的最小值是.故选A.【点评】本题考查双曲线的性质及其方程.双曲线的离心率e和渐近线的斜率之间有关系,从这个关系可以得出双曲线的离心率越大,双曲线的开口越大.10.(x2+3x﹣y)5的展开式中,x5y2的系数为()A.﹣90 B.﹣30 C.30 D.90【考点】二项式系数的性质.=(﹣y)5﹣r(x2+3x)r,令5【分析】(x2+3x﹣y)5的展开式中通项公式:T r+1﹣r=2,解得r=3.展开(x2+3x)3,进而得出.=(﹣y)5﹣r(x2+3x)r,【解答】解:(x2+3x﹣y)5的展开式中通项公式:T r+1令5﹣r=2,解得r=3.∴(x2+3x)3=x6+3(x2)2•3x+3(x2)×(3x)2+(3x)3,∴x5y2的系数=×9=90.故选:D.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.11.已知不等式组表示平面区域D,现在往抛物线y=﹣x2+x+2与x轴围成的封闭区域内随机地抛掷一小颗粒,则该颗粒落到区域D中的概率为()A.B.C.D.【考点】几何概型.【分析】根据积分的知识可得先求y=﹣x2+x+2与x轴围成的封闭区域为曲面MEN,的面积,然后根据线性规划的知识作出平面区域D,并求面积,最后代入几何概率的计算公式可求.【解答】解:根据积分的知识可得,y=﹣x2+x+2与x轴围成的封闭区域为曲面MEN,面积=等式组表示平面区域D即为△AOB,其面积为根据几何概率的计算公式可得P=故选:C【点评】本题主要考查了利用积分求解曲面的面积,还考查了几何概率的计算公式的应用,属于基础试题.12.定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1﹣1|<|x2﹣1|时,有()A.f(2﹣x1)≥f(2﹣x2)B.f(2﹣x1)=f(2﹣x2)C.f(2﹣x1)<f(2﹣x2)D .f (2﹣x 1)≤f (2﹣x 2)【考点】函数的单调性与导数的关系.【分析】①若函数f (x )为常数,可得当|x 1﹣1|<|x 2﹣1|时,恒有f (2﹣x 1)=f (2﹣x 2).②若f (x )不是常数,可得y=f (x )关于x=1对称.当x 1≥1,x 2≥1,则由|x 1﹣1|<|x 2﹣1|可得f (x 1)>f (x 2).当x 1<1,x 2<1时,同理可得f (x 1)>f (x 2).综合①②得出结论.【解答】解:①若f (x )=c ,则f'(x )=0,此时(x ﹣1)f'(x )≤0和y=f (x +1)为偶函数都成立,此时当|x 1﹣1|<|x 2﹣1|时,恒有f (2﹣x 1)=f (2﹣x 2).②若f (x )不是常数,因为函数y=f (x +1)为偶函数,所以y=f (x +1)=f (﹣x +1), 即函数y=f (x )关于x=1对称,所以f (2﹣x 1)=f (x 1),f (2﹣x 2)=f (x 2). 当x >1时,f'(x )≤0,此时函数y=f (x )单调递减,当x <1时,f'(x )≥0,此时函数y=f (x )单调递增.若x 1≥1,x 2≥1,则由|x 1﹣1|<|x 2﹣1|,得x 1﹣1<x 2﹣1,即1≤x 1<x 2,所以f (x 1)>f (x 2).同理若x 1<1,x 2<1,由|x 1﹣1|<|x 2﹣1|,得﹣(x 1﹣1)<﹣(x 2﹣1),即x 2<x 1<1,所以f (x 1)>f (x 2).若x 1,x 2中一个大于1,一个小于1,不妨设x 1<1,x 2≥1,则﹣(x 1﹣1)<x 2﹣1, 可得1<2﹣x 1<x 2,所以f (2﹣x 1)>f (x 2),即f (x 1)>f (x 2). 综上有f (x 1)>f (x 2),即f (2﹣x 1)>f (2﹣x 2), 故选A .【点评】本题主要考查函数的导数与函数的单调性的关系,体现了分类讨论的数学思想,属于中档题.二、填空题13.()2,6-- 14.-2 15.3216.2 三、解答题17.解:(1)因为数列3n n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列,所以212233a a -=, 则21318a a =+,又12,9,a a 成等比数列,所以()212113189a a a a =+=,解得13a =或19a =-,因为数列3n n a ⎧⎫⎨⎬⎩⎭为正项数列,所以13a =.所以()3212133n n a n n =+-=-, 故()213n n a n =-⋅.(2)由(1)得()21333213n n S n =⨯+⨯++-⋅L , 所以()23131333213n n S n +=⨯+⨯++-⋅L ,所以()231332333213n n n n S S n +⎡⎤-=+⨯+++--⋅⎣⎦L ,即()2133323221313n n n S n +-⨯-=+⨯--⋅-()1136123n n n ++=-+-⋅()12236n n +=-⋅-, 故()1133n n S n +=-⋅+.18.解:(1)由题意可知:3312744256P ⎛⎫=⨯= ⎪⎝⎭.(2)X 的所有可能值为0,1,2,3,4.则()()31,2,3,44k P A k ==,且1234,,,A A A A 相互独立. 故()()1104P X P A ===,()()121P X P A A ==⋅=3134416⨯=,()()1232P X P A A A ==⋅⋅=23194464⎛⎫⨯= ⎪⎝⎭,()()12343P X P A A A A ==⋅⋅⋅=3312744256⎛⎫⨯= ⎪⎝⎭,()()12344P X P A A A A ==⋅⋅⋅=43814256⎛⎫=⎪⎝⎭.从而X 的分布列为所以()139********E X =⨯+⨯+⨯+278152534256256256⨯+⨯=.19.(1)证明:因为,G H 分别为,AC BC 的中点, 所以AB GH ∥,且GH ⊂平面FGH ,AB ⊄平面FGH ,所以AB ∥平面FGH .又因为,F G 分别为,PC AC 的中点,所以有GF AP ∥,FG ⊂平面FGH , 且AP ⊄平面FGH ,所以AP ∥平面FGH . 又因为AP AB A =I ,所以平面ABP ∥平面FGH . 因为BD ⊂平面ABP ,所以BD ∥平面FGH .(2)解:在平面ABC 内过点C 作CM AB ∥,如图所示,以C 为原点,,,CB CM CF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -.由ABC ∆为等腰直角三角形知BG AC ⊥,又BG C F ⊥,AC CF C =I ,所以有BG ⊥平面PAC .设CF a =,则()2,0,0B ,()1,1,0G -,所以()1,1,0BG =--uuu r为平面PAC 的一个法向量.又()0,0,F a ,()1,0,0H ,所以()1,0,FH a =-uuu r ,()1,1,FG a =--uuu r,设(),,m x y z =u r 为平面FGH 的一个法向量,则有0m FH m FG ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uu u r,即有0x az x y az -=⎧⎨--=⎩,所以可取(),0,1m a =u r .由1cos ,2m BG ==u r uu u r,得1a =,从而22a =. 所以棱PC 的长为2.20.解:(1)因为b =,所以2a c =.①因为2PM PN a +=,所以点,M N 为椭圆的焦点,所以,22214r c a ==. 设()00,P x y ,则0b x b -≤≤,所以0012PMN S r y a y ∆=⋅=, 当0y b =时,()max 12PMN S ab ∆== 由①,②解得2a =,所以b =1c =,所以圆O 的方程为221x y +=,椭圆E 的方程为22143x y +=. (2)①当直线l 的斜率不存在时,不妨取直线l 的方程为1x =,解得31,2A ⎛⎫⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,3AB =.②当直线l 的斜率存在时,设直线l 的方程为y kx m =+,()11,A x kx m +,()22,B x kx m +.因为直线l1=,即221m k =+,联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得()2224384120k x kmx m +++-=, ()224843k m ∆=+-=()248320k +>,122843kmx x k +=-+,212241243m x x k -=+.AB ===24k+=令2134t k =+,则214034t k <=≤+,所以AB =,403t <≤,所以AB =33AB <≤.综上,AB 的取值范围是⎛ ⎝⎦.21.解:(1)由9180x -=得2x =,∴切点为()2,0. ∵()2312f x x x a '=-+,∴()2129f a '=-=,∴21a =,又()282420f a b =-++=,∴26b =-,()3262126f x x x x =-+-. (2)由()9f x x k <+得()9k f x x >-=3262126x x x -+-,设()3261226g x x x x =-+-,()()2344g x x x '=-+=()2320x ->对()2,5x ∈恒成立,∴()g x 在()2,5上单调递增,∴()59k g ≥=.∵()()32612892f x x x x x =-+-+-=()()3292x x -+-,∴由()()21210kx x f x -<对()2,5x ∈恒成立得()129102x k x x x -<+-213212x x x -=+-对()2,5x ∈恒成立,设()()21321252x h x x x x -=+<<-,()()22213132x x h x x x -+'=-, 当25x <<时,213130x x -+<,∴()0h x '<,∴()h x 单调递减,∴()165105k h ≤=,即12k ≤. 综上,k 的取值范围为[]9,12.22.解:(1)∵3cos ρθ=,∴23cos ρρθ=,∴223x y x +=,即223924x y ⎛⎫-+= ⎪⎝⎭,∴圆C 的参数方程为33cos ,223sin 2x y αα⎧=+⎪⎪⎨⎪=⎪⎩(α为参数).(2)由(1)可设333cos ,sin 222P θθ⎛⎫+ ⎪⎝⎭,[)0,2θπ∈,sin 3πρθ⎛⎫-= ⎪⎝⎭0y -+=, 则P到直线sin 3πρθ⎛⎫-= ⎪⎝⎭=3sin 23πθ⎛⎫-=⎪⎝⎭, ∴sin 03πθ⎛⎫-= ⎪⎝⎭,∵[)0,2θπ∈,∴3πθ=或43π,故3ACP π∠=或23ACP π∠=. 23.解:(1)由()f x a >,得3121x x ->+, 不等式两边同时平方得,22961441x x x x -+>++, 即2510x x >,解得0x <或2x >.所以不等式()f x a >的解集为()(),02,-∞+∞U .(2)设()3121g x x x =--+=12,2115,2312,3x x x x x x ⎧-≤-⎪⎪⎪--<<⎨⎪⎪-≥⎪⎩,作出()g x 的图象,如图所示,因为()()020g g ==,()()()34213g g g <=<-=, 又恰好存在4个不同的整数n ,使得()0f n <,所以()()30,40,f f <⎧⎪⎨≥⎪⎩即1020a a +<⎧⎨+≥⎩,故a 的取值范围为[)2,1--.。

