《第三章 直线与方程》单元同步测试题1

合集下载

高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析必修2第三章《直线与方程》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是()A。

30° B。

45° C。

60° D。

90°2.如果直线ax+2y+2=与直线3x-y-2=平行,则系数a为()A。

-3 B。

-6 C。

-2/3 D。

2/33.下列叙述中不正确的是()A。

若直线的斜率存在,则必有倾斜角与之对应。

B。

每一条直线都有唯一对应的倾斜角。

C。

与坐标轴垂直的直线的倾斜角为0°或90°。

D。

若直线的倾斜角为α,则直线的斜率为tanα。

4.在同一直角坐标系中,表示直线y=ax与直线y=x+a的图象(如图所示)正确的是(选项不清晰,无法判断)5.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b等于()A。

2 B。

3 C。

9 D。

-96.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是()A。

x+y+1=0 B。

4x-3y=0 C。

4x+3y=0 D。

4x+3y=0或x+y+1=07.已知点A(x,5)关于点(1,y)的对称点为(-2,-3),则点P(x,y)到原点的距离是()A。

4 B。

13 C。

15 D。

178.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB 相交,则l的斜率k的取值范围是()A。

k≥3/4或k≤-4/3 B。

-4/3≤k≤3/4 C。

-3≤k≤4 D。

以上都不对9.已知直线l1:ax+4y-2=与直线l2:2x-5y+b=互相垂直,垂足为(1,c),则a+b+c的值为()A。

-4 B。

20 C。

人教A版高中数学必修二第三章直线与方程单元测试卷(一) 答案和解析

人教A版高中数学必修二第三章直线与方程单元测试卷(一) 答案和解析

人教A 版高中数学必修二第三章直线与方程单元测试卷(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.若直线310x ++=倾斜角是( )A .30°B .120°C .60°D .150° 2. 直线l 1与l 2在x 轴上的截距都是m ,在y 轴上的截距都是n ,则l 1与l 2满足( )A .平行B .重合C .平行或重合D .相交或重合 3.直线221x y a b -=在y 轴上的截距是( ) A .||b B .2b - C .2b D .b ±4.若两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A B C D5. 直线)·x+y =3和直线x +=2的位置关系是( )A .相交但不垂直B .垂直C .平行D .重合6.△ABC 中,点A 坐标(4,-1),AB 的中点为M(3,2),重心为P(4,2),则边BC 的长为( )A .5B .4C .10D .87. 在平面直角坐标系内,一束光线从点A(-3,5)出发,被x 轴反射后到达点B(2,7),则这束光线从A 到B 所经过的距离为( )A .12B .13C .D .8.已知直线1:420l ax y +-=与直线2:250l x y b -+=互相垂直,垂足为(1,)c ,则a b c ++的值为( )A .20B .-4C .0D .249. 如果(1,3)A 关于直线l 的对称点为(5,1)B -,则直线l 的方程是( )A .340x y ++=B .380x y -+=C .340x y +-=D .380x y -+=10.若直线mx +ny +3=0在y 轴上的截距为-3,y -=的倾斜角的2倍,则( )A .m =n =1B .m =,n =-3 C.m =,n =-3 D .m ,n =111. 等腰Rt△ABC 的直角顶点为C(3,3),若点A 的坐标为(0,4),则点B 的坐标可能是( )A .(2,0)或(6,4)B .(2,0)或(4,6)C .(4,6)D .(0,2)12. 设x +2y =1,x≥0,y≥0,则x 2+y 2的最小值和最大值分别为( )A .15,1 B .0,1 C .0,15 D . 15,2二、填空题 13.过点A (-3,1)的所有直线中,与原点距离最远的直线方程是____.14. 过点P(1,4)的直线在两个坐标轴上的截距都为正,且截距之和最小,则直线的方程是________.15.直线10x y -+= 上一点P 的横坐标是3,若该直线绕点P 逆时针旋转90°得直线l ,则直线l 的方程是____________.16. 当0<k<12时,两条直线kx -y =k -1,ky -x =2k 的交点在________象限.三、解答题17.经过点A (1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程.18.求直线y=2x+1关于直线x+y+1=0对称的直线方程.19.已知:a为实数,两直线l1:ax+y+1=0,l2:x+y-a=0相交于一点.求证:交点不可能在第一象限及x轴上.20.直线1y x=+和x轴,y轴分别交于点,A B,在线段AB为边在第一象限内作等边△ABC,如果在第一象限内有一点1(,)2P m使得△ABP和△ABC的面积相等,求m的值.21.已知等腰△ABC中,AB=BC,P在底边AC上的任一点,PE⊥AB于点E,PF⊥BC 于点F,CD⊥AB于点D.求证:CD=PE+PF.22.△ABC的一个顶点为A(2,3),两条高所在直线方程为x-2y+3=0和x+y-4=0,求△ABC三边所在直线的方程.参考答案1.B【分析】将直线的一般方程化为斜截式,由方程得出斜率,根据斜率公式求出倾斜角即可.【详解】直线的斜截式方程为:y =k =由斜率公式:tan θ=120θ=.故选B.【点睛】本题考查直线方程的互化以及斜率公式,熟练掌握方程之间的互化,注意特殊角三角函数值以及倾斜角的取值范围.2.D【解析】由题意,①当,m n 均不为零时,由截距式方程知,1l 与2l 的方程都是1x y m n+=, 故1l 与2l 重合;②当0m n ==时,两直线都过原点,1l 与2l 可能重合,也可能相交, 综上,直线1l 与2l 相交或重合,故选D.3.B【解析】由题意,令0x =,则21y b-=,即2y b =-,所以直线在y 轴上的截距为2b -,故选B. 4.D【分析】根据两直线平行求得m 的值,利用平行线间距离公式求解即可【详解】 330x y +-=与610x my ++=平行,∴63m =,即2m =∴直线为6210x y ++=,即1302x y ++=720d∴===故选:D【点睛】本题考查求平行线间距离. 当直线111A xB y C++=与直线222A xB y C++=平行时, 1221A B A B=;平行线间距离公式为d=,因此两平行直线需满足12A A A==, 12B B B==5.B【解析】由题意可得110⨯+⨯=,所以两直线互相垂直,故选B.6.A【解析】试题分析:设点B(x,y),根据中点坐标公式可知3=4+x2,2=−1+y2解得:x=2,y="5" 所以B(2,5);设点C(m,n),根据重心坐标公式可知4=4+2+m3,2=−1+5+n3解得:m=6,n=2,所以C(6,2),根据两点的距离公式可知|BC|=5,故选A。

