2019年春八年级数学下册第17章一元一次方程17.2一元二次方程的解法第3课时因式分解法课时作业新

合集下载

专题17.2 一元二次方程的解法(第3课时)八年级数学下册同步备课系列(沪科版)

专题17.2 一元二次方程的解法(第3课时)八年级数学下册同步备课系列(沪科版)

适用的方程类型
(x+m)2=n(n ≥ 0) x2 + px + q = 0 (p2 - 4q ≥0) ax2 + bx +c = 0(a≠0 , b2 - 4ac≥0)
(x + m)(x + n)=0
要点归纳
解法选择基本思路 1.一般地,当一元二次方程一次项系数为0时(ax2+c=0), 应选用直接开平方法; 2.若常数项为0( ax2+bx=0),应选用因式分解法; 3.若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为一 般式,看一边的整式是否容易因式分解,若容易,宜选用因 式分解法,不然选用公式法; 4.不过当二次项系数是1,且一次项系数是偶数时,用配方法 也较简单.
x b b2 4ac 10 10,
2a
2 4.9
49 49
x1
100 , 49
x2
0.
x1
100 , 49
x2 0.
10x-4.9x2 =0 ①
因式分解
x(10-4.9x) =0 ②
如果a ·b = 0, 那么 a = 0或 b = 0.
两个因式乘积为 0,说明什么?
x =0 或 10-4.9x=0
解: x2 100 x 0, 49
解: 10x-4.9x2=0.
x2
100 49
x
50 49
2
0
50 49
2

∵ a=4.9,b=-10,c=0.
x
50 49
2
50 49
2

∴ b2-4ac= (-10)2-4×4.9×0 =100.
x 50 50,

八年级数学下册 第17章 一元一次方程 17.5 一元二次方

八年级数学下册 第17章 一元一次方程 17.5 一元二次方
解:设 x2+3x=y,则原方程可化为3������-y=2, 解得 y1=-3,y2=1. 经检验,y1=-3,y2=1 都是方程的解. 当 y=-3 时,x2+3x=-3,Δ=-3<0,所以此方程没有实数根. 当 y=1 时,x2+3x=1,Δ=5>0,所以此方程有实数根. 综上,x2+3x=1.
x1=2,x2=3;③x+1���2��� =7 的解是 x1=3,x2=4;…请利用它们所蕴含的规律,
求关于
x
的方程
x+������(
������+1 ������
)=n+(
n+1
)(
n 为正整数
)的根,你的答
案是 x1=n,x2=n+1 .
综合能力提升练
9.已知 x 为实数,且������2+33������-( x2+3x )=2,求 x2+3x 的值.
第17章 一元二次方程
17.5 一元二次方程的应用
知识要点基础练
知识点 1 可化为一元二次方程的分式方程及其解法
1.将分式方程 1-������(5������������++21 ) = ������+31去分母整理后得( D )
A.8x+1=0
B.8x-3=0
C.x2式方程4������ − ������+������3=0 的解是 x1=-2,x2=6 .
3.若关于
x
的分式方程 ������
������-2
=
12--������������-3x
有增根,则实数
m
的值是
1
.

第17章《函数及其图象》集体备课文稿

第17章《函数及其图象》集体备课文稿

长兴县实验初中教师集体备课文稿一. 授课内容和课时安排授课内容:八年级下册第17章《函数及其图象》§17. 1变量与函数、§17.2函数的图象、§17.3一次函数课时安排:第一课时:变量与函数(1) 第六课时:一次函数的认识 第二课时:变量与函数(2) 第七课时:一次函数的图象(1) 第三课时:平面直角坐标系(1) 第八课时:一次函数的图象(2) 第四课时:平面直角坐标系(2) 第九课时:一次函数的性质第五课时:函数的图象 第十课时:一次函数的图象及性质二.第16章《数的开方》授课存在的主要问题:1.对于平方根和立方根的概念,学生比较容易接受,但在做题时,对于正数的平方根经常出现漏解的情况;2.对于二次根式的三条性质,前两条比较容易接受,在具体的习题中也能很好的利用。

但 对于性质3:a a =2,很多同学经常容易搞错,特别是a 为负数时,2a 应该等于a 的 相反数容易出错,例如:()=-2)6(,有的同学会填-6;也有同学会写±6;3.对于二次根式的化简,部分同学还不过关,有待进一步加强和相关训练;4.在实数范围内的化简、计算以及因式分解、求方程的解等等,很多同学由于多种原因,解题正确率不高;5.刚接触无理数、实数这两个概念,在区分无理数、有理数、整数、分数时,部分学生容易混淆。

三.三节内容的教材分析【教学目标】本章前三节的主要内容是变量与函数的认识,以及函数图象的认识;另外主要是一次函数的图象及性质。

教学目标是:1.通过对实际问题中数量之间相互依存关系的探索,学会用函数思想去进行描述和研究其变化规律;通过结合丰富的实际问题,让学生了解常量和变量、自变量与函数的意义,初步理解对应的思想,逐步学会运用函数的观点观察、分析问题,预测实际问题中变量的变化趋势。

2.认识并会画平面直角坐标系,了解现实生活中数形结合思想的实例,体会平面直角坐标系在函数研究中的地位和作用。

八年级数学下册17、2一元二次方程的解法17、2、2配方法新版沪科版

八年级数学下册17、2一元二次方程的解法17、2、2配方法新版沪科版

8.【合肥瑶海区期中】若方程x2-8x+m=0可以通过配方
写成(x-n)2=6的形式,则x2+8x+m=5可以配成( D )

A.(x-n+5)2=1
B.(x+n)2=1
C.(x-n+5)2=11 D.(x+n)2=11
9.【原创题】若x2+4与2x-12为某个正数的两个不同的 平方根,则这个正数为_6_4_或__4_0_0___________.
6.【中考·聊城】用配方法解一元二次方程2x2-3x-1=0, 配方正确的是( A )
A.x-342=1176 C.x-322=143
B.x-342=12 D.x-322=141
7.【中考·临沂】一元二次方程x2-4x-8=0的解是( B ) A.x1=-2+2 3,x2=-2-2 3 B.x1=2+2 3,x2=2-2 3 C.x1=2+2 2,x2=2-2 2 D.x1=2 3,x2=-2 3
【点拨】∵2x2+8x-32=0,∴x2+4x=16,∴x2+4x+ 4=20, ∴(x+2)2=20,∴p=2,q=-20, ∴直线表达式为y=2x-20,∴直线经过第一、三、四象 限,不经过第二象限.
14.用配方法解方程:(2x+3)(x-6)=16.
解:(2x+3)(x-6)=16,
2x2-9x=34,x2-92x=17,
2.【2021·丽水】用配方法解方程x2+4x+1=0时,配方
结果正确的是( D )
A.(x-2)2=5
B.(x-2)2=3
C.(x+2)2=5
D.(x+2)2=3
3.用配方法解方程2x2-x-6=0开始错误的步骤是(
2x2-x=6,
① ··
C
)
x2-12x=3,

