化学反应工程-21-第六章-气固相催化反应固定床反应器

合集下载

固定床反应器操作与控制—气固相催化反应过程

固定床反应器操作与控制—气固相催化反应过程

速率控制步骤
速率 控制 步骤
最慢
步骤 速率
对动力学起
关键作用
速率控制步骤——动力学控制
反应物的吸附控制 表面化学反应控制
产物的脱附控制
颗粒小、温度低、气速高
速率控制步骤——内扩散控制
颗粒大
温度高 气速高

速率控制步骤——外扩散控制
颗粒小
温度高 气速低
速率控制步骤
思考:
了解气固反应过程
找出速率控制步骤, 指导实际生产。
07
反应产物从催化剂外表面向流体主体传递;
气固相催化反应过程
了解气固反应过程
指导实际生产
思考题
气固相催化反应过程 的总反应速率是七个步骤 的速率之和?
《化学反应器操作与控制》
速率控制步骤
外扩散----内扩散----吸附----表面反应----脱附----内扩散----外扩散
外扩散:1,7 内扩散:2,6 表面过程:3,4,5
《化学反应器操作与控制》
气固相反应
气固相催化反应过程
气固相催化反应过程
外扩散----内扩散----吸附----表面反应----脱附----内扩散----外扩散
外扩散:1,7 内扩散:2,6 表面过程:3,4,5
气固相催化反应过程
气固相催化反应过程经历七个步骤
01
反应组分从流体主体向固体催化剂外表面传递;
02 反 应 组 分 从 催 化 剂 外 表 面 向 催 化 剂 内 表 面 传 递 ;
03
反应组分在催化剂表面的活性中心吸附;
04 在 催 化 剂 表 面 上 进 行 化 学 反 应 ;
05
反应产物在催化剂表面脱附;
06 反 应 产 物 从 催 化 剂 内 表 面 向 催 化 剂 外 表 面 传 递 ;

化学反应工程 第六章 固定床反应器

化学反应工程 第六章 固定床反应器

一、颗粒层的若干物理特性参数
密度
– 颗粒密度ρp
• 包括粒内微孔在内的全颗粒密度;
– 固体真密度ρs
• 除去微孔容积的颗粒密度;
– 床层密度/堆积密度ρB
• 单位床层容积中颗粒的质量(包括了微孔和颗粒 间的空隙);
p s (1 p ) B p(1 B )
一、颗粒层的若干物理特性参数
i
Wi FA0
i
xi dx A
r xi1
i

也即
Z 0 Ti

xi x i 1
Ti
1 (
ri
)dx A

0
i 1,2, N
min
Z 0
xi


1 ri
xA xi



1 ri 1
xA xi
0
i 1,2, N 1
对 Z 0 的处理 Ti
Z
Ti Ti
xi dx A
r xi1
i
xi x i 1
Ti
1 (
ri
)dx A

0
i 1,2, N
按中值定理:
Z
Ti
xi x i 1
Ti

1 (
ri
)dx A
(xi


x
i
1
)


Ti
• 双套管式、三套管式
流体流向:轴向、径向
固定床反应器的数学模型
拟均相数学模型:
忽略床层中颗粒与流体之间温度和浓度的差别 –平推流的一维模型 –轴向返混的一维模型 –同时考虑径向混合和径向温差的二维模型

化学反应工程第六章非均相反应器(上)

化学反应工程第六章非均相反应器(上)
流化床反应器62流化床反应器63固定床反应器61第六章非均相反应器其他非均相反应器简介6461固定床反应器611固定床反应器的特点固定床反应器无论塔式还是管式均垂直设置气体由顶部进入流动方向与重力方向一致这样可以防止气体冲动床层造成催化剂分布不均匀和催化剂的磨损带出同时有利于反应器中可能形成的液态物质的排除
6.1.5 固定床反应器的工艺计算
(4)管间采用道生油强制外循环换热。道生油进口温度 503K, 出口温度508K,道生油对管壁给热系数α0可取 2717kJ/(m2·h·K)。 (5)催化剂为球形,直径dP为5mm,床层空隙率ε为0.48。 (6)年工作7200h,反应后分离、精制过程回收率为90%, 第一反应器所产生环氧乙烷占总产量的90%。
6.1.2 固定床反应器的类型
气流不是沿轴向而是沿径向通 过催化剂床层,这种流程可以 解决床层过高、走轴向压力降 过大的问题,该合成塔床层阻 力小、可以采用大气量、小颗 粒催化剂,利于减小内外扩散 的阻力,强化传质,因此特别 适用于大中型生产规模的场合。
图6-7 径向反应塔示意图
6.1.3 固定床反应器内的流体流动
6.1.4.1 固定床中的传质 内扩散控制过程发生的场合是,颗粒大,因而内扩散阻力 大,内扩散速度小;温度高因而化学反应速度快;气速高
因而外扩散速度大。内扩散控制过程浓度分布特征是 CAg≈CAs>> CAc≈CAeq 。
外扩散的控制过程 传质速度(外扩散速度)即为总反 应速度。外扩散控制发生的场合是颗粒小,气速小、温度 高。外扩散控制过程浓度分布的特征是
CO2 52.67+3.26=55.93kmol/h
N2
566.35kmol/h
C2H4O 3.16kmol/h