数学:第3章《直线与方程》单元测试(1)(新人教A版必修2)

数学:第3章《直线与方程》单元测试(1)(新人教A版必修2)

实用文档第三章 直线与方程 单元测试一、选择题1.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x2.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( ) A.21 B.21- C.2- D.2 3.直线x a yb 221-=在y 轴上的截距是( ) A .b B .2b - C .b 2 D .±b4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行B .垂直C .斜交D .与,,a b θ的值有关6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4B 21313C 51326D 710207.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的实用文档斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤二、填空题1.方程1=+y x 所表示的图形的面积为_________。

2.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。

3.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为 4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。

5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 . 三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。

必修2第三章直线与方程测试题

必修2第三章直线与方程测试题
*16.若方程 表示的图形是。
三.解答题(共6小题,共70分)
17.(10分)在 中, 边上的坐标为 ,求点 和 的坐标.
*18.(12分)已知直线 .
(1)求证:无论 为何值,直线总过第一象限;
(2)为使这条直线不过第二象限,求 的取值范围.
**22.(12分)有一个附近有进出水管的容器,每单位时间进出的水量是一定的,设从某时刻开始10分钟内只进水,不出水,在随后的30分钟内既进水又出水,得到时间( )分与水量 (升)之间的关系如图所示,若40分钟后只放水不进水,求 与 的函数关系.
第三章直线与方程测试题答案与提示(一)
一、选择题
1—4 CDDB 5—8 BDCA 9—12 ADCB
A.1个B.2个C.3个D.4个
*12.若 的图象与直线 ,有两个不同交点,则 的取值范围是 ( )
A. 0B.
C. 且 D.
二.填空题(每小题5分,共4小题,共20分)
13.经过点 ,在 轴、 轴上截距相等的直线方程是;
或。
*14.直线方程为 ,若直线不过第二象限,则 的取值范围是。
15.在直线 上求一点,使它到原点的距离和到直线 的距离相等,则此点的坐标为.
(2)作图可证过 点与原点O距离最大的是过 点且与 垂直的直线,由 ,
得 ,所以 ,由直线方程的点斜式得 ,
即 .
即直线 是过 点且与原点O距离最大的直线,最大距离为 .
(3)由(2)可知,过 点不存在到原点距离超过 的直线,因此不存在过点 点且到原点距离为6的直线.
21.思路点拨:先化简集体 , ,再根据 ,求 的值.
(2)当 时,直线为 ,不过第二象限;当 时,直线方程化为 ,不过第二象限的充要条件为 , ,综上 时直线不过第二象限.