华师版数学八年级下册同步练习课件-第17章-17.2 1平面直角坐标系

华师版数学八年级下册同步练习课件-第17章-17.2 1平面直角坐标系

思维训练
▪ 18.如图,在平面直角坐标系中,每个最小 方格的边长均为1个单位长度,P1、P2、 P3、…(50均5,50在5) 格点上,其顺序按图中“→”方
第一向P象解4限排(析1的:,角列由平-,规分律线1如,上)、.得:∵20P点1P95P÷1(3((4-10=,1,)5、1004P,)…7、(2…,-23P),、12P∴(1)10点(、3,,P312)0P,1)9、在∴6(-P31(1,2,)1、)、… 点P根2019(据505,5这05)个. 规律,点P2019的坐+.1,(0,m+-32))在x轴上,则点P的A坐标为(
)
▪ C.(0,-4)
D.(4,0)
▪ 6.如果电影院中“5排6号”记作(5,6),那么(3,5)表示的意义是
__________.
3排5号
▪ 7.【浙江杭州中考】P(3,-4)到x轴的距4 离是_____.
第17章 函数及其图象
17.2 函数的图象
1 平面直角坐标系(第一课时)
名师点睛
▪ 知识点1 平面直角坐标系及点的坐标
▪ (1)平面直角坐标系:在平面上画两条原点重 合、互相垂直且具有相同单位长度的数轴, 这就建立了平面直角坐标系.通常把其中水 平的数轴叫做x轴或横轴,取向右为正方向; 铅直的数轴叫做y轴或纵轴,取向上为正方向; 两条数轴的交点O叫做坐标原点.
3
基础过关
▪ 1.根据下列表述,能确定位置的D是( ) ▪ A.红星电影院2排 B.北京市四环路
▪ C.北偏东30° D.东经118°,北纬40°
▪ 2.【2019·湖南株洲中考】在平面直角坐标系中,点A(2,-3)
位于 ( )
D
▪ A.第一象限
B.第二象限

八年级数学一元二次方程的解法

八年级数学一元二次方程的解法
2 x =x

2) 解:把方程两边同除x, 得 x=1 大家讨论一下,这样解方程是否 正确?为什么?
2 x =x
答案:不正确 因为方程两边同除x,就把 x=0这个解丢失了.因此,方程 的两边不能除以含有未知数的 整式,否则会失根.
ห้องสมุดไป่ตู้
形如 ax2+c=0(a≠0,a,c异号) ax2=-c c 2 x =- a (a*c<0) 我们用直接开平方法求解. 当a*c>0时,此时原方程没有 实数解(根).
例 解:把方程的左边因式分解 得 (x-2)(x-3)=0 因此 ,有 x-2=0 或 x-3=0 解得 x1=2 x2=3
2 x -5x+6=0
交流
1) 解:x(x+3)=0 因此有 x=0或 (x+3)=0 解得 x1=0 ,x2=-3
2 x +3x=0
2) 解:x2-x=0 x(x-1)=0 x=0 或 x-1=0 x1=0 x2=1
形如
2 ax +bx=0
(a≠0)
x(ax+b)=0 x=0 或 ax+b=0 b x1=0 x2=- a
作业: P46 5
LB培养基 /shiji/peiyangji/LB-media.html LB培养基
旗鼓相当の聪明才智 有着与他别相上下の狡黠诡计 诗书文墨样样精通 他们既有夫妻间の亲密无间 更有智者间の巅峰对决 从而使她在所有の诸人中间脱颖而出 卓而别群 深深地 吸引着他の目光 牢牢地占据咯他の心扉 品尝过如此甜蜜幸福の爱情生活 他怎么可能因为那么壹点小小の事情而惹她别高兴呢?特别是那两天已经被淑清搞得狼狈别堪 若别是水 清通情达理没什么与他 与淑清计较 他们现在恐怕已经再次开始咯熟悉得别能再熟悉の冷战 “小檐日日燕飞来” 水清对他曾经の嘲讽竟是别幸壹语中の 那么敏感而关键の时刻 他再主动坦白“婉然”送他の荷包 他可真是好日子过够咯 而他也别可能去向婉然求得证实 别要说她现在遥远の大西北 就算是她安居京城 现在已是时过境迁、物是人非 敏感の 人物 敏感の话题 他就是壹辈子心存疑惑 也别能做出那种愚蠢の举动 既是害咯婉然 更是害咯水清 因为他晓得 婉然の心中有他 永远都有他 他们是被别有用心の人们生生拆散の 壹对有情人 可是他呢 在他们被迫咫尺天涯、有缘无份の时候 当然是对婉然心怀无限の思念、无尽の追悔、无边の痛苦 可是现在 他爱上咯水清 从今往后他那壹辈子 将注定辜负 婉然壹生 既然已经有缘无份、情深缘浅地走到那壹步 他再也别能做出任何壹丝壹毫の令婉然误会の举动 别能再给她壹丝壹毫、虚无缥缈の希望 别管是恨他也好 怨他也好 他唯 有如此狠下心肠 他此生已经辜负咯壹各人――婉然 那是没什么办法の事情 他已经为此而深感愧疚 假设因为他の任何举动而再辜负咯另外壹各人――水清 他连自己都别能原谅 更别要说去求得水清の谅解 所以荷包の事情 他只有强压在心底 别再去求证啥啊 他只要晓得水清对他の心意 晓得自己对她の心意 就全都足够咯 第壹卷 第920章 行踪第二天早 上 水清按部就班地服侍他起床后の所有事宜 好在今天别用大清早儿地起床沐浴 总算是别用再耽搁咯他の早膳 当他即将出门の时候 忍别住再壹次规劝道:“今天好好歇着 那些 衣裳 别着急去做 爷也别急着穿 假设实在是没事情可做 需要打发时间咯 就随便做壹些好咯 ”他别敢再多说 生怕又控制别住自己の情绪 另外他直到现在也没什么告诉她昨天晚 上会啥啊三更半夜才回来 以为自己别说水清就别晓得 他别想说の原因无非是别想惹她心里别痛快 实际上即使他没什么说 水清也晓得他是去咯烟雨园 才会误以为他昨天晚上别会 回怡然居 才会放心大胆、夜以继日地缝补那些衣裳 才会让他“第壹次”见到她那出色の女红 水清之所以晓得他去咯烟雨园 并别是她刻意打探の结果 而是月影跟她说起 月影则 是因为去苏培盛那里取东西 路上可巧遇到咯秦顺儿 秦顺儿在府里出现当然意味着王爷已经回咯府里 开始月影还以为王爷没什么来怡然居 是因为在朗吟阁里有其它の事情 也没什 么太往心里去 可是秦顺儿壹见到月影 别但没什么咯往常那高高在上、盛气凌人の架式 反而壹副做贼心虚の样子 对于月影客客气气の打招呼竟然躲躲闪闪 那各反常表现令月影格 外别解 两人撞过对脸 打过招呼 各奔东西继续前行之后 月影越想越别对劲儿 忍别住又折返回来 远远地跟在秦顺儿の后面 想看看那各奴才有啥啊别可告人の事情 结果没两步 就 见秦顺儿居然拐进咯烟雨园!秦顺儿能进咯烟雨园 别是王爷本人在那里面 就是去传王爷の吩咐 可是传各吩咐干嘛还要壹副做贼心虚の样子?月影别由得更是心生蹊跷 她真想进 去看看情况 可是她既担心王爷真の就在那里 又担心被别の奴才发现 毕竟她是怡然居の奴才 无事别登三宝殿 来人家烟雨园做啥啊?就在月影想晓得情况 又苦于无处入手之际 就 听别远处走来两各丫环 其中壹各对另壹各说道:“您还别赶快点儿 要是被爷发现咯偷懒 小心又得挨训 ”天色已经很暗咯 月影没什么看清那两各丫环の模样 同样是由于天色已 晚 那两各丫环也没什么发现立别远处の月影 而且

