7[1].3.4一次函数与方程、不等式综合.讲义学生版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块 考试要求 A 级要求
B 级要求
C 级要求
一次 函数 理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函数的性质
会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解
能用一次函数解决实际问题
一、一次函数与一元一次方程的关系
直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。求直线y b
kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b
k
-
就是直线y b kx =+与x 轴交点的横坐标。
二、一次函数与一元一次不等式的关系
任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
三、一次函数与二元一次方程(组)的关系
一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。
一、一次函数与一元一次方程综合
【例1】 若直线(2)6y m x =--与x 轴交于点()60,
,则m 的值为( ) A.3 B.2 C.1 D.0
例题精讲
中考要求
知识点睛
一次函数与方程、不等式综合
【例2】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )
A .2-
B .2
C .1-
D .0
【巩固】已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,
,则a b +=______.
二、一次函数与一元一次不等式综合
【例3】 已知一次函数25y x =-+.
(1)画出它的图象;
(2)求出当3
2
x =时,y 的值;
(3)求出当3y =-时,x 的值;
(4)观察图象,求出当x 为何值时,0y >,0y =,0y <
【例4】 当自变量x 满足什么条件时,函数23y x =-+的图象在:
(1)x 轴下方; (2)y 轴左侧; (3)第一象限.
【巩固】当自变量x 满足什么条件时,函数41y x =-+的图象在:
(1)x 轴上方;
(2)y 轴左侧; (3)第一象限.
【例5】 如图,直线y kx b =+与x 轴交于点()40-,
,则0y >时,x 的取值范围是( ) A.4x >- B .0x > C.4x <- D .0x <
【巩固】一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )
A .0x >
B .0x <
C .2x >
D .2x <
【例6】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:
(1)当2x =时,y 的值; (2)x 为何值时,0y <?
(3)当21x -≤≤时,y 的值范围; (4)当21y -<<时,x 的值范围.
【巩固】已知一次函数23y x =-+
(1)当x 取何值时,函数y 的值在1-与2之间变化?
(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?
【例7】 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )
A .2x >-
B .0x >
C .2x <-
D .0x <
【巩固】如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.
【例8】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式1
22
x kx b >+>-的解集为______.
【巩固】直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式
21k x k x b >+的解集为______.
l 2
l 1
3-1
O y
x
三、一次函数与二元一次方程(组)综合
【例9】 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组
( ) A.无解 B.有唯一解 C.有无数个解 D.以上都有可能
【例10】 已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30
220x y x y --=⎧⎨-+=⎩
的解是________.
【巩固】如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b y
mx n y
+=⎧⎨+=⎩的解关于原点对称的点的
坐标是________.
【例11】 已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为2
3x y =-⎧⎨
=⎩
,则直线y ax c =+和直线y kx b =+的交点坐标为________.
【巩固】已知24x y =⎧⎨=⎩,是方程组732
28
x y x y -=⎧⎨+=⎩的解,那么一次函数y =________和y =________的交点是