固定床、移动床、流化床反应器区别详解

固定床、移动床、流化床反应器区别详解

固定床、移动床、流化床反应器,这三种反应器被誉为是工业生产中不可或缺的重要设备。

它们虽然都是制造工业生产中的设备,但它们各有所长,各有其优缺点。

一、首先,“床”指的是什么?大量固体颗粒堆积在一起,便形成了具有一定高度的颗粒床层,这就是名称里的"床"。

这些固体颗粒可以是反应物,也可以是催化剂。

二、如何区分固定床、移动床、流化床反应器如果这个颗粒床层是固定不动的,就叫固定床。

如果这个颗粒床层是整体移动的,固体颗粒自顶部连续加入,又从底部卸出,颗粒相互之间没有相对运动,而是以一个整体的状态移动,叫做移动床。

当流体(气体或液体)通过颗粒床层时,进行反应。

如果将流体通过床层的速度提高到一定数值,固体颗粒已经不能维持不变的状态,全部悬浮于流体之中,固体颗粒之间进行的是无规则运动,整个固体颗粒的床层,可以像流体一样流动,这即是流动床。

下面,小七为大家详细的介绍这三种反应器。

三、固定床反应器又称填充床反应器,内部装填有固体催化剂或固体反应物,以实现多相反应。

固体物通常呈颗粒状,堆积成一定高度(或厚度)的床层,床层静止不动,流体通过床层进行反应。

固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。

用于气固相或液固相非催化反应时,床层则填装固体反应物。

涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。

1、优点•催化剂机械磨损小。

•床层内流体的流动接近于平推流,与返混式的反应器相比,可用较少量的催化剂和较小的反应器容积来获得较大的生产能力。

•由于停留时间可以严格控制,温度分布可以适当调节,因此特别有利于达到高的选择性和转化率。

•可在高温高压下操作。

2、缺点•固定床中的传热较差。

•催化剂的再生、更换均不方便,催化剂的更换必须停产进行。

•不能使用细粒催化剂,但固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。

目前,蜂窝状、纤维状催化剂也已被广泛使用。

化学反应工程-19-第六章-气固相催化反应固定床反应器

化学反应工程-19-第六章-气固相催化反应固定床反应器

2、二维模型中 hW 的计算: 、 的计算: 模型认为温度沿着径向形成了一个分布,故 t m没有意义。 这时床层向壁的传热速率:
dS =
6VS SS
西勒模数就是以d 为定型尺寸的。 西勒模数就是以 S为定型尺寸的。 形状系数的概念, 表示: 形状系数的概念,以 ϕ S 表示:
ϕS =
SV SS
2 SV = πd V (和粒子具有相同体积的球形颗粒的外表面积)
d ϕS = V d a

2
2、粒子群 、 对于大小不等的混合颗粒,平均直径为:
空隙率分布的影响: 空隙率分布的影响:直接影响流体流速的分布,进而使流体与颗 粒、床层与反应器壁之间的传热、传质行为不同,流体的停留时 间也不同,最终会影响到化学反应的结果。
为减少壁效应,要求床层直径(dt)至少为粒径(dP)的八倍以上。
二、颗粒的定型尺寸 颗粒的定型尺寸常用粒径来表示: 1、单个粒子 、 粒径d 粒径 P: 对球形催化剂,应用一个参数dP即可完整描述颗粒的全部几何 性质,即自由度为1; 对规则形催化剂,如圆柱形,用两个参数如h、d即可; 对不规则颗粒,也是用两个参数来描述颗粒的几何性能:一是 当量直径;另一是形状参数。
d S u0 ρ g
6.1.2固定床内的传热 固定床内的传热 床层尺度上的传热过程包括四个方面: 床层尺度上的传热过程包括四个方面: ①颗粒内部的传热 (λ P ) ;
( ②颗粒与流体之间的传热α g ) ;
③床层整体有效导热系数 (λe ) ; ④床层和反应器壁之间的传热 (h0、hW ) 。 对于①中λP,见第十七讲《非等温反应宏观动力学方程》。它的大 小往往由固体颗粒自身的性质粒内孔隙情况决定的,颗粒内的传热主要 是以热传导形式进行的。 对于②中的αg第十七讲中已经讨论过。 现重点讨论③和④ ! 现重点讨论③