2019年福建省中等职业学校学生学业水平考试数学模拟试卷(三)及参考答案

2019年福建省中等职业学校学生学业水平考试数学模拟试卷(三)及参考答案

2019年福建省中等职业学校学生学业水平考试数学模拟试卷(三)第一部分选择题一、单项选择题(本大题共15小题,每小题3分,共45分)1.集合{0,1}的真子集共有_____个,A .1 B. 2 C .3 D .42.不等式3x -6>0的解集是A .}2{<x xB .}2{->x xC .}2{>x xD .}22{>-<x x x 或3.已知函数的解析式为:12-=x y ,则它的定义域是 A .{1≠∈x R x x 且} B . RC .{0≠∈x R x x 且} D.}1{>x x4.以下各数列中,为等差数列的是A .5,4, 3, 2,1B 1,21,31,41,51,…… C .1, 2, 4, 8, 16,… D. -1,1, -1,1,-1,…5.计算cos100 的值,结果是A .正的B .负的C 。

正负号无法判断D .不存在的6.空间中垂直于同一条直线的两条直线的位置关系是A .平行B .相交C .平行或相交D .平行、相交或异面7.集合{41≤<-x x }可用区间的符号表示为A .(一1,4)B .[一1,4)C .(一∞,-1)U[4,+∞)D .(一1,4]8.数列 ,,,,,625516493421,的一个通项公式是 A 12+=n n a n B .12+=n n a n C .n n a n 22= D .112+-=n n a n )( 9.已知点A(l ,0),B(2,3),则线段AB 的长度是 A.32 B .(2323,) C .10 D. 10 10.函数)(x f y =的图像如下图所示,那么函数的增区间是A .[一5,- 3]B .[一3,0]C .[一3,2]D .[一l ,2]11.任意抛掷一颗骰子,出现的点数至少是5点的概率是A .31B .21C .65 D .1 12.已知三个数l ,m ,4组成的数列是等比数列,则m 的值为A .2B .2.5C .3D .D .2或-213.以下关于平面向量→a =(1,-2)和→b =(一2,4)的关系的判断,正确的是A.不是共线向量 B .互为负向量 C .方向相同 D.方向相反14.已知一个球的半径是2厘米,那么该球的表面积积是 平方厘米.A. π4B. π8C. π16D. π3215.从3个白球7个黑球中随机抽取4个球,下列事件中,必然事件是A.抽到的全是黑球 B .抽到的全是白球C .抽到的有白球也有黑球D .抽到的至少有一个黑球第二部分非选择题二、填空题(本大题共5小题,每小题3分,共15分)16.不等式)3(1-+x x )(>0的解集是 ·17.已知函数)(x f y =是区间(一∞,十∞)上的奇函数,且f (2)=一5,那么 f (-2)= .18.如图,已知PA ⊥平面α,垂足为A ,α⊆AB ,且AB =3,PB =23,则斜线PB 与平面α所成的角是 度。

(完整版)2019对口高职高考数学模拟试卷(2018.11.15)

(完整版)2019对口高职高考数学模拟试卷(2018.11.15)
2019 对口高职高考数学模拟试卷 (2018.11.15)
一、 选择题
1.已知集合 A={x | -2 < x ≤ 5}, 集合 B={x |-3 ≤ x < 0}, 则 A ∪B=( ) A. {x |-2 < x < 0} B. {x |-3 ≤x ≤ 5} C. {x |-2 < x ≤ 5} D. {x |-3 ≤x < 0}

2. 抛 物 线 y 2 =-8x 上 一 点 P 到 焦 点 的 距 离 为 3 , 则 点 P 的 横 坐 标


3.数列{an}的前 n 项和 Sn =2n2 +n, 那么它的通项公式为

4. 在? ABC中, a=15,b=10, ∠ A = 60 0, 则 sinB=

5. 若角 α的终边经过两直线 3x-2y+5=0 和 x+y-5=0 的交点 P, 则∝的正弦值
6.设双曲线
y2 a2
-
x 2=1 的焦点分别为
3
F1 ,F2
,离心率为
2;
(1)求双曲线的标准方程及渐近线 l 1,l 2的方程。
( 2)若 A,B 分别是 l1,l2 上的动点,且 2|AB|=5|F1F2 | ,求线段 AB 中点 M
的轨迹方程。
2.已知
osα=
(
).
25
A. 4 B. 7
C.
12
D.-
7
5
25
25
25
3.函数 y=√log 2 (1 - x) 的定义域为( )。
A. (- ∞,1) B. (- ∞,0] C.[0,1 ) D.R
4.直线 2x-ay+3=0 与直线 4x+2y-1=0 垂直,则 a 的值为( )。 A. 2 B. -2 C. -4 D.4

2019年广东省高等职业院校招生中等职业学校高考数学试卷(真题)和答案

2019年广东省高等职业院校招生中等职业学校高考数学试卷(真题)和答案

2019年广东省高等职业院校招收中等职业学校毕业生考试数 学班级 学号 姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知集合{}{}0,2,1,0,1<=-=x x B A ,则A B =I ( )A 、 {}2,1B 、 {}1-C 、{}1,1-D 、 {}0,1,22.函数)2lg(+=x y 的定义域是 ( )A 、),2(+∞-B 、),2[+∞-C 、)2,(--∞D 、]2,(--∞3.不等式0)5)(1(>-+x x 的解集是 ( )A 、]5,1(-B 、)5,1(-C 、[)+∞--∞,5]1,(YD 、),5(]1,(+∞--∞Y4.已知函数R x x f y ∈=是)(上的增函数,则下列关系正确的是 ( ) A 、)3()2(f f >- B 、)3()2(f f < C 、 )3()2(-<-f f D 、)0()1(f f >-5.某职业学习有两个班,一班有30人,二班有35人,从两个班选一个去参加技能大赛,则不同的选择方案有 ( ) A 、30 B 、35 C 、65 D 、10506.”“1>a 是 ”“1->a 的 ( ) A 、必要非充分条件 B 、充分非必要条件 C 、充分必要条件 D 、即非充分非必要条件7.已知向量,),1,3(),3,(b a b x a ρρρρ⊥=-=若则=x ( )A 、9-B 、1-C 、1D 、98..双曲线1162522=-y x 的焦点坐标是( )A 、)0,3(),0,3(-B 、)0,41(),0,41(-C 、)3,0(),3,0(-D 、)41,0(),41,0(- 9.袋中有2个红球,2个白球,红球和白球除颜色外,外形,质量完全相同,现取出球,取得全是红球的概率是( )A 、61 B 、21 C 、31 D 、3210.若)(,13)(2R b bx x x f ∈-+=是偶函数,则)1(-f =( )A 、4B 、4-C 、2D 、2-11.若等差数列{}n a 的前n 项和)(2R a a n S n ∈+=,则=a ( )A 、2B 、0C 、1-D 、2 12.已知=+∈=)cos(),,2(,21sin απππαα则( )A 、23-B 、21-C 、23D 、21 13.已知函数⎩⎨⎧≤>=0,100,lg )(13x x x x f x,若t f =)101(,则=)(t f ( )A 、1B 、101 C 、1- D 、114.抛物线x y 42=上一点P 到其焦点F 的距离为3,则点P 到y 轴的距离( )A 、1B 、2C 、3D 、415.直线1C 的方程为033=--y x ,直线2C 的倾斜角是直线1C 的2的倍,且2C 经过坐标原点O ,则直线2C 的方程为( )A 、032=-y xB 、032=+y xC 、03=-y xD 、03=+y x二、填空题:(本大题共5个小题,每小题5分,满分25分。

2019年高考数学仿真押题试卷(十九)(含答案解析)

2019年高考数学仿真押题试卷(十九)(含答案解析)