人教版必修二 第三章 直线与方程 直线与方程-同步练习题

人教版必修二 第三章 直线与方程 直线与方程-同步练习题

第三章 直线与方程 同步练习题A 组一、选择题1.若直线x =1的倾斜角为 α,则 α( ).A .等于0B .等于πC .等于2πD .不存在2.图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ).A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 23.已知直线l 1经过两点(-1,-2)、(-1,4),直线l 2经过两点(2,1)、(x ,6),且l 1∥l 2,则x =( ).A .2B .-2C .4D .14.已知直线l 与过点M (-3,2),N (2,-3)的直线垂直,则直线l 的倾斜角是( ).A .3πB .32πC .4πD .43π 5.如果AC <0,且BC <0,那么直线Ax +By +C =0不通过( ).A .第一象限B .第二象限C .第三象限D .第四象限6.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( ).A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0 7.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ).A .19x -9y =0B .9x +19y =0C .19x -3y = 0D .3x +19y =0 8.直线l 1:x +a 2y +6=0和直线l 2 : (a -2)x +3ay +2a =0没有公共点,则a 的值是( ).A .3B .-3C .1D .-19.将直线l 沿y 轴的负方向平移a (a >0)个单位,再沿x 轴正方向平移a +1个单位得直线l',此时直线l' 与l 重合,则直线l' 的斜率为( ).A .1+a aB .1+-a aC .a a 1+D .aa 1+- 10.点(4,0)关于直线5x +4y +21=0的对称点是( ).A .(-6,8)B .(-8,-6)C .(6,8)D .(-6,-8)二、填空题(第2题)11.已知直线l 1的倾斜角 1=15°,直线l 1与l 2的交点为A ,把直线l 2绕着点A 按逆时针方向旋转到和直线l 1重合时所转的最小正角为60°,则直线l 2的斜率k 2的值为 .12.若三点A (-2,3),B (3,-2),C (21,m )共线,则m 的值为 . 13.已知长方形ABCD 的三个顶点的坐标分别为A (0,1),B (1,0),C (3,2),求第四个顶点D 的坐标为 .14.求直线3x +ay =1的斜率 .15.已知点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,则P 点坐标为 .16.与直线2x +3y +5=0平行,且在两坐标轴上截距的和为6的直线方程是 .17.若一束光线沿着直线x -2y +5=0射到x 轴上一点,经x 轴反射后其反射线所在直线的方程是 .三、解答题18.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6(m ∈R ,m ≠-1),根据下列条件分别求m 的值:①l 在x 轴上的截距是-3;②斜率为1.19.已知△ABC 的三顶点是A (-1,-1),B (3,1),C (1,6).直线l 平行于AB ,交AC ,BC 分别于E ,F ,△CEF 的面积是△CAB 面积的41.求直线l 的方程.20.一直线被两直线l 1:4x +y +6=0,l 2:3x -5y -6=0截得的线段的中点恰好是坐标原点,求该直线方程.(第19题).21.直线l 过点(1,2)和第一、二、四象限,若直线l 的横截距与纵截距之和为6,求直线l 的方程.第三章 直线与方程参考答案A 组一、选择题1.C解析:直线x =1垂直于x 轴,其倾斜角为90°.2.D解析:直线l 1的倾斜角 α1是钝角,故k 1<0;直线l 2与l 3的倾斜角 α2,α3 均为锐角且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D .3.A解析:因为直线l 1经过两点(-1,-2)、(-1,4),所以直线l 1的倾斜角为2π,而l 1∥l 2,所以,直线l 2的倾斜角也为2π,又直线l 2经过两点(2,1)、(x ,6),所以,x =2. 4.C解析:因为直线MN 的斜率为1-=2-3-3+2,而已知直线l 与直线MN 垂直,所以直线l 的斜率为1,故直线l 的倾斜角是4π. 5.C解析:直线Ax +By +C =0的斜率k =BA -<0,在y 轴上的截距B C D =->0,所以,直线不通过第三象限.6.A解析:由已知得点A (-1,0),P (2,3),B (5,0),可得直线PB 的方程是x +y -5=0.7.D8.D9.B解析: 结合图形,若直线l 先沿y 轴的负方向平移,再沿x 轴正方向平移后,所得直线与l 重合,这说明直线 l 和l ’ 的斜率均为负,倾斜角是钝角.设l ’ 的倾斜角为 θ,则tan θ=1+-a a . 10.D解析:这是考察两点关于直线的对称点问题.直线5x +4y +21=0是点A (4,0)与所求点A'(x ,y )连线的中垂线,列出关于x ,y 的两个方程求解.二、填空题11.-1.解析:设直线l 2的倾斜角为 α2,则由题意知:180°-α2+15°=60°,α2=135°,∴k 2=tan α2=tan (180°-45°)=-tan45°=-1.12.21. 解:∵A ,B ,C 三点共线,∴k AB =k AC ,2+213-=2+33-2-m .解得m =21. 13.(2,3).解析:设第四个顶点D 的坐标为(x ,y ),∵AD ⊥CD ,AD ∥BC ,∴k AD ·k CD =-1,且k AD =k BC . ∴0-1-x y ·3-2-x y =-1,0-1-x y =1. 解得⎩⎨⎧1=0=y x (舍去)⎩⎨⎧3=2=y x 所以,第四个顶点D 的坐标为(2,3).14.-a3或不存在. 解析:若a =0时,倾角90°,无斜率.若a ≠0时,y =-a 3x +a 1 ∴直线的斜率为-a3. 15.P (2,2).解析:设所求点P (x ,2),依题意:22)12()2(-++x =22)22()1(++-x ,解得x =2,故所求P 点(第11题)的坐标为(2,2).16.10x +15y -36=0.解析:设所求的直线的方程为2x +3y +c =0,横截距为-2c ,纵截距为-3c ,进而得 c = -536. 17.x +2y +5=0.解析:反射线所在直线与入射线所在的直线关于x 轴对称,故将直线方程中的y 换成 -y .三、解答题18.①m =-35;②m =34. 解析:①由题意,得32622---m m m =-3,且m 2-2m -3≠0. 解得 m =-35. ②由题意,得123222-+--m m m m =-1,且2m 2+m -1≠0. 解得 m =34. 19.x -2y +5=0.解析:由已知,直线AB 的斜率 k =1311++=21. 因为EF ∥AB ,所以直线EF 的斜率为21. 因为△CEF 的面积是△CAB 面积的41,所以E 是CA 的中点.点E 的坐标是(0,25). 直线EF 的方程是 y -25=21x ,即x -2y +5=0. 20.x +6y =0. 解析:设所求直线与l 1,l 2的交点分别是A ,B ,设A (x 0,y 0),则B 点坐标为 (-x 0,-y 0).因为A ,B 分别在l 1,l 2上,所以⎪⎩⎪⎨⎧0=6-5+3-0=6++40000y x y x ①+②得:x 0+6y 0=0,即点A 在直线x +6y =0上,又直线x +6y =0过原点,所以直线l 的方程为x+6y =0.① ②21.2x +y -4=0和x +y -3=0.解析:设直线l 的横截距为a ,由题意可得纵截距为6-a .∴直线l 的方程为1=-6+ay a x . ∵点(1,2)在直线l 上,∴1=-62+1aa ,a 2-5a +6=0,解得a 1=2,a 2=3.当a =2时,直线的方程为142=+y x ,直线经过第一、二、四象限.当a =3时,直线的方程为133=+y x ,直线经过第一、二、四象限.综上所述,所求直线方程为2x +y -4=0和x +y -3=0.。

【人教A版】数学必修二:第三章《直线与方程》单元试卷(1)(Word版,含解析)

【人教A版】数学必修二:第三章《直线与方程》单元试卷(1)(Word版,含解析)