气固相催化反应固定床装置操作说明

气固相催化反应固定床装置操作说明

气固相催化反应固定床装置一、前言本装置由管式炉加热固定床、流化床催化反应器组成,是有机化工、精细化工、石油化工等部门的主要实验设备,尤其在反应工程和催化工程及化工工艺、生化工程、环境保护专业中使用的相当广泛。

该实验装置可进行加氢、脱氢、氧化、卤化、芳构化、烃化、歧化、氨化等各种催化反应的科研与教学工作。

它能准确地测定和评价催化剂活性、寿命、找出最适宜的工艺条件,同时也能测取反应动力学和工业放大所需数据,是化工研究方面不可缺少的手段。

本装置由反应系统和控制系统组成:反应系统的反应器为管式反应器和流化床反应器,由不绣钢材料制。

气固相催化反应固定床装置是管式反应器,床内有直径3mm的不绣钢套管穿过反应器的上下两端,并在管内插入直径1mm的垲装热电偶,通过上下拉动热偶而测出床层各不同高度的反应温度。

加热炉采用三段加热控温方式,上下段温度控制灵活,恒温区较宽。

控制系统的温度控制采用高精度的智能化仪表,有三位半的数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。

气固相催化反应流化床是一种在反应器内由气流作用使催化剂细粒子上下翻滚作剧烈运动的床型。

流化床也为不锈钢制,床下部有填装的陶瓷环做预热段,中下部为流化膨胀的催化剂浓相段,中上部为稀相段,顶部为扩大段。

也采用三段控温方法。

控制系统的温度控制采用高精度的智能化仪表,有三位半的数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。

它的换热效果比固定床优越,能及时把反应热移走,床层温度均匀,避免产物产生过热现象,提高了催化剂的反应效率。

故流化床在许多有机反应中得到应用,如丙烯氨氧化制丙烯晴、丁烷或苯氧化制顺酐、二甲苯或萘氧化制苯酐、乙烯氯化、石油催化裂化、烷烃催化脱氢、二氧化硫氧化等都有工业规模生产,在实验室用流化床研究催化剂和工艺条件对产品开发有重大作用。

整机流程设计合理,设备安装紧凑,操作方便,性能稳定,重现性好。

此外,还有与计算机联机的接口,可安装软件能在计算机上显示与存储有关数据,实现计算机控制。

专科《化学反应工程》_试卷_答案

专科《化学反应工程》_试卷_答案

专科《化学反应工程》一、(共75题,共150分)1。

全混流反应器中有( )个稳定的定常态操作点。

(2分)A。

1 B.2 C.3 D.4.标准答案:B2. 一级连串反应在全混流釜式反应器中,则目的产物P的最大浓度CP,max=()。

(2分)A。

B。

C.D..标准答案:B3。

轴向分散模型的物料衡算方程在( )式边界条件下有解析解。

(2分)A。

闭—闭 B.开—闭 C。

闭-开 D.开—开。

标准答案:D4. 反应级数n=( )时微观流体和宏观流体具有相同的反应结果. (2分)A.0 B。

0.5 C。

1 D.2。

标准答案:C5. 催化剂在使用过程中会逐渐失活,其失活速率式为,当进料中的杂质吸附极牢以及对产物无内扩散阻力时,d为( ). (2分)A。

B。

=1C。

→3D。

.标准答案:A6。

等温液相反应为目的产物,有下列四种方案可供选择,从提高P的收率着眼适宜选用( ). (2分)A。

间歇釜式反应器,A和B一次性加入B.全混流反应器C.半间歇釜式反应器,A一次性加入,B连续滴加D.半间歇釜式反应器,B一次性加入,A连续滴加.标准答案:D7. 乙苯在催化剂上脱氢生成苯乙烯,经一段时间反应后,苯乙烯生成量不再增加,乙苯仍大量存在,表明这是一个( )反应. (2分)A。

慢速 B.可逆 C.自催化 D.不可逆.标准答案:B8。

催化剂颗粒扩散的无因次扩散模数值的大小反映了表面反应速率与( )之比。

(2分)A。

扩散速率 B.外扩散速率C。

内扩散速率 D。

实际反应速率.标准答案:C9. 不属于气固相催化反应固定床反应器拟均相二维模型的特点是( ). (2分)A.粒子与流体间有温度差B.粒子与流体间无温度差C.床层径向有温度梯度 D。

床层轴向有温度梯度。

标准答案:A10. 气固催化反应的内扩散模数,其中L为特征长度,若颗粒为球形则L=( )。

(2分)A。

厚度/2 B。

R C.R/2 D.R/3 .标准答案:D11。

对于反应级数n>0的不可逆等温反应,为降低反应器容积,应选用()。

化学反应工程习题

化学反应工程习题

化学反应工程习题第一章思考题发布时间2012年11月23日截止时间2012年12月31日满分分数 5.0作业内容 1. 化学反应工程是一门研究_____________________________________的科学。