专题19 高考数学仿真押题试卷(十九)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合[1A =-,1],,则(AB = )A .(0,1)B .(0,1]C .(1,1)-D .[1-,1]【解析】解:(0,1)B =;.【答案】A .2.已知z 的共轭复数是z ,且为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】解:设,,∴,∴,解得:322x y ⎧=⎪⎨⎪=-⎩,复数z 在复平面内对应的点为3(,2)2-,此点位于第四象限.【答案】D .3.已知向量(1,3)a =,||3b =,且a 与b 的夹角为3π,则|2|(a b += )A .5B C .7D .37【解析】解:由题可得:向量(1,3)a =,||2a =,所以,所以,.【答案】B .4.已知函数,若,则实数a 的取值范围是( )A .[2-,1]B .[1-,2]C .(-∞,2][1-,)+∞D .(-∞,1][2-,)+∞【解析】解:函数,在各段内都是减函数,并且01e -=,,所以()f x 在R 上递减,又,所以,解得:21a -剟, 【答案】A .5.下图的程序框图的算法思路源于我国古代数学名著《数书九章》中的“中国剩余定理”.已知正整数n 被3除余2,被7除余4,被8除余5,求n 的最小值.执行该程序框图,则输出的(n )A .50B .53C .59D .62【解析】解:【方法一】正整数n 被3除余2,得32n k =+,k N ∈; 被8除余5,得85n l =+,l N ∈; 被7除余4,得74n m =+,m N ∈; 求得n 的最小值是53.【方法二】按此歌诀得算法如图, 则输出n 的结果为按程序框图知n 的初值为1229,代入循环结构得,即输出n 值为53. 【答案】B .6.已知函数,将函数()f x 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 【解析】解:,将函数()f x 的图象向左平移m 个单位长度后,得到函数的图象,又所得到的图象关于y 轴对称,所以,即6m k ππ=+,k Z ∈,又0m >,所以当0k =时,m 最小为6π. 【答案】A .7.已知命题p :函数21()21x x f x -=+是定义在实数集上的奇函数;命题q :直线0x =是13()g x x =的切线,则下列命题是真命题的是( ) A .p q ∧B .q ⌝C .()p q ⌝∧D .p ⌝【解析】解:,即()f x 是奇函数,故命题p 是真命题,函数的导数,当0x =时,()g x '不存在,此时切线为y 轴,即0x =,故命题q 是真命题,则p q ∧是真命题,其余为假命题, 【答案】A .8.已知双曲线的渐近线与相切,则双曲线的离心率为(= )A .2B C D 【解析】解:取双曲线的渐近线by x a=,即0bx ay -=. 双曲线22221(x y a b-= 0a >,0)b >的渐近线与相切,∴圆心(2,0)到渐近线的距离d r =, ∴1=,化为2b c =,两边平方得,化为2234c a =.∴c e a =【答案】D .9.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为的等比数列的原理,也即高音c 的频率正好是中音c 的2倍.已知标准音1a 的频率为440Hz ,那么频率为的音名是( )A .dB .fC .eD .#d【解析】解:从第二个单音起,每一个单音的频率与它的左边一个单音的频率的比1122.故从g 起,每一个单音的频率与它右边的一个单音的比为1122q -=由,解得7n =,频率为的音名是(#d ), 【答案】D . 10.函数的大致图象是( )A .B .C .D .【解析】解:当0x <时,,0x e >,所以()0f x >,故可排除B ,C ;当2x =时,f (2)230e =-<,故可排除D . 【答案】A .11.利用Excel 产生两组[0,1]之间的均匀随机数:(a rand = ),(b rand = ):若产生了2019个样本点(,)a b ,则落在曲线1y =、y =和0x =所围成的封闭图形内的样本点个数估计为( ) A .673B .505C .1346D .1515【解析】解:由曲线1y =、y =和0x =所围成的封闭图形的面积为,所以,则落在曲线1y =、y 0x =所围成的封闭图形内的样本点个数估计为,【答案】A .12.已知点P 为直线:2l x =-上任意一点,过点P 作抛物线的两条切线,切点分别为1(A x ,1)y 、2(B x ,2)y ,则12(x x = )A .2B .24pC .2pD .4【解析】解:不妨设(2,0)P -,过P 的切线方程设为(2)y k x =+, 代入抛物线方程得,又0k ≠,故124x x =.【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若整数x 、y 满足不等式组,则y z x =的最小值为 12. 【解析】解:整数x 、y 满足不等式组的可行域如图:三角形区域内的点(2,1)A 、(2,2)B 、(2,3)C 、(1,2)D ,AO 连线的斜率是最小值.则y z x =的最小值为:12. 故答案为:12.14.已知椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C 内切于点P ,则12PF F S= .【解析】解:椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C内切于点P , 可得1b c ==, 所以.故答案为:1.15.定义在R 上的函数()f x 满足,若,且(2)2gl n =-,则1()2g ln = . 【解析】解:根据题意,,则,变形可得,,又由122ln ln =-,且,则,则;故答案为:4.16.已知O 是锐角ABC ∆的外接圆圆心,A 是最大角,若,则m 的取值范围为.【解析】解:由O 是锐角ABC ∆的外接圆圆心, 则点O 为三角形三边中垂线的交点, 由向量投影的几何意义有:,则, 所以则,由正弦定理得:,所以,所以2sin m A =, 又[3A π∈,)2π,所以m ∈2),故答案为:,2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若AC ABC ∆的面积;(2)若,4AD =,求CD 的长.【解析】解:(1)在ABC ∆中,,,解得BC ,∴.(2),∴,∴在ABC∆中,,∴,,∴CD=18.在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;(3)如果规定成绩不低于130分为特别优秀,现已知语文特别优秀占样本人数的5%,语文、数学两科都特别优秀的共有3人,依据以上样本数据,完成列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.参考公式:参考数据:【解析】解:(1)由于总体有明显差异的两部分构成,所以采用分层抽样法,由题意知,从示范性高中抽取(人),从非示范性高中抽取(人);(2)由频率分布直方图估算样本平均数为:,据此估计本次检测全市学生数学成绩的平均分为92.4;(3)由题意知,语文特别优秀学生有5人,数学特别优秀的学生有(人),且语文、数学两科都特别优秀的共有3人,填写列联表如下;计算,所以有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.已知点(0,2)P,点A,B分别为椭圆的左右顶点,直线BP交C于点Q,ABP∆是等腰直角三角形,且35PQ PB=.(1)求C的方程;(2)设过点P 的动直线l 与C 相交于M ,N 两点,O 为坐标原点.当MON ∠为直角时,求直线l 的斜率. 【解析】解:(1)由题意ABP ∆是等腰直角三角形,则2a =,(2,0)B , 设点0(Q x ,0)y ,由35PQ PB =,则065x =,045y =,代入椭圆方程解得21b =,∴椭圆方程为2214x y +=.(2)由题意可知,直线l 的斜率存在,令l 的方程为2y kx =+, 则1(M x ,1)y ,2(N x ,2)y , 则22214y kx x y =+⎧⎪⎨+=⎪⎩,整理可得, ∴△,解得234k >, ,,当MON ∠为直角时,1OM ON k k =-,,则,解得24k =,即2k =±,故存在直线l 的斜率为2±,使得MON ∠为直角. 20.如图,在直三棱柱中,ABC ∆是等腰直角三角形,1AC BC ==,12AA =,点D 是侧棱1AA 的上一点.(1)证明:当点D 是1AA 的中点时,1DC ⊥平面BCD ; (2)若二面角1D BC C --,求AD 的长.【解析】解:(1)证明:由题意:BC AC ⊥且1BC CC ⊥,,BC ∴⊥平面11ACC A ,则1BC DC ⊥. 又D 是1AA 的中点,AC AD =,且90CDA ∠=︒,,同理.,则1DC DC ⊥,1DC ∴⊥平面BCD ;(2)以C 为坐标原点,分别以CA ,CB ,1CC 为x 轴,y 轴,z 轴建立空间直角坐标系. 设AD h =,则(1D ,0,)h ,(0B ,1,0),1(0C ,0,2).由条件易知CA ⊥平面1BC C ,故取(1m =,0,0)为平面1BC C 的法向量. 设平面1DBC 的法向量为(n x =,y ,)z , 则n BD ⊥且1n BC ⊥,,,∴,取1z =,得.由,解得12h =,即12AD =.21.已知函数在0x x =处取得极小值1-.(1)求实数a 的值; (2)设,讨论函数()g x 的零点个数.【解析】解:(1)函数()f x 的定义域为(0,)+∞,,函数在0}x x =处取得极小值1-,∴,得01,1a x =-⎧⎨=⎩当1a =-时,()f x lnx '=,则(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '> ()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,1x ∴=时,函数()f x 取得极小值1-, 1a ∴=-(2)由(1)知,函数,定义域为(0,)+∞,,令()0g x '<,得0x <令()0g x '>,得x >()g x在上单调递减,在)+∞上单调递增,当x ()g x 取得最小值2eb -, 当02e b ->,即2eb >时,函数()g x 没有零点; 当02e b -=,即2eb =时,函数()g x 有一个零点;当02eb -<,即02e b <<时,g (e )0b =>,g g ∴(e )0<存在1x ∈)e ,使1()0g x =,()g x ∴在)e 上有一个零点1x设,则,当(0,1)x ∈时,()0h x '<,则()h x 在(0,1)上单调递减,()h x h ∴>(1)0=,即当(0,1)x ∈时,11lnx x>-, 当(0,1)x ∈时,,取{m x min b =,1},则()0m g x >,,∴存在2(m x x ∈,,使得2()0g x =,()g x ∴在(m x 上有一个零点2x ,()g x ∴在(0,)+∞上有两个零点1x ,2x ,综上可得,当2eb >时,函数()g x 没有零点; 当2eb =时,函数()g x 有一个零点; 当02eb <<时时,函数()g x 有两个零点. 请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C 的参数方程为为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上,且满足,点B 的轨迹为2C .(1)求1C ,2C 的极坐标方程;(2)设点C 的极坐标为(2,)2π,求ABC ∆面积的最小值.【解析】解:(1)曲线1C 的参数方程为为参数),∴曲线1C 的普通方程为,∴曲线1C 的极坐标方程为2cos ρθ=.设B 的极坐标为(,)ρθ,点A 的极坐标为0(ρ,0)θ, 则||OB ρ=,0||OA ρ=,002cos ρθ=,0θθ=,,08ρρ∴=,∴82cos θρ=,cos 4ρθ=,2C ∴的极坐标方程为cos 4ρθ=(2)由题意知||2OC =,,当0θ=时,S ABC 取得最小值为2. [选修4-5:不等式选讲]. 23.已知函数的最小值为t .(1)求实数t 的值; (2)若,设0m >,0n >且满足,求证:.【解析】解:(1),显然,()f x 在(-∞,1]上单调递减,在(1,)+∞上单调递增,(1)2=-,2t ∴=-, 证明(2),,由于0m >,0n >,且1122m n+=,,当且仅当22n mm n=,即当12n =,1m =时取“=”, 故。