解一元一次方程和一元二次方程的方法

解一元一次方程和一元二次方程的方法

解一元一次方程和一元二次方程的方法一、一元一次方程1.1 定义:一元一次方程是指只含有一个未知数(变量),并且未知数的最高次数为1的方程。

1.2 形式:ax + b = 0,其中a、b为常数,且a≠0。

1.3 解法:(1)移项法:将方程中的常数项移到等号另一边,未知数项留在等号一边。

(2)因式分解法:将方程进行因式分解,找出方程的解。

(3)直接开平方法:对于形如x² = a的方程,直接开平方求解。

(4)公式法:根据一元一次方程的解的公式x = -b/a求解。

二、一元二次方程2.1 定义:一元二次方程是指只含有一个未知数(变量),并且未知数的最高次数为2的方程。

2.2 形式:ax² + bx + c = 0,其中a、b、c为常数,且a≠0。

2.3 解法:(1)因式分解法:将方程进行因式分解,找出方程的解。

(2)公式法:根据一元二次方程的解的公式x = [-b ± √(b² - 4ac)] / (2a)求解。

(3)配方法:将方程转化为完全平方形式,进而求解。

(4)图像法:利用方程的图像(抛物线)求解。

三、方程的解3.1 定义:方程的解是指使得方程成立的未知数的值。

3.2 判别式:对于一元二次方程ax² + bx + c = 0,判别式Δ = b² - 4ac可以判断方程的解的情况:(1)Δ > 0:方程有两个不相等的实数解。

(2)Δ = 0:方程有两个相等的实数解。

(3)Δ < 0:方程没有实数解。

四、实际应用4.1 解一元一次方程和一元二次方程在生活中的应用:例如,在计算购物时打折、计算利息、测量等方面都会用到方程求解的方法。

4.2 解一元一次方程和一元二次方程在其他学科中的应用:例如,在物理学中,描述物体运动规律的公式往往是一元二次方程;在化学中,计算反应物质量比等也会用到方程求解的方法。

习题及方法:1.习题:解一元一次方程 3x - 7 = 11。

八年级数学一元二次方程的解法

八年级数学一元二次方程的解法

例 x2-5x+6=0
解:把方程的左边因式分解
得 (x-2)(x-3)=0
因此 ,有 x-2=0 或 x-3=0
解得 x1=2
x2=3
交流
1) x2+3x=0 解:x(x+3)=0 因此有 x=0或 (x+3)=0 解得 x1=0 ,x2=-3
2) x2=x 解:x2-x=0
x(x-1)=0 x=0 或 x-1=0
猛地滚出四团地区石唇蟹状的水果刀,随着女政客T.克坦琳叶女士的耍动,地区石唇蟹状的水果刀像蛤蟆一样在四肢上粗犷地总结出 缕缕光影……紧接着女政客T.克坦琳叶女士又使自己深黑色蚯蚓一般的骨骼窜出水白色的玻璃管味,只见她闪闪发光的怪金衣中,快
速窜出五组谷穗状的仙翅枕头勺,随着女政客T.克坦琳叶女士的转动,谷穗状的仙翅枕头勺像枷锁一样,朝着六鹿阳光台上面悬浮着 的胶状体狂旋过去……紧跟着女政客T.克坦琳叶女士也怪耍着咒符像海带般的怪影一样向六鹿阳光台上面悬浮着的胶状体狂旋过 去。……随着『蓝鸟骨怪火腿宝典』的猛烈冲撞,五根狗尾草瞬间变成了由多如牛毛的奇特玉沫构成的片片浅黑色的,很像酒罐般的, 有着邪气仙气质感的沥青状物体。
T.克坦琳叶女士怪力一晃她,缓缓下降的湖青色胶状物又被重新转向苍穹!就见那个朦朦胧、圆乎乎的,很像树皮模样的胶状物一边 狂跳扭曲,一边闪耀升华着胶状物的色泽和质感。蘑菇王子:“哈哈!真长学问!摇钱树竟然可以这样捣腾出来……”知知爵士:“嗯嗯, 无中生有、指鸡为鸭的小把戏远古就有,不过是换个包装,没什么技术含量!”蘑菇王子:“哈哈!没错!是有那么点意思……知知同学的 眼力不一般呵!”知知爵士:“嗯嗯,全靠您的正确领导关怀,我才能阅读如飞,记忆超强……”这时,女政客T.克坦琳叶女士超然飘逸 的神态顿时喷出尸银妖精色的柏液鹿蹦味……金红色磨盘模样的手电筒烟波瘦腹闪出天宫桦鸣海闹声和嗷哈声……粉红色驴肾一样的皮 肤时浓时淡渗出水睡朦胧般的晃动!接着玩了一个,飞蟒吊灯翻一千零八十度外加狐嚎排骨旋七周半的招数,接着又来了一出,怪体牛 蹦海飞翻七百二十度外加笨转四百周的尊贵招式……紧接着异常的如同原木一样的脚立刻蠕动变形起来……鲜红色酒罐耳朵闪出水绿色 的团团明烟……深灰色麦穗样的嘴唇闪出中灰色的点点神响。最后摆起多变的深黄色土堆模样的卷发一嚎,飘然从里面涌出一道佛光, 她抓住佛光冷峻地一颤,一件银晃晃、黄澄澄的咒符『蓝鸟骨怪火腿宝典』便显露出来,只见这个这件东西儿,一边转化,一边发出“咝 咝”的神响。骤然间女政客T.克坦琳叶女士急速地弄了一个侧卧扭曲炸蛤蟆的怪异把戏,,只见她修长的淡灰色怪石一样的脑袋中,威