2. 所谓数学模型是指___________________________________________。

3. 化学反应工程的数学模型包括_____________、____________、____________、____________和____________。

4. 所谓控制体积是指_____________________________________________。

5. 模型参数随空间而变化的数学模型称为_____________________。

6. 模型参数随时间而变化的数学模型称为_____________________。

7. 建立物料、热量和动量衡算方程的一般式为_________________________。

第二章思考题和习题1发布时间2012年11月23日截止时间2012年12月31日满分分数 5.0作业内容第二章均相反应动力学基础1. 均相反应是指___________________________________。

2. 对于反应aA + bB → pP + sS,则r P=_______r A。

3.着眼反应物A的转化率的定义式为_______。

4. 产物P的收率ΦP与得率ХP和转化率x A间的关系为_________________________________________________。

5. 化学反应速率式为r A=k C C AαC Bβ,用浓度表示的速率常数为k C,假定符合理想气体状态方程,如用压力表示的速率常数k P,则k C=_______k P。

6.对反应aA + bB → pP + sS的膨胀因子的定义式为___________________。

化学反应工程-21-第六章-气固相催化反应固定床反应器

化学反应工程-21-第六章-气固相催化反应固定床反应器

同样可写出:
C0,n1 C0,n
R A aV 1 B 4 E r l 2 C1,n C0,n l 8 u r u
T
R
0
2rdr 2 T 2 2 R R

R
0
Trdr
说明: 2rdr E t dt,即分布密度函数。 R 2
CA
R
0
2rdr 2 CA 2 2 R R

R
0
C A rdr
二、数学模型求解
1、显式差分法 上述方程组(3)、(4)没有解析解,只能求其数值解: 方程的自变量为r、l,其定义域就是整个反应器,即是圆柱形 的反应床,为求得定义域上因变量CA、T的分布规律,数值 解的基本思路是:
2点:气流主体由l+dl面离开微元体带出的热量:
g u 2rdr C P Tl dl,J s 1
3点:由轴向热传导自l面而传入微元体的热量:
T 1 eZ 2rdr,J s l l
4点:由轴向热传导自l+dl面离开而传出的热量:
T 1 eZ 2rdr,J s l l dl
6点:A自r+dr面由径向扩散而离开微元体的量:
C Er A 2 r dr dl, s 1 mol r r dr
2 mol s 1 7点:微元体中A的反应量: R A 1 B r dr dl r dl , 2
R A aV 1 B H rA
g uCP
l 1 2 Tm1,n 2Tm,n Tm1,n Tm 1,n Tm,n g uCP r m l 5

第6章固定床反应器2

第6章固定床反应器2
为当床层直径与颗粒直径之比达 8 时,可不计壁效应。 壁效应影响是指靠近器壁的空间结构与其他部分有很大 差别,器壁处的流动状况、传质、传热状况与主流体中 也有很大差别。当采用实验规模的小型设备研究传质、 传热、反应的规律时,器壁的影响远比大型设备为大。
23
6-9填充床的空隙率
床层空隙率εB
球形
圆柱形 不规则
第六章 固定床反应器
1
6 . 1 概述
凡是流体通过固定的固体物料所 形成的床层而进行反应的装置都
水蒸气
乙苯
催化剂
称作固定床反应器。
如:气-固相催化反应器、 气-固相非催化反应器。
测 温 口
产品
6-1乙苯脱氢的绝热床反应器
2
一、固定床反应器的特点 1.固定床反应器的优点是:①返混小,流体同催化剂可进 行有效接触,当反应伴有串联副反应时可得较高选择性。
床层空隙率εB
0.4
0
0.5
1
1.5
2
2.5
2
3.5
4
4.5
5
按混合颗粒的平均直径计算离壁距离
28
空管内 湍流
2
空管内层流
填充层内 气体流动
1
填充层内液体 流动
0
29
6.2.2 床层压降
床层压降是固定床反应器设计的重要参数,要求床层压
降不超过床内压力的15%。
气体流动通过催化剂床层的压力降厄根(Ergun)方程计算式:
B
36
dp 1 u2 将d e、um 代入式 f 中得 dl de 2
' 2 u dp 3(1 B ) (um / B ) 1 B m ' f f 3 dl 2 B d s 2 ds B 2

《化学反应工程》课程教学大纲

《化学反应工程》课程教学大纲

《化学反应工程》课程教学大纲课程名称:化学反应工程课程类型:必修课,专业课总学时:54 讲课学时:54 实验学时:0学分:3.0适用对象:化学工程、化学工艺先修课程:物理化学、化工工艺学、化工原理、化工热力学一、课程性质、目的和任务课程性质:化学反应工程是以化学反应器原理为要紧线索,要紧研究化学反应过程需要解决的工程问题,是化工生产的龙头、关键和核心,是一些基础学科诸如物理化学、传递过程、化学工艺等相互渗透与交叉而演变成的边缘学科,其内容要紧涉及化学反应动力学、反应器中传递特性、反应器类型结构、数学建模方法、操作分析及反应器设计,具有高度综合性、广泛基础性和自身专门性。