2019年河南省普通高等学校对口招收中等职业学校毕业生考试数学全真模拟卷(一)

2019年河南省普通高等学校对口招收中等职业学校毕业生考试数学全真模拟卷(一)

河南省2019年普通高等学校对口招收中等职业学校毕业生考试数学全真模拟试题(一)考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分。

每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1.若全集{}{}{}1,2,3,4,5,62,31,3U M N ===,,,则集合{}4,5,6等于A.M NB.M NC.()()U U M ND.()()U U M N2.不等式321x ->的解集为 A.1(,)(1,)3-∞-+∞ B.1(,1)3- C.1(,)(1,)3-∞+∞ D.1(,1)33.函数2232y x x =--的定义域为 A.(,1]-∞ B.11(,)(,1]22-∞-- C.(,2]-∞ D.11(,)(,1]22-∞-- 4.已知445sin cos 9θθ+=,且θ是第二象限的角,则sin 2θ的值是A.23-B.23C.3-D.3 5.若函数log a y x =的图像经过点(2,—1),则底a 等于A.2B.2-C.12D.12- 6.为了得到函数sin()3y x π=+的图像,只需把函数sin y x =的图像上的所有点A.向左平移3π个单位长度B.向右平移3π个单位长度C.向上平移3π个单位长度D.向下平移3π个单位长度7.等差数列{}n a 中公差13579230d a a a a a =++++=,,则10S =A.60B.80C.65D.708.在平行四边形ABCD 中,BA a BC b ==, ,则表示a b -的是A.BDB.DBC.ACD.CA9.某班拟从8名候选人中推选出3名同学参加学生代表大会,8名候选人中有甲、乙两名同学。

假设每名候选人都有相同的机会被选到,则甲、乙两同学都被选为学生代表的概率是 A.314 B.328 C.128 D.15610.在长方体1111ABCD A B C D -中,12,3AB BC AC ===,则该长方体的表面积为A.4B.8C.12D.16二、填空题(每小题3分,共24分)11.已知集合{{},2,1,1,2A x y B ===--,则A B =___________.12.已知不等式3(1,3)x b a -<的解集是,则a =___________,b =___________.13.已知函数()231log log 242019f x a x b x f ⎛⎫=++= ⎪⎝⎭且 ,则()2019f =___________.14.己知{}n a 为等比数列,且85270a a -=,则公比q =___________.15.函数2341y x x =--+的单调递减区间为___________.16.抛物线230x y -=的焦点坐标为___________.17.己知向量()()1,1,2,3a b ==-,若ka b a - 与 垂直,则实数k=___________.18.己知PA 垂直于矩形ABCD 所在平面,且4,6,5PB PC PD ===,则PA 的长是___________.三、计算题(每小题8分,共24分)19.解不等式()()1210x x -++<.20.如图,在三棱柱111ABC A B C -中,E ,F ,G ,H分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面;(2)平面EF A 1//平面BCHG.21.某电子原件生产厂生产的10件产品中,有8件一级品,2件二级品,一级品和二级品在外观上没有区别,从这10件产品中任意抽检2件,计算:(1)2件都是一级品的概率:(2)至少有一件二级品的概率.四、证明题(每小题6分,共12分)22.在ABC 中,已知22()1a b c bc --=,求证:3A π∠=.23.已知圆方程为()()22238x y -+-=,证明:过点M (4, 1)的圆的切线方程为30x y --=.五、综合题(10分)24.己知抛物线()2:20C y px p =>焦点F 到准线L 的距离为2.(1)求p 的值;(2)过点F 作斜率为1的直线L ’交抛物线于点A ,B ,求AB .。

2019中职数学高考全真模拟题

2019中职数学高考全真模拟题

精品文档石城职校2019对口升学数学高考全真模拟题(一)命题人:赖斌 审核人:李发彬 命题时间:2019.3 份数:95第Ⅰ卷(选择题 共70分)一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B.1、集合A={(2,4)}中含有1个元素 . (A B )2、如果x 2+x +1>0,则x ∈R . (A B )3、f(x)=x x -+-732的定义域是{x 丨23≤x≤7} . (A B ) 4、x=3与y=2为互相垂直两条直线 . (A B ) 5.(x -1)2+y 2=3是以(-1,0)圆心,3为半径的的圆 . (A B )6. 椭圆x 2+52y =1的离心率为552 . (A B )7. 2,<,>=135°,则3=⋅b a ρρ . (A B )8. 已知{a n }的通项公式a n =lg (3n 2+1),则301lg 10=a . (A B ) 9. sin α=sin β是α =β的必要但不充分条件 . (A B ) 10. 在△ABC 中,a=22,b=23,∠A=45°,则∠B=60° . (A B )二、单项选择题:本大题共8小题,每小题5分,共40分。

11、已知集合},102{N x x x A ∈≤≤=,则集合A 中的元素个数为( ). A .6 B .7 C .8 D .912、下列函数中的奇函数是( ).A .23-=x yB .xy 1-= C .22x y = D .x x y -=213、化简log 38÷log 32可得( ).A .log34B .23C .3D .4 14、已知两点)7,2(),3,2(B A -,则线段AB 的长度是( ). A .4 B .24 C .10 D .2 15、函数22()log 2xf x x-=+是( ). A .递增的奇函数 B .递增的偶函数 C .递减的奇函数 D .递减的偶函数16、等差数列}{n a 的公差为2,若421,,a a a 成等比数列,则2a =( ). A .8B .6C .4D .217、在二项式nx x )21(32-的展开式中,只有第5项的二项式系数最大,则展开式中的第 6项是( ). A .61635x -B .61635xC .747x -D .747x 18、若某射手射击一次射中10环,9环,8环,7环的概率分别是0.2,0.3,0.1,0.1,计算这名射手射击一次,则射中10环或9环的概率为( ). A .0.2 B .0.3 C .0.5 D .0.6第Ⅱ卷(非选择题 共80分)三、填空题:本大题共6小题,每小题5分,共30分.19、不等式 |12| 3 x ->的解集为____________________________ .20、圆心坐标为(0,-3),且与x 轴相切的圆的方程为 ;21、已知2=a ρ,1=b ρ,3=⋅b a ρρ,则>=<b a ρρ, ;22、函数lg(1)y x =-的定义域为 (用区间表示);23、过点()0,1-,且垂直于直线240x y +-=的直线方程为 (写一般式). 24、若圆锥母线长为5,圆锥的高为3,则圆锥的体积 ;班级:_____________________姓名:_____________________座位号:_________________***************************密***************封*********************线****************************精品文档四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.25、求过点P (1,2)且与直线310x y -+=平行的直线方程 .26、求值:(1);31)81(5lg 24lg --++(2)0000tan120cos(60)sin(765)sin 330--27、等比数列{}n a 中,已知142,16a a ==. (1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式 .28、证明函数()x f =xx 1+在区间]1,0(上是减函数 .29、已经圆C 的方程044222=+-++y x y x(1)求该圆的圆心坐标和半径; (2)求过点(0,0)的切线方程 .30、如图,四棱锥P ABCD -的底面ABCD 是正方形,棱PD ⊥底面ABCD ,PD DC ==1,E 是PC 的中点.(1)证明:平面BDE ⊥平面PBC ;(2)求二面角E BD C --的余弦值精品文档。

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

2019对口高职高考数学模拟试卷(2018.11.18)

2019对口高职高考数学模拟试卷(2018.11.18)