第三章过关检测(时间90分钟,满分100分)知识点分布表知识点 题号 分值 倾斜角与斜率 7,15 9 平行与垂直 4,5,9,11,12,13,18 22 直线的方程 2,3,4,5,6,8,11,12,15,18 36 交点坐标与距离公式1,10,12,14,16,1733一、选择题(本大题共10小题,每小题4分,共40分)1.动点P 到点A(3,3)的距离等于它到点B(1,-3)的距离,则动点P 的轨迹方程是( ) A.x +3y -2=0B.x +3y +2=0 C.3x +y +2=0D.3x +y -2=02.直线Ax +By +C =0与两坐标轴都相交的条件是( ) A.A 2+B 2≠0 B.C ≠0 C.AB ≠0 D.AB ≠0,C ≠03.直线3x -2y =4的截距式方程是( )A.1243=-y x B.42131=-yxC.1243=-+y x D.1234=-+y x4.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A.x -y +1=0B.x -y =0 C.x +y +1=0D.x +y =05.过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为( )A.2x +y -1=0B.2x +y -5=0C.x +2y -5=0D.x -2y +7=06.已知直线Ax +By +C =0在横轴上的截距大于在纵轴上的截距,则A 、B 、C 应满足的条件是( ) A.A >B B.A <B C.0>+B C A C D.0<-BCA C 7.已知点P (x ,-4)在点A(0,8)和B(-4,0)的连线上,则x 的值为( ) A.-2B.2C.-8D.-68.直线(m +2)x +(m 2-2m -3)y =2m 在x 轴上的截距为3,则实数m 的值为( ) A.56B.-6C.56- D.6 9.P 1(x 1,y 1)是直线l :f (x ,y )=0上一点,P 2(x 2,y 2)是直线l 外一点,则方程f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0所表示的直线与l 的位置关系是( ) A.重合B.平行C.垂直D.相交10.若点P (4,a )到直线4x -3y =1的距离不大于3,则a 的取值范围是( ) A.[0,10] B.(0,10) C.]133,131[D.(-∞,0]∪[10,+∞)二、填空题(本大题共4小题,每小题4分,共16分)11.P (-1,3)在直线l 上的射影为Q (1,-1),则直线l 的方程是_________.12.已知直线l :x -3y +2=0,则平行于l 且与l 的距离为10的直线方程是_________. 13.若三条直线2x -y +4=0,x -y +5=0,2mx -3y +12=0围成直角三角形,则m =__________.14.不论M 为何实数,直线l :(m -1)x + (2m -1) y =m -5恒过一个定点,则此定点坐标为_______.三、解答题(本大题共4小题,共44分)15.(10分)求倾斜角为直线y =-x +1的倾斜角的31,且分别满足下列条件的直线方程: (1)经过点(-4,1); (2)在y 轴上的截距为-10.16.(10分)某供电局计划年底解决本地区最后一个村庄的用电问题,经过测量,若按部门内部设计好的坐标图(即以供电局为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,长度单位千米),得到这个村庄的坐标是(15,20),离它最近的一条线路所在直线的方程为3x -4y -10=0.问要完成任务,至少需要多长的电线?17.(10分)在△ABC 中,A (m ,2),B (-3,-1),C (5,1).若BC 的中点M 到AB 的距离大于M 到AC 的距离,试求实数M 的取值范围.18.(14分)一条光线经过P (2,3)点,射在直线l :x +y +1=0上,反射后穿过点Q (1,1). (1)求入射光线的方程;(2)求这条光线从P 到Q 的长度.参考答案1解析:线段AB 的中点坐标是(2,0),AB 的斜率31333=-+=AB k , 又∵P 点的轨迹为过AB 的中点且与AB 垂直的直线, ∴)2(31--=x y ,即x +3y -2=0. 答案:A2解析:直线与两坐标轴都相交,即直线不平行于坐标轴, 则A≠0,B≠0,即AB ≠0. 答案:C3解析:直线方程的截距式为1=+b y a x .由此可将方程化为1234=-+y x .答案:D4解析:由条件知,l 为PQ 的中垂线. ∵13124-=--=PQ k , ∴k l =1.又PQ 的中点为(2,3),∴由点斜式方程知,l 的方程为y -3=x -2.∴x -y +1=0. 答案:A5解析:设2x +y +c =0,又过点P (-1,3),则-2+3+c =0,c =-1,即2x +y -1=0. 答案:A6解析:由条件,知A·B·C≠0.在方程Ax +By +C =0中,令x =0,得B C y -=;令y =0,得ACx -=. 由B C A C ->-,得0<-BCA C . 答案:D7解析:由条件知A 、B 、P 三点共线,由k AB =k AP 得x8448--=,∴x =-6. 答案:D8解析:由条件知直线在x 轴上截距为3,即直线过点(3,0),代入得3(m +2)=2m . ∴m =-6. 答案:B9解析:f (x 1,y 1)=0,f (x 2,y 2)=常数,f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0的斜率和f (x ,y )=0的斜率相等,而与y 轴的交点不同,故两直线平行. 答案:B10解析:由点到直线的距离公式得3)3(4|136|22≤-+--a ,即15|153|≤-a ,∴|a -5|≤5.∴-5≤a -5≤5,即0≤a ≤10. 答案:A11解析:由已知l ⊥PQ ,21113-=--+=PQ k ,∴211=k . ∴l 的方程为)1(211-=+x y .∴x -2y -3=0. 答案:x -2y -3=012解析:设所求直线为x -3y +C =0,由两平行线间的距离,得1031|2|22=+-C ,解得C =12或C =-8.故所求直线方程为x -3y +12=0或x -3y -8=0. 答案:x -3y +12=0或x -3y -8=013解析:设l 1:2x -y +4=0,l 2:x -y +5=0,l 3:2mx -3y +12=0,l 1不垂直l 2,要使围成的三角形为直角三角形,则l 3⊥l 1或l 3⊥l 2. 答案:43-或23- 14解法一:只要取两条直线求其交点即可,令M =1,则l 化为y =-4;令21=m 得l 方程为2921-=-x ,即x =9. 由⎩⎨⎧-==,4,9y x 得定点(9,-4).解法二:l 方程可化为M (x +2y -1)-x -y +5=0, 由⎩⎨⎧-==⎩⎨⎧=+--=-+.4,9,05,012y x y x y x 得∴定点为(9,-4). 答案:(9,-4)15解:由于直线y =-x +1的斜率为-1,所以其倾斜角为135°,由题意知所求直线的倾斜角为45°,所求直线的斜率k =1.(1)由于直线过点(-4,1),由直线的点斜式方程得y -1=x +4,即x -y +5=0;(2)由于直线在y 轴上的截距为-10,由直线的斜截式方程得y =x -10,即x -y -10=0. 16解:根据题意可知点(15,20)到直线3x -4y -10=0的距离即为所求. ∴9545169|10204315|==+-⨯-⨯=d (千米). ∴至少需9千米长的电线. 17解:BC 的中点M 的坐标为(1,0), 设M 到AB ,AC 的距离分别为d 1,d 2, 当m ≠-3且m ≠5时,直线AB 的方程:32121++=++m x y ,即3x -(m +3)y +6-m =0. 直线AC 的方程:55121--=--m x y , 即x -(m -5)y +m -10=0.所以由点到直线的距离公式得186|9|21++-=m m m d ,2610|9|22+--=m m m d .由题意得d 1>d 2, 即2610|9|186|9|22+-->++-m m m m m m ,解得21<m . 当m =-3时,d 1=4,65122=d 满足d 1>d 2. 当m =5时,7341=d ,d 2=4,不满足d 1>d 2. 综上所述, 21<m 时满足题意. 18解:如下图.(1)设点Q ′(x ′,y ′)为Q 关于直线l 的对称点且QQ ′交l 于M 点. ∵1-=l k ,∴k QQ ′=1.∴QQ ′所在直线方程为y -1=1·(x -1), 即x -y =0. 由⎩⎨⎧=-=++,0,01y x y x解得l 与QQ ′的交点M 的坐标为)21,21(--. 又∵M 为QQ ′的中点,由此得⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧-=+=+.2',2',212'1,212'1y x ,y x 得解之∴Q ′(-2,-2).设入射光线与l 交点为N ,则P 、N 、Q ′共线. 又P (2,3),Q ′(-2,-2),得入射光线的方程为222232++=++x y , 即5x -4y +2=0.(2)∵l 是QQ ′的垂直平分线,从而|NQ |=|NQ ′|,∴|PN |+|NQ |=|PN |+|NQ ′|=|PQ ′|=41)22()23(22=+++,即这条光线从P 到Q 的长度是41.。