课程目的与任务:一是培养学生将物理化学、传递过程、化学工艺、化工热力学、操纵工程等学科知识用之于化学反应工程学的综合能力;二是使学生把握化学反应工程学科的理论体系、研究方法,了解学科前沿;三是使学生初步具备改进和强化现有反应技术和设备、开发新的反应技术和设备、解决反应过程中的工程放大问题以及实现反应过程中最优化的能力二、教学差不多要求通过本课程的教学,要使学生系统地把握化学反应动力学规律、传递过程对化学反应的阻碍规律,把握反应器设计、过程分析及最佳化方法。

四、课程的重点和难点绪论重点是化学反应工程的研究内容和方法。

第一章均相单一反应动力学和理想反应器重点:①化学反应动力学方程②理想反应器设计方程难点:动力学方称的建立;反应器设计运算第二章复合反应与反应器选型重点:复合反应动力学方程表达法;复合反应动力学特点分析;平推流反应器的串联和全混流反应器的串联。

难点:可逆反应吸热反应和放热反应动力学特点推导与分析;循环反应器设计方程的数学推导;复合反应(包括可逆反应、自催化反应、平行反应、连串反应)在PFR 和CSTR反应器的优化设计运算第三章非理想流淌反应器重点:停留时刻分布的概率函数及特点值;停留时刻分布的实验测定;解决均相反应过程问题的近似法即活塞流模型、全混流模型、凝聚流模型、多级混合槽模型、轴向扩散模型的推导、结论及应用比较。

气固相催化反应的步骤

气固相催化反应的步骤

气固相催化反应的步骤
1. 催化剂预处理:将催化剂进行预处理,以去除表面的杂质和活性物种,并提高催化剂的活性和选择性。

常用的预处理方法包括煅烧、还原和氧化等。

2. 催化剂加载:将经过预处理的催化剂加载到固体底物上,形成催化剂-底物体系。

加载方法可以采用浸渍、沉积或物理吸附等。

3. 底物进料:将气体底物通过气体供给系统导入反应器。

底物可以是单一气体或混合气体,取决于具体反应的要求。

4. 反应发生:底物分子在催化剂表面发生吸附和解析反应。

此过程中,催化剂促进了底物分子之间的化学反应,并降低了反应的活化能,从而提高了反应速率和选择性。

5. 产物分离:反应产物经过催化剂表面的解析,从催化剂表面脱附,并通过分离系统进行分离和收集。

常用的分离方法包括凝固、吸附和脱附等。

6. 催化剂再生:催化剂在反应过程中可能会受到中毒或失活,需要进行再生以恢复催化剂活性。

催化剂再生方法根据具体反应的特点而不同,常用的再生方法包括煅烧、洗涤和修复等。

以上是气固相催化反应的一般步骤,具体情况会因反应种类不同而有所差异。

第六章固定床催化反应器设计-化学反应工程

第六章固定床催化反应器设计-化学反应工程

第六章气-固相催化反应器设计本章核心内容:本章讨论的气固相催化反应反应器包括固定床反应器和流化床反应器。

在固定床反应器部分,介绍了气固相催化反应器的各种类型和固定床层的流动特性,给出了固定床反应器的两种设计方法:经验或半经验法和数学模型法。

在流化床反应器部分,在对固体颗粒流态化现象和流态化特征参数介绍的基础上,讨论了流化床反应器的分类和工业应用。

6-1 固定床反应器的型式反应器内部填充有固定不动的固体催化剂颗粒或固体反应物的装置,称为固定床反应器。

气态反应物通过床层进行催化反应的反应器,称为气固相固定床催化反应器。

这类反应器除广泛用于多相催化反应外,也用于气固及液固非催化反应,它与流化床反应器相比,具有催化剂不易跑损或磨损,床层流体流动呈平推流,反应速度较快,停留时间可以控制,反应转化率和选择性较高的优点。

工业生产过程使用的固定床催化反应器型式多种多样,主要为了适应不同的传热要求和传热方式,按催化床是否与外界进行热量交换来分,分为绝热式和连续换热式两大类。

另外,按反应器的操作及床层温度分布不同来分,分为绝热式、等温式和非绝热非等温三种类型;按换热方式不同,分为换热式和自热式两种类型;按反应情况来分,分为单段式与多段式两类;按床层内流体流动方向来分,分为轴向流动反应器和径向流动反应器两类;根据催化剂装载在管内或管外、反应器的设备结构特征,也可以对固定床催化反应器进行分类。