2019对口高职高考数学模拟试卷(2018.11。

18)一、选择题1.设集合M={ },N={ x},则M N=().A。

{x} B。

{x}C.{x} D。

{x}2.下列函数既是奇函数又是增函数的是()A. B. C.x D。

y=3.直线()x+y=3和x+()y=2的位置关系是( )A. B。

C。

D。

重合4。

等差数列{an }中,=39,=27,则数列{an}的前9项和=( )A. B. C。

D。

2975.若抛物线=2px(p>0)过点M(4,4),则点M到准线的距离d=( ).A。

B。

C。

D。

26.设全集U={ },A={4,6,8,10},则A=()。

A. B。

C. D.{7,9}7。

“a>0且b〉0"是“ab〉0”的( )条件.A.充分不必要 B。

充分且必要C。

D。

以上答案都不对8.如果f(X)=a+bx+c(a)是偶函数,那么g(X)=a+b cx是( ).A.偶函数B.奇函数C. D。

既是奇函数又是偶函数9。

设函数f(X)=x(a>0且a,f(4)=2,则f(8)=().A。

2 B。

3 C。

D。

10.sin-cos sin的值为()。

A。

0 B.1 C。

D。

11。

等比数列的前4项和是,公比q=,则=()。

A.-9 B。

3 C。

D。

12。

已知 =,则y的最大值是()。

A.-2 B。

—1 C。

D.13.直线:x+ay+6=0与:(a-2)x+3y+a=0平行,则a的值为( )。

A.—1或3B. 1或3 C。

D。

14.抛物线=-4x上一点M到焦点的距离为3,则点M的横坐标为()。

A.2 B。

4 C. D。

15。

现有5套经济适用房分配给4户居民(一户居民只能拥有一套经济适用房),则所有的方法种数为( )。

A。

B。

20 C。

D.16.在,c+1,则是().A.锐角三角形 B。

直角三角形 C。

钝角三角形 D.无法确定17。

如图是函数y=2sin(wx+)在一个周期内的图象(其中w〉0,〈A.w=2,B. w=2,C。

2019年江苏省南京市中考数学全真模拟试卷附解析

2019年江苏省南京市中考数学全真模拟试卷附解析

2019年江苏省南京市中考数学全真模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.右边物体的主视图是( )2.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =−+上的概率为( )A . 118B .112C .19D .163.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )A .4B .3C .2D .1 4.在菱形ABCD 中,若∠A :∠B=2:1,则∠CAD 的平分线AE 与边CD 间的关系是( )A .相等B .互相垂直但边CD 不一定被AE 平分C .不垂直但边CD 被AE 平分D .垂直且边CD 被AE 平分5.如图,下列说法中。

正确的是( )A .∠1与∠4是同位角B .∠l 与∠3是同位角C .∠2与∠4是同位角D .∠2与∠3是同位角6.下列计算中正确的是( )A .2233546y yx x y ⋅=B .3213423(2)(4)8n n n n n x y x y x y +−+−−−=C . 22222()()n n n n x y xy x y −+−−=−D .23226(7)(5)2a b ab c a b c =− 7.三角形的一边长为(3a b +)cm ,这条边上的高为2a cm ,这个三角形的面积为( )A .5a b + cm 2B . 262a ab + cm 2C . 23a ab + cm 2D . 232a ab + cm 28.如图所示,将一张正方形纸片沿图①中虚线剪开后,能拼成图②中的四个图形,则其中轴对称图形的个数是( )A .1个B .2个C .3个D .4个9.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是( )A . 该班总人数为50人B . 骑车人数占总人数的20%C . 乘车人数是骑车人数的2.5倍D . 步行人数为30人10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )A .41B .61C .51D .203 二、填空题11.一只口袋内装有3个红球,3 个白球,5个黄球,这些球除颜色外没有其它区别,从中任意取一球,则取得红球的概率为 .12.如图所示,以五边形的各顶点为圆心,l cm 长为半径,画五个等圆,则图中阴影部分的面积之和为 cm 2.13.(1)x 的 3 倍不小于 9,用不等式表示为 ,它的解集为 ; (2)x 与 2 的和不大于 4,用不等式表示为 ,它的解集为 ;(3)x 的相反数的 2倍与13的差小于23,用不等式表示为 ,它的解集为 .14.等腰直角三角形的斜边上的中线长为 1,则它的面积是 .15.分解因式3()4()a b c b c +−+= .16.甲、乙两绳共长 17米,如果甲绳去掉15,乙绳增加1米,则两绳等长,设甲、乙两绳长分别为x 、y ,则可得方程组 .17.当3=x 或5−=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。

2019年贵州省高职(专科)分类招生中职生文化综合考试试卷—数学试题答案解析

2019年贵州省高职(专科)分类招生中职生文化综合考试试卷—数学试题答案解析

贵州2019年中职升高职数学试卷一、单项选择题(本题共有20小题,每小题3分,共60分)51.设集合 A { =2,4,6,8},B { =4,6,10},则 A B =()B.{}2,8,10C{2,4,6,8,10 } D.{}4,6A.{2,4,6,10}解析:选 C .“ A B ”即“ A 并B ”,就是将集合 A 和集合B 的所有元素放在一起构成的集合(重复的只写一次).如果是求交集(∩),则取共有元素。

52.函数1132y x =+的反函数为()A.332y x =-B.33+2y x = C.223y x =-D.22+3y x =解析:选A.1132y x =+…………………………反解出x =∴332y x =+…………………………将上面等式两端同时乘以3∴332x y =-…………………………将上面等式右边的32+移项到左边∴332y x =-…………………………将上面等式中的x 和y 的位置交换53.已知一个圆的半径r =3,圆心坐标O (1,2 ),则该圆的标准方程为()A.()()22219x y -+-= B.()()22129x y -+-=C.()()2221x y -+-= D.()()2212x y -+-=解析:选B.圆心为(),a b ,半径为r 的圆的标准方程为:()()222x a y b r -+-=.54.若 A 点的坐标为(1,2 ),B 点的坐标为(5,5 ),则 A 与B 的距离AB =()A.7B.13C.1D.5解析:选D.平面内任意两点()111,P x y 、()222,P x y 间的距离公式为:12PP55.已知直线l 的斜率k =2 ,在 y 轴上的截距为 7,则该直线的方程为()A.27y x =+B.72y x =+ C.214y x =+ D.24y x =+解析:选A.斜率为k ,在y 轴上的截距为b 的直线的斜截式方程为:y kx b =+.范玉柏2020年05月31日作答)B.{}0φ= C.{}0φ⊂ D.{}{}1,31⊂56.A.下列命题正确的是({2}∈{−1,2,4}解析:选 C.φ是任何非空集合的真子集,{}0是有一个元素的集合,符合条件;选项A 中的“∈”仅用于元素与集合的关系,不符合条件;选项B 中φ是不含任何元素的集合,而“{}0”有一个元素了,显然不可能相等;选项D 中{}1是{}1,3的真子集,应该表示为{}{}11,3⊂才对.57.函数2log a y x =的定义域是()A.(),0-∞B.()(),00,-∞+∞C.()0,+∞ D.(),-∞+∞解析:选B.对数函数中真数0N >.即有20x >,解之得:0x ≠(即0x >和0x <都可以),定义域用区间表示为()(),00,-∞+∞ .)A.2π8.设 y =arctan1,则 y =(B.πC.3πD.4π解析:选D.“arctan1y =”即相当于“已知tan 1y =,求?y =”,在,22ππ⎛⎫- ⎪⎝⎭内,只有tan14π=,故4y π=.9.设()532f x x =+,则()1f -=()A.1- B.2C.3D.5解析:选A.()()51312321f -=⨯-+=-+=-.60.tan6π=()A.2B.3C.D.12解析:选B.3tantan 3063o π==.)A.8261.比数列 1,2,4,8,…的第 10项为(B.29C.102D.112解析:选B.55该等比数列的首项为11a =,公比21221a q a ===,求得通项公式为1111122n n n n a a q ---=⨯=⨯=,故得10191022a -==.62.若 f (x )为奇函数,则12f ⎛⎫-= ⎪⎝⎭()A.()2fB.()2f - C.12f ⎛⎫ ⎪⎝⎭ D.12f ⎛⎫- ⎪⎝⎭解析:选D.根据定义,()f x 为奇函数,则有()()f x f x -=-.故有1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,选D.63.若角α的终边过点()1,1P ,则cos α=()A.12B.22C.1D.解析:选B.角α的终边过点(),P x y的余弦函数值为cos α=则带入有:cos 2α===.)B.第一、三象限D.第二、四象限64. 函数 y =x 2的图像经过(A.第一、二象限C.第一、四象限解析:选 A.2y x =的图像如下:可知选A.65.34=81 ,其对数形式正确的是()A.3log 481= B.3log 814= C.81log 34= D.81log 43=解析:选B.“指数式”与“对数式”的互换公式:“log b a a N N b =⇔=”.16.64的立方根是()A.8B.8-C.4D.4-解析:选C.求“64的立方根”即相当于“已知364x =求?x =”而3464=,则有4x =.cos x 67.函数 y =的最大值是()A.1B.22C.32D.12解析:选A.2y x =0xy 61cos1x-≤≤,即有cos1x≤.68.sin15o=()B.C.D.解析:选D.根据半角公式sin2α=得:30sin15sin2oo==15o为第一象限角,正弦值取正).69.下列函数在其定义区间内是单调减函数的是()A.32xy⎛⎫= ⎪⎝⎭B.y=C.12xy⎛⎫= ⎪⎝⎭D.5logy x=解:选C.看图即可知应选C.70.若23x->,则x的取值范围是()A.()(),15,-∞-+∞B.(][),15,-∞-+∞C.()1,5- D.[]1,5-解析:选A.23x->∴23x-<-或23x->∴1x<-或5x>∴x的取值范围是()(),15,-∞-+∞.二、多项选择题(本题共有10小题,每小题4分,共40分)71.下列各项能组成集合的有()A.小于3的正整数B.好看的衣服C.某校所有的男同学D.非常高的树解析:选A、C.本题考点是集合中元素的三大特性之一:确定性(还有:无序性和互异性).凡是有“好看的”、“非常高的”“非常接近的”等等形容词的就不能构成集合,因为元素无法确定,违反了“确定性”.72.函数的表示法有()A.解析法B.分段法C.图像法D.列表法解析:选A、C、D.10x教科书中指出函数的三种表示法为:解析法、列表法、图像法.73.下列计算结果正确的有()A.6= B.23644= C.131100010-=D.1327982⎛⎫=⎪⎝⎭解析:选A 、C. 选项A:6==,正确;选项B :()2223323336444416⨯====,不正确;选项C :()1113313331100010101010⎛⎫⨯--- ⎪-⎝⎭====,正确;选项D :11133333273338222⨯⎡⎤⎛⎫⎛⎫⎛⎫===⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,不正确.74.下列对数值为正的有()A.3log 1B.105log 100C.141log 2D.25log 4解析:选B 、C 、D.选项A:3log 10=;选项B :105105log 100log 10>=;选项C :11441log log 102>=;选项D :225log log 104>=.75.下列属于第二象限的角有()A.451oB.4π C.280oD.150o解析:选A 、D.选项A:45136091o o o =+,故450o 与91o 的终边相同,都是第二象限角;选项B :454o π=是第一象限角;选项C :270280360ooo<<,280o是第四象限角;选项D :90150180ooo<<,150o是第二象限角.76.已知直线l 通过点()1,2A ,且斜率12k =,则该直线的方程为()A.()1212y x -=- B.()1122y x -=-C.230x y -+= D.()221y x -=-解析:选A 、C.平面内过点()000,P x y ,斜率为k 的直线的点斜式方程为:()00y y k x x -=-,带入即为()1212y x -=-,整理得230x y -+=.77.下列属于等差数列的有()A.2,4,6,8,…B.2,4,8,16,…C.12,14,18,116,… D.1,3,5,7,…解析:选 A 、D.根据等差数列的定义可得.选项 A :4-2=6-4=8-6=…=2,等差;选项 D:3-1=5-3=…=2,等差. 其他选项不满足条件.78.下列集合属于描述法的有()A.{直角三角形)B.{}2x x ≥C.{}1,2,3,4 D.{21,x x n n =+是自然数}解析:选A 、B 、D.描述法:{}x x p ∈,故有A、B、D 符合条件.)79.下列函数是偶函数的有(A. f (x ) =x2019B.()61f x x =+C.()cos f x x = D.()5x f x =解析:选B 、C.以上四个选项中函数的定义域均为R ,在定义域内有:选项A :()nf x x =,当n 偶数时()nf x x =为偶函数;当n 奇数时()n f x x =为奇函数;选项B :二次函数()2f x ax bx c =++中,当0b =时为偶函数;当0b ≠时既不是奇函数也不是偶函数;选项C :余弦函数()cos f x x =为偶函数;选项D :()5xf x =既不是奇函数也不是偶函数.80.下列三角函数的诱导公式正确的有()A.()sin sin αα-=- B.sin cos 2παα⎛⎫-=⎪⎝⎭C.cos sin 2παα⎛⎫-=⎪⎝⎭D.()tan tan παα-=-解析:选A 、B 、C 、D. 相关诱导公式有:()sin sin αα-=-sin cos 2παα⎛⎫-= ⎪⎝⎭()sin sin παα-=()cos cos αα-=cos sin 2παα⎛⎫-= ⎪⎝⎭()cos cos παα-=-()tan tan αα-=-tan cot 2παα⎛⎫-= ⎪⎝⎭()tan tan παα-=-诱导公式整体记忆:三角函数在每个象限的符号(一全正,二正玄,三余弦,四正切,其余为负)诱导公式:sin(kπ/2±α)=?、cos(kπ/2±α)=?、tan(kπ/2±α)=?可用“奇变偶不变,符号看象限”来概括并记忆。