高中数学必修二第三章《直线与方程》单元测试卷及答案

高中数学必修二第三章《直线与方程》单元测试卷及答案

高中数学必修二第三章《直线与方程》单元测试卷及答案((2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k12.直线x+2y-5=0与2x+4y+a=0之间的距离为5,则a等于()A.0 B.-20 C.0或-20 D.0或-103.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值是()A.-3 B.2 C.-3或2 D.3或-24.下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过定点A(0,b)的直线都可以用方程y=kx+b表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示5.点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=56.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=07.过点M(2,1)的直线与x轴,y轴分别交于P,Q两点,且|MP|=|MQ|,则l的方程是()A.x-2y+3=0 B.2x-y-3=0C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A .x +y =0 B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________. 16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线2x +(t -2)y +3-2t =0,分别根据下列条件,求t 的值: (1)过点(1,1);(2)直线在y 轴上的截距为-3.18.(12分)直线l 过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D【解析】所求直线与已知直线平行,且和点(1,-1)等距, 不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1),得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.单元测试二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 经过两点()()1,2,2,1P Q -,那么直线l 的斜率为( )A .3-B .13-C .13D .32.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0D .x -y +3=03.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6C .32D .234.直线2x a -2y b =1在y 轴上的截距为( ) A .|b |B .-b 2C .b 2D .±b5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0B .-4C .-8D .46.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0, 则实数m 的值是( )A .-2B .-7C .3D .18.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0D .19x -3y =09.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)B .(17,27) C .(27,17) D .(17,114) 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=011.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4B .-2C .0D .212.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3), 则点B 的坐标可能是( ) A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为 M (1,-1),则直线l 的斜率为_________.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.18.(12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线 x +3y +4=0的直线方程.19.(12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P , 使|P A |=|PB |,且点P 到直线l 的距离等于2.20.(12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0. (1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.21.(12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件: (1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由.22.(12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当-2+3≤k≤0时,求折痕长的最大值.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】根据斜率公式可得,直线l的斜率121213k-==--,故选C.2.【答案】D【解析】由题意k=tan45°=1,∴直线l的方程为y-2=1·(x+1),即x-y+3=0,故选D.3.【答案】B【解析】由题意得a·(-1)-2×3=0,∴a=-6,故选B.4.【答案】B【解析】令x=0,则y=-b2,故选B.5.【答案】C【解析】根据题意可知k AC=k AB,即12283--=223a---,解得a=-8,故选C.6.【答案】D【解析】Ax+By+C=0可化为y=-ABx-CB,由AB<0,BC<0,得-AB>0,-CB>0,故直线Ax+By+C=0经过第一、二、三象限,不经过第四象限.故选D.7.【答案】C【解析】由已知条件可知线段AB 的中点(12m+,0)在直线x +2y -2=0上, 把中点坐标代入直线方程,解得m =3,故选C . 8.【答案】C【解析】解340250x y x y -+=⎧⎨-+=⎩得19737x y ⎧=-⎪⎪⎨⎪=⎪⎩,即直线l 1,l 2的交点是(-197,37),由两点式可得所求直线的方程是3x +19y =0,故选C . 9.【答案】C【解析】直线方程变形为k (3x +y -1)+(2y -x )=0,则直线通过定点(27,17). 故选C . 10.【答案】D【解析】将“关于直线对称的两条直线”转化为“关于直线对称的两点”:在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,故选D . 11.【答案】B【解析】因为l 的斜率为tan135°=-1,所以l 1的斜率为1,所以k AB =()213a---=1,解得a=0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2,故选B . 12.【答案】A【解析】设B (x ,y ),根据题意可得1AC BC k k BC AC ⋅=-⎧⎪⎨=⎪⎩,即3431303y x --⎧⋅=-⎪--=⎩⎪⎨⎪⎧ x =2y =0或⎩⎪⎨⎪⎧x =4y =6, 所以B (2,0)或B (4,6).故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】-23【解析】设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =()3142----=-23.14.【答案】x +6y -16=0【解析】直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6, 所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.【答案】3 2【解析】依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=32.16.【答案】①⑤【解析】两平行线间的距离为d =|3-1|1+1=2,由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°, 所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0. 【解析】(1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0, d|3245|n ⨯-+⨯+=3,解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0. 18.【答案】3x -y +2=0.【解析】解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0, 即(3+λ)x +(3λ-2)y +(1+4λ)=0,由所求直线垂直于直线x +3y +4=0, 得-13·(-3+λ3λ-2)=-1,解得λ=310,故所求直线方程是3x -y +2=0.解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧ 3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1),故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.【答案】P (1,-4)或P (277,-87).【解析】解法1:设点P (x ,y ).因为|P A |=|PB |,① 又点P 到直线l 的距离等于2,所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|P A |=|PB |,所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5,所以设点P (x ,x -5). 因为点P 到直线l 的距离等于2,所以()|4352|5x x +--=2,解得x =1或x =277,所以P (1,-4)或P (277,-87).20.【答案】(1)2x -y +1=0;(2)2x -y +1=0;(3)110.【解析】(1)由已知得直线AB 的斜率为2,∴AB 边所在的直线方程为y -1=2(x -0),即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1).∴|BE |=52,由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎨⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255,∴S △BDE =12·d ·|BE |=110. 21.【答案】)存在,3x +4y -12=0.【解析】设直线方程为x a +yb =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12 ① 又∵直线过点P (43,2),∵43a +2b=1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎨⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0,若满足条件(2),则ab =12,③ 由题意得,43a +2b=1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1,即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0. 22.【答案】(1)y =kx +k 22+12;(2)2(6-2).【解析】(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称,有k OG ·k =-1⇒1a·k =-1⇒a =-k ,故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-163.此时,折痕长度的最大值为32-163=2(6-2).而2(6-2)>2,故折痕长度的最大值为2(6-2).。

数学第3章《直线与方程》单元测试

数学第3章《直线与方程》单元测试

数学第3章《直线与方程》单元测试一、选择题(每小题1分,共20分)1.已知直线l过点A(2,3)和点B(4,5),则过点A且平行于直线l的直线斜率为()。

A.-1B.1C.2D.02.过点(3,-2)和点(-1,4)的直线方程为()。

A.y=6x-20B.y=6x+20C.y=-6x-20D.y=-6x+203.直线l1:2x+y-3=0,直线l2:3x-y+5=0,则直线l1和l2的交点为()。