图6-1、6-2、6-3分别是轴向流动式、径向流动式和列管式固定床反应器结构示意图。

其中,图6-1和图6-2所示的反应器为绝热式,图6-3所示的反应器为连续换热式。

图6-1 轴向流动式图6-2径向流动式图6-3列管式固固定床反应器固定床反应器定床反应器6-1-1 绝热式固定床反应器绝热式固定床催化反应器有单段与多段之分。

绝热式反应器由于与外界无热交换以及不计入热损失,对于可逆放热反应,依靠本身放出的反应热而使反应气体温度逐步升高;催化床入口气体温度高于催化剂的起始活性温度,而出口气体温度低于催化剂的耐热温度。

第六章 气固相催化固定床反应器

第六章 气固相催化固定床反应器

对于固定床反应器,一般有以下模型: 一维拟均相平推流模型 一维拟均相带有轴向返混的模型 二维拟均相模型 二维非均相模型 二维非均相带有颗粒内梯度的模型 …………
一维:参数只随轴向位置而变。 二维:参数随轴向和径向位置而变。 拟均相:流相和固相结合,视为同一相。 非均相:流相和固相分别考虑。 平推流:不考虑轴向返混。 带有轴向返混的模型:在平推流模型的 基础上叠加了轴向返混。
调用最优化程序,就可以求得W最小值? 可以,但很困难。 进一步数学处理: 在任意一段内,当xin及xout确定之后,应 选取适当的进口温度Tin,使催化剂量最 小。
xout dx 1 r x, T 2 dx 0 r x, T xin r Tin xout W dx xin r x, T FA 0
将三个方程联立:
dxA RA 1- B dl u 0 cA 0
4 RA 1 B H U T Tr di dT dl ucp g
2 u dp 150 1 B g m 1 . 75 3 d dl Re m B s
d sum g
l:床层高度
g : 气体密度
B:床层空隙率
可用来计算床层压力分布。 如果压降不大,在床层各处物性变化不 大,可视为常数,压降将呈线性分布 (大多数情况)。
例6.1 在内径为50mm的管内装有4m高 的催化剂层,催化剂的粒径分布如表所 示。 3.40 4.60 6.90 粒径 d /mm
2绝热:若绝热,则T=Tr,或者认为U=0。 此时,将物料衡算式与热量衡算式合并, 可得:
dT H u0cA 0 Ai FA 0 H dx ucp g Ai mcp

化学反应工程_南京理工大学中国大学mooc课后章节答案期末考试题库2023年

化学反应工程_南京理工大学中国大学mooc课后章节答案期末考试题库2023年

化学反应工程_南京理工大学中国大学mooc课后章节答案期末考试题库2023年1.对于反应级数n < 0 (反常动力学)的不可逆等温反应,为降低反应器容积,应选用( )参考答案:全混流反应器2.吸附等温线方程包括_____________、BET模型、焦姆金模型和弗罗因德利希模型。

参考答案:朗缪尔吸附等温线3.催化剂中气体扩散形式主要包括分子扩散、____________、构型扩散。

参考答案:努森扩散4.全混流反应器内物料的温度和浓度均一(均匀),并且_____________(大于/等于/小于)反应器出口物料的浓度和温度。

参考答案:等于5.物料衡算式的基本表达形式是:单位时间内反应物的流入量=单位时间内反应物的流出量+单位时间内反应物的反应量+______。

参考答案:反应器中反应物的累积速度6.可逆吸热反应的最优操作温度取决于__________________________。

参考答案:系统可允许的最高操作温度7.某反应级数相同不可逆反应,若主反应的活化能高于副反应,则升高温度,选择性将 (增大/减小/不变)。

参考答案:增大8.某反应级数相同不可逆反应,若主反应的活化能高于副反应,则升高温度,目标产物的收率将 (增大/减小/不变)。

参考答案:增大9.复合反应主要包括:______________、串联反应、反应网络。

参考答案:平行反应10.均相反应的三大特点:均相体系、强烈的混合手段、_________________。

参考答案:反应速率远小于分子扩散速率11.化学反应工程的目的是____________________________________________。

参考答案:反应器的优化设计和操作12.气固相催化反应中,西勒模数增加,有效系数η( )参考答案:减小13.在全混流反应器中,采用阶跃示踪法,停留时间小于平均停留时间的粒子占总例子分率( )参考答案:0.63214.反应N2+3H2 →2NH3的膨胀因子δH2为( )参考答案:-2/315. 5. 化学反应工程研究方法有______和_______。

化学反应工程习题-第六章:固定床反应器

化学反应工程习题-第六章:固定床反应器

第六章 固定床反应器1.凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作_______。

(固定床反应器)2.固定床中催化剂不易磨损是一大优点,但更主要的是床层内流体的流动接近于_______,因此与返混式的反应器相比,可用较少量的催化剂和较小的反应器容积来获得较大的生产能力。