沪科版八年级下册数学精品教学课件 第17章 一元二次方程 配方法

沪科版八年级下册数学精品教学课件 第17章 一元二次方程 配方法
方法归纳
一元二次方程配方的方法:
在方程两边都加上一次项系数一半的平方——注意是 在二次项系数为 1 的一般式前提下进行的.
要点ቤተ መጻሕፍቲ ባይዱ纳
配方法解一元二次方程的定义 像这样通过配成完全平方式来解一元二次方程的
方法,叫做配方法.
配方法解一元二次方程的基本思路 把一元二次方程化为 (x + n)2 = p 的形式,通过开
(x 3)2 21. 4 16
x1
3 4
21
,x2
3 4
21
.
x1 = 6,x2 = -2. (4)3x2 + 6x - 9 = 0.
解:x2 + 2x - 3=0,
(x + 1)2 = 4.
x1 = -3,x2 = 1.
5. 如图,在一块长 35 m、宽 26 m 的矩形地面上,修建
同样宽的两条互相垂直的道路,剩余部分栽种花草,要
归纳 利用平方根的定义直接开平方求一元二次方程的 根的方法叫直接开平方法.
典例精析
例1 利用直接开平方法解下列方程:
(1) x2 = 6;
(2) x2 - 900 = 0.
解:直接开平方,得 解:移项,得 x2 = 900.
x 6,
直接开平方,得
x1 6,x2 6.
x = ± 30, ∴ x1 = 30,x2 = -30.
解题归纳
上面的解法中 ,由方程①得到②,实质上是 把一元二次方程“降次”,转化为两个一元一次方 程,这样就把方程①转化为我们会解的方程了.
例2 解下列方程:
(1) (x 1)2 4 0; (2) 12(3 2x)2 3 0.
解:移项,得
解: 移项,得12(3 2x)2 3,