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。

2019年高考数学模拟练习 100题试卷99831

2019年高考数学模拟练习 100题试卷99831

2019年高考数学模拟试卷**科目模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知定义在区间(0,2)上的函数()y f x =的图像如图所示,则(2)y f x =--的图像为(2012湖北文)B2.一个凸五边形的内角的度数成等差数列,且最小角是46°,则最大角是 A.108° B.139° C.144° D.170°第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题3.设直线l 1、l 2的倾斜角分别为θ1、θ2,斜率分别为k 1、k 2,且θ1+θ2=90°,则k 1+k 2的最小值是 ▲4.已知数列{}n a 满足()*115132,37n n n a a a n N a +-==∈-,则数列{}n a 的前100项的和▲ .5.已知数列{}n a ,首项11a =-,它的前n 项和为n S ,若1n n OB a OA a OC +=-,且,,A B C 三点共线(该直线不过原点O ),则10S = ▲ .6.[文科] 已知ABC ∆内接于以O 为圆心,1为半径的圆,且543=⋅+⋅+⋅,则ABC S ∆= .[理科]已知O 是∆ABC 的外心,2=AB ,3=AC ,21+=x y ,若=⋅+⋅A O x A By A C ,(0)xy ≠,则cos ∠=BAC .7.甲:函数()f x 是奇函数;乙:函数()f x 在定义域上是增函数。

对于函数①1()f x x =-,②()tan f x x =,③()||f x x x =,④21,0()21,0xx x f x x -⎧-≥⎪=⎨-+<⎪⎩,能使甲、乙均为真命题的所有函数的序号是8.已知关于x 的不等式 x + 1x + a < 2的解集为P ,若1∉P ,则实数a 的取值范围为 ▲ .9.甲、乙两人从{}0,1,2,3,4,5,6,7,8,9中各取一个数a 、b ,则“恰有3a b +≤”的概率等于 .。

2019年广东省3+证书高职高考数学试卷及参考答案

2019年广东省3+证书高职高考数学试卷及参考答案

2019年广东省高等职业院校招收中等职业学校毕业生考试数 学 试 题(含参考答案)一、选择题:本大题共15小题,没小题5分,满分75分.在每小题给出的四个只有一项是符合题目要求的.1.若集合}2101{,,,-=A 错误!未找到引用源。

,}0|{<=x x B 错误!未找到引用源。

,则=B A ( )A .}21{,B .}1{-C .}11{,-D .}210{,,2.函数错误!未找到引用源。

)2lg(+=x y 的定义域是( )A .)2(∞+-,B .)2[∞+-,C .)2(--∞,D .]2(--∞,3.不等式错误!未找到引用源。

0)5)(1(>-+x x 的解集是( )A . ]51[,-B .错误!未找到引用源。

)51(,-C .错误!未找到引用源。

)5[]1(∞+--∞,,D .错误!未找到引用源。

)5()1(∞+--∞,,4.已知函数))((R x x f y ∈=为增函数,则下列关系正确的是( ) A .)3()2(f f >- B .)3()2(f f < C .)3()2(-<-f fD .)0()1(f f >-5.某职业学校有两个班,一班有30人,二班有35人,从两个班选一人去参加技能大赛,则不同的选项有( ) A .1050种B .65种C .35种D .30种6.“1>a ”是“1->a ”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .非充分非必要条件7.已知向量错误!未找到引用源。

)3(-=,x a ,)13(,=b ,且错误!未找到引用源。

b a ⊥,则=x ( )A .-9B .9C .-1D .18.双曲线1162522=-y x 的焦点坐标为( )A .)041(,-,)041(,B .)410(-,,)410(,C .)30(-,,)30(, D .)03(,-,)03(, 9.袋中有2个红球和2个白球,这些球除颜色外,外形、质量等完全相同,现从袋中任取两球,取得两球都是红球的概率为( )A .61 B .21 C .31D .32 10.若函数错误!未找到引用源。

(完整版)重庆市2019年中职对口高考数学模拟试题(三)

(完整版)重庆市2019年中职对口高考数学模拟试题(三)

重庆市2019年中职对口高考数学模拟试题(三)一、选择题(共8小题,每题7分,共56分,在每个小题给出的四个备选项中,只有一项是符合题目要求的。

)1.设集合P={0,1,2,3,},Q={-1,0,1}则P ∩Q 等于( )A.{∅B.{0,1}C.{-1,0,1}D.{0,1,2,3}2.已知等差数列{a n }中,a 1=2,且a 1 a 2= a 4,则数列{a n }的通项公式和前n项和S n 分别是( )。

A. a n =n,Sn =n 2+nB. a n =2n,Sn =n 2−nC. a n =n,Sn =n 2−nD. a n =2n,Sn =n 2+n3.函数f(x)=√2−x +√x −2 ( )A.在定义域内是增函数B. 在定义域内是减函数C.是奇函数D.是偶函数4.若x 22−m +y 2m−1=1为双曲线方程,则m 的取值范围是( )A. (-∞, 1) B .(2, +∞) C. (1,2) D.(- ∞,1) ∪(2,+ ∞)5.在 ∆ABC 中,内角A 、B 、C 所对的边分别是a,b,c,已知sinA sinB =2,b=√2,则a = ( ). A.2√2 B. 2 C. √2 D. √226.下列直线与直线3x-2y=1垂直的是( ).A.4x-6y-3=0B. 4x+6y-3=0C.6x+4y+3=0D.6x-4y-3=07. 在各项都为正数的等比数列{a n }中,首项a 1=3,a 3=12,则a 3+a 4+a 5=( )。