(平推流)3.固定床中催化剂不易磨损是一大优点,但更主要的是床层内流体的流动接近于平推流,因此与返混式的反应器相比,可用_______的催化剂和_______的反应器容积来获得较大的生产能力。

(较少量、较小)4.目前描述固定床反应器的数学模型可分为_______和_______的两大类。

(拟均相、非均相)5.描述固定床反应器的拟均相模型忽略了粒子与流体之间_______与_______的差别。

(温度、浓度)6.描述固定床反应器的数学模型,忽略了粒子与流体之间温度与浓度的差别的模型称之为_______。

(拟均相模型)7.描述固定床反应器的数学模型,考虑了粒子与流体之间温度与浓度的差别的模型称之为_______。

(非均相模型)8.描述固定床反应器的拟均相模型,根据流动模式与温差的情况它又可分为平推流与有轴向返混的_______模型,和同时考虑径向混合和径向温差的_______模型。

(一维、二维)9.固定床中颗粒的体积相当直径定义为具有相同体积P V 的球粒子直径,表达式V d =_______。

(3/1)/6(πP V )10.固定床中颗粒的面积相当直径是以外表面P a 相同的球形粒子的直径,表达式a d =_______。

(π/P a ) 11.固定床中颗粒的比表面相当直径是以相同的比表面V S 的球形粒子直径来表示,表达式S d =_______。

(V S /6) 12.对于非球形粒子,其外表面积P a 必大于同体积球形粒子的外表面积S a ,故可定义颗粒的形状系数=S ϕ_______。

(P Sa a /) 13.颗粒的形状系数S ϕ对于球体而言,=S ϕ_______,对于其他形状的颗粒S ϕ_______。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、动量衡算方程 与拟均相一维理想流动的模型相同。
二、物料衡算方程 对A作物料衡算:
mol 1 1点:A自l面由主体流动而进入微元体的量:uC A l 2rdr, s ;
2点:A自l+dl面由主体流动而离开微元体的量:
uC A l dl 2rdr,mol s 1;


整理后得:
2 C A 1 C A 2C A C EZ Er u A R A 1 B 1 r 2 r r l l 2
三、热量衡算方程 1点:气流主体由l面带入微元体的热量:
g u 2rdr C P Tl,J s 1
由(5)(6)两式可以由已知的n层上的CA、T值获 得n+1层上的一切数据值,但中心线和床壁上的点除 外,这两处位置上的点数据必须要结合边界条件求出。
⑵在r=0,m=0的中心线上
温度T和浓度CA是关于中心轴对称的,基础方程可以简化 : T 0, r 0 ,故 对T r 2 1 T 1 T T lim 为不定项,符合罗必塔法则:0 2 ,则: r r r r r r
2C A C A 2Er u R A 1 B 0 2 l r 2 2 T uC T R 1 H 0 g P A B rA er r 2 l T l T T0,n 1 T0,n l l l
同样可写出:
C0,n1 C0,n
R A aV 1 B 4 E r l 2 C1,n C0,n l 8 u r u
g uCP
T0,n 1 T0,n l
T0,n 1 T0,n
对CA
R A aV 1 B H rA 4er l 2 T1,n T0,n l 7 g uCP r g uCP
2T1,n T0,n R A aV 1 B H rA er 2 2 r
则(3)式化为:
u C m ,n 1 C m ,n l C m 1,n 2C m ,n C m 1,n 1 C m 1,n C m ,n Er 2 r r r R A aV 1 B
C m ,n 1
E r l 1 C m ,n 2 C m 1,n 2C m ,n C m 1,n C m 1,n C m ,n u r m R A aV 1 B l 6 u
如果已知n层节点上的数值,如何获得 n+1层上各节点的数值?
⑴变换基础方程(3)、(4) 对T,由(4)式:
T l T , l l
l T Tm,n 1 Tm,n
l T Tm ,n 1 Tm ,n l l
T r T r , r
r T Tm1,n Tm,n
6.4固定床催化反应器模型评述
6.4.1拟均相一维非理想流动模型
该模型是对拟均相一维理想流动的模型修正,其基本假设: ①流体与催化剂在任一与流体流动方向垂直的横截面处的温度、反应物 浓度是相同的(拟均相); ②流体在反应器中径向温度、浓度是均一的,仅沿轴向变化(一维); ③流体在床层中的流动属非理想流动,遵循轴向扩散规律(扩散系数EZ) (非理想流动)。 一、动量衡算方程 与拟均相一维理想流动的模型相同。
5点:由径向热传导自r面进入微元体的热量:
T 1 er 2rdl,J s r r
6点:由径向热传导自r+dr面离开微元体的热量:
T 1 er 2 r dr dl,J s r r dr
7点:微元体反应放热量:
(5)式的意义在于已知某层(n层)上的三节点数值,求出上一层(n+1) 某点的值(T值)。
对CA,由(3)式,同样有(CA下标A略去):
C l C C m,n 1 C m,n l l l
C r C Cm1,n Cm,n r r r
C r 2C r C r C m1,n 2C m ,n C m1,n 2 r r r r r 2
C E Z A 2rdr, s 1; mol 3点:A自l面由混合扩散而进入微元体的量: l l
C E Z A 2rdr, s; mol 1 4点:A自l+dl面由混合扩散而离开微元体的量: l l dl
C Er A 2rdl, s 1 ; mol 5点:A自r面由径向扩散而进入微元体的量: r r
r T Tm 1,n Tm ,n r r
rT 2T r T r Tm1,n Tm,n Tm,n Tm1,n Tm1,n 2Tm,n Tm1,n 2 2 r r r r r r 2
二、物料衡算方程
F F1 FA , 2 FA dFA
dC F3 E z A S t ,F4 dl l
dC Ez A St dl l dl
对微元做物料衡算: Fin F1 F3,Fout F2 F4
Fr R A 1 B S t dl,Fb 0
Qin Q1 Q3
Qout Q2 Q4
Qr 1 B R A H rA S t dl
Qu d t dlh0 T TW
Qb 0
化简,合并,整理,最后得:
4h d 2T dT Z 2 u g C P 1 B R A H rA 0 T TW 2 dl dt dl
(4)式化为:
g uCP
Tm,n 1 Tm,n l
Tm 1,n 2Tm,n Tm 1,n 1 Tm 1,n Tm,n R A aV 1 B H rA er 2 mr r r
Tm,n 1 Tm,n
R A aV 1 B H rA
g uCP
l 1 2 Tm1,n 2Tm,n Tm1,n Tm 1,n Tm,n g uCP r m l 5
er
RA aV是区间中的平均值。
6点:A自r+dr面由径向扩散而离开微元体的量:
C Er A 2 r dr dl, s 1 mol r r dr
2 mol s 1 7点:微元体中A的反应量: R A 1 B r dr dl r dl , 2
2点:气流主体由l+dl面离开微元体带出的热量:
g u 2rdr C P Tl dl,J s 1
3点:由轴向热传导自l面而传入微元体的热量:
T 1 eZ 2rdr,J s l l
4点:由轴向热传导自l+dl面离开而传出的热量:
T 1 eZ 2rdr,J s l l dl
T
R
0
2rdr 2 T 2 2 R R