A.(1,1)B.(-1,-1)C.(-1,1)D.(1,-1)4.直线2x-y-5=0与直线x-2y-1=0的夹角为()。

A.30°B.45°C.60°D.90°5.设直线过点(1,2)且与直线3x-4y+1=0垂直,则该直线方程为()。

A.y-2=4(x-1)B.y-2=-4(x-1)C.y+1=4(x-1)D.y+1=-4(x-1)二、填空题(每小题2分,共20分)1.过点(3,-4)且与直线2x-3y+5=0平行的直线方程为______________。

2.过点(1,2)且与直线4x+y-6=0垂直的直线方程为______________。

3.过点(1,-2)且与直线3x-4y+7=0垂直的直线方程为______________。

4.过点(2,1)且与直线x+2y-3=0垂直的直线方程为______________。

5.设直线过点(1,-3)且平行于直线2x-3y+4=0,直线方程为______________。

三、解答题(共60分)1.有两条直线,直线l1经过点A(1,3)和点B(2,4),直线l2经过点C(2,3)和点D(5,7)。

a)求直线l1和l2的斜率。

b)判断直线l1和l2是否平行,如果不平行,求出直线l1和l2的交点坐标。

2.判断直线y=3x+5与x轴和y轴的交点坐标,并求出与x轴和y轴分别呈45°角的直线方程。

3.直线l1经过点A(1,2)和点B(3,4),直线l2经过点C(0,1)和点D(2,3)。

人教版数学高一第三章直线与方程单元测试精选(含答案)1

人教版数学高一第三章直线与方程单元测试精选(含答案)1

人教版高一第三章直线与方程单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.若三条直线2380x y ++=,10x y --=与直线0x ky +=交于一点,则k =()A .-2B .2C .12-D .12【来源】甘肃省武威市第十八中学2018届高一人教版数学必修二第三章直线与方程单元测试题【答案】C2.已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是().A .1或3B .1或5C .3或5D .1或2【来源】直线平行问题【答案】C3.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .B .C .6D .【来源】浙江省杭州市学军中学2018-2019学年高二上学期期中考试数学试题【答案】D4.已知(2,1),(0,5)A C -,则AC 的垂直平分线所在直线方程为()A .250x y +-=B .250x y +-=C .250x y -+=D .250x y -+=【来源】广州市培正中学2018年高一第二学期数学必修二模块测试卷一【答案】A5.与直线:2l y x =平行,且到l A .2y x =B .25y x =±C .1522y x =-±D .122y x =-±【来源】2012-2013学年福建省晋江市季延中学高一下学期期中考试数学试题(带解析)【答案】B6.经过点()1,1M 且在两坐标轴上截距相等的直线是()A .2x y +=B .1x y +=C .2x y +=或y x =D .1x =或1y =【来源】高二人教版必修2第二章滚动习题(四)[范围1]【答案】C7.若直线310x ++=倾斜角是()A .30°B .120°C .60°D .150°【来源】甘肃省武威市第十八中学2018届高一人教版数学必修二第三章直线与方程单元测试题【答案】B8.等腰Rt △ABC 的直角顶点为C(3,3),若点A 的坐标为(0,4),则点B 的坐标可能是()A .(2,0)或(6,4)B .(2,0)或(4,6)C .(4,6)D .(0,2)【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】B9.直线ax +y +m =0与直线x +by +2=0平行,则()A .ab =1,bm ≠2B .a =0,b =0,m ≠2C .a =1,b =-1,m ≠2D .a =1,b =1,m ≠2【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(二)【答案】A10.直线30()x m m R ++=∈的倾斜角为()A .30°B .60︒C .120︒D .150︒【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】C11.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为()A .x y --1=0B .x y +1=0C .x --1=0D .x -y +1=0【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】C12.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点()A .(0,0)B .(17,27)C .(27,17)D .(17,114)【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】C13.直线l 通过两直线7x +5y -24=0和x -y =0的交点,且点(5,1)到直线l 的距离为,则直线l 的方程是()A .3x +y +4=0B .3x -y +4=0C .3x -y -4=0D .x -3y -4=0【来源】人教A 版高中数学必修二第三章章末检测卷【答案】C14.倾斜角为45°,在y 轴上的截距为-1的直线方程是()A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=0【来源】人教A 版高中数学必修二第三章章末检测卷【答案】B15.若直线1l :60x ay ++=与2l :()2320a x y a -++=平行,则1l 与2l 间的距离为()A B .823C D .833【来源】2019届高考数学(理)全程训练:天天练31直线方程与两条直线的位置关系【答案】B16.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为()A .1B .2CD .【来源】人教A 版高中数学必修二综合学业质量标准检测2【答案】C17.若直线y =x +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围是()A .(-52,12)B .(-25,12)C .[-52,-12]D .[-52,12]【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】A18.已知点A(2,3),B(-3,-2),若直线l 过点P(1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是()A .k ≥2或k ≤34B .34≤k ≤2C .k ≥34D .k ≤2【来源】2015-2016学年北大附中河南分校高一3月月考数学试卷(带解析)【答案】A19.若直线mx +ny +3=0在y 轴上的截距为-3,y -=的倾斜角的2倍,则()A .m =,n =1B .m =,n =-3C .m =,n =-3D .m =,n =1【来源】陕西省黄陵中学2018届高三(重点班)上学期期中考试数学(文)试题【答案】D20.已知直线10ax by ++=与直线4350x y ++=平行,且10ax by ++=在y 轴上的截距为13,则+a b 的值为()A .7-B .1-C .1D .7【来源】湖南省怀化市2018年上期高二期末考试文科数学试题【答案】A21.若两直线330x y +-=与610x my ++=平行,则它们之间的距离为()A .105B .2105C .51026D .【来源】青海省海东市平安区第二中学2019-2020学年高二上学期10月月考数学试题【答案】D22.