A.36B. 72C. 84D.36或848. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种二、解答题(共3题,共44分)9.(本小题满分14分)计算:2−2×1634+2lg √2+12lg25+10lg3-[tan (−π4)]0 10.(本小题满分15分,(1)小问8分,(2)小问7分)已知函数f(x)= √3sinxcosx +cos (π+x) cosx(1)求此函数的最小正周期;(2)当x 取何值时,y 有最大值,最大值为多少?11.一斜率为34的直线过一中心在原点的椭圆的左焦点F 1,且与椭圆的二交点中,有一个交点的纵坐标为3,已知椭圆右焦点F 2到直线的距离为125,求椭圆的标准方程。

2019年高考数学仿真押题试卷(十七)(含解析)

2019年高考数学仿真押题试卷(十七)(含解析)

专题17 高考数学仿真押题试卷(十七)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()(a bi += ) A .54i -B .54i +C .34i -D .34i +【解析】解:a i -与2bi +互为共轭复数,则2a =、1b =,,故选:D .2.已知全集U R =,{|0}A x x =…,{|1}B x x =…,则集合()(U A B =ð )A .{|0}x x …B .{|1}x x …C .{|01}x x 剟D .{|01}x x <<【解析】解:或0}x …,,故选:D .3.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为( ) A .1B .2C .3D .4【解析】解:设数列{}n a 的公差为d ,则由1510a a +=,47a =,可得12410a d +=,137a d +=,解得2d =, 故选:B .4.如图为一个圆柱中挖去两个完全相同的圆锥而形成的几何体的三视图,则该几何体的体积为()A.13πB.23πC.43πD.53π【解析】解:圆柱的底面直径为2,高为2,圆锥的底面直径为2,高为1,该几何体的体积,故选:C.5.若变量x,y满足约束条件,则3z x y=+的最小值为()A.3 B.4 C.2 D.1【解析】解:由约束条件作出可行域如图,化目标函数3z x y=+为3y x z=-+,由图可知,当直线3y x z=-+过(0,1)A时,直线在y轴上的截距最小,z有最小值为1.故选:D.6.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16 B.18 C.24 D.32【解析】解:由题意知本题是一个分类计数问题, 首先安排三辆车的位置,假设车位是从左到右一共7个, 当三辆车都在最左边时,有车之间的一个排列33A , 当左边两辆,最右边一辆时,有车之间的一个排列33A , 当左边一辆,最右边两辆时,有车之间的一个排列33A , 当最右边三辆时,有车之间的一个排列33A ,总上可知共有不同的排列法33424A ⨯=种结果, 故选:C .7.部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是( )A .716B .916 C .35D .12【解析】解:由图可知:黑色部分由9个小三角形组成,该图案由16个小三角形组成, 设“向该图案随机投一点,则该点落在黑色部分”为事件A ,由几何概型中的面积型可得:P (A ),故选:B .8.在ABC ∆中,2AD DB =,2CE EA =,则( )A .B .C .D .【解析】解:,故选:A .9.已知双曲线,O 为坐标原点,过C 的右顶点且垂直于x 轴的直线交C 的渐近线于A ,B ,过C 的右焦点且垂直于x 轴的直线交C 的渐近线于M ,N ,若O A B ∆与OMN ∆的面积之比为1:9,则双曲线C 的渐近线方程为( )A .2y x =±B .y =±C .y =±D .8y x =±【解析】解:由三角形的面积比等于相似比的平方,则2219a c =, ∴2229a b a +=,∴ba=C ∴的渐近线方程为y =±, 故选:B .10.设0sin a xdx π=⎰,则8()ax x+展开式中的常数项为( )A .560B .1120C .2240D .4480 【解析】解:设,则展开式中的通项公式为,令820r -=,求得4r =,可得展开式中的常数项为48161120C =, 故选:B .11.在我国古代数学名著《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的棱柱称为堑堵.已知在堑堵中,90ABC ∠=︒,12AB AA ==,BC =1CA 与平面11ABB A 所成角的大小为( ) A .30︒ B .45︒C .60︒D .90︒【解析】解:在堑堵中,90ABC ∠=︒,12AB AA ==,BC =∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则(0C ,0),1(2A ,0,2),1(2A C =-,2)-,平面11ABB A 的法向量(0n =,1,0),设1CA 与平面11ABB A 所成角的大小为θ,则,1CA ∴与平面11ABB A 所成角的大小为45︒.故选:B .12.已知函数,若方程()1f x kx =+有四个不相等的实根,则实数k 的取值范围是()A .1(,1)3B .1(,2)3C .14(,)25D .1(,1)2【解析】解:方程()1f x kx =+有四个不相等的实根, 等价于函数()f x 的图象与直线1y kx =+有四个交点,易得:①当直线1y kx =+与函数相切时,12k =, ②当直线1y kx =+与函数相切时,利用导数的几何意义可得:1k =,即由图知函数()f x 的图象与直线1y kx =+有四个交点时, 实数k 的取值范围是112k <<, 故选:D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.10的展开式中含2x 项的系数为 5 .【解析】解:10的展开式的通项公式为,令10223r-=,求得2r =, 故展开式中含2x 项的系数为210159C =, 故答案为:5.14.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等比数列,且3tan 4B =,则的值是53. 【解析】解:a ,b ,c 成等比数列,2b ac ∴=,,3tan 4B =,3sin 5B ∴=.则.故答案为:53.15.已知0x >,0y >,且121x y+=,则xy x y ++的最小值为 7+ 【解析】解:121x y+=, 2xy x y ∴=+,,当且仅当26y xx y=时,即y =时取等号, 故xy x y ++的最小值为7+故答案为:7+16.如图,已知过椭圆的左顶点(,0)A a -作直线1交y 轴于点P ,交椭圆于点Q ,若AOP ∆是等腰三角形,且2PQ QA =,则椭圆的离心率为.【解析】解:AOP ∆是等腰三角形,(A a -,0)(0P ∴,)a . 设0(Q x ,0)y ,2PQ QA =,0(x ∴,,0)y -.∴,解得002313x a y a ⎧=-⎪⎪⎨⎪=⎪⎩.代入椭圆方程得,化为2215b a=.∴.. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数.(1)求函数()y f x =的单调增区间;(2)ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A )0=,1a =,求b c +的取值范围.【解析】解:(1)函数,由,可得,可得函数的单调递增区间是(6k ππ-,)3k ππ+,k Z ∈.(2)ABC ∆中,已知f (A ),,3A π∴=.1a =,由正弦定理可得,.2(0,)3B π∈,(66B ππ∴+∈,5)6π,,2].所以b c +的范围是(1,2].18.椭圆的左右焦点分别为1(F 0)、2F 0),点A 1)2在椭圆C 上.(1)求椭圆C 的方程;(2)直线:l y kx m =+与椭圆交于E 、F 两点,以EF 为直径的圆过坐标原点O ,求证:坐标原点O 到直线l 距离为定值.【解析】解:(1)由椭圆定义可知,,所以2a =,因为c =,所以1b =,椭圆C 的方程为:2214x y +=;(2)证明:由2214x y y kx m ⎧+=⎪⎨⎪=+⎩可得,△,即2241k m +>,设1(E x ,1)y ,2(F x ,2)y ,又,,∴,,,所以坐标原点O 到直线l. 19.某校学业水平考试中,某两个班共100名学生,物理成绩的优秀率为20%,数学成绩的频率分布直方图如图所示,数学成绩大于90分的为优秀.(1)利用频率分布直方图估计数学成绩的众数和中位数(中位数保留小数点后两位);(2)如果数学、物理都优秀的有12人,补全下列22⨯列联表,并根据列联表,判断是否有99.9%以上的把握认为数学优秀与物理优秀有关?(3)在物理优秀的20人中,随机抽取2人,记数学物理都优秀的人数为X ,求X 的概率分布列及数学期望.附:,其中.【解析】解:(1)由频率分布直方图估计数学成绩的众数是:8090852+=,由频率分布直方图得:[60,80)的频率为:,[80,90)的频率为:.估计数学成绩的中位数是:.⋯(2)列联表是:,所以有99.9%以上的把握认为数学优秀与物理优秀有关⋯(3)X的可能取值为0,1,2,,,,X 概率分布列为:数学期望.⋯20.如图①在四边形ABCD 中,//AD BC ,90BAD ∠=︒,AB =4BC =,6AD =,E 是AD 上的点,13AE AD =,P 为BE 的中点将ABE ∆沿BE 折起到△1A BE 的位置,使得14A C =,如图②. (1)求证:平面1A CP ⊥平面1A BE ;(2)点M 在线段CD 上,当直线1A M 与平面1A PD 1M A P D --的余弦值.【解析】证明:(1)BPC ∆中,2BP =,PC =,4BC =,所以BP PC ⊥,同理△1A PC 中,12A P =,PC =,14A C =, 所以1A P PC ⊥,因为1A P ⊂平面1A BE ,PB ⊂平面1A BE ,,所以PC ⊥平面1A BE ,又PC ⊂平面1A PC , 所以平面1A CP ⊥平面1A BE .⋯解:(2)以点P 为坐标原点,PE ,PC 所在直线为x ,y 轴正方向建立如图所示空间直角坐标系,1(0A ,1,C ,0,0),D ,4,0),(0E ,2,0)设M a ,0),则1A M =1a -,,1(0PA =,1,PD =4,0),设平面1A PD 的法向量为(m x =,y ,)z ,由100m PA m PD ⎧=⎪⎨=⎪⎩,得.令2x =,得(2m =,1),直线1A M 与平面1A PD ,,解得2a =或8a =(舍),∴1A M =1,, 设平面1A PD 的法向量为(n x =,y ,)z ,由,取1x =,得(1n =,1),设二面角1M A P D --的平面角为θ,则,所以当直线1A M 与平面1A PD 1M A P D --.⋯21.某财团欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格y (单位:万元)是每日产量x (单位:吨)的函数:.(1)求当日产量为3吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数); (2)记每日生产平均成本yx为m ,求证:16m <; (3)若财团每日注入资金可按数列2241n na n =-(单位:亿元)递减,连续注入60天,求证:这60天的总投入资金大于111n 亿元.【解析】解:(1)因为22321x y lnx x =-,(1)x >,所以,当3x =时,;证明:(2)要证,只需证设,则所以()h x 在(1,)+∞上单调递减,所以()h x h <(1)0= 所以16yx<, 即16m <; 证明(3)因为,又由(2)知,当1x > 时,12x lnx x ->, 所以,所以,所以.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.曲线(其中t 为参数),以原点为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线关于1C 对称.(1)求曲线1C 的普通方程,曲线2C 直角坐标方程;(2)将2C 向左平移2个单位长度,按照12x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩变换得到3C ,点P 为3C 上任意一点,求点P 到曲线1C 距离的最大值.【解析】解:(1)由2121x t y t =+⎧⎨=-⎩消去t 得20x y --=,由2c os a ρθ=得,得,依题意2C 的圆心2(,0)C a 在上,所以020a --=,解得2a =,故曲线1C 的普通方程为20x y --=,曲线2C 的直角坐标方程为.即.(2)2C 向左平移2各单位长度后得224x y +=,再按照12x x y y ⎧'=⎪⎪⎨⎪'⎪⎩变换得到,设P 点坐标为,P 点到1C 的距离为,当23πθ=时,点P 到1C的距离最大,最大值为 [选修4-5:不等式选讲] 23.已知.(1)解关于x 的不等式()4f x >;(2)对于任意正数m 、n ,求使得不等式恒成立的x 的取值集合M .【解析】解:(1)函数,当0x …时,不等式()4f x >化为,解得1x <-;当01x <<时,不等式()4f x >化为,解得3x >,所以x ∈∅; 当1x …时,不等式()4f x >化为,解得53x >; 综上,不等式()4f x >的解集为{|1x x <-或5}3x >;⋯(2)对于任意正数m 、n ,,当且仅当1m n ==时“=”成立, 所以不等式恒成立,等价于,由(1)知,该不等式的解集为5{|1}3x x-剟, 所以x 的取值集合是[1M =-,5]3.⋯。