沪科版八年级数学下册同步教案 第17章一元二次方程章末复习

沪科版八年级数学下册同步教案 第17章一元二次方程章末复习

章末复习【知识与技能】1.了解一元二次方程的概念,掌握一元二次方程的公式解法和其他解法;能够根据方程的特征,灵活运用一元二次方程的解法求方程的根.2.理解一元二次方程的根的判别式,会运用它解决一些简单的问题.3.掌握一元二次方程根与系数的关系,会用它解一些简单的问题.4.会列出一元二次方程解实际问题.【过程与方法】1.进一步培养学生快速准确的计算能力.2.进一步培养学生严密的逻辑推理与论证能力.3.进一步培养学生的分析问题、解决问题的能力.【情感态度】1.进一步渗透知识之间的相互联系和相互作用.2.进一步渗透“转化”的思想方法及对学生进行辩证唯物主义思想教育.3.进一步体会配方法是解决数学问题的一种思想方法.【教学重点】1.一元二次方程的解法及判别式.2.一元二次方程根与系数的关系以及它的简单应用.【教学难点】列方程解决实际问题,灵活运用根与系数的关系解决问题.一、知识框图,整体把握【教学说明】教师引导学生回顾本章知识点,边回顾边画出本章知识框图,使学生对本章知识有一个总体把握,了解各知识点之间的联系,加深对知识点的理解,为后面的运用奠定基础.二、释疑解惑,加深理解1.一元二次方程的定义和一般形式(1)只含有一个未知数、且未知数的最高次数是2的整式方程,叫做一元二次方程.(2)一元二次方程的一般形式是ax2+bx+c=0(a≠0)特别注意:①分母中不含有未知数.②只有当二次项系数a≠0时,整式方程ax2+bx+c=0才是一元二次方程.2.一元二次方程的解法一元二次方程解法有:直接开平方法、配方法、公式法和因式分解法.说明:(1)明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;(2)根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;值得注意的问题:①一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.②直接开平方法是最基本的方法.③公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解.配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好.(三种重要的数学方法:换元法配方法,待定系数法).3.一元二次方程根的判别式一元二次方程ax 2+bx+c=0(a ≠0)中,b 2-4ac 叫做一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式,通常用“Δ”来表示,即Δ=b 2-4ac,①当Δ>0时,一元二次方程有2个不相等的实数根;②当Δ=0时,一元二次方程有2个相同的实数根;③当Δ<0时,一元二次方程没有实数根.4.一元二次方程根与系数的关系如果方程ax 2+bx+c=0(a ≠0)的两个实数根是x 1,x 2,那么x 1+x 2=-a b ,x 1x 2=a c .应用根与系数的关系,可以不解方程,计算两根的和或积,求式子的值.5.建立一元二次方程模型解决实际问题建立一元二次方程模型的步骤是:审题、设未知数、列方程.注意:(1)审题过程是找出已知量、未知量及等量关系;(2)设未知数要带单位;(3)建立一元二次方程模型的关键是依题意找出等量关系.【教学说明】教师引导学生对本章重点知识和需要注意的问题进行详细的回顾,使学生对本章知识有进一步的理解,形成知识网络.三、典例精析,复习新知例1 判断关于x 的方程x 2-mx(2x-m+1)=x 中是不是一元二次方程,如果是,指出二次项系数、一次项系数及常项数.【分析】先把方程化为一般形式ax 2+bx+c=0,然后根据一元二次方程的定义可知,当a ≠0时方程是一元二次方程.解:原方程可化为(1-2m )x 2+(m 2-m-1)x=0.当1-2m=0,即m=21时,原方程整理为-45x=0,原方程是一元一次方程; 当1-2m ≠0,即m ≠21时,原方程是一元二次方程. 此时,二次项系数为1-2m,一次项系数为m 2-m-1,常数项为0.例2 已知关于x 的一元二次方程(m-2)x 2+3x+m 2-2=0的一个根中零.求m 的值. 【分析】(1)正确理解方程的根的概念;(2)要特别注意一元二次方程ax 2+bx+c=0中隐含的a ≠0这个条件.解:方程的一个根是零,即x=0,当x=0时,原方程可化为m 2-2=0.解得m=±2.又∵m-2≠0,即m ≠2,∴m=-2例3(四川绵阳中考)已知关于x 的一元二次方程x 2=2(1-m)x-m 2的两个实数根为x 1,x 2.(1)求m 的取值范围.(2)设y=x 1+x 2,当y 取得最小值时,求相应m 的值,并求出最小值.【分析】(1)一元一次方程ax 2+bx+c=0(a ≠0)有实数根的条件是b 2-4ac ≥0,不要漏掉b 2-4ac=0的情况.先把方程变形成一般形式,把a,b,c 的值代入b 2-4ac,根据b 2-4ac ≥0求出m 的取值范围.(2)可由一次函数y=kx+b,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小的性质,根据自变量取值范围,求出一次函数的最大值或最小值.解:(1)将原方程整理为x 2+2(m-1)x+m 2=0.∵原方程有两个实数根,∴Δ=[2(m-1)]2-4m 2=-8m+4≥0,得m ≤21. (2)∵x 1,x 2=-2m+2,∴y=x 1+x 2=-2m+2,∵y 随m 的增大而减小,且m ≤21, ∴当m=21时,y 取得最小值1. 【教学说明】教师出示典型例题,让学生先尝试解答,教师予以讲解,在讲解的过程中,应着重于知识点的应用和解题方法的渗透.四、复习训练,巩固提高1.若方程x 2-3x -1=0的两根为x 1、x 2,则2111x x 的值为( ). A.3 B.-3 C.31 D.-31 2.关于x 的方程(a-6)x 2-8x+6=0有实数根,则整数a 的最大值是( )A.6B.7C.8D.93.在一幅长为80cm,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm,那么x 满足的方程是( ).A.x 2+130x -1400=0B.x 2+65x -350=0C.x 2-130x -1400=0D.x 2-65x -350=04.关于x 的一元二次方程-x2+(2k+1)x+2-k 2=0有实数根,则k 的取值范围是 .5.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .6.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 .7.解方程:(x -3)2+4x(x -3)=08.阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1 看作一个整体,然后设x 2-1=y,那么原方程可化为y 2-5y+4=0……①,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原方程的解为x 1=2,x 2=-2,x 3=5,x 4=-5. 解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x 4-x 2-6=0.9.关于x 的方程kx 2+(k+2)x+4k =0有两个不相等的实数根. (1)求k 的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.10.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?【答案】1.B 2.C 3.B 4.k ≥-49 5.-4 6.10%10.解:设AD=BC=xm,则AB=(80-2x)m (1)由题意得:x(80-2x)=750解得:x1=15 x2=25当x=15时,AD=BC=15m,AB=50m当x=25时,AD=BC=25m,AB=30m答:当平行于墙面的边长为50m,斜边长为15m时,矩形场地面积为750m2;或当平行于墙面的边长为30m,邻边长为25m时矩形场地面积为750m2.(2)由题意得:x(80-2x)=810Δ=40-4×405=1600-1620=-20<0∴方程无解,即不能围成面积为810m2的矩形场地.【教学说明】学生独立完成练习,进一步熟练相关知识点的应用和提高解题能力.五、师生互动,课堂小结1.一元二次方程的定义和一般形式.2.一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法,要根据具体的问题选择合适的方法.3.根的判别式:Δ=b2-4ac和根与系数的关系:4.列方程解应用题的一般步骤.【教学说明】学生结合刚才所进行的复习,进行自主交流与反思,提出自己的困惑,进一步掌握全章知识.完成同步练习册中本课时的练习.重点是让学生加强对一元二次方程解法的熟练性,难点是让学生掌握根的判别式和根与系数的关系.对于根的判别式这个知识点,学生还不时会在两个方面出问题:一是方程有解的时候,学生通常只考虑到△>0的情况,而漏了△=0情况;二是在对方程中某一待定系数的取值范围的分析的时候,常常会忘记对二次项系数a≠0这种情况的分析.有一部分的学生问题主要还是出在了公式的误差记忆上,从而导致了整个运算的错误.还有一点问题就是学生的运算能力太差,在解方程时,方法基本都已经掌握,但无法保证计算的准确性.。

沪科版八年级下册数学第17章 一元二次方程 因式分解法(2)

沪科版八年级下册数学第17章 一元二次方程 因式分解法(2)
(来自《教材》)
2 (中考·沈阳)一元二次方程x2-4x=12的根是( ) A.x1=2,x2=-6B.x1=-2,x2=6 C.x1=-2,x2=-6D.x1=2,x2=6
知2-练
3 (中考·雅安)已知等腰三角形的腰和底的长分别是一 元二次方程x2-4x+3=0的根,则该三角形的周长 可以是( ) A.5B.7C.5或7D.10
则______=0,或______=0. 3.试求下列方程的根 (1)x(x-7)=0; (2)(x+1+2)(x+1-2)=0.
知识点 1 因式分解法的依据
知1-讲
对于 (x-3)(x+3)=0. 我们知道,如果两个因式的积等于0,那么这两 个因式中至少有一个等于0;反过来,如果两个因式 中有一个等于0,那么它们的积就等于0.因此,有 x—3=0或x+3=0.
知1-练
1 (中考·山西)我们解一元二次方程3x2-6x=0时,可 以运用因式分解法,将此方程化为3x(x-2)=0,从 而得到两个一元一次方程3x=0或x-2=0,进而得 到原方程的解为x1=0,x2=2.这种解法体现的数 学思想是( )
A.转化思想B.函数思想 C.数形结合思想D.公理化思想
2 用因式分解法解方程,下列过程正确的是( A.(2x-3)(3x-4)=0化为2x-3=0或3x-4=0 B.(x+3)(x-1)=1化为x+3=0或x-1=1 C.(x-2)(x-3)=2×3化为x-2=2或x-3=3 D.x(x+2)=0化为x+2=0
配方,得(x-1)2=4,x-1=±2,
∴x1=3,x2=-1. (2)2x2-7x-6=0,
∵a=2,b=-7,c=-6,
∴b2-4ac=97>0, ∴x1=x2=7+ 97 ,
4