若直线l 经过点(1,1),且与两坐标轴所围成的三角形的面积为2,则直线l 的条数为()A .1B .2C .3D .4【来源】2012年人教A 版高中数学必修二3.2直线的方程练习题(二)【答案】C23.已知直线l 1:x +y +1=0,l 2:x +y -1=0,则l 1,l 2之间的距离为()A .1BC D .2【来源】人教A 版高中数学必修二第三章章末检测卷【答案】B24.如果直线220ax y ++=与直线320x y --=平行,则a 的值为()A .3-B .6-C .32D .23【来源】2015-2016学年湖南省株洲市二中高一上学期期末数学试卷(带解析)【答案】B25.过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为()A .230x y --=B .230x y +-=C .430x y --=D .430x y +-=【来源】四川省绵阳南山中学2017-2018学年高二上学期期中考试数学(文)试题【答案】B26.已知直线l 的方程是y =2x +3,则l 关于y =-x 对称的直线方程是()A .x -2y +3=0B .x -2y =0C .x -2y -3=0D .2x -y =0【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】A评卷人得分二、填空题27.已知,,a b c 为直角三角形的三边长,c 为斜边长,若点(,)M m n 在直线:20l ax by c ++=上,则22m n +的最小值为__________.【来源】山东省烟台市2017-2018学年高一上学期期末考试数学试题【答案】428.已知直线l :mx +y +3m −3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=23,则|CD|=__________.【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版)【答案】429.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为_________________.【来源】浙江省诸暨中学2017-2018学年高一下学期期中考试数学试题【答案】352y x y x =-=-或30.若直线l 与直线1y =和70x y --=分别交于M ,N 两点,且MN 的中点为()1,1P -,则直线l 的斜率等于__________.【来源】高二人教版必修2第二章滚动习题(四)[范围1]【答案】23-31.过点(2,3)P ,且在两坐标轴上的截距互为相反数的直线方程是______.【来源】贵州省遵义市第四中学2018-2019学年高二上学期第一次月考数学(文)试题【答案】320x y -=或10x y -+=32.过点(1,2)M 且在两坐标轴上的截距相等的直线方程为____________.【来源】2011年浙江省苍南县三校高二上学期期中考试数学文卷【答案】x+y=3或y=2x33.已知点A(2,1),B(-2,3),C(0,1),则△ABC 中,BC 边上的中线长为________.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)34.当0<k<12时,两条直线kx -y =k -1,ky -x =2k 的交点在________象限.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(一)【答案】第二35.直线l 经过点P (3,2)且与x 轴、y 轴的正半轴分别交于A 、B 两点,△OAB 的面积为12,则直线l 的方程为__________________.【来源】人教A 版高中数学必修二第三章章末检测卷【答案】2x +3y -12=036.过点P(3,4)在两坐标轴上截距相等的直线方程为______________.【来源】人教A 版高一年级必修二第3章章末综合测评2数学试题【答案】y=43x 或x+y-7=037.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值为________.【来源】2015-2016学年湖北省襄州一中等四校高二上学期期中理科数学试卷(带解析)【答案】-338.在极坐标系中,点π(2,6到直线πsin()16ρθ-=的距离是___________【来源】2018年秋人教B 版数学选修4-4模块综合检测试题【答案】1评卷人得分三、解答题39.如图,在平行四边形ABCD 中,边AB 所在直线的方程为220x y --=,点(2,0)C .(Ⅰ)求直线CD 的方程;(Ⅱ)求AB 边上的高CE 所在直线的方程.【来源】2011-2012学年福建师大附中高一上学期期末考试数学【答案】解:(Ⅰ)∵ABCD 是平行四边形∴//AB CD ∴2CD AB k k ==∴直线CD 的方程是2(2)y x =-,即240x y --=(Ⅱ)∵CE ⊥AB∴112CE AB k k =-=-∴CE 所在直线方程为1(2)2y x =--,220x y 即+-=.40.△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程;(2)求直线BC 的方程;(3)求△BDE 的面积.【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】(1)210x y -+=;(2)2370x y +-=;(3)11041.已知正方形的中心为()1,0G -,一边所在直线的方程为350x y +-=,求其他三边所在的直线方程.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(三)【答案】370,390,330x y x y x y ++=-+=--=.42.已知直线l 经过点P (-2,5),且斜率为3-4(1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.【来源】黑龙江省大庆市大庆中学2019-2020学年高二上学期期中数学(文)试题【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0.43.已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=.(1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程;(2)若坐标原点O 到直线m m 与n 的位置关系.【来源】山西省晋中市榆社中学2017-2018学年高二期中考试数学(理)试卷【答案】(1)370x y -=或120x y -+=;(2)//m n 或m n⊥44.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等.【来源】2014届高考数学总复习考点引领技巧点拨第九章第3课时练习卷(带解析)【答案】(1)a =2,b =2(2)2{2a b ==-或2{32a b ==45.已知三条直线l 1:2x-y+a=0(a>0),直线l 2:4x-2y-1=0和直线l 3:x+y-1=0,且l 1和l 2的距离是7510.(1)求a 的值.(2)能否找到一点P ,使得P 点同时满足下列三个条件:①P 是第一象限的点;②P 点到l 1的距离是P 点到l 2的距离的12;③P 点到l 1的距离与P 点到l 3若能,求出P 点坐标;若不能,请说明理由.【来源】陕西省黄陵中学2017-2018学年高一下学期6月月考数学试题【答案】(1)a=3;(2)P(137,918).46.如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.【来源】2013年全国普通高等学校招生统一考试数学(江苏卷带解析)【答案】(1)3y =或34120x y +-=;(2)12[0,]5.47.在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB .AD 边分别在x 轴.y 轴的正半轴上,A 点与坐标原点重合(如图所示)。