2019年最新高考数学模拟试卷 100题3957

2019年最新高考数学模拟试卷 100题3957

2019年高考数学模拟试卷**科目模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=(2006安徽理)2.集合P ={x |x 2-16<0},Q ={x |x =2n ,n ∈Z },则P Q =(C ) A.{-2,2} B.{-2,2,-4,4} C.{-2,0,2} D.{-2,2,0,-4,4}(2006湖北文)3.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360B. 188C. 216D. 96 (2009四川理)【考点定位】本小题考查排列综合问题,基础题。

4.复数2(12)34i i+-的值是( ) A.-1 B.1 C.-i D.i (2009四川卷理)5.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B =ð( )(A ){}2,3 (B ){}1,4,5 (C ){}4,5 (D ){}1,5(2008四川理)1.(文科1)6.(2009浙江理)过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A7.函数()()m n f x ax x =1-g 在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==(2011安徽理)B 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.8.数列{a n }是实数构成的等比数列,S n =a 1+a 2+…+a n ,则数列{S n }中A.任意一项都不为零B.必有一项为零C.至多有有限项为零D.可以有无数项为零第II 卷(非选择题)请点击修改第II 卷的文字说明。

2019年高考数学模拟练习 100题试卷34395

2019年高考数学模拟练习 100题试卷34395

2019年高考数学模拟试卷**科目模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.设过点(,)P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = 且1OQ AB =,则点P 的轨迹方程是 ( )A .22331(0,0)2x y x y +=>> B .22331(0,0)2x y x y -=>> C .22331(0,0)2x y x y -=>> D .22331(0,0)2x y x y +=>>(2006湖北理)2.设a >1,且2log (1),log (1),log (2)a a a m a n a p a =+=-=,则p n m ,,的大小关系为 A . n >m >p B . m >p >n C . m >n >p D . p >m >n(2007安徽文8)3.一个凸五边形的内角的度数成等差数列,且最小角是46°,则最大角是 A.108° B.139° C.144° D.170°4.已知0log log ,10<<<<n m a a a ,则( )A(A)1<n <m (B) 1<m <n (C)m <n <1 (D) n <m <1(2006浙江理)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5.已知实数0p >,直线3420x y p -+=与抛物线22x py =和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则ABCD的值为 ▲ .高考资源w 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石城职校2019对口升学数学高考全真模拟题(一)
命题人:赖斌 审核人:李发彬 命题时间: 份数:95
第Ⅰ卷(选择题 共70分)
一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B.
1、集合A={(2,4)}中含有1个元素 . (A B )
2、如果x 2+x +1>0,则x ∈R . (A B )
3、f(x)=x x -+-732的定义域是{x 丨
2
3
≤x≤7} . (A B ) 4、x=3与y=2为互相垂直两条直线 . (A B ) 5.(x -1)2+y 2=3是以(-1,0)圆心,3为半径的的圆 . (A B )
6. 椭圆x 2+
52
y =1的离心率为5
5
2 . (A B ) 7.
2,<,>=135°,则3=⋅b a ρ
ρ . (A B )
8. 已知{a n }的通项公式a n =lg (3n 2+1),则301lg 10=a . (A B ) 9. sin α=sin β是α =β的必要但不充分条件 . (A B ) 10. 在△ABC 中,a=22,b=23,∠A=45°,则∠B=60° . (A B )
二、单项选择题:本大题共8小题,每小题5分,共40分。

11、已知集合},102{N x x x A ∈≤≤=,则集合A 中的元素个数为( ). A .6 B .7 C .8 D .9 12、下列函数中的奇函数是( ). A .23-=x y B .x
y 1-
= C .22x y = D .x x y -=2
13、化简log 38÷log 32可得( ). A .log34 B .
2
3
C .3
D .4 14、已知两点)7,2(),3,2(B A -,则线段AB 的长度是( ).
A .4
B .24
C .10
D .2 15、函数2
2()log 2x
f x x
-=+是( ). A .递增的奇函数 B .递增的偶函数 C .递减的奇函数 D .递减的偶函数
16、等差数列}{n a 的公差为2,若421,,a a a 成等比数列,则2a =( ). A .8
B .6
C .4
D .2
17、在二项式n
x x )2
1(32-
的展开式中,只有第5项的二项式系数最大,则展开式中的第 6项是( ). A .61635x -
B .61635x
C .747x -
D .74
7x 18、若某射手射击一次射中10环,9环,8环,7环的概率分别是,,,,计算这名射手射击一次,则射中10环或9环的概率为( ). A . B . C . D .
第Ⅱ卷(非选择题 共
80分)
三、填空题:本大题共6小题,每小题5分,共30分.
19、不等式 |12| 3 x ->的解集为____________________________ . 20、圆心坐标为(0,-3),且与x 轴相切的圆的方程为 ;
21、已知2=a ρ,1=b ρ,3=⋅b a ρρ,则>=<b a ρ
ρ, ;
22、函数lg(1)y x =-的定义域为 (用区间表示);
23、过点()0,1-,且垂直于直线240x y +-=的直线方程为 (写一般式). 24、若圆锥母线长为5,圆锥的高为3,则圆锥的体积 ;
四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.
解答应写出过程或步骤.
25、求过点P (1,2)且与直线310x y -+=平行的直线方程 .
班级:_____________________姓名:_____________________座位号:_________________
***************************密*********************封*********************线****************************
26、求值:(1);
3
1
)8
1(5lg 24lg --++(2)000
tan120cos(60)sin(765)
sin 330--
27、等比数列{}n a 中,已知142,16a a ==. (1)求数列{}n a 的通项公式;
(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式 .
28、证明函数()x f =x
x 1
+在区间]1,0(上是减函数 .
29、已经圆C 的方程04422
2=+-++y x y x
(1)求该圆的圆心坐标和半径; (2)求过点(0,0)的切线方程 .
30、如图,四棱锥P ABCD -的底面ABCD 是正方形,棱PD ⊥底面ABCD ,PD DC ==1,E 是PC 的中点.(1)证明:平面BDE ⊥平面PBC ;(2)求二面角E BD C --的余弦值。

相关文档
最新文档