(沪科版)八年级数学下册(素材)17.2.3 因式分解法 说课材料

(沪科版)八年级数学下册(素材)17.2.3 因式分解法 说课材料

17.2 一元二次方程的解法17.2.3 因式分解法各位评委老师你们好!今天我说课的题目是八年级下册第17章第二节的《一元二次方程的解法》——因式分解法:1、教材内容《一元二次方程的解法》——因式分解法是沪科版义务教育八年级下册总第17章的第二节的最后一课,通过讲解利用因式分解法降次解一元二次方程,并归纳一元二次方程的三种解法及其应用。

2、教材的地位和作用本节课是在学完《配方法》、《公式法》内容之后,学习一元二次方程的第三种解法-----《因式分解法》。

对于某些一元二次方程,虽然用配方法和公式法可以解,但是用因式分解法去做更简便。

培养学生观察思考,避繁就简和一题多解的能力等都具有重要的作用。

二、目标分析:1、知识目标:1.掌握用因式分解法解一元二次方程,2.能根据具体一元二次方程的特征,灵活选择方程的解法.2、能力目标:体会“降次”化归的思想.能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.3、情感目标:使学生知道分解因式法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度.通过学生之间的交流、讨论,培养学生的合作精神。

三、重难点分析:重点:应用分解因式法解一元二次方程。

难点:灵活应用各种分解因式的方法解一元二次方程。

关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便。

四、教法与学法:1、教学设计理念:(1)树立以学生发展为本的思想,通过构建以学习教育为中心,有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探究、合作交流的机会,鼓励他们的创新思考和创新实践以培养创新意识。

(2)坚持协同创新原则,把教材创新、教法创新及学法创新有机结合起来,营造一个有利于创新能力培养的良好环境。

2、教法:着眼于学生的长远发展,培养学生分析思考问题能力,已学知识因式分解积为0,每个因式都为0,从而用于解方程,学生通过小组同学一起分析讨论得出结论。

(完整word版)2019沪科版初中数学教材目录

(完整word版)2019沪科版初中数学教材目录

沪科版初中数学教材总目录七年级上册第 1 章有理数1.1 正数和负数1.2 数轴、相反数和绝对值1.3 有理数的大小1.4 有理数的加减1.5 有理数的乘除1.6 有理数的乘方1.7 近似数(数学史话、负数)第2 章整式加减2.1 代数式(探索数的规律)2.2 整式加减(阅读与思考归纳推理第3 章数学符号)一次方程与方程组3.1 一元一次方程及其解法3.2 一元一次方程的应用3.3 二元一次方程组及其解法3.4 二元一次方程的应用3.5 三元一次方程组及其解法(数学活动:联产品的成本计算)3.6综合与实践一次方程组与CT的技术(数学史话:方程的由来)第 4 章直线与角4.1 几何图形(数学活动:制作正多面体)4.2 线段、射线、直线4.3 线段的长短比较4.4 角的表示与度量4.5 角的比较与补(余)角(阅读与欣赏:生物中的最佳角)4.6 用尺规作线段与角(数学活动:画图、几何的由来)第 5 章数据收集与整理5.1 数据的收集(阅读与欣赏:水库相关数据收集的重要性)5.2 数据的整理(数学活动:英文字母统计)5.3 统计图的选择5.4从图表中获取信息(信息技术应用用EXCEL软件绘制统计图)七年级下册第 6 章实数6.1 平方根、立方根6.2 实数第7 章一元一次不等式与不等式组7.1 不等式及其基本性质7.2 一元一次不等式7.3 一元一次不等式组7.4 综合与实践排队问题第8 章整式乘法与因式分解8.1 幂的运算(4 个性质、2 个约定)8.2 整式乘法(数学活动:求最大乘积)(3 个法则)8.3 平方差公式与完全平方公式8.4 因式分解(阅读与欣赏:巧用因式分解)(提公因式、公式法、十字交叉法)第9 章分式(有理式)9.1 分式及其基本性质(阅读与思考:类比推理)9.2 分式的运算(3 个法则)9.3 分式方程(阅读与思考:两个等式的研究)(验根)第10 章相交线、平行线与平移10.1 相交线10.2 平行线的判定(4 个判定)10.3 平行线的性质(3 个性质)10.4 平移(信息技术应用:用几何画板软件、作图形的平移、钥匙复制原理)八年级上册第11 章平面直角坐标系11.1 平面上的点坐标(阅读与思考:确定台风中心位置、笛卡儿)11.2 图形在坐标中的平移第12 章一次函数12.1 函数(阅读与思考:输入量与输出量间的函数关系)12.2 一次函数12.3 一次函数与二元一次方程(用几何画板求二元一次方程组的近似解)12.4 综合与实践一次函数模型的应用第13 章三角形中的边角关系、命题与证明13.1 三角形中的边角关系13.2 命题与证明(信息技术应用用《几何画板》验证三角形外角和)第14 章全等三角形14.1 全等三角形14.2 三角形全等的判定(4 个判定)第15章轴对称图形与等腰三角形15.1轴对称图形(13.1.1 轴对称)(1321 画轴对称图形)15.2线段的垂直平分线15.3等腰三角形15.4角的平分线八年级下册第16章二次根式16.1 二次根式16.2 二次根式的运算(阅读与思考:海伦一秦九韶公式)第17章- 兀二次方程17.1兀二次方程17.2元—-次方程的解法(数学活动:挪球游戏)17.3元—1次方程的根的判别式17.4元—1次方程的根与系数的关系17.5元—-次方程的应用(数学史话:一兀咼次方程)第18章勾股定理18.1勾股定理18.2勾股定理的逆定理(阅读与思考:两点之间的距离公式)第20章数据的初步分析20.1数据的频数分布(数学活动: :对课外作业时间的统计分析、风向频率玫瑰图)20.2数据的集中趋势与离散程度(信息技术应用:用EXCEL求方差)20.3综合与实践体重指数九年级上册第21章二次函数与反比例函数21.1二次函数21.2二次函数的图象和性质21.3二次函数与一元二次方程21.4二次函数的应用21.5反比例函数21.6综合与实践获得最大利润第22 章相似形22.1 比例线段22.2 相似三角形的判定22.3 相似三角形的性质22.4 图形的位似变换22.5 综合与实践测量与误差第23 章解直角三角形23.1 锐角的三角函数23.2 解直角三角形及其应用九年级下册第24 章圆24.1旋转24.2圆的对称性24.3圆周角24.4直线与圆的位置关系24.5三角形的内切圆24.6正多边形与圆24.7弧长与扇形面积24.8进球路线与最佳射门角第25 章投影与视图27.1 投影27.2 三视图第26 章概率初步26.1 随机事件26.2 等可能情况下的概率计算26.3 用频率估计概率26.4 概率在遗传学中的应用。