R
0
Trdr
说明: 2rdr E t dt,即分布密度函数。 R 2
CA
R
0
2rdr 2 CA 2 2 R R

R
0
C A rdr
二、数学模型求解
1、显式差分法 上述方程组(3)、(4)没有解析解,只能求其数值解: 方程的自变量为r、l,其定义域就是整个反应器,即是圆柱形 的反应床,为求得定义域上因变量CA、T的分布规律,数值 解的基本思路是:
通常:EZ、λ
ez的影响可以忽略,则(1)(2)两式可简化为:
2 C A 1 C A C u A R A 1 B 0 3 Er 2 r r l r 2 T T 1 T g uCP er 2 R A 1 B H rA 0 4 r r r l
边界条件:
l 0 时,u 0 C A0
dCA C A EZ u C T dl , 0 g P 0
dC A T Z dl
l L 时,
dC A dT 0, 0 dl dl
6.4.2拟均相ห้องสมุดไป่ตู้维模型
该模型基本假设如下:
①流体与催化剂在任一与流体流动方向垂直的横截面处的温 度、反应物浓度是相同的(拟均相); ②流体在反应器中沿径向存在温度、浓度分布,且符合扩散 模型(二维); ③流体在床层中的流动属非理想流动,遵循轴向扩散规律( 扩散系数EZ)(非理想流动)。
首先将定义域划分成一系列的网格,如下图所示。由于圆
柱体的特殊性,可以将本来是三维的定义域简化成二维的 平面形; 其次将偏微分化成差分形式。
r为半径,l为床高,Δr为径向网格间距,Δl为轴向网格间距。
r mr, l nl ,节点的位置可以由不同的数据对
来表示。
m, n
显式差分法解题思路关键在于:
对T:
2T Tm 1,n 2Tm,n Tm1,n T1,n 2T0,n T1,n ,因为 2 2 2 r r r
m 0同时T关于中心线对称, T 1,n T1,n ,故:
2T 2T1,n T0,n 2 r r 2
则(4)式转化为:
化简,合并,整理,最后得:
d 2C A dC A Ez u 1 B R A 1 2 dl dl
三、热量衡算方程
dT Q1 GC PT Q3 Z St , dl l dT Q2 GC P T dT ,Q4 Z St dl l dl 对微元作热量衡算:
边界条件:
相关文档
最新文档