精品解析:人教a版高中数学必修二第三章直线与方程单元测试卷(一)(解析版).docx

精品解析:人教a版高中数学必修二第三章直线与方程单元测试卷(一)(解析版).docx

第三章单元测试卷(一)一、选择题(每小题5分,共60分)1.直线3x+^y+l= 0的倾斜角是()A.30°B. 60°C. 120°D. 135°【答案】C【解析】由直线方程3x +馆y+l=0,可得直线的斜率为k =-靠,设直线的倾斜角为0?0 G [0°,180°)»则tanO = -^3,所以8= 120°,故选C.2.直线h与12在x轴上的截距都是m,在y轴上的截距都是n,则h与b满足()A.平行B.重合C.平行或重合D.相交或重合【答案】D【解析】由题意,①当m,n均不为零时,由截距式方程知,1]与-的方稈都是- + -=b故h与】2重合;②当m = n = 0时,两直线都过原点,h与S可能重合,也可能相交,综上,直线1】与】2相交或重合,故选D.x V3.直线〒三=1在y轴上的截距是()a" b_A. |b|B. -b2C. b2D. ±b【答案】By【解析】由题意,令x = 0,则-亍1, BPy = -b2,所以直线在y轴上的截距为"2,故选B.4.两直线3x + y-3 = 0与6x+my+l= 0平行,则它们之间的距离为(A.4B.—137^/W20【答案】D【解析】考点: 两条平行直线间的距离.分析:根据两直线平行(与y轴平行除外)时斜率相等,得到m的值,然后从第一条直线上取一点,求出这点到第二条直线的距离即为平行线间的距离.解:根据两直线平行得到斜率相等即-3=--,解得m=2,则直线为6x+2y+l二0,m取3x+y・3=O上一点(1, 0)求出点到直线的距离即为两平行线间的距离,|6+1| 7 伍所以d= | = ----- .762+ 22 20故选D5.直线(祈一Q)・x + y = 3和直线x+(Q—®y = 2的位置关系是()A.相交但不垂直B.垂直C.平行D.重合【答案】B【解析】由题意可得(筋-返)X 1 4- 1 X (血-筋)=0 ,所以两直线互相垂直,故选B.6.AABC +,点A坐标(4, -1), AB的中点为M(3,2),重心为P (4, 2),则边BC的长为( )A. 5B. 4C. 10D.8【答案】A4 + x —1 + y【解析】试题分析:设点B (x, y),根据中点坐标公式可知3二——,2=—-2 2解得:x=2, y=H5H所以B (2, 5);4 + 2 +m —1 +5 + n设点C (m, n),根据重心坐标公式可知4二----------- ,2= -----------3 3解得:m=6, n=2,所以C (6, 2),根据两点的距离公式可知|BC|=5,故选Ao考点:本题主要考查中点坐标公式、重心坐标公式以及两点间的距离公式,同时考查了计算能力。

数学:第三章《直线与方程》测试(1)(新人教A版必修2)

数学:第三章《直线与方程》测试(1)(新人教A版必修2)

第三章 直线与方程 单元测试一、选择题1.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x2.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( ) A.21 B.21- C.2- D.2 3.直线在轴上的截距是( ) A . B .2b - C . D .4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与,,a b θ的值相关6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4BCD 7.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的 斜率k 的取值范围是( )A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤二、填空题1.方程1=+y x 所表示的图形的面积为_________。

2.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。

3.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。

5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 .三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。

2.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第三章 直线与方程》单元同步测试题
一、选择题(每题3分,共36分)
1.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.213,
B.--213,
C.--1
2
3, D.-2,-3 2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )
A.重合
B.平行
C.垂直
D.相交但不垂直
3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( )
(A )2x -3y =0;
(B )x +y +5=0;
(C )2x -3y =0或x +y +5=0
(D )x +y +5或x -y +5=0
4.直线x=3的倾斜角是( ) A.0 B.
2
π
C.π
D.不存在 5.圆x 2+y 2+4x=0的圆心坐标和半径分别是( ) A.(-2,0),2 B.(-2,0),4 C.(2,0),2 D.(2,0),4
6.点(-1,2)关于直线y = x -1的对称点的坐标是
(A )(3,2) (B )(-3,-2) (C )(-3,2) (D )(3,-2)
7.点(2,1)到直线3x -4y + 2 = 0的距离是 (A )54 (B )45 (C )25
4
(D )
4
25 8.直线x - y + 3 = 0的倾斜角是( )
(A )30° (B )45° (C )60° (D )90° 9.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为
(A )3x +4y -5=0 (B )3x +4y +5=0 (C )-3x +4y -5=0
(D )-3x +4y +5=
10.设a 、b 、c 分别为 ABC 中∠A 、∠B 、∠C 对边的边长,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系( )
(A )平行;
(B )重合;
(C )垂直;
(D )相交但不垂直
11.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( )
(A )-;3
1 (B )-3;
(C );3
1
(D )3
12.直线,31k y kx =+-当k 变动时,所有直线都通过定点( ) (A )(0,0) (B )(0,1) (C )(3,1) (D )(2,1) 一、填空题(每题4分,共16分)
C
A
B
P
13.直线过原点且倾角的正弦值是
5
4
,则直线方程为 14.直线mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为
15.如果三条直线mx +y +3=0,x -y -2=0,2x -y +2=0不能成为一个三角形三边所在的直线,那么m 的一个..值是_______. 16.已知两条直线l 1:y =x ;l 2:ax -y =0(a ∈R ),当两直线夹角在(0,12
π
)变动时,则a 的取值范围为
三、解答题(共48分)
17. ABC ∆中,点A (),1,4-AB 的中点为M (),2,3重心为P (),2,4求边BC 的长(6分) 18.若N a ∈,又三点A(a ,0),B (0,4+a ),C (1,3)共线,求a 的值(6分)
19.已知直线3x+y —23=0和圆x 2+y 2
=4,判断此直线与已知圆的位置关系(7分)
20.若直线062=++y ax 和直线0)1()1(2=-+++a y a a x 垂直,求a 的值(7分) 21.已知圆过点A(1,4),B(3,—2),且圆心到直线AB 的距离为10,求这个圆的方程(10分)
22.如图,在∆ABC 中,∠C=90O ,P 为三角形内的一点,且PCA PBC PAB S S S ∆∆∆==,求证:│PA │2+│PB │2=5│PC │2(12分)
答案:一、1.B2.B3.C4.B5.A6.D7.A8.B9.B10.C11.A12.C 二、13.x y 34±
= 14.mn 21 15.−1 16.(3
3
,1)⋃(1,3) 三、17.提示:由已知条件,求出B 、C 两点的坐标,再用两点距离公式 18.提示:三点共线说明AC AB k k =,即可求出a
19.提示:比较圆的半径和圆心到直线的距离d 的大小,从而可判断它们的位置关系
20.提示:斜率互为负倒数,或一直线斜率为0,另一直线斜率不存在
21.提示:通过已知条件求出圆心坐标,再求出半径,即可,所求圆的方程为:
(x+1)2+y 2=20或(x —5)2+(y —2)2
=20
22.提示:以边CA 、CB 所在直线分别为x 轴、y 轴建立直角坐标系,,设A (0,a )、B (0,b ),P 点的坐标为(x ,y ),由条件可知PCA PBC PAB S S S ∆∆∆===3
1
ABC S ∆,可求出x=
31a ,y=3
1
b ,再分别用两点距离公式即可。

相关文档
最新文档