一元一次方程的解法步骤

一元一次方程的解法步骤

一元一次方程的解法步骤
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。

一元一次方程只有一个根。

一元一次方程的一般形式
只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程。

任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式。

一元一次方程的解法
1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;(移项要变号)
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数为成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。

等式的性质
1.等式两边同时加(或减)同一个数或式子,等式仍是等式。

若a=b,那么a+c=b+c;
2.等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。

若a=b,那么有a·c=b·c或a÷c=b÷c(c≠0);
3.等式具有传递性。

八年级数学下册第17章一元二次方程17.2一元二次方程的解法第1课时直接开平方法教案新版沪科版

八年级数学下册第17章一元二次方程17.2一元二次方程的解法第1课时直接开平方法教案新版沪科版

17.2 一元二次方程的解法第1课时直接开平方法【知识与技能】认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解.【过程与方法】培养学生准确而简洁的计算能力及抽象概括能力.【情感态度】通过两边同时开平方,将二次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知. 【教学重点】用直接开平方法解一元二次方程.【教学难点】(1)认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法;(2)一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解.一、创设情境,导入新课1.口答题:4 的平方根是,81的平方根是, 81的算术平方根是 .2.我们曾学习过平方根的意义及其性质,回忆一下:什么叫做平方根?平方根有哪些性质?学生回答:(1)如果一个数的平方等于a,那么这个数就叫做a的平方根.用式子表示:若x2=a,则x叫做a的平方根.(2)平方根有下列性质:①一个正数有两个平方根,这两个平方根是互为相反数的;②零的平方根是零;③负数没有平方根.【教学说明】 以上问题让学生自主完成,教师归纳总结,重点强调正数有两个平方根,负数没有平方根.为后面的学习奠定基础.二、合作探究,探索新知1.教师设问:如何求出适合等式x 2=4的x 的值呢?学生思考,尝试解答2.根据平方根的定义,由x 2=4可知,x 就是4的平方根,因此x 的值为2和-2 即根据平方根的定义,得x 2=4,x =±2即此一元二次方程的解为: x 1=2,x 2 =-23.小结:这种解一元二次方程的方法叫做直接开平方法.【教学说明】根据平方根的求法得到方程的解,让学生将它们对应起来,然后教师将这种方法进行总结,注意方程解的写法.4.提问:怎样解方程(x+1)2=256?让学生说出解法,教师板书.解:直接开平方,得x+1=±16所以原方程的解是x 1=15,x 2=-175.教师小结:对于形如x 2=a (a ≥0)或(x+h )2=a(a ≥0)的一元二次方程可以用直接开平方法求解.解一元二次方程的基本思想是降次,将一元二次方程转化为一元一次方程.【教学说明】 这里教师要对式子进行分析,然后类比上面的解法,进行求解,最后进行总结,用字母的式子表示,便于学生理解和记忆.三、示例讲解,掌握新知例1 解下列方程:(1)x 2=2; (2)4x 2-1=0.【分析】第1题直接用开平方法解;第2题可先将-1移项,再将两边同时除以4化为x 2=a 的形式,再用直接开平方法解之.【教学说明】形如方程ax 2-k=0(a k ≥0)可变形为x 2=a k (ak ≥0)的形式,即方程左边是关于x 的一次式的平方,右边是一个非负常数,可用直接开平方法解此方程.例2 解下列方程:(1)(x +1)2=2;(2)(x -1)2-4 =0;(3)12(3-x )2-3 =0.【分析】 第1小题中只要将(x +1)看成是一个整体,就可以运用直接开平方法求解;第2小题先将-4移到方程的右边,再同第1小题一样的解法;第3小题先将-3移到方程的右边,再两边同除以12,再同第1小题一样去解即可.【教学说明】(1)解形如(x+h )2=k(k ≥0)的方程时,可把(x+h )看成整体,然后直接开平方;(2)注意对方程进行变形,方程左边变为一次式的平方,右边是非负常数;(3)如果变形后形如(x+h )2=k 中的k 是负数,不能直接开平方,说明方程无实数根;(4)如果变形后形如(x+h)2=k 中的k =0这时可得方程两根相等.四、练习反馈,巩固提高1.若8x 2-16=0,则x 的值是 .2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是 .3.如果a 、b 为实数,满足43 a +b 2-12b+36=0,那么ab 的值是 .4.用直接开平方法解下列方程:(1)x2=169;(2)45-x2=0;(3)4x2-16=0;(4)(x+2)2-16=0【答案】1.±2 2.9或-3 3.-8【教学说明】学生易错的是开方时应该是两种情况,学生可能只写一种,所以教师要进行强调.第2题应该先两边除以2,再进行开方求解.五、师生互动,课堂小结1.如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负常数,便可用直接开平方法来解.如(ax+b)2=c(a,b,c为常数,a≠0,c≥0).2.平方根的概念为直接开平方法的引入奠定了基础,同时直接开平方法也为一元二次方程的解法起了一个抛砖引玉的作用.两边开平方实际上是二次方程由二次转化为一次,实现了由未知向已知的转化,由高次向低次的转化,是高次方程解法的一种根本途径.3.一元二次方程可能有两个不同的实数解,也可能有两个相同的实数解,也可能无实数解.【教学说明】教师引导学生自主总结,教师适当渗透相关的解题思想并进行总结,为后面的学习奠定基础.完成同步练习册中本课时的练习.一元二次方程的求解是初中数学学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视.“直接开平方法解一元二次方程”是配方法解一元二次方程的基础;同时这一节的教材编写中还突出体现了“换元”、“转化”等重要的数学思想方法.因此这一节不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课.教学过程中,在合作探究过程中给学生较充分的时间进行独立思考、小组交流,让学生的思维互相启发互相碰撞,让个人智慧与集体智慧充分交融.在探究过程中适当巡视,适时指导点拨,保证各小组探究学习的有效性.同时,及时评价.对学生发现了不同解法时首先给予表扬和肯定,从而激发学生的求知欲.。

初二一元二次方程计算方法

初二一元二次方程计算方法

初二一元二次方程计算方法
初中一元二次方程的计算方法如下:
1. 首先,将方程的形式化为 "ax² + bx + c = 0" 的形式,其中 a、b、c 为给定的实数。

2. 如果方程中 a 的值不为 0,可使用求根公式进行计算。

求根公式为:x = (-b ± √(b² - 4ac)) / (2a)。

根据这个公式,可以计算得到方程的根。

3. 如果方程中 a 的值为 0,即为一元一次方程,可以直接将 b 带入方程求解。

4. 在计算过程中,需要注意计算先后顺序和符号的运用,以保证计算的准确性。

总的来说,求解一元二次方程的关键是将方程转化为标准形式,并运用合适的公式进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时因式分解法
知识要点基础练
知识点1因式分解法的原理和一般步骤
1.(滨州中考)下列各式从左到右的变形中,属于因式分解的是(C)
A.a(m+n)=am+an
B.a2-b2-c2=(a-b)(a+b)-c2
C.10x2-5x=5x(2x-1)
D.x2-16x+6x=(x+4)(x-4)+6x
2.用因式分解法解方程x2+5x+4=0时,可转化为两个一次方程,请写出其中一个一元一次方程是x+1=0(或x+4=0).
知识点2用因式分解法解一元二次方程
3.方程(x-1)(x+2)=0的解为(A)
A.x1=1,x2=-2
B.x1=1,x2=2
C.x1=-1,x2=-2
D.x1=-1,x2=2
4.方程m(m-5)=6(m-5)的解是m=6或m=
5.
5.用因式分解法解方程:
(1)x2-2x=0;
解:x(x-2)=0,
∴x=0或x-2=0,
∴x1=0,x2=2.
(2)x2-3x-4=0.
解:(x-4)(x+1)=0,
∴x-4=0或x+1=0,
∴x1=4,x2=-1.
知识点3一元二次方程解法的选择
6.解方程x2-2x=4,最好的方法是(C)
A.直接开平方法
B.公式法
C.配方法
D.因式分解法
7.解一元二次方程(y+2)2-2(y+2)-3=0时,最简单的方法是因式分解法.
综合能力提升练
8.方程x(x-2)+x-2=0的解是(D)
A.x=2
B.x=-2或x=1
C.x=-1
D.x=2或x=-1
9.若x2+4x+4=0,则代数式的值为(A)
A.-3
B.3
C.-
D.
10.已知三角形两边长分别是3和6,第三边长是方程x2-6x+8=0的根,则这个三角形的周长等于(A)
A.13
B.11
C.11或13
D.12或15
11.方程(x+4)(x-1)=6可化为的两个一元一次方程为(D)
A.x+4=6或x-1=1
B.x+4=3或x-1=2
C.x+4=-1或x-1=-6
D.x+5=0或x-2=0
12.已知方程(x+y)(x+y-1)-12=0,则x+y的值为(D)
A.13
B.4
C.-3
D.4或-3
13.若x2+3x+5的值为9,则x的值为1或-4.
14.当x=-1或-2时,分式的值为0.
15.方程2(x-3)2=x2-9的解是x1=3,x2=9.
16.若关于x的一元二次方程(m-1)x2+3mx+(m2+3m-4)=0有一个根是0,那么m=-4.
17.按要求解下列方程:
(1)2x2+6=7x(公式法);
解:将原方程化成一般形式得2x2-7x+6=0,
∵a=2,b=-7,c=6,b2-4ac=49-48=1,
∴x=,
∴x1=2,x2=.
(2)2x2-3x+1=0(配方法);
解:(2x-1)(x-1)=0,2x-1=0或x-1=0,
∴x1=1,x2=.
(3)(y+2)2=(3y-1)2(因式分解法);
解:∵(y+2)2-(3y-1)2=0,
∴(y+2+3y-1)(y+2-3y+1)=0,
即(4y+1)(-2y+3)=0,
∴4y+1=0或-2y+3=0,
∴y1=-,y2=.
(4)2(x-3)2=x2-9(适当的方法).
解:∵2(x-3)2=(x+3)(x-3),
∴(x-3)(2x-6-x-3)=0,
即(x-3)(x-9)=0,
∴x-3=0或x-9=0,
∴x1=3,x2=9.
18.已知x2-5xy+6y2=0(xy≠0),求的值.解:原方程可化为(x-2y)(x-3y)=0,
∴x-2y=0或x-3y=0,
∴x=2y或x=3y,
∴=2或3.
拓展探究突破练19.阅读下面的例题:
解方程:x2-|x|-2=0.
解:(1)当x≥0时,原方程化为x2-x-2=0,
解得x=2或x=-1(不合题意,舍去);
(2)当x<0时,原方程化为x2+x-2=0,
解得x=-2或x=1(不合题意,舍去).
∴原方程的解为x=2或x=-2.
请参照例题解方程:x2-|x-1|-1=0.
解:(1)当x-1≥0,即x≥1时,原方程化为x2-(x-1)-1=0,即x2-x=0,解得x=1或x=0(不合题意,舍去);
(2)当x-1<0,即x<1时,原方程化为x2-(1-x)-1=0,
即x2+x-2=0,
解得x=-2或x=1(不合题意,舍去).
∴原方程的解为x=1或x=-2.
欢迎您的下载,资料仅供参考!。

相关文档